51
|
Dampened virulence and limited proliferation of Batrachochytrium salamandrivorans during subclinical infection of the troglobiont olm (Proteus anguinus). Sci Rep 2020; 10:16480. [PMID: 33020584 PMCID: PMC7536193 DOI: 10.1038/s41598-020-73800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022] Open
Abstract
Emerging infections add to existing threats to the survival of amphibians worldwide. The olm (Proteus anguinus) is a vulnerable, troglobiont urodele species with a small European range and restricted to underground karstic systems. Population declines to emerging threats like the chytrid fungus Batrachochytrium salamandrivorans, are likely to go unnoticed due to inaccessibility of the species’ habitat. We here studied the interaction between olms and B. salamandrivorans. Experimental inoculation of olms resulted in low-level, asymptomatic but persistent infections, with limbs as predilection sites. The lack of exponential fungal growth in the olms’ epidermis correlated with limited fungal proliferation and dampened virulence gene expression after exposure to olm skin compounds. The olm is one of few western Palearctic urodeles that is tolerant to B. salamandrivorans infection and may act as a subterranean disease reservoir, yet costs of subclinical infection may compromise olm fitness on the long term.
Collapse
|
52
|
Li Z, Martel A, Bogaerts S, Göçmen B, Pafilis P, Lymberakis P, Woeltjes T, Veith M, Pasmans F. Landscape Connectivity Limits the Predicted Impact of Fungal Pathogen Invasion. J Fungi (Basel) 2020; 6:E205. [PMID: 33022972 PMCID: PMC7712934 DOI: 10.3390/jof6040205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious diseases are major drivers of biodiversity loss. The risk of fungal diseases to the survival of threatened animals in nature is determined by a complex interplay between host, pathogen and environment. We here predict the risk of invasion of populations of threatened Mediterranean salamanders of the genus Lyciasalamandra by the pathogenic chytrid fungus Batrachochytrium salamandrivorans by combining field sampling and lab trials. In 494 samples across all seven species of Lyciasalamandra, B. salamandrivorans was found to be absent. Single exposure to a low (1000) number of fungal zoospores resulted in fast buildup of lethal infections in three L. helverseni. Thermal preference of the salamanders was well within the thermal envelope of the pathogen and body temperatures never exceeded the fungus' thermal critical maximum, limiting the salamanders' defense opportunities. The relatively low thermal host preference largely invalidates macroclimatic based habitat suitability predictions and, combined with current pathogen absence and high host densities, suggests a high probability of local salamander population declines upon invasion by B. salamandrivorans. However, the unfavorable landscape that shaped intraspecific host genetic diversity, lack of known alternative hosts and rapid host mortality after infection present barriers to further, natural pathogen dispersal between populations and thus species extinction. The risk of anthropogenic spread stresses the importance of biosecurity in amphibian habitats.
Collapse
Affiliation(s)
- Zhimin Li
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (Z.L.); (A.M.)
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (Z.L.); (A.M.)
| | | | - Bayram Göçmen
- Faculty of Science, Department of Biology, Zoology Section, Ege University, TR-35100 İzmir, Turkey
| | - Panayiotis Pafilis
- Department of Zoology and Marine Biology, School of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Ilissia, 15784 Athens, Greece;
| | - Petros Lymberakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knossos Ave., 1409 Irakleio, Greece;
| | | | - Michael Veith
- Department of Biogeography, Trier University, Universitätsring 15, D-54296 Trier, Germany;
| | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (Z.L.); (A.M.)
| |
Collapse
|
53
|
Abstract
This article updates the understanding of two extirpation-driving infectious diseases, Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, and Ranavirus. Experimental studies and dynamic, multifactorial population modeling have outlined the epidemiology and future population impacts of B dendrobatidis, B salamandrivorans, and Ranavirus. New genomic findings on divergent fungal and viral pathogens can help optimize control and disease management strategies. Although there have been major advances in knowledge of amphibian pathogens, controlled studies are needed to guide population recovery to elucidate and evaluate transmission routes for several pathogens, examine environmental control, and validate new diagnostic tools to confirm the presence of disease.
Collapse
|
54
|
Kumar R, Malagon DA, Carter ED, Miller DL, Bohanon ML, Cusaac JPW, Peterson AC, Gray MJ. Experimental methodologies can affect pathogenicity of Batrachochytrium salamandrivorans infections. PLoS One 2020; 15:e0235370. [PMID: 32915779 PMCID: PMC7485798 DOI: 10.1371/journal.pone.0235370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Controlled experiments are one approach to understanding the pathogenicity of etiologic agents to susceptible hosts. The recently discovered fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has resulted in a surge of experimental investigations because of its potential to impact global salamander biodiversity. However, variation in experimental methodologies could thwart knowledge advancement by introducing confounding factors that make comparisons difficult among studies. Thus, our objective was to evaluate if variation in experimental methods changed inferences made on the pathogenicity of Bsal. We tested whether passage duration of Bsal culture, exposure method of the host to Bsal (water bath vs. skin inoculation), Bsal culturing method (liquid vs. plated), host husbandry conditions (aquatic vs. terrestrial), and skin swabbing frequency influenced diseased-induced mortality in a susceptible host species, the eastern newt (Notophthalmus viridescens). We found that disease-induced mortality was faster for eastern newts when exposed to a low passage isolate, when newts were housed in terrestrial environments, and if exposure to zoospores occurred via water bath. We did not detect differences in disease-induced mortality between culturing methods or swabbing frequencies. Our results illustrate the need to standardize methods among Bsal experiments. We provide suggestions for future Bsal experiments in the context of hypothesis testing and discuss the ecological implications of our results.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Daniel A. Malagon
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Edward Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Debra L. Miller
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Markese L. Bohanon
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Joseph Patrick W. Cusaac
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Anna C. Peterson
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Matthew J. Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
55
|
Batrachochytrium salamandrivorans (Bsal) not detected in an intensive survey of wild North American amphibians. Sci Rep 2020; 10:13012. [PMID: 32747670 PMCID: PMC7400573 DOI: 10.1038/s41598-020-69486-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Abstract
The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.
Collapse
|
56
|
Brunner JL. Pooled samples and eDNA-based detection can facilitate the "clean trade" of aquatic animals. Sci Rep 2020; 10:10280. [PMID: 32581260 PMCID: PMC7314758 DOI: 10.1038/s41598-020-66280-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
The regional and international trade of live animals facilitates the movement, spillover, and emergence of zoonotic and epizootic pathogens around the world. Detecting pathogens in trade is critical for preventing their continued movement and introduction, but screening a sufficient fraction to ensure rare infections are detected is simply infeasible for many taxa and settings because of the vast numbers of animals involved—hundreds of millions of live animals are imported into the U.S.A. alone every year. Batch processing pools of individual samples or using environmental DNA (eDNA)—the genetic material shed into an organism’s environment—collected from whole consignments of animals may substantially reduce the time and cost associated with pathogen surveillance. Both approaches, however, lack a framework with which to determine sampling requirements and interpret results. Here I present formulae for pooled individual samples (e.g,. swabs) and eDNA samples collected from finite populations and discuss key assumptions and considerations for their use with a focus on detecting Batrachochytrium salamandrivorans, an emerging pathogen that threatens global salamander diversity. While empirical validation is key, these formulae illustrate the potential for eDNA-based detection in particular to reduce sample sizes and help bring clean trade into reach for a greater number of taxa, places, and contexts.
Collapse
Affiliation(s)
- Jesse L Brunner
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA.
| |
Collapse
|
57
|
Kostanjšek R, Prodan Y, Stres B, Trontelj P. Composition of the cutaneous bacterial community of a cave amphibian, Proteus anguinus. FEMS Microbiol Ecol 2020; 95:5288338. [PMID: 30649314 DOI: 10.1093/femsec/fiz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The European cave salamander Proteus anguinus is a charismatic amphibian endemic to the concealed and inaccessible subterranean waters of the Dinaric Karst. Despite its exceptional conservation importance not much is known about its ecology and interactions with the groundwater microbiome. The cutaneous microbiota of amphibians is an important driver of metabolic capabilities and immunity, and thus a key factor in their wellbeing and survival. We used high-throughput 16S rRNA gene sequencing based on seven variable regions to examine the bacteriome of the skin of five distinct evolutionary lineages of P. anguinus and in their groundwater environment. The skin bacteriomes turned out to be strongly filtered subsamples of the environmental microbial community. The resident microbiota of the analyzed individuals was dominated by five bacterial taxa. Despite an indicated functional redundancy, the cutaneous bacteriome of P. anguinus presumably provides protection against invading microbes by occupying the niche, and thus could serve as an indicator of health status. Besides conservation implications for P. anguinus, our results provide a baseline for future studies on other endangered neotenic salamanders.
Collapse
Affiliation(s)
- Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ylenia Prodan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia.,Laboratory of Cell Toxinology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
58
|
Malagon DA, Melara LA, Prosper OF, Lenhart S, Carter ED, Fordyce JA, Peterson AC, Miller DL, Gray MJ. Host density and habitat structure influence host contact rates and Batrachochytrium salamandrivorans transmission. Sci Rep 2020; 10:5584. [PMID: 32221329 PMCID: PMC7101388 DOI: 10.1038/s41598-020-62351-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Batrachochytrium salamandrivorans (Bsal) is an emerging invasive pathogen that is highly pathogenic to salamander species. Modeling infection dynamics in this system can facilitate proactive efforts to mitigate this pathogen's impact on North American species. Given its widespread distribution and high abundance, the eastern newt (Notophthalmus viridescens) has the potential to significantly influence Bsal epidemiology. We designed experiments to 1) estimate contact rates given different host densities and habitat structure and 2) estimate the probability of transmission from infected to susceptible individuals. Using parameter estimates from data generated during these experiments, we modeled infection and disease outcomes for a population of newts using a system of differential equations. We found that host contact rates were density-dependent, and that adding habitat structure reduced contacts. The probability of Bsal transmission given contact between newts was very high (>90%) even at early stages of infection. Our simulations show rapid transmission of Bsal among individuals following pathogen introduction, with infection prevalence exceeding 90% within one month and >80% mortality of newts in three months. Estimates of basic reproductive rate (R0) of Bsal for eastern newts were 1.9 and 3.2 for complex and simple habitats, respectively. Although reducing host density and increasing habitat complexity might decrease transmission, these management strategies may be ineffective at stopping Bsal invasion in eastern newt populations due to this species’ hyper-susceptibility.
Collapse
Affiliation(s)
- Daniel A Malagon
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Luis A Melara
- Department of Mathematics, Shippensburg University, Shippensburg, PA, 17257, USA
| | - Olivia F Prosper
- Department of Mathematics, University of Kentucky, Lexington, KY, 40506, USA.,Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - J A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Anna C Peterson
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Debra L Miller
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew J Gray
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| |
Collapse
|
59
|
Hardman RH, Irwin KJ, Sutton WB, Miller DL. Evaluation of Severity and Factors Contributing to Foot Lesions in Endangered Ozark Hellbenders, Cryptobranchus alleganiensis bishopi. Front Vet Sci 2020; 7:34. [PMID: 32118058 PMCID: PMC7010714 DOI: 10.3389/fvets.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Arkansas populations of Ozark Hellbenders, Cryptobranchus alleganiensis bishopi have declined precipitously over the past few decades and are now limited to a single river. Biologists have also observed an increase of distal limb lesions with unidentified etiology and unknown role in morbidity and mortality of the species in this location. We documented lesions and collected associated individual size class data and pathogen samples in Ozark Hellbenders of Arkansas (n = 73) from 2011 to 2014 with the following two objectives: (1) document spatiotemporal patterns and severity of lesions present in this last remaining Arkansas Ozark Hellbender population, and (2) determine if host factors and infection status are associated with lesion severity. A scoring system was created from 0 to 7 based on lesion observations. Linear mixed model regressions followed by AICc model evaluation were used to determine associations among infection status for amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Ranavirus as well as individual biometrics on lesion score. We discovered 93.2% of Hellbenders had lesions characterized by digit swelling that often progressed toward toe-tip ulceration. In severe cases we observed digital necrosis progressing to digit loss. Any recaptured individuals had the same or worse lesion score from previous captures. The top predictive model for lesion severity included individual mass and Bd infection status with a significant, positive association of Bd with increased lesion severity (β = 0.87 ± 0.39 S.E., C.I.: 0.11, 1.63). Our findings highlight a widespread and progressive disease that is an important factor to consider for the future of Ozark Hellbenders. This syndrome is presumptively multifactorial, and future studies will benefit from investigating several factors of host, infectious agents, and environment and their roles in disease manifestation for the purpose of developing effective, multi-faceted conservation strategies. A summary of potential etiologies and mechanisms is provided that may explain observed lesion distribution and that will be applicable to future disease and epidemiological investigations.
Collapse
Affiliation(s)
- Rebecca H Hardman
- Center for Wildlife Health, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kelly J Irwin
- Arkansas Game and Fish Commission, Benton, AR, United States
| | - William B Sutton
- Wildlife Ecology Laboratory, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, United States
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
60
|
POSTMORTEM FINDINGS IN EIGHT SPECIES OF CAPTIVE CAECILIAN (AMPHIBIA: GYMNOPHIONA) OVER A TEN-YEAR PERIOD. J Zoo Wildl Med 2020; 50:879-890. [PMID: 31926519 DOI: 10.1638/2019-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 11/21/2022] Open
Abstract
Between July 2007 and June 2017 there were 86 deaths in the populations of eight caecilian species at the Zoological Society of London (ZSL) London Zoo. The mortality rate (deaths per animal-year at risk) ranged from 0.03 in the Congo caecilian (Herpele squalostoma) to 0.85 in Kaup's caecilian (Potomotyphlus kaupii). Among the 73 individuals examined post mortem, no cause of death or primary diagnosis could be established in 35 cases, but of the others the most common cause of death was dermatitis (22 cases). When all significant pathological findings were considered, skin lesions of varying types were again the commonest (56 cases), particularly among the aquatic species: Typhlonectes compressicauda (18 out of 21 cases), T. natans (8/10) and P. kaupii (12/14). Other common findings were poor gut-fill (35 cases), kidney and gastrointestinal lesions (10 cases each), generalized congestion (8 cases) and poor body condition (6 cases). This review adds to the growing body of knowledge regarding the presentations and causes of disease in captive caecilians.
Collapse
|
61
|
Barnhart KL, Bletz MC, LaBumbard BC, Tokash-Peters AG, Gabor CR, Woodhams DC. Batrachochytrium salamandrivorans ELICITS ACUTE STRESS RESPONSE IN SPOTTED SALAMANDERS BUT NOT INFECTION OR MORTALITY. Anim Conserv 2020; 23:533-546. [PMID: 33071596 DOI: 10.1111/acv.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emerging fungal pathogen Batrachochytrium salamandrivorans (Bsal) is a major threat to amphibian species worldwide with potential to infect many species if it invades salamander biodiversity hotspots in the Americas. Bsal can cause the disease chytridiomycosis, and it is important to assess the risk of Bsal-induced chytridiomycosis to species in North America. We evaluated the susceptibility to Bsal of the common and widespread spotted salamander, Ambystoma maculatum, across life history stages and monitored the effect of Bsal exposure on growth rate and response of the stress hormone, corticosterone. We conclude that spotted salamanders appear resistant to Bsal because they showed no indication of disease or infection, and experienced minor effects on growth upon exposure. While we focused on a single population for this study, results were consistent across conditions of exposure including high or repeated doses of Bsal, life-stage at exposure, environmental conditions including two temperatures and two substrates, and promoting pathogen infectivity by conditioning Bsal cultures with thyroid hormone. Exposure to high levels of Bsal elicited an acute but not chronic increase in corticosterone in spotted salamanders, and reduced growth. We hypothesize that the early acute increase in corticosterone facilitated mounting an immune response to the pathogen, perhaps through immunoredistribution to the skin, but further study is needed to determine immune responses to Bsal. These results will contribute to development of appropriate Bsal management plans to conserve species at risk of emerging disease.
Collapse
Affiliation(s)
- Kelly L Barnhart
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Molly C Bletz
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Brandon C LaBumbard
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Amanda G Tokash-Peters
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Caitlin R Gabor
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666
| | - Douglas C Woodhams
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| |
Collapse
|
62
|
Lastra González D, Baláž V, Solský M, Thumsová B, Kolenda K, Najbar A, Najbar B, Kautman M, Chajma P, Balogová M, Vojar J. Recent Findings of Potentially Lethal Salamander Fungus Batrachochytrium salamandrivorans. Emerg Infect Dis 2019; 25:1416-1418. [PMID: 31211934 PMCID: PMC6590763 DOI: 10.3201/eid2507.181001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The distribution of the chytrid fungus Batrachochytrium salamandrivorans continues to expand in Europe. During 2014-2018, we collected 1,135 samples from salamanders and newts in 6 countries in Europe. We identified 5 cases of B. salamandrivorans in a wild population in Spain but none in central Europe or the Balkan Peninsula.
Collapse
|
63
|
Madison JD, Ouellette SP, Schmidt EL, Kerby JL. Serratia marcescens shapes cutaneous bacterial communities and influences survival of an amphibian host. Proc Biol Sci 2019; 286:20191833. [PMID: 31662077 DOI: 10.1098/rspb.2019.1833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ongoing investigations into the interactions between microbial communities and their associated hosts are changing how emerging diseases are perceived and ameliorated. Of the numerous host-microbiome-disease systems of study, the emergence of chytridiomycosis (caused by Batrachochytrium dendrobatidis, hereafter Bd) has been implicated in ongoing declines and extinction events of amphibians worldwide. Interestingly, there has been differential survival among amphibians in resisting Bd infection and subsequent disease. One factor thought to contribute to this resistance is the host-associated cutaneous microbiota. This has raised the possibility of using genetically modified probiotics to restructure the host-associated microbiota for desired anti-fungal outcomes. Here, we use a previously described strain of Serratia marcescens (Sm) for the manipulation of amphibian cutaneous microbiota. Sm was genetically altered to have a dysfunctional pathway for the production of the extracellular metabolite prodigiosin. This genetically altered strain (Δpig) and the functional prodigiosin producing strain (wild-type, WT) were compared for their microbial community and anti-Bd effects both in vitro and in vivo. In vitro, Bd growth was significantly repressed in the presence of prodigiosin. In vivo, the inoculation of both Sm strains was shown to significantly influence amphibian microbiota diversity with the Δpig-Sm treatment showing increasing alpha diversity, and the WT-Sm having no temporal effect on diversity. Differences were also seen in host mortality with Δpig-Sm treatments exhibiting significantly decreased survival probability when compared with WT-Sm in the presence of Bd. These results are an important proof-of-concept for linking the use of genetically modified probiotic bacteria to host microbial community structure and disease outcomes, which in the future may provide a way to ameliorate disease and address critical frontiers in disease and microbial ecology.
Collapse
Affiliation(s)
- Joseph D Madison
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA.,Department of Surgery and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Scot P Ouellette
- College of Medicine, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Emme L Schmidt
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Jacob L Kerby
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
64
|
Carter ED, Miller DL, Peterson AC, Sutton WB, Cusaac JPW, Spatz JA, Rollins‐Smith L, Reinert L, Bohanon M, Williams LA, Upchurch A, Gray MJ. Conservation risk of
Batrachochytrium salamandrivorans
to endemic lungless salamanders. Conserv Lett 2019. [DOI: 10.1111/conl.12675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Edward Davis Carter
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Debra L. Miller
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
- Department of Biomedical and Diagnostic Sciences, College of Veterinary MedicineUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Anna C. Peterson
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - William B. Sutton
- Department of Agricultural and Environmental SciencesTennessee State University Nashville Tennessee
| | - Joseph Patrick W. Cusaac
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Jennifer A. Spatz
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Louise Rollins‐Smith
- Department of PathologyMicrobiology & ImmunologyVanderbilt University Nashville Tennessee
| | - Laura Reinert
- Department of PathologyMicrobiology & ImmunologyVanderbilt University Nashville Tennessee
| | - Markese Bohanon
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Lori A. Williams
- North Carolina Wildlife Resources Commission Raleigh North Carolina
| | | | - Matthew J. Gray
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| |
Collapse
|
65
|
Ossiboff RJ, Towe AE, Brown MA, Longo AV, Lips KR, Miller DL, Carter ED, Gray MJ, Frasca S. Differentiating Batrachochytrium dendrobatidis and B. salamandrivorans in Amphibian Chytridiomycosis Using RNAScope ® in situ Hybridization. Front Vet Sci 2019; 6:304. [PMID: 31572738 PMCID: PMC6751264 DOI: 10.3389/fvets.2019.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Batrachochytrium dendrobatidis and B. salamandrivorans are important amphibian pathogens responsible for morbidity and mortality in free-ranging and captive frogs, salamanders, and caecilians. While B. dendrobatidis has a widespread global distribution, B. salamandrivorans has only been detected in amphibians in Asia and Europe. Although molecular detection methods for these fungi are well-characterized, differentiation of the morphologically similar organisms in the tissues of affected amphibians is incredibly difficult. Moreover, an accurate tool to identify and differentiate Batrachochytrium in affected amphibian tissues is essential for a specific diagnosis of the causative agent in chytridiomycosis cases. To address this need, an automated dual-plex chromogenic RNAScope®in situ hybridization (ISH) assay was developed and characterized for simultaneous detection and differentiation of B. dendrobatidis and B. salamandrivorans. The assay, utilizing double Z target probe pairs designed to hybridize to 28S rRNA sequences, was specific for the identification of both organisms in culture and in formalin-fixed paraffin-embedded amphibian tissues. The assay successfully identified organisms in tissue samples from five salamander and one frog species preserved in formalin for up to 364 days and was sensitive for the detection of Batrachochytrium in animals with qPCR loads as low as 1.1 × 102 zoospores/microliter. ISH staining of B. salamandrivorans also highlighted the infection of dermal cutaneous glands, a feature not observed in amphibian B. dendrobatidis cases and which may play an important role in B. salamandrivorans pathogenesis in salamanders. The developed ISH assay will benefit both amphibian chytridiomycosis surveillance projects and pathogenesis studies by providing a reliable tool for Batrachochytrium differentiation in tissues.
Collapse
Affiliation(s)
- Robert J Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Anastasia E Towe
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Melissa A Brown
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL, United States.,Department of Biology, University of Maryland College Park, College Park, MD, United States
| | - Karen R Lips
- Department of Biology, University of Maryland College Park, College Park, MD, United States
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States.,Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - E Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Salvatore Frasca
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
66
|
Bates KA, Shelton JMG, Mercier VL, Hopkins KP, Harrison XA, Petrovan SO, Fisher MC. Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome. Front Microbiol 2019; 10:1834. [PMID: 31507541 PMCID: PMC6716147 DOI: 10.3389/fmicb.2019.01834] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal) is responsible for the catastrophic decline of European salamanders and poses a threat to amphibians globally. The amphibian skin microbiome can influence disease outcome for several host-pathogen systems, yet little is known of its role in Bsal infection. In addition, many experimental in-vivo amphibian disease studies to date have relied on specimens that have been kept in captivity for long periods without considering the influence of environment on the microbiome and how this may impact the host response to pathogen exposure. We characterized the impact of captivity and exposure to Bsal on the skin bacterial and fungal communities of two co-occurring European newt species, the smooth newt, Lissotriton vulgaris and the great-crested newt, Triturus cristatus. We show that captivity led to significant losses in bacterial and fungal diversity of amphibian skin, which may be indicative of a decline in microbe-mediated protection. We further demonstrate that in both L. vulgaris and T. cristatus, Bsal infection was associated with changes in the composition of skin bacterial communities with possible negative consequences to host health. Our findings advance current understanding of the role of host-associated microbiota in Bsal infection and highlight important considerations for ex-situ amphibian conservation programmes.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Victoria L Mercier
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silviu O Petrovan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Froglife, Peterborough, United Kingdom
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
67
|
Ellison S, Rovito S, Parra-Olea G, Vásquez-Almazán C, Flechas SV, Bi K, Vredenburg VT. The Influence of Habitat and Phylogeny on the Skin Microbiome of Amphibians in Guatemala and Mexico. MICROBIAL ECOLOGY 2019; 78:257-267. [PMID: 30467714 DOI: 10.1007/s00248-018-1288-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Microbial symbionts are increasingly recognized as playing a critical role in organismal health across a wide range of hosts. Amphibians are unique hosts in that their skin helps to regulate the exchange of water, ions, and gases, and it plays an active role in defense against pathogens through the synthesis of anti-microbial peptides. The microbiome of amphibian skin includes a diverse community of bacteria known to defend against pathogens, including the global pandemic lineage of Batrachochytrium dendrobatidis associated with mass amphibian die-offs. The relative influence of host phylogeny and environment in determining the composition of the amphibian skin microbiome remains poorly understood. We collected skin swabs from montane amphibians in Mexico and Guatemala, focusing on two genera of plethodontid salamanders and one genus of frogs. We used high throughput sequencing to characterize the skin bacterial microbiome and tested the impact of phylogeny and habitat on bacterial diversity. Our results show that phylogenetic history strongly influences the diversity and community structure of the total bacterial microbiome at higher taxonomic levels (between orders), but on lower scales (within genera and species), the effect of habitat predominates. These results add to a growing consensus that habitat exerts a strong effect on microbiome structure and composition, particularly at shallow phylogenetic scales.
Collapse
Affiliation(s)
- Silas Ellison
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
| | - Sean Rovito
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA.
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36824, Irapuato, Guanajuato, Mexico.
| | - Gabriela Parra-Olea
- Departamento de Zoología, Insituto de Biología, Universidad Nacional Autónoma de México, CP04510, México, DF, Mexico
| | - Carlos Vásquez-Almazán
- Museo de Historia Natural y Escuela de Biología, Universidad de San Carlos, Guatemala, Guatemala
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, AA 4976, Bogotá, Colombia
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA
- Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences University of California, Berkeley, CA, 94720, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
68
|
Sabino-Pinto J, Martel A, Pasmans F, Steinfartz S, Vences M. Pooling skin swabs does not inhibit qPCR detection of amphibian chytrid infection. PLoS One 2019; 14:e0214405. [PMID: 30939146 PMCID: PMC6445426 DOI: 10.1371/journal.pone.0214405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Immediate and reliable pathogen detection in large numbers of samples is essential in wildlife disease monitoring and is often realized by DNA-based techniques. Pooling samples increases processing efficiency and reduces processing costs, and has been suggested as a viable technique for quantitative PCR detection of fungal amphibian pathogens of the genus Batrachochytrium. For these fungi, this diagnostic method has been validated by in vitro set ups that provided controlled test conditions but did not take into account potential effects from amphibian skin compounds (e.g. skin secretions and Microbiota) on the approach. Some of these skin compounds are known to cause PCR inhibition in single sample applications and could lead to false negative reactions and thereby hamper pathogen detection. In this study we examined the effect of skin compounds on the pooled extraction method by swabbing individuals of seven amphibian species (one Anura and six Caudata) prior to the inoculation of the swabs with chytrid zoospores. For each species, swabs were extracted in pools of different sizes (from one to four swabs) with only one swab per pool being inoculated with zoospores. There were no significant differences regarding the ability to detect zoospores when comparing pool sizes for any species, with a tendency for more false negatives when the inoculated swab had been inoculated with a single zoospore. This study provides further in vivo evidence for the viability of the pooled extraction method for DNA-based detection of pathogens.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sebastian Steinfartz
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany.,University of Leipzig, Institute of Biology, Molecular Evolution and Systematics of Animals, Leipzig, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| |
Collapse
|
69
|
Longo AV, Fleischer RC, Lips KR. Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01973-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
70
|
Apparent absence of Batrachochytrium salamandrivorans in wild urodeles in the United Kingdom. Sci Rep 2019; 9:2831. [PMID: 30862900 PMCID: PMC6414544 DOI: 10.1038/s41598-019-39338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Whether an infectious disease threat to wildlife arises from pathogen introduction or the increased incidence of an already-present agent informs mitigation policy and actions. The prior absence of a pathogen can be difficult to establish, particularly in free-living wildlife. Subsequent to the epidemic emergence of the fungus, Batrachochytrium salamandrivorans (Bsal), in mainland Europe in 2010 and prior to its detection in captive amphibians in the United Kingdom (UK), we tested archived skin swabs using a Bsal-specific qPCR. These samples had been collected in 2011 from 2409 wild newts from ponds across the UK. All swabs were negative for Bsal. Bayesian hierarchical modelling suggests that Bsal was absent from, or present at very low levels in, these ponds at the time of sampling. Additionally, surveillance of newt mortality incidents, 2013-2017, failed to detect Bsal. As this pathogen has been shown to be widespread in British captive amphibian collections, there is an urgent need to raise awareness of the importance of effective biosecurity measures, especially amongst people with captive amphibians, to help minimise the risk of Bsal spreading to the wild. Continued and heightened wild amphibian disease surveillance is a priority to provide an early warning system for potential incursion events.
Collapse
|
71
|
Casais R, Larrinaga AR, Dalton KP, Domínguez Lapido P, Márquez I, Bécares E, Carter ED, Gray MJ, Miller DL, Balseiro A. Water sports could contribute to the translocation of ranaviruses. Sci Rep 2019; 9:2340. [PMID: 30787411 PMCID: PMC6382805 DOI: 10.1038/s41598-019-39674-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Ranaviruses have been identified as the cause of explosive disease outbreaks in amphibians worldwide and can be transmitted between hosts both via direct and indirect contact, in which humans might contribute to the translocation of contaminated material. The aim of this study was to evaluate the possible role of water sports in the human translocation of ranavirus, Batrachochytrium dendrobatidis (Bd), and B. salamandrivorans (Bsal). A total of 234 boats were sampled during the spring Spanish Canoe Championship which took place in Pontillón de Castro, a reservoir with a history of ranavirosis, in May 2017. Boats were tested for the presence of ranavirus and Batrachochytrium spp. DNA, using quantitative real-time polymerase chain reaction techniques (qPCR). A total of 22 swabs (22/234, 9.40%) yielded qPCR-positive results for Ranavirus DNA while Bd or Bsal were not detected in any of the samples. We provide the first evidence that human-related water sports could be a source of ranavirus contamination, providing justification for public disinfecting stations in key areas where human traffic from water sports is high.
Collapse
Affiliation(s)
- Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain
| | | | - Kevin P Dalton
- Departamento de Bioquímica, Universidad de Oviedo, Oviedo, Spain
| | | | - Isabel Márquez
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain
| | - Eloy Bécares
- Facultad de Biología, Universidad de León, Campus de Vegazana, León, Spain
| | - E Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Ana Balseiro
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain.
| |
Collapse
|
72
|
Seilern-Moy K, Fernandez JRR, Macgregor SK, John SK, Linton C, Cunningham AA, Lawson B. Fatal phaeohyphomycosis due to Exophiala sp. infection in a free-living common toad Bufo bufo. DISEASES OF AQUATIC ORGANISMS 2019; 133:19-24. [PMID: 30997881 DOI: 10.3354/dao03341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wild adult female common toad Bufo bufo found dead in Scotland in September 2016 was observed to have hepatomegaly, a large soft tissue mass in the coelomic cavity (2.7 g, 3.5 × 2.3 × 1.8 cm) and numerous dark-red papules (1-2 mm diameter) in the skin and subjacent tissue over the back and dorsal aspects of the limbs. Histopathological examination identified marked hepatitis and coelomitis associated with pigmented fungal hyphae, which are results consistent with a diagnosis of phaeohyphomycosis. Sequencing of the internal transcribed spacer region and the D1-D2 region of the large subunit of the ribosomal RNA gene from affected liver tissue identified the presence of Exophiala (Chaetothyriales) sp., a black yeast previously identified as a cause of amphibian phaeohyphomycosis. To our knowledge, this is the first published report of Exophiala sp. in a wild or captive amphibian in Europe and the first description of phaeohyphomycosis affecting a free-living amphibian in Great Britain. Exophiala spp. are saprobes and opportunistic pathogens. It has been postulated that phaeohyphomycosis is a disease of immunocompromised amphibians; however, we found no evidence of significant concurrent infection or generalised debility in this common toad. Phaeohyphomycosis appears to be a sporadic cause of mortality in amphibians, and this report adds to the growing list of pathogens known to affect wild amphibians in Europe.
Collapse
Affiliation(s)
- Katharina Seilern-Moy
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | | | | | | | | | | | | |
Collapse
|
73
|
Verbrugghe E, Adriaensen C, Martel A, Vanhaecke L, Pasmans F. Growth Regulation in Amphibian Pathogenic Chytrid Fungi by the Quorum Sensing Metabolite Tryptophol. Front Microbiol 2019; 9:3277. [PMID: 30671052 PMCID: PMC6331427 DOI: 10.3389/fmicb.2018.03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
Amphibians face many threats leading to declines and extinctions, but the chytrid fungal skin pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) have been identified as the causative factors leading to one of the greatest disease-driven losses of amphibian biodiversity worldwide. Infection may lead to different clinical outcomes, and lethal infections are commonly associated with unrestricted, exponential fungal growth in the amphibian epidermis. Mechanisms underpinning Bd and Bsal growth in the amphibian host are poorly understood. Here, we describe a quorum sensing mechanism that allows cell-to-cell communication by Bd and Bsal in order to regulate fungal densities and infection strategies. Addition of chytrid culture supernatant to chytrid cultures resulted in a concentration-dependent growth reduction and using dialysis, small metabolites were shown to be the causative factor. U-HPLC-MS/MS and in vitro growth tests identified the aromatic alcohol tryptophol as a key metabolite in regulating fungal growth. We determined tryptophol kinetics in both Bd and Bsal and confirmed the autostimulatory mode of action of this quorum sensing metabolite. Finally, we linked expression of genes that might be involved in tryptophol production, with in vitro and in vivo chytrid growth. Our results show that Bd and Bsal fungi use tryptophol to act as multicellular entities in order to regulate their growth.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Connie Adriaensen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
74
|
Sabino-Pinto J, Krause ET, Bletz MC, Martel A, Pasmans F, Steinfartz S, Vences M. Detectability vs. time and costs in pooled DNA extraction of cutaneous swabs: a study on the amphibian chytrid fungi. AMPHIBIA-REPTILIA 2019. [DOI: 10.1163/15685381-20181011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Epidemiology relies on understanding the distribution of pathogens which often can be detected through DNA-based techniques, such as quantitative Polymerase Chain Reaction (qPCR). Typically, the DNA of each individual sample is separately extracted and undergoes qPCR analysis. However, when performing field surveys and long-term monitoring, a large fraction of the samples is generally expected to be negative, especially in geographical areas still considered free of the pathogen. If pathogen detection within a population – rather than determining its individual prevalence – is the focus, work load and monetary costs can be reduced by pooling samples for DNA extraction. We test and refine a user-friendly technique where skin swabs can be pooled during DNA extraction to detect the amphibian chytrid fungi, Batrachochytrium dendrobatidis and B. salamandrivorans (Bsal). We extracted pools with different numbers of samples (from one to four swabs), without increasing reaction volumes, and each pool had one sample inoculated with a predetermined zoospore amount. Pool size did not reduce the ability to detect the two fungi, except if inoculated with extremely low zoospore amounts (one zoospore). We confirm that pooled DNA extraction of cutaneous swabs can substantially reduce processing time and costs without minimizing detection sensitivity. This is of relevance especially for the new emerging pathogen Bsal, for which pooled DNA extraction had so far not been tested and massive monitoring efforts in putatively unaffected regions are underway.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- 1Zoological Institute, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - E. Tobias Krause
- 2Friedrich-Loeffler-Institute, Institute of Animal Welfare and Animal Husbandry, 29223 Celle, Germany
| | - Molly C. Bletz
- 1Zoological Institute, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - An Martel
- 3Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- 3Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Sebastian Steinfartz
- 1Zoological Institute, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Miguel Vences
- 1Zoological Institute, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
75
|
Jenkinson TS, Rodriguez D, Clemons RA, Michelotti LA, Zamudio KR, Toledo LF, Longcore JE, James TY. Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proc Biol Sci 2018; 285:20181894. [PMID: 30963903 PMCID: PMC6304064 DOI: 10.1098/rspb.2018.1894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
Competition between genotypes is likely to be a key driver of pathogen evolution, particularly following a geographical invasion by distant strains. Theory predicts that competition between disease strains will result in the most virulent strain persisting. Despite its evolutionary implications, the role of strain competition in shaping populations remains untested for most pathogens. We experimentally investigated the in vivo competitive differences between two divergent lineages of the amphibian-killing chytrid fungus ( Batrachochytrium dendrobatidis, Bd). These Bd lineages are hypothesized to have diverged in allopatry but been recently brought back into secondary contact by human introduction. Prior studies indicate that a panzootically-distributed, global lineage of Bd was recently introduced into southern Brazil, and is competitively excluding enzootic lineages in the southern Atlantic Forest. To test for differences in competitive ability between invasive and enzootic Brazilian Bd isolates, we coinfected a model host frog system which we developed for this study ( Hymenochirus curtipes). We tracked isolate-specific zoospore production over the course of the coinfection experiment with chip-based digital PCR (dPCR). The globally invasive panzootic lineage had a competitive advantage in spore production especially during the first one to four weeks of infection, and on frogs that eventually succumbed to Bd infection. Our study provides new evidence that competitive pressure resulting from the human movement of pathogen strains can rapidly alter the genetics, community dynamics and spatial epidemiology of pathogens in the wild.
Collapse
Affiliation(s)
- Thomas S. Jenkinson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Rodriguez
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Rebecca A. Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucas A. Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - L. Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP 13083-862, Brazil
| | - Joyce E. Longcore
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
76
|
Cruz-Flores R, Mai HN, Dhar AK. Multiplex SYBR Green and duplex TaqMan real-time PCR assays for the detection of Photorhabdus Insect-Related (Pir) toxin genes pirA and pirB. Mol Cell Probes 2018; 43:20-28. [PMID: 30576786 PMCID: PMC7127373 DOI: 10.1016/j.mcp.2018.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND), also known as Early mortality syndrome (EMS), is a recently emerged lethal disease that has caused major economic losses in shrimp aquaculture. The etiologic agents are Vibrio spp. that carry Photorhabdus Insect-Related (Pir) toxin genes pirA and pirB. A multiplex SYBR Green real-time PCR was developed that detects pirA, pirB, and two internal control genes, the shrimp 18S rRNA and the bacterial 16S rRNA genes in a single reaction. The pirB primers amplify the 3'-end of the pirB gene allowing the detection of Vibrio spp. mutants that contain a complete deletion of pirA and the partial deletion of pirB. The assay also detects mutants that contain the entire pirA gene and the deletion of the pirB gene. Since both toxin genes are needed for disease development, this assays can distinguish between pathogenic strains of Vibrio spp. that cause AHPND in shrimp and mutants that do not cause disease. The amplicons for pirA, pirB, 18S rRNA and 16S rRNA showed easily distinguishable melting temperatures of 78.21 ± 0.18, 75.20 ± 0.20, 82.28 ± 0.34 and 85.41 ± 0.21 °C respectively. Additionally, a duplex real-time PCR assay was carried out by designing TaqMan probes for the pirA and pirB primers. The diagnostic sensitivity and specificity was compared between the SYBR Green and TaqMan assays. Both assays showed similar sensitivity with a limit of detection being 10 copies for pirA and pirB, and neither assays showed any cross reaction with other known bacterial and viral pathogens in shrimp. The high sensitivity of both assays make them suitable for the detection of low copies of the pirA and pirB genes in AHPND causing Vibrio spp. as well as for detecting non-pathogenic mutants. Development of a multiplex SYBR Green real-time PCR for the simultaneous detection of the pirA and pirB genes of Vibrio spp. Comparison of the SYBR Green assay with the TaqMan assay for the detection of the pirA and pirB genes of Vibrio spp. First report of real-time PCR assays for the simultaneous detection of the pirA and pirB genes of Vibrio spp.
Collapse
Affiliation(s)
- Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA
| | - Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA.
| |
Collapse
|
77
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
78
|
Fitzpatrick LD, Pasmans F, Martel A, Cunningham AA. Epidemiological tracing of Batrachochytrium salamandrivorans identifies widespread infection and associated mortalities in private amphibian collections. Sci Rep 2018; 8:13845. [PMID: 30218076 PMCID: PMC6138723 DOI: 10.1038/s41598-018-31800-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
The amphibian chytrid fungus Batrachochytrium salamandrivorans (Bsal) infects newts and salamanders (urodele amphibians), in which it can cause fatal disease. This pathogen has caused dramatic fire salamander population declines in Belgium, the Netherlands and Germany since its discovery in 2010. Thought to be native to Asia, it has been hypothesised that Bsal was introduced to Europe with the importation of infected amphibians for the commercial pet trade. Following the discovery of Bsal in captive amphibians in the United Kingdom in 2015, we used contact-tracing to identify epidemiologically-linked private amphibian collections in Western Europe. Of 16 linked collections identified, animals were tested from 11 and urodeles tested positive for Bsal in seven, including the identification of the pathogen in Spain for the first time. Mortality of Bsal-positive individuals was observed in five collections. Our results indicate that Bsal is likely widespread within the private amphibian trade, at least in Europe. These findings are important for informing policy regarding Bsal control strategies.
Collapse
Affiliation(s)
- Liam D Fitzpatrick
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| |
Collapse
|
79
|
Bletz MC, Kelly M, Sabino-Pinto J, Bales E, Van Praet S, Bert W, Boyen F, Vences M, Steinfartz S, Pasmans F, Martel A. Disruption of skin microbiota contributes to salamander disease. Proc Biol Sci 2018; 285:rspb.2018.0758. [PMID: 30135150 DOI: 10.1098/rspb.2018.0758] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
Escalating occurrences of emerging infectious diseases underscore the importance of understanding microbiome-pathogen interactions. The amphibian cutaneous microbiome is widely studied for its potential to mitigate disease-mediated amphibian declines. Other microbial interactions in this system, however, have been largely neglected in the context of disease outbreaks. European fire salamanders have suffered dramatic population crashes as a result of the newly emerged Batrachochytrium salamandrivorans (Bsal). In this paper, we investigate microbial interactions on multiple fronts within this system. We show that wild, healthy fire salamanders maintain complex skin microbiotas containing Bsal-inhibitory members, but these community are present at a remarkably low abundance. Through experimentation, we show that increasing bacterial densities of Bsal-inhibiting bacteria via daily addition slowed disease progression in fire salamanders. Additionally, we find that experimental-Bsal infection elicited subtle changes in the skin microbiome, with selected opportunistic bacteria increasing in relative abundance resulting in septicemic events that coincide with extensive destruction of the epidermis. These results suggest that fire salamander skin, in natural settings, maintains bacterial communities at numbers too low to confer sufficient protection against Bsal, and, in fact, the native skin microbiota can constitute a source of opportunistic bacterial pathogens that contribute to pathogenesis. By shedding light on the complex interaction between the microbiome and a lethal pathogen, these data put the interplay between skin microbiomes and a wildlife disease into a new perspective.
Collapse
Affiliation(s)
- Molly C Bletz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA .,Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Moira Kelly
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Joana Sabino-Pinto
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Emma Bales
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sarah Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Wim Bert
- Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000 Ghent, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
80
|
Asymptomatic infection of the fungal pathogen Batrachochytrium salamandrivorans in captivity. Sci Rep 2018; 8:11767. [PMID: 30082745 PMCID: PMC6078946 DOI: 10.1038/s41598-018-30240-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/14/2018] [Indexed: 12/30/2022] Open
Abstract
One of the most important factors driving amphibian declines worldwide is the infectious disease, chytridiomycosis. Two fungi have been associated with this disease, Batrachochytrium dendrobatidis and B. salamandrivorans (Bsal). The latter has recently driven Salamandra salamandra populations to extirpation in parts of the Netherlands, and Belgium, and potentially also in Germany. Bsal has been detected in the pet trade, which has been hypothesized to be the pathway by which it reached Europe, and which may continuously contribute to its spread. In the present study, 918 amphibians belonging to 20 captive collections in Germany and Sweden were sampled to explore the extent of Bsal presence in captivity. The fungus was detected by quantitative Polymerase Chain Reaction (qPCR) in ten collections, nine of which lacked clinical symptoms. 23 positives were confirmed by independent processing of duplicate swabs, which were analysed in a separate laboratory, and/or by sequencing ITS and 28 S gene segments. These asymptomatic positives highlight the possibility of Bsal being widespread in captive collections, and is of high conservation concern. This finding may increase the likelihood of the pathogen being introduced from captivity into the wild, and calls for according biosecurity measures. The detection of Bsal-positive alive specimens of the hyper-susceptible fire salamander could indicate the existence of a less aggressive Bsal variant or the importance of environmental conditions for infection progression.
Collapse
|
81
|
Mass Mortality of Green Frog ( Rana clamitans) Tadpoles in Wisconsin, USA, Associated with Severe Infection with the Pathogenic Perkinsea Clade. J Wildl Dis 2018; 55:262-265. [PMID: 30024771 DOI: 10.7589/2018-02-046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We documented mortality of green frog ( Rana clamitans) tadpoles in Wisconsin, US, attributed to severe Perkinsea infection. Final diagnosis was determined by histopathology. followed by molecular detection of pathogenic Perkinsea clade (PPC) of frogs in the liver. To our knowledge, this represents the first detection of PPC in the midwestern US.
Collapse
|
82
|
Beukema W, Martel A, Nguyen TT, Goka K, Schmeller DS, Yuan Z, Laking AE, Nguyen TQ, Lin CF, Shelton J, Loyau A, Pasmans F. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans
affect invasion risk assessments in the Western Palaearctic. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12795] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Wouter Beukema
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Tao Thien Nguyen
- Vietnam National Museum of Nature; Vietnam Academy of Science and Technology; Cau Giay Hanoi Vietnam
| | - Koichi Goka
- National Institute for Environmental Studies (NIES); Tsukuba Ibaraki Japan
| | - Dirk S. Schmeller
- Department of Conservation Biology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
- EcoLab; CNRS; INPT; UPS; Université de Toulouse; Toulouse France
| | - Zhiyong Yuan
- College of Forestry; Southwest Forestry University; Kunming Yunnan China
| | - Alexandra E. Laking
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - Truong Quang Nguyen
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology; Cau Giay Hanoi Vietnam
| | - Chun-Fu Lin
- Zoology Division; Endemic Species Research Institute; Jiji Nantou Taiwan
| | - Jennifer Shelton
- Department of Infectious Disease Epidemiology; Imperial College London; London UK
| | - Adeline Loyau
- Department of Conservation Biology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
- EcoLab; CNRS; INPT; UPS; Université de Toulouse; Toulouse France
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
83
|
Standish I, Leis E, Schmitz N, Credico J, Erickson S, Bailey J, Kerby J, Phillips K, Lewis T. Optimizing, validating, and field testing a multiplex qPCR for the detection of amphibian pathogens. DISEASES OF AQUATIC ORGANISMS 2018; 129:1-13. [PMID: 29916388 DOI: 10.3354/dao03230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphibian populations worldwide are facing numerous threats, including the emergence and spread of infectious diseases. In the past 2 decades, Batrachochytrium dendrobatidis (Bd), a parasitic fungus, and a group of viruses comprising the genus Ranavirus have become widespread and resulted in mass mortality events and extirpations worldwide. In 2013, another novel fungus, B. salamandrivorans (Bsal), was attributed to dramatic declines in populations of fire salamander Salamandra salamandra in the Netherlands. Experimental infections demonstrated that Bsal is highly pathogenic to numerous salamander genera. In an effort to prevent the introduction of Bsal to North America, the US Fish and Wildlife Service (USFWS) listed 201 salamander species as injurious wildlife under the Lacey Act. To determine infection status and accurately assess amphibian health, the development of a sensitive and specific diagnostic assay was needed. We describe the optimization and validation of a multiplex quantitative polymerase chain reaction (qPCR) protocol for the simultaneous detection of Bd, Bsal, and frog virus 3-like ranaviruses. A synthetic genome template (gBlock®) containing the target genes from all 3 pathogens served as the positive control and allowed accurate quantification of pathogen genes. The assay was validated in the field using an established non-lethal swabbing technique to survey local amphibian populations throughout a range of habitats. This multiplex qPCR demonstrates high reproducibility, sensitivity, and was capable of detecting both Bd and ranavirus in numerous locations, species, and life stages. Bsal was not detected at any point during these sampling efforts.
Collapse
Affiliation(s)
- Isaac Standish
- US Fish and Wildlife Service, Midwest Fisheries Center, La Crosse Fish Health Center, Onalaska, WI 54650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Mosher BA, Huyvaert KP, Bailey LL. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen. Oecologia 2018; 188:319-330. [PMID: 29860635 DOI: 10.1007/s00442-018-4167-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/12/2018] [Indexed: 10/14/2022]
Abstract
Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host-pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.
Collapse
Affiliation(s)
- Brittany A Mosher
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Larissa L Bailey
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
85
|
Mosher BA, Bailey LL, Muths E, Huyvaert KP. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:926-937. [PMID: 29430754 DOI: 10.1002/eap.1699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situ disease management. Declines of boreal toads (Anaxyrus boreas boreas) in the southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic data set, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be suboptimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bd systems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.
Collapse
Affiliation(s)
- Brittany A Mosher
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Larissa L Bailey
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, Colorado, 80526, USA
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
86
|
Fisher MC, Ghosh P, Shelton JMG, Bates K, Brookes L, Wierzbicki C, Rosa GM, Farrer RA, Aanensen DM, Alvarado-Rybak M, Bataille A, Berger L, Böll S, Bosch J, Clare FC, A Courtois E, Crottini A, Cunningham AA, Doherty-Bone TM, Gebresenbet F, Gower DJ, Höglund J, James TY, Jenkinson TS, Kosch TA, Lambertini C, Laurila A, Lin CF, Loyau A, Martel A, Meurling S, Miaud C, Minting P, Ndriantsoa S, O'Hanlon SJ, Pasmans F, Rakotonanahary T, Rabemananjara FCE, Ribeiro LP, Schmeller DS, Schmidt BR, Skerratt L, Smith F, Soto-Azat C, Tessa G, Toledo LF, Valenzuela-Sánchez A, Verster R, Vörös J, Waldman B, Webb RJ, Weldon C, Wombwell E, Zamudio KR, Longcore JE, Garner TWJ. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci Rep 2018; 8:7772. [PMID: 29773857 PMCID: PMC5958081 DOI: 10.1038/s41598-018-24472-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.
Collapse
Affiliation(s)
- Matthew C Fisher
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.
| | - Pria Ghosh
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Kieran Bates
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Lola Brookes
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Claudia Wierzbicki
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Gonçalo M Rosa
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK.,Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Rhys A Farrer
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Cambridgeshire, UK
| | - Mario Alvarado-Rybak
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Arnaud Bataille
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Susanne Böll
- Agency for Population Ecology and Nature Conservancy, Gerbrunn, Germany
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC c/Jose Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Frances C Clare
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Elodie A Courtois
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300, Cayenne, French Guiana
| | - Angelica Crottini
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661, Vairão, Portugal
| | | | | | - Fikirte Gebresenbet
- Department of Integrative Biology, Oklahoma State University, 113 Life Sciences West, Stillwater, OK, 74078, USA
| | - David J Gower
- Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jacob Höglund
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Thomas S Jenkinson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anssi Laurila
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, 1 Ming-shen East Road, Jiji, Nantou, 552, Taiwan
| | - Adeline Loyau
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318, Leipzig, Germany.,ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Sara Meurling
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Claude Miaud
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des vertébrés, Montpellier, France
| | - Pete Minting
- Amphibian and Reptile Conservation (ARC) Trust, 655A Christchurch Road, Boscombe, Bournemouth, Dorset, BH1 4AP, UK
| | - Serge Ndriantsoa
- Durrell Wildlife Conservation Trust, Madagascar Programme, Antananarivo, Madagascar
| | - Simon J O'Hanlon
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | | | - Falitiana C E Rabemananjara
- Durrell Wildlife Conservation Trust, Madagascar Programme, Antananarivo, Madagascar.,IUCN SSC Amphibian Specialist Group-Madagascar, 101, Antananarivo, Madagascar
| | - Luisa P Ribeiro
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Dirk S Schmeller
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318, Leipzig, Germany.,ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Info Fauna Karch, Université de Neuchâtel, Bellevaux 51, UniMail Bâtiment 6, 2000, Neuchâtel, Switzerland
| | - Lee Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Freya Smith
- National Wildlife Management Centre, APHA, Woodchester Park, Gloucestershire, GL10 3UJ, UK
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Giulia Tessa
- Non-profit Association Zirichiltaggi - Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100, Sassari, Italy
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Andrés Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile.,ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
| | - Ruhan Verster
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Judit Vörös
- Collection of Amphibians and Reptiles, Department of Zoology, Hungarian Natural History Museum, Budapest, Baross u, 13., 1088, Hungary
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Rebecca J Webb
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Che Weldon
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Emma Wombwell
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine, 04469, USA
| | - Trenton W J Garner
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK.,Non-profit Association Zirichiltaggi - Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100, Sassari, Italy.,Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
87
|
More S, Angel Miranda M, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Michel V, Raj M, Saxmose Nielsen S, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baláž V, Martel A, Murray K, Fabris C, Munoz-Gajardo I, Gogin A, Verdonck F, Gortázar Schmidt C. Risk of survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU. EFSA J 2018; 16:e05259. [PMID: 32625888 PMCID: PMC7009437 DOI: 10.2903/j.efsa.2018.5259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen of salamanders. Despite limited surveillance, Bsal was detected in kept salamanders populations in Belgium, Germany, Spain, the Netherlands and the United Kingdom, and in wild populations in some regions of Belgium, Germany and the Netherlands. According to niche modelling, at least part of the distribution range of every salamander species in Europe overlaps with the climate conditions predicted to be suitable for Bsal. Passive surveillance is considered the most suitable approach for detection of Bsal emergence in wild populations. Demonstration of Bsal absence is considered feasible only in closed populations of kept susceptible species. In the wild, Bsal can spread by both active (e.g. salamanders, anurans) and passive (e.g. birds, water) carriers; it is most likely maintained/spread in infected areas by contacts of salamanders or by interactions with anurans, whereas human activities most likely cause Bsal entry into new areas and populations. In kept amphibians, Bsal contamination via live silent carriers (wild birds and anurans) is considered extremely unlikely. The risk-mitigation measures that were considered the most feasible and effective: (i) for ensuring safer international or intra-EU trade of live salamanders, are: ban or restrictions on salamander imports, hygiene procedures and good practice manuals; (ii) for protecting kept salamanders from Bsal, are: identification and treatment of positive collections; (iii) for on-site protection of wild salamanders, are: preventing translocation of wild amphibians and release/return to the wild of kept/temporarily housed wild salamanders, and setting up contact points/emergency teams for passive surveillance. Combining several risk-mitigation measures improve the overall effectiveness. It is recommended to: introduce a harmonised protocol for Bsal detection throughout the EU; improve data acquisition on salamander abundance and distribution; enhance passive surveillance activities; increase public and professionals' awareness; condition any movement of captive salamanders on Bsal known health status.
Collapse
|
88
|
Post-epizootic salamander persistence in a disease-free refugium suggests poor dispersal ability of Batrachochytrium salamandrivorans. Sci Rep 2018; 8:3800. [PMID: 29491409 PMCID: PMC5830533 DOI: 10.1038/s41598-018-22225-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
Lack of disease spill-over between adjacent populations has been associated with habitat fragmentation and the absence of population connectivity. We here present a case which describes the absence of the spill-over of the chytrid fungus Batrachochytrium salamandrivorans (Bsal) between two connected subpopulations of fire salamanders (Salamandra salamandra). Based on neutrally evolving microsatellite loci, both subpopulations were shown to form a single genetic cluster, suggesting a shared origin and/or recent gene flow. Alpine newts (Ichthyosaura alpestris) and fire salamanders were found in the landscape matrix between the two sites, which are also connected by a stream and separated by no obvious physical barriers. Performing a laboratory trial using alpine newts, we confirmed that Bsal is unable to disperse autonomously. Vector-mediated dispersal may have been impeded by a combination of sub-optimal connectivity, limited dispersal ability of infected hosts and a lack of suitable dispersers following the rapid, Bsal-driven collapse of susceptible hosts at the source site. Although the exact cause remains unclear, the aggregate evidence suggests that Bsal may be a poorer disperser than previously hypothesized. The lack of Bsal dispersal between neighbouring salamander populations opens perspectives for disease management and stresses the necessity of implementing biosecurity measures preventing human-mediated spread.
Collapse
|
89
|
Yuan Z, Martel A, Wu J, Van Praet S, Canessa S, Pasmans F. Widespread occurrence of an emerging fungal pathogen in heavily traded Chinese urodelan species. Conserv Lett 2018. [DOI: 10.1111/conl.12436] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Zhiyong Yuan
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education; Southwest Forestry University; Yunnan 650224 China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province; Southwest Forestry University; Kunming Yunnan 650224 China
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - Jun Wu
- Nanjing Institute of Environmental Sciences; Ministry of Environmental Protection of China; Nanjing Jiangsu 210042 China
| | - Sarah Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - Stefano Canessa
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine; Ghent University; Salisburylaan 133 Merelbeke 9820 Belgium
| |
Collapse
|
90
|
Thomas V, Blooi M, Van Rooij P, Van Praet S, Verbrugghe E, Grasselli E, Lukac M, Smith S, Pasmans F, Martel A. Recommendations on diagnostic tools for Batrachochytrium salamandrivorans. Transbound Emerg Dis 2018; 65:e478-e488. [PMID: 29341499 DOI: 10.1111/tbed.12787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 02/05/2023]
Abstract
Batrachochytrium salamandrivorans (Bsal) poses a major threat to amphibian, and more specifically caudata, diversity. Bsal is currently spreading through Europe, and mitigation measures aimed at stopping its spread and preventing its introduction into naïve environments are urgently needed. Screening for presence of Bsal and diagnosis of Bsal-induced disease in amphibians are essential core components of effective mitigation plans. Therefore, the aim of this study was to present an overview of all Bsal diagnostic tools together with their limitations and to suggest guidelines to allow uniform interpretation. Here, we investigate the use of different diagnostic tools in post-mortem detection of Bsal and whether competition between Bd and Bsal occurs in the species-specific Bd and Bsal duplex real-time PCR. We also investigate the diagnostic sensitivity, diagnostic specificity and reproducibility of the Bsal real-time PCR and show the use of immunohistochemistry in diagnosis of Bsal-induced chytridiomycosis in amphibian samples stored in formaldehyde. Additionally, we have drawn up guidelines for the use and interpretation of the different diagnostic tools for Bsal currently available, to facilitate standardization of execution and interpretation.
Collapse
Affiliation(s)
- V Thomas
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Blooi
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Van Rooij
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Grasselli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Universita di Genova, Genova, Italy
| | - M Lukac
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - S Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - F Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - A Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
91
|
Yap TA, Nguyen NT, Serr M, Shepack A, Vredenburg VT. Batrachochytrium salamandrivorans and the Risk of a Second Amphibian Pandemic. ECOHEALTH 2017; 14:851-864. [PMID: 29147975 DOI: 10.1007/s10393-017-1278-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bd was described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsal originated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.
Collapse
Affiliation(s)
- Tiffany A Yap
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| | - Natalie T Nguyen
- U.S. Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Thomas Hall, 1100 Brooks Avenue, Raleigh, NC, 27695, USA
| | - Alexander Shepack
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA
| |
Collapse
|
92
|
Mosher BA, Huyvaert KP, Chestnut T, Kerby JL, Madison JD, Bailey LL. Design- and model-based recommendations for detecting and quantifying an amphibian pathogen in environmental samples. Ecol Evol 2017; 7:10952-10962. [PMID: 29299272 PMCID: PMC5743658 DOI: 10.1002/ece3.3616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Accurate pathogen detection is essential for developing management strategies to address emerging infectious diseases, an increasingly prominent threat to wildlife. Sampling for free‐living pathogens outside of their hosts has benefits for inference and study efficiency, but is still uncommon. We used a laboratory experiment to evaluate the influences of pathogen concentration, water type, and qPCR inhibitors on the detection and quantification of Batrachochytrium dendrobatidis (Bd) using water filtration. We compared results pre‐ and post‐inhibitor removal, and assessed inferential differences when single versus multiple samples were collected across space or time. We found that qPCR inhibition influenced both Bd detection and quantification in natural water samples, resulting in biased inferences about Bd occurrence and abundance. Biases in occurrence could be mitigated by collecting multiple samples in space or time, but biases in Bd quantification were persistent. Differences in Bd concentration resulted in variation in detection probability, indicating that occupancy modeling could be used to explore factors influencing heterogeneity in Bd abundance among samples, sites, or over time. Our work will influence the design of studies involving amphibian disease dynamics and studies utilizing environmental DNA (eDNA) to understand species distributions.
Collapse
Affiliation(s)
- Brittany A Mosher
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - Tara Chestnut
- US Geological Survey Oregon Water Science Center Portland OR USA
| | - Jacob L Kerby
- Department of Biology University of South Dakota Vermillion SD USA
| | - Joseph D Madison
- Department of Biology University of South Dakota Vermillion SD USA
| | - Larissa L Bailey
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
93
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Candiani D, Fabris C, Georgiadis M, Zancanaro G, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Batrachochytrium salamandrivorans ( Bsal). EFSA J 2017; 15:e05071. [PMID: 32625359 PMCID: PMC7010176 DOI: 10.2903/j.efsa.2017.5071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Batrachochytrium salamandrivorans (Bsal) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Bsal to be listed, Article 9 for the categorisation of Bsal according to disease prevention and control rules as in Annex IV, and Article 8 on the list of animal species related to Bsal. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Bsal can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 1 of Annex IV referred to in point (a) of Article 9(1) is inconclusive. The animal species to be listed for Bsal according to Article 8(3) criteria are species of the families Salamandridae and Plethodontidae as susceptible and Salamandridae and Hynobiidae as reservoirs.
Collapse
|
94
|
Adams AJ, Pessier AP, Briggs CJ. Rapid extirpation of a North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction. Ecol Evol 2017; 7:10216-10232. [PMID: 29238549 PMCID: PMC5723621 DOI: 10.1002/ece3.3468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/06/2017] [Accepted: 08/19/2017] [Indexed: 01/14/2023] Open
Abstract
As extinctions continue across the globe, conservation biologists are turning to species reintroduction programs as one optimistic tool for addressing the biodiversity crisis. For repatriation to become a viable strategy, fundamental prerequisites include determining the causes of declines and assessing whether the causes persist in the environment. Invasive species-especially pathogens-are an increasingly significant factor contributing to biodiversity loss. We hypothesized that Batrachochytrium dendrobatidis (Bd), the causative agent of the deadly amphibian disease chytridiomycosis, was important in the rapid (<10 years) localized extirpation of a North American frog (Rana boylii) and that Bd remains widespread among extant amphibians in the region of extirpation. We used an interdisciplinary approach, combining interviews with herpetological experts, analysis of archived field notes and museum specimen collections, and field sampling of the extant amphibian assemblage to examine (1) historical relative abundance of R. boylii; (2) potential causes of R. boylii declines; and (3) historical and contemporary prevalence of Bd. We found that R. boylii were relatively abundant prior to their rapid extirpation, and an increase in Bd prevalence coincided with R. boylii declines during a time of rapid change in the region, wherein backcountry recreation, urban development, and the amphibian pet trade were all on the rise. In addition, extreme flooding during the winter of 1969 coincided with localized extirpations in R. boylii populations observed by interview respondents. We conclude that Bd likely played an important role in the rapid extirpation of R. boylii from southern California and that multiple natural and anthropogenic factors may have worked in concert to make this possible in a relatively short period of time. This study emphasizes the importance of recognizing historical ecological contexts in making future management and reintroduction decisions.
Collapse
Affiliation(s)
- Andrea J Adams
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| | - Allan P Pessier
- Department of Veterinary Microbiology and Pathology College of Veterinary Medicine Washington State University Pullman WA USA
| | - Cheryl J Briggs
- Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA
| |
Collapse
|
95
|
Klocke B, Becker M, Lewis J, Fleischer RC, Muletz-Wolz CR, Rockwood L, Aguirre AA, Gratwicke B. Batrachochytrium salamandrivorans not detected in U.S. survey of pet salamanders. Sci Rep 2017; 7:13132. [PMID: 29030586 PMCID: PMC5640657 DOI: 10.1038/s41598-017-13500-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
Abstract
We engaged pet salamander owners in the United States to screen their animals for two amphibian chytrid fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). We provided pet owners with a sampling kit and instructional video to swab the skin of their animals. We received 639 salamander samples from 65 species by mail, and tested them for Bd and Bsal using qPCR. We detected Bd on 1.3% of salamanders (95% CI 0.0053–0.0267) and did not detect Bsal (95% CI 0.0000–0.0071). If Bsal is present in the U.S. population of pet salamanders, it occurs at a very low prevalence. The United States Fish and Wildlife Service listed 201 species of salamanders as “injurious wildlife” under the Lacey Act (18 U.S.C. § 42) on January 28, 2016, a precautionary action to prevent the introduction of Bsal to the U.S. through the importation of salamanders. This action reduced the number of salamanders imported to the U.S. from 2015 to 2016 by 98.4%. Our results indicate that continued precautions should be taken to prevent the introduction and establishment of Bsal in the U.S., which is a hotspot of salamander biodiversity.
Collapse
Affiliation(s)
- Blake Klocke
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America. .,Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America. .,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America.
| | - Matthew Becker
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America.,Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia, 24515, United States of America
| | - James Lewis
- Rainforest Trust, Warrenton, VA, 20187, United States of America
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| | - Larry Rockwood
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America.,Department of Biology, George Mason University, Fairfax, Virginia, 22030, United States of America
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America
| | - Brian Gratwicke
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| |
Collapse
|
96
|
Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 2017; 544:353-356. [PMID: 28425998 DOI: 10.1038/nature22059] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/13/2017] [Indexed: 11/08/2022]
Abstract
The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen's disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a 'perfect storm' that is able to rapidly extirpate highly susceptible salamander populations across Europe.
Collapse
|
97
|
Parrott JC, Shepack A, Burkart D, LaBumbard B, Scimè P, Baruch E, Catenazzi A. Survey of Pathogenic Chytrid Fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in Salamanders from Three Mountain Ranges in Europe and the Americas. ECOHEALTH 2017; 14:296-302. [PMID: 27709310 DOI: 10.1007/s10393-016-1188-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.
Collapse
Affiliation(s)
- Joshua Curtis Parrott
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA.
| | - Alexander Shepack
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
| | - David Burkart
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
| | - Brandon LaBumbard
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
- University of Massachusetts Boston, Boston, MA, USA
| | | | - Ethan Baruch
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Alessandro Catenazzi
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
| |
Collapse
|
98
|
Blaecher C, Bauwens E, Tay A, Peters F, Dobbs S, Dobbs J, Charlett A, Ducatelle R, Haesebrouck F, Smet A. A novel isolation protocol and probe-based RT-PCR for diagnosis of gastric infections with the zoonotic pathogen Helicobacter suis. Helicobacter 2017; 22. [PMID: 28029188 DOI: 10.1111/hel.12369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Helicobacter suis is a very fastidious microorganism associated with gastritis, gastric ulcers, and mucosa-associated lymphoid tissue lymphoma in humans. In vitro isolation of this agent from human patients has so far been unsuccessful. MATERIALS AND METHODS A probe-based real-time PCR (RT-PCR) for the rapid detection of H. suis in gastric biopsies was developed. Secondly, a mouse-passage-based protocol was optimized for isolation of low numbers of viable H. suis bacteria. Mice were inoculated with different numbers of viable H. suis (102 -108 ) and kept for 4 weeks to allow multiplication of this pathogen. RESULTS The probe-based real-time PCR (RT-PCR) exhibited a high degree of diagnostic specificity and analytical sensitivity, high linear correlations (r2 between 0.995 and 0.999), and high amplification efficiencies (>90%) for H. suis. No cross-reactivity was detected with human, porcine, non-human primate, and murine DNA nor with DNA from other bacteria including Helicobacter spp. and Campylobacter spp. H. suis was successfully re-isolated from the stomach of mice inoculated with at least 104 viable H. suis, using a biphasic medium (pH 5), consisting of Brucella agar with Brucella broth on top, both supplemented with vitox supplement, Campylobacter-selective supplement, amphotericin (5 μg/mL), HCl (0.05%), fetal bovine serum (20%), and linezolid (5 μg/mL). Linezolid was necessary to inhibit proliferation of contaminants, including lactobacilli. CONCLUSION The methods described above can be implemented for detection or isolation of H. suis from human gastric biopsies.
Collapse
Affiliation(s)
- Caroline Blaecher
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Bauwens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Alfred Tay
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| | - Fanny Peters
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| | - Sylvia Dobbs
- Institute of Pharmaceutical Science, King's College London, London, UK.,The Maudsley Hospital, London, UK.,Department of Gastroenterology, King's College Hospital, London, UK
| | - John Dobbs
- Institute of Pharmaceutical Science, King's College London, London, UK.,The Maudsley Hospital, London, UK.,Department of Gastroenterology, King's College Hospital, London, UK
| | - André Charlett
- Institute of Pharmaceutical Science, King's College London, London, UK.,Statistics Unit, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
99
|
DETECTION AND REPORTING OF RANAVIRUS IN AMPHIBIANS: EVALUATION OF THE ROLES OF THE WORLD ORGANISATION FOR ANIMAL HEALTH AND THE PUBLISHED LITERATURE. J Wildl Dis 2017; 53:509-520. [PMID: 28402726 DOI: 10.7589/2016-08-176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogens of wildlife can have direct impacts on human and livestock health as well as on biodiversity, as causative factors in population declines and extinctions. The World Organization for Animal Health (OIE) seeks to facilitate rapid sharing of information about animal diseases to enable up-to-date risk assessments of translocations of animals and animal products. The OIE also produces manuals of recommended methods to standardize diagnostic testing. Ranaviruses are important amphibian pathogens that may have spread through international trade, and infections became notifiable to OIE in 2009. We surveyed and reviewed published literature for data on sampling, diagnostic testing, and reporting of ranavirus during 2009-14. We also investigated attitudes and awareness of the OIE and its recommendations for best practice. We found that sampling effort is uneven and concentrated in the northern hemisphere. We also identified citizen science projects that have the potential to improve the quantity and quality of data on the incidence of ranavirus infection and the circumstances surrounding disease outbreaks. We found reporting of infection to be inconsistent: reporting was split between the published literature (where it was subject to a 2-yr lag) and the OIE with little overlap, results of negative diagnostic tests were underreported, and scientific researchers lacked awareness of the role of the OIE. Approaches to diagnostic screening were poorly harmonized and heavily reliant on molecular methods. These flaws in the mechanisms of ranavirus detection and reporting hamper the construction of a comprehensive disease information database.
Collapse
|
100
|
Bletz MC, Perl RGB, Bobowski BT, Japke LM, Tebbe CC, Dohrmann AB, Bhuju S, Geffers R, Jarek M, Vences M. Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function. ISME JOURNAL 2017; 11:1521-1534. [PMID: 28387770 DOI: 10.1038/ismej.2017.41] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
Host-associated microbiomes are increasingly recognized to contribute to host disease resistance; the temporal dynamics of their community structure and function, however, are poorly understood. We investigated the cutaneous bacterial communities of three newt species, Ichthyosaura alpestris, Lissotriton vulgaris and Triturus cristatus, at approximately weekly intervals for 3 months using 16S ribosomal RNA amplicon sequencing. We hypothesized cutaneous microbiota would vary across time, and that such variation would be linked to changes in predicted fungal-inhibitory function. We observed significant temporal variation within the aquatic phase, and also between aquatic and terrestrial phase newts. By keeping T. cristatus in mesocosms, we demonstrated that structural changes occurred similarly across individuals, highlighting the non-stochastic nature of the bacterial community succession. Temporal changes were mainly associated with fluctuations in relative abundance rather than full turnover of bacterial operational taxonomic units (OTUs). Newt skin microbe fluctuations were not correlated with that of pond microbiota; however, a portion of community variation was explained by environmental temperature. Using a database of amphibian skin bacteria that inhibit the pathogen Batrachochytrium dendrobatidis (Bd), we found that the proportion of reads associated with 'potentially' Bd-inhibitory OTUs did not vary temporally for two of three newt species, suggesting that protective function may be maintained despite temporal variation in community structure.
Collapse
Affiliation(s)
- Molly C Bletz
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - R G Bina Perl
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Bianca Tc Bobowski
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Laura M Japke
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christoph C Tebbe
- Institut für Biodiversität, Thünen Institut für Ländliche Räume, Wald und Fischerei, Braunschweig, Germany
| | - Anja B Dohrmann
- Institut für Biodiversität, Thünen Institut für Ländliche Räume, Wald und Fischerei, Braunschweig, Germany
| | - Sabin Bhuju
- Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Robert Geffers
- Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Michael Jarek
- Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Miguel Vences
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|