51
|
Shankar P, Mishra J, Bharti V, Parashar D, Singh S. Multiplex PCR assay for simultaneous detection and differentiation of Entamoeba histolytica, Giardia lamblia, and Salmonella spp. in the municipality-supplied drinking water. J Lab Physicians 2019; 11:275-280. [PMID: 31579243 PMCID: PMC6771313 DOI: 10.4103/jlp.jlp_66_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The contamination with Entamoeba histolytica, Giardia lamblia, and Salmonella spp. in drinking water is the most prevalent in Indian subcontinent, but often difficult to detect all these pathogens from the drinking water. MATERIALS AND METHODS A multiplex polymerase chain reaction (mPCR) method was developed to detect contamination of municipality-supplied drinking water with E. histolytica, G. lamblia, and Salmonella spp. The primers were designed to target small subunit of 16S rRNA type gene of E. histolytica and G. lamblia, and invasive A gene of Salmonella typhimurium. The optimized mPCR assay was applied on 158 municipality-supplied drinking water samples collected from Delhi. RESULTS Out of total 158 water samples, 89 (56.32%) were found positive for the targeted pathogens by mPCR while conventional methods could be detected only in 11 (6.96%) samples. The mPCR assay showed 100% sensitivity and specificity for these pathogens in comparison with culture and microscopic detection. Of the 89 mPCR-positive samples, G. lamblia, E. histolytica, and Salmonella spp. were present in 35 (22.15%), 26 (16.45%), and 28 (17.72%), respectively. Nine (5.69%) samples were positive for both E. histolytica and G. lamblia, 10 (6.32%) were positive for G. lamblia and Salmonella spp., and 8 (5.06%) had Salmonella spp. and E. histolytica. Nonetheless, 3 (1.89%) samples were positive for all three pathogens. CONCLUSIONS The present assay is an alternative to conventional methods to serve as highly sensitive, specific, and economical means for water quality surveillance to detect the outbreak caused by E. histolytica, G. lamblia, and Salmonella spp. pathogens.
Collapse
Affiliation(s)
- Prem Shankar
- Department of Laboratory Medicine, Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vijaya Bharti
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarman Singh
- Department of Laboratory Medicine, Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi, India
- Address for correspondence: Prof. Sarman Singh, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029, India. E-mail:
| |
Collapse
|
52
|
Changing paradigm of antibiotic resistance amongst Escherichia coli isolates in Indian pediatric population. PLoS One 2019; 14:e0213850. [PMID: 30995225 PMCID: PMC6469777 DOI: 10.1371/journal.pone.0213850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/02/2019] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance happens when microorganisms mutates in manners that render the drugs like antibacterial, antiviral, antiparasitic and antifungal, ineffective. The normal mutation process is encouraged by the improper use of antibiotics. Mutations leading to quinolone resistance occur in a highly conserved region of the quinolone resistance-determining region (QRDR) of DNA gyrAse and topoisomerase IV gene. We analyzed antibiotic resistant genes and single nucleotide polymorphism (SNP) in gyrA and parC genes in QRDR in 120 E. coli isolates (both diarrheagenic and non-pathogenic) recovered from fresh stool samples collected from children aged less than 5 years from Delhi, India. Antibiotic susceptibility testing was performed according to standard clinical and laboratory standards institute (CLSI) guidelines. Phylogenetic analysis showed the clonal diversity and phylogenetic relationships among the E. coli isolates. The SNP analysis depicted mutations in gyrA and parC genes in QRDR. The sul1 gene, responsible for sulfonamide resistance, was present in almost half (47.5%) of the isolates across the diseased and healthy samples. The presence of antibiotic resistance genes in E. coli isolates from healthy children indicate the development, dissemination and carriage of antibiotic resistance in their gut. Our observations suggest the implementation of active surveillance and stewardship programs to promote appropriate antibiotic use and minimizing further danger.
Collapse
|
53
|
Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci Rep 2019; 9:4224. [PMID: 30862858 PMCID: PMC6414621 DOI: 10.1038/s41598-019-39730-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023] Open
Abstract
The rapid emergence of multiresistant microbial pathogens, dubbed superbugs, is a serious threat to human health. Extended spectrum beta lactamase (ESBL)-producing Escherichia coli is a superbug causing worldwide outbreaks, necessitating timely and accurate tracking of resistant strains. Accordingly, this study was designed to investigate the spread of ESBL-producing Escherichia coli isolates, to analyze the effect of different genotypic and phenotypic factors on in vitro resistance patterns, and to assess the diagnostic value of commonly used ESBL genetic markers. For that purpose, we cultured 250 clinical isolates and screened their susceptibility to beta-lactam antibiotics. Among 12 antibiotics screened, only imipenem seems to have remained resilient. We subsequently analyzed the ESBL phenotype of Escherichia coli isolates and examined potential associations between their resistance phenotypes and patient-related factors. ESBL genotyping of 198 multiresistant isolates indicated that 179 contained at least one blaCTX-M gene. As we statistically dissected the data, we found associations between overall resistance and body site / type of disease. Additionally, we confirmed the diagnostic value of testing both blaCTX-M-1 and blaCTX-M-15 in providing better prediction of overall resistance. Finally, on sequencing the amplification products of detected blaCTX-M genes, we discovered two novel variants, which we named blaCTX-M-14.2 and blaCTX-M-15.2.
Collapse
|
54
|
Singh T, Singh PK, Das S, Wani S, Jawed A, Dar SA. Transcriptome analysis of beta-lactamase genes in diarrheagenic Escherichia coli. Sci Rep 2019; 9:3626. [PMID: 30842518 PMCID: PMC6403342 DOI: 10.1038/s41598-019-40279-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/13/2019] [Indexed: 01/20/2023] Open
Abstract
Beta (β)-lactamases are the most important agents that confer drug resistance among gram-negative bacteria. Continuous mutations in β-lactamases make them remarkably diverse. We carried out the transcriptome analysis of 10 β-lactamase genes of Extended-Spectrum β-lactamases (ESBL), Metallo β-lactamases (MBL), and AmpC β-lactamases (ABL) in drug-resistant and sensitive diarrheagenic E. coli (DEC) isolates obtained from children up to 5 years of age. Out of the 10 β-lactamase genes, four belonged to ESBL (TEM, SHV, CTX, and OXA); three to MBL (NDM-1, IMP, and VIM); and three to ABL (ACT, DHA and CMY) class of genes. The different categories of DEC were estimated for β-lactamases production using a set of conventional phenotypic tests, followed by detection of their messenger RNA (mRNA) expression. The study revealed a direct correlation between mRNA expression of these genes and the presence of antibiotic resistance; also corroborated by mutation analysis of the AmpC promoter region. All the 10 β-lactamase genes showed a significant increase in their expression levels in resistant isolates, compared to those of the sensitive isolates, indicating their possible role in the disease pathogenesis. Increase in mRNA expression of β-lactamase genes, and thereby virulence, may be due to multifactorial parameters causing phenotypic as well as genotypic changes. Our study highlights the necessity of instantaneous detection of β-lactamase gene expression to curb the overwhelming threat posed by emergence of drug resistance amongst the commensal E. coli strains in children from developing countries for larger public health interest.
Collapse
Affiliation(s)
- Taru Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Praveen Kumar Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India.
| | - Sayim Wani
- Department of Minimal Access and Bariatric Surgery, Fortis Flt. Rajan Dhall Hospital, New Delhi, India
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Dar
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi, India.,Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
55
|
Mass spectrometry-based Shiga toxin identification: A clinical validation. J Proteomics 2019; 198:145-150. [PMID: 30716422 DOI: 10.1016/j.jprot.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/20/2022]
Abstract
After we published our preliminary study on the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and curated E. coli toxin databases on the identification of E. coli Shiga toxins (Stxs) in the Journal of Proteomics in year 2018, we were encouraged to further refine the method and test clinical isolates. In this study, different concentrations of mitomycin C (MMC) and ciprofloxacin (CF), two common antibiotic/chemotherapy agents capable of stimulating Stx production, were first tested and compared on three reference strains and eight clinical isolates to observe the toxin induction and subsequent identification. Notably, no differences were observed between the two agents other than the concentrations applied. Seventeen more clinical isolates were then tested using fixed MMC and CF concentrations and sample amount. This study confirms that the majority of stx2-positive E. coli strains can be stimulated to produce sufficient toxin for confident identification. This does not occur with stx1-positive E. coli isolates, however, despite the fact that both Stxs can be identified for several isolates without MMC or CF stimulation. BIOLOGICAL SIGNIFICANCE: Stxs, especially Stx2, are very important causes of severe food-borne disease, even death. This study confirms that receptor analogue-based affinity enrichment of Stxs, after MMC or CF treatment of E. coli, is useful for fast and accurate Stx2 identification through LC-MS/MS.
Collapse
|
56
|
Oporto B, Ocejo M, Alkorta M, Marimón JM, Montes M, Hurtado A. Zoonotic approach to Shiga toxin-producing Escherichia coli: integrated analysis of virulence and antimicrobial resistance in ruminants and humans. Epidemiol Infect 2019; 147:e164. [PMID: 31063106 PMCID: PMC6518511 DOI: 10.1017/s0950268819000566] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
In 2014-2016, we conducted a cross-sectional survey in 115 sheep, 104 beef and 82 dairy cattle herds to estimate Shiga toxin-producing Escherichia coli (STEC) prevalence, and collected data on human clinical cases of infection. Isolates were characterised (stx1, stx2, eae, ehxA) and serogroups O157 and O111 identified by PCR, and their antimicrobial resistance (AMR) profiles were determined by broth microdilution. STEC were more frequently isolated from beef cattle herds (63.5%) and sheep flocks (56.5%) than from dairy cattle herds (30.5%) (P < 0.001). A similar but non-significant trend was observed for O157:H7 STEC. In humans, mean annual incidence rate was 1.7 cases/100 000 inhabitants for O157 STEC and 4.7 for non-O157 STEC, but cases concentrated among younger patients. Distribution of virulence genes in STEC strains from ruminants differed from those from human clinical cases. Thus, stx2 was significantly associated with animal STEC isolates (O157 and non-O157), ehxA to ruminant O157 STEC (P = 0.004) and eae to human non-O157 STEC isolates (P < 0.001). Resistance was detected in 21.9% of human and 5.2% of animal O157 STEC isolates, whereas all non-O157 isolates were fully susceptible. In conclusion, STEC were widespread in ruminants, but only some carried virulence genes associated with severe disease in humans; AMR in ruminants was low but profiles were similar to those found in human isolates.
Collapse
Affiliation(s)
- B. Oporto
- NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain
| | - M. Ocejo
- NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain
| | - M. Alkorta
- Hospital Universitario de Donostia, Paseo Doctor Beguiristain, 109, 20014 Donostia, Gipuzkoa, Spain
| | - J. M. Marimón
- Hospital Universitario de Donostia, Paseo Doctor Beguiristain, 109, 20014 Donostia, Gipuzkoa, Spain
| | - M. Montes
- Hospital Universitario de Donostia, Paseo Doctor Beguiristain, 109, 20014 Donostia, Gipuzkoa, Spain
| | - A. Hurtado
- NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
57
|
Ferreira M, Stella A, Freitas-Filho E, Silva T, Nascimento K, Pinto J, Dias M, Moreira C. Distribution of the stx1 and stx2 genes in Escherichia coli isolated from milk cattle according to season, age, and production scale in southwestern region of Goiás, Brazil. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study determined the distribution of stx1 and stx2 genes in Escherichia coli isolated from dairy herds with regard to animal age, season, and farm production-scale, and analyzed the phylogenetic distribution of the groups A, B1, B2, and D of 276 isolates of bovine feces Shiga toxin-producing E. coli (STEC). The stx1 profile was the most common, detected in 20.4% (202/990) of the isolates, followed by stx2 (4.54%, 45/990) and stx1+stx2 (2.92%, 29/990). The stx1 gene was detected more frequently in calves than in adult animals. In the dry season (winter), the presence of stx1+stx2 profile in cattle feces was higher than in the rainy season (summer), while no significant changes were observed between seasons for the stx1 and stx2 profiles. The most predominant phylogenetic groups in adult animals were B1, A, and D, while groups A and B1 prevailed in calves. Our data highlight the importance of identifying STEC reservoirs, since 7.5% of the tested isolates were positive for stx2, the main profile responsible for the hemolytic-uremic syndrome (HUS). Moreover, these microorganisms are adapted to survive even in hostile environments and can contaminate the food production chain, posing a significant risk to consumers of animal products.
Collapse
Affiliation(s)
- M.R.A. Ferreira
- Universidade Federal de Goiás, Brazil; Universidade Federal de Pelotas, Brazil
| | | | - E.G. Freitas-Filho
- Universidade Federal de Goiás, Brazil; Universidade de São Paulo, Brazil
| | | | - K.A. Nascimento
- Universidade Federal de Goiás, Brazil; Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | - M. Dias
- Universidade Federal de Goiás, Brazil
| | | |
Collapse
|
58
|
Talagrand-Reboul E, Latif-Eugenín F, Beaz-Hidalgo R, Colston S, Figueras MJ, Graf J, Jumas-Bilak E, Lamy B. Genome-driven evaluation and redesign of PCR tools for improving the detection of virulence-associated genes in aeromonads. PLoS One 2018; 13:e0201428. [PMID: 30110345 PMCID: PMC6093642 DOI: 10.1371/journal.pone.0201428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Many virulence factors have been described for opportunistic pathogens within the genus Aeromonas. Polymerase Chain Reactions (PCRs) are commonly used in population studies of aeromonads to detect virulence-associated genes in order to better understand the epidemiology and emergence of Aeromonas from the environment to host, but their performances have never been thoroughly evaluated. We aimed to determine diagnostic sensitivity and specificity of PCR assays for the detection of virulence-associated genes in a collection of Aeromonas isolates representative for the genetic diversity in the genus. Thirty-nine Aeromonas strains belonging to 27 recognized species were screened by published PCR assays for virulence-associated genes (act, aerA, aexT, alt, ascFG, ascV, ast, lafA, lip, ser, stx1, stx2A). In parallel, homologues of the 12 putative virulence genes were searched from the genomes of the 39 strains. Of the 12 published PCR assays for virulence factors, the comparison of PCR results and genome analysis estimated diagnostic sensitivities ranging from 34% to 100% and diagnostic specificities ranged from 71% to 100% depending upon the gene. To improve the detection of virulence-associated genes in aeromonads, we have designed new primer pairs for aerA/act, ser, lafA, ascFG and ascV, which showed excellent diagnostic sensitivity and specificity. Altogether, the analysis of high quality genomic data, which are more and more easy to obtain, provides significant improvements in the genetic detection of virulence factors in bacterial strains.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, Strasbourg, France
- * E-mail: (BL); (ETR)
| | - Fadua Latif-Eugenín
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - Roxana Beaz-Hidalgo
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - Sophie Colston
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Maria-Jose Figueras
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Département d’Hygiène Hospitalière, CHRU de Montpellier, Montpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Département de Bactériologie, CHU de Nice, Nice, France
- * E-mail: (BL); (ETR)
| |
Collapse
|
59
|
Oprea M, Ciontea AS, Militaru M, Dinu S, Cristea D, Usein CR. Molecular Typing of Escherichia coli O157 Isolates from Romanian Human Cases. Jpn J Infect Dis 2018; 71:455-461. [PMID: 30068889 DOI: 10.7883/yoken.jjid.2018.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Verocytotoxin-producing Escherichia coli (VTEC) of serogroup O157 are among the most important causes of severe cases of foodborne disease and outbreaks worldwide. As little is known about the characteristic of these strains in Romania, we aimed to provide reference information on the virulence gene content, phylogenetic background, and genetic diversity of 7 autochthonous O157 strains collected during 2016 and 2017 from epidemiologically non-related cases. These strains were typed by a combination of phenotypic and molecular methods routinely used by the national reference laboratory. Additionally, 4 of them were subjected to whole-genome sequencing (WGS), and public web-based tools were used to extract information on virulence gene profiles, multilocus sequence types (MLST), and single nucleotide polymorphism (SNP)-based phylogenetic relatedness. Molecular typing provided evidence of the circulation of a polyclonal population while distinguishing a cluster of non-sorbitol-fermenting, glucuronidase-negative, phylogenetic group E, MLST 1804 strains, representing lineage II and clade 7, which harbored vtx2c, eae-gamma, and ehxA genes. A good correlation between the routine typing methods and WGS data was observed. However, SNP-based genotyping provided a higher resolution in depicting the relationships between the O157:H7 strains than that provided by Pulse-field gel electrophoresis. This study should be a catalyst for improved laboratory-based surveillance of autochthonous VTEC.
Collapse
Affiliation(s)
- Mihaela Oprea
- Cantacuzino National Medico-Military Institute for Research and Development.,The Research Institute of the University of Bucharest
| | | | - Mădălina Militaru
- Cantacuzino National Medico-Military Institute for Research and Development
| | - Sorin Dinu
- Cantacuzino National Medico-Military Institute for Research and Development
| | - Daniela Cristea
- Cantacuzino National Medico-Military Institute for Research and Development
| | - Codruţa-Romaniţa Usein
- Cantacuzino National Medico-Military Institute for Research and Development.,Carol Davila University of Medicine and Pharmacy
| |
Collapse
|
60
|
Vahedi A, Soltan Dallal MM, Douraghi M, Nikkhahi F, Rajabi Z, Yousefi M, Mousavi M. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett 2018; 365:5044543. [DOI: 10.1093/femsle/fny136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Azadeh Vahedi
- School of Public Health, Tehran University of Medical Sciences, Ghods street, Tehran 3551713146, Iran
| | - Mohammad Mehdi Soltan Dallal
- Department of Microbiology and Pathobiology, Tehran University of Medical Sciences, Enghelab Sq., Tehran 1416753955, Iran
| | - Masoumeh Douraghi
- Department of Pathology, Tehran University of Medical Sciences, Poursina St., Tehran 14185781, Iran
| | - Farhad Nikkhahi
- Department of Medical Bacteriology–Pathobiology, Tehran University of Medical Sciences, District 6, Pour Sina St, Tehran 1416753955, Iran
| | - Zahra Rajabi
- Food Microbiology Research Center, Tehran University of Medical Sciences, Ghods st, Tehran 1416753955, Iran
| | - Maryam Yousefi
- Department of Virology, Tehran University of Medical Sciences, Ghods street, Tehran 1416753955, Iran
| | - Maryam Mousavi
- Department of Biostatistics, Faculty of medical sciences, Tarbiat Modares University, Tehran 3551713146, Iran
| |
Collapse
|
61
|
Anglès d’Auriac MB, Sirevåg R. Multiplex PCR for the simultaneous detection of the Enterobacterial gene wecA, the Shiga Toxin genes (stx 1 and stx 2) and the Intimin gene (eae). BMC Res Notes 2018; 11:360. [PMID: 29880035 PMCID: PMC5992677 DOI: 10.1186/s13104-018-3457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The aetiology of several human diarrhoeas has been increasingly associated with the presence of virulence factors rather than with the bacterial species hosting the virulence genes, exemplified by the sporadic emergence of new bacterial hosts. Two important virulence factors are the Shiga toxin (Stx) and the E. coli outer membrane protein (Eae) or intimin, encoded by the stx and eae genes, respectively. Although several polymerase chain reaction (PCR) protocols target these virulence genes, few aim at detecting all variants or have an internal amplification control (IAC) included in a multiplex assay. The objective of this work was to develop a simple multiplex PCR assay in order to detect all stx and eae variants, as well as to detect bacteria belonging to the Enterobacteriaceae, also used as an IAC. RESULTS The wecA gene coding for the production of the Enterobacterial Common Antigen was used to develop an Enterobacteriaceae specific qPCR. Universal primers for the detection of stx and eae were developed and linked to a wecA primer pair in a robust triplex PCR. In addition, subtyping of the stx genes was achieved by subjecting the PCR products to restriction digestion and semi-nested duplex PCR, providing a simple screening assay for human diarrhoea diagnostic.
Collapse
Affiliation(s)
- Marc B. Anglès d’Auriac
- Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway
- Department of Biosciences, University of Oslo, Box 1031, Blindern, 0316 Oslo, Norway
| | - Reidun Sirevåg
- Department of Biosciences, University of Oslo, Box 1031, Blindern, 0316 Oslo, Norway
| |
Collapse
|
62
|
Nayakvadi S, Alemao CA, Kumar HC, Rajkumar R, Rajkumar S, Chakurkar EB, Keelara S. Detection and molecular characterization of sorbitol fermenting non-O157 Escherichia coli from goats. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
63
|
Vázquez-Sánchez D, Antunes Galvão J, Oetterer M. Contamination sources, biofilm-forming ability and biocide resistance of Shiga toxin-producingEscherichia coliO157:H7 and non-O157 isolated from tilapia-processing facilities. J Food Saf 2018. [DOI: 10.1111/jfs.12446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel Vázquez-Sánchez
- Laboratory of Freshwater Fish and Seafood Technology, Department of Agri-Food Industry, Food and Nutrition; “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, Bairro Agronomia, CEP: 13418-900; Piracicaba/SP Brasil
| | - Juliana Antunes Galvão
- Laboratory of Freshwater Fish and Seafood Technology, Department of Agri-Food Industry, Food and Nutrition; “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, Bairro Agronomia, CEP: 13418-900; Piracicaba/SP Brasil
| | - Marília Oetterer
- Laboratory of Freshwater Fish and Seafood Technology, Department of Agri-Food Industry, Food and Nutrition; “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, Bairro Agronomia, CEP: 13418-900; Piracicaba/SP Brasil
| |
Collapse
|
64
|
Stenkamp‐Strahm C, McConnel C, Magzamen S, Abdo Z, Reynolds S. Associations between
Escherichia coli
O157 shedding and the faecal microbiota of dairy cows. J Appl Microbiol 2018; 124:881-898. [DOI: 10.1111/jam.13679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Affiliation(s)
- C. Stenkamp‐Strahm
- College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO USA
| | - C. McConnel
- College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO USA
| | - S. Magzamen
- College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO USA
| | - Z. Abdo
- College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO USA
| | - S. Reynolds
- College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins CO USA
| |
Collapse
|
65
|
Enterohemorrhagic Escherichia coli O157 subclade 8b strains in Chiba Prefecture, Japan, produced larger amounts of Shiga toxin 2 than strains in subclade 8a and other clades. PLoS One 2018; 13:e0191834. [PMID: 29381715 PMCID: PMC5790261 DOI: 10.1371/journal.pone.0191834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157 (O157) strains can be classified into clades (one of several phylogenetic groups) by single nucleotide polymorphisms (SNPs): these are clade 1, clade 2, clade 3, descendant and ancestral clades 4/5, clade 6, clade 7, clade 8, clade 9, and clade 12. Some recent studies showed that some O157 strains in clade 8 produced a larger amount of Shiga toxin (Stx) 2 than other strains. In this study, 1121 epidemiologically unlinked strains of O157 isolated in Chiba Prefecture, Japan were classified into clades during 1996–2014. Clade 8 strains were further classified into subclade 8a (67 strains) and subclade 8b (48 strains) using SNP analysis. In the absence of mitomycin C (MMC), subclade 8a strains in this study produced significantly greater amounts of Stx2 than subclade 8b strains. However, in the presence of MMC, the levels of Stx2 production in subclade 8b strains were significantly greater than subclade 8a strains. On the other hand, a recent study reported that the Stx2 production level in O157 strains was determined mainly by the subtypes of Stx2a phage (ϕStx2_α, β, γ, δ, ε, and ζ). Using O157 strains in this study, the Stx2a phages were classified into these subtypes. In this study, all strains of subclades 8a and 8b carried ϕStx2a_γ and ϕStx2a_δ, respectively. Some strains in clade 6 also carried ϕStx2a_δ. In the presence of MMC, subclade 8b strains produced significantly greater amounts of Stx2 than clade 6 strains carrying ϕStx2_δ. In this study, we propose that Stx2 production in subclade 8b strains in the presence of MMC might be enhanced due to genetic factors other than ϕStx2_δ.
Collapse
|
66
|
Otero V, Sánchez S, Herrera-León S, Rodríguez-Calleja JM, Otero A, García-López ML, Santos JA. Detection and characterization of Shiga toxin-producing Escherichia coli (STEC) in bulk tank ewes’ milk and sheep farm environment. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
67
|
Cheng K, Sloan A, Li X, Armstrong GD, Wang G. Mass spectrometry-based Shiga toxin identification: An optimized approach. J Proteomics 2017; 180:36-40. [PMID: 28602982 DOI: 10.1016/j.jprot.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Toxin expression is a key factor in Shiga toxin (Stx)-producing E. coli, a common pathogen involved in foodborne disease outbreaks. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) based approach has been used in this study to identify commonly reported E. coli toxins, with a focus on Shiga toxins (Stxs). Different sample preparation methods using variable culture conditions and concentrations of mitomycin C (MMC), a common antibiotic/chemotherapy agent capable of stimulating Stx production, were first tested on reference strains EDL933 and 90-2380 by LC-MS/MS detection of tryptic digests of receptor-analogue affinity binding enriched Stx preparations from culture supernatants and lysates. A curated E. coli protein toxin database was also used for faster and more straightforward toxin identification. With eight more genetically confirmed E. coli strains examined to verify the method, this preliminary study indicates that receptor-analogue based affinity enrichment on cell lysate or supernatant is a sensitive and accurate method for Stx identification. BIOLOGICAL SIGNIFICANCE The existence of Stx is very important for identifying Stx-producing E. coli and implementing a clinical treatment regime. This study demonstrates for the first time that using a curated E. coli toxin database, together with receptor-analogue-based affinity enrichment of Stxs after MMC treatment of E. coli, is an easy and appropriate approach for fast and accurate Stx identification through LC-MS/MS.
Collapse
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Xingle Li
- Henan Center for Disease Control, Henan, PR China
| | - Glen D Armstrong
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
68
|
Rodriguez-Souto RR, Garrido-Maestu A, Pastoriza-Fontan A, Lozano-Leon A. Investigation and characterization of Shiga toxin-producingEscherichia colipresent in mussels from harvesting areas in Galician southern Rias (NW Spain). J Food Saf 2017. [DOI: 10.1111/jfs.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Alejandro Garrido-Maestu
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Nano4Food Unit; Food Quality and Safety Research Group, Av. Mestre José Veiga s/n 4715-330 Braga; Portugal
| | | | - Antonio Lozano-Leon
- Institute of Applied Microbiology - ASMECRUZ. Playa de Beluso s/n, Bueu PO 36939; Spain
| |
Collapse
|
69
|
Aslantaş Ö, Yilmaz EŞ. Prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC β-lactamase (pAmpC) producing Escherichia coli in dogs. J Vet Med Sci 2017; 79:1024-1030. [PMID: 28450661 PMCID: PMC5487777 DOI: 10.1292/jvms.16-0432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to determine the prevalence of fecal carriage of extended spectrum
β-lactamase (ESBL) and/or plasmidic AmpC β-lactamase (pAmpC) producing Escherichia
coli among dogs (n=428) in Turkey. Polymerase chain reaction (PCR) and
sequencing were used to characterize genes encoding β-lactamase and plasmid mediated
quinolone resistance (PMQR). Antimicrobial susceptibility testing and PCRs for virulence
genes and phylogenetic groups were also performed. Cefotaxime resistant E.
coli isolates were detected in 95 (22.2%) of the swab samples. Sequencing
analysis results showed occurrence of various β-lactamase genes:
blaCTX-M-15 (62), blaTEM-1b
(42), blaCMY-2 (22), blaCTX-M-3
(16), blaCTX-M-1 (15), blaOXA-1
(9) and blaSHV-12 (3) alone or in combination. The most
frequently encountered phylogenetic group was group A1 (35.8%), followed by
group D2 (22.1%), B1 (15.8%), D1 (9.5%), A0 (7.4%),
B22 (5.3%) and B23 (4.2%), respectively. PMQR genes,
aac(6’)-Ib-cr, qnrS1 and qnrB10 were detected in 25.3,
10.5 and 1.1% of the isolates, respectively. While all isolates were susceptible to
imipenem and amikacin, resistance rates to non-β-lactam antibiotics ranged from 20.0% for
tobramycin to 56.8% for tetracycline. The virulence genes were only detected in 34 (36.2%)
of the isolates and this isolates carried single or various combination of virulence genes
of iucD, papC, papE,
f17a-A and eaeA. Four isolates were identified as
human virulent pandemic CTX-M-15 producing E. coli clone O25b:ST131/B2.
To the best of our knowledge, this is the first study to show fecal carriage of ESBL/pAmpC
type β-lactamase producing E. coli isolates among dogs in Turkey.
Collapse
Affiliation(s)
- Özkan Aslantaş
- Department of Microbiology, Faculty of Veterinary Medicine, Mustafa Kemal University, TR-31030 Hatay, Turkey
| | - Ebru Şebnem Yilmaz
- Department of Biology, Faculty of Art and Science, Mustafa Kemal University, TR-31030 Hatay, Turkey
| |
Collapse
|
70
|
Singh T, Das S, Ramachandran VG, Wani S, Shah D, Maroof KA, Sharma A. Distribution of Integrons and Phylogenetic Groups among Enteropathogenic Escherichia coli Isolates from Children <5 Years of Age in Delhi, India. Front Microbiol 2017; 8:561. [PMID: 28443072 PMCID: PMC5385330 DOI: 10.3389/fmicb.2017.00561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/20/2017] [Indexed: 01/29/2023] Open
Abstract
Integrons by means of horizontal gene transfer carry multidrug resistance genes (MDR) among bacteria, including E. coli. The aim of this study was to determine the antibiotic resistance profiles and the genes associated with them, to gain insights in the distribution of phylogroups, prevalence, and characterization of class 1, 2 and 3 integrons among Enteropathogenic E. coli (EPEC) isolates, from children upto 5 years of age from Delhi and National Capital Region (NCR), India. A total of 120 E. coli isolates, including 80 from diarrheagenic E. coli (cases) and 40 from healthy isolates (controls) were recruited in this study. After isolation of E. coli, screening for EPEC was done by conventional multiplex PCR. Antibiotic suseptibility test was performed using disk diffusion method and further confirmed by minimum inhibitory concentration (MICs) by E-test. The presence and characterization of integrons and antimicrobial resistance genes were performed by PCR and DNA sequencing. Phylogeny determination was carried out by quadruplex PCR. EPEC strains were found in 64 of the 80 diarrheagenic cases, out of which 38 were MDR. In the 40 healthy controls, 23 were found to be EPEC strain, out of which only 2 were MDR. Amongst 80 diarrheagenic cases, class 1 integron were observed in 43 isolates, class 2 integron in 12 isolates and 9 isolates were found with co-existence of both. Similarly, in healthy controls; class 1 integron in 9 and class 2 integron in 7 isolates were observed with co-existence in 3 isolates. None of the isolates included class 3 integron. The dfr was the most commonly identified gene cassette within the integron-positive isolates. Phylogenetic studies showed considerable representation of phylogroup B2 in both diarrheagenic cases and healthy controls. This study reiterates the importance of class 1 integron predominantly for acquisition of antibiotic resistance genes among EPEC isolates. Furthermore, it also ascertains the possible association between multidrug resistance and presence of integrons. Approximately 91% of isolates were easily assigned to their respective phylogroups. Assessment of the relationship between antibiotic resistance and dominant phylogroups detected was also attempted. This study also highlights the increased burden of antimicrobial resistance in healthy controls.
Collapse
Affiliation(s)
- Taru Singh
- Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Shukla Das
- Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - V G Ramachandran
- Dermatology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Dilshad GardenNew Delhi, India.,Department of Minimal Access and Bariatric Surgery, Fortis Flt. Rajan Dhall HospitalNew Delhi, India
| | - Sayim Wani
- Dermatology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Dilshad GardenNew Delhi, India.,Department of Minimal Access and Bariatric Surgery, Fortis Flt. Rajan Dhall HospitalNew Delhi, India
| | - Dheeraj Shah
- Pediatrics, University College of Medical Sciences and Guru Teg Bahadur HospitalNew Delhi, India
| | - Khan A Maroof
- Community Medicine, University College of Medical Sciences, and Guru Teg Bahadur Hospital, Dilshad GardenNew Delhi, India
| | - Aditi Sharma
- Vardhman Mahavir Medical College and Sardarjung HospitalNew Delhi, India
| |
Collapse
|
71
|
Staples M, Fang NX, Graham RM, Smith HV, Jennison AV. Evaluation of the SHIGA TOXIN QUIK CHEK and ImmunoCard STAT! EHEC as screening tools for the detection of Shiga toxin in fecal specimens. Diagn Microbiol Infect Dis 2017; 87:95-99. [DOI: 10.1016/j.diagmicrobio.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
|
72
|
Yılmaz EŞ, Dolar A. Detection of Extended-Spectrum β-Lactamases in Escherichia coli From Cage Birds. J Exot Pet Med 2017. [DOI: 10.1053/j.jepm.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Pehlivanoglu F, Turutoglu H, Ozturk D, Yardimci H. Molecular Characterization of ESBL-Producing Escherichia Coli Isolated from Healthy Cattle and Sheep. ACTA VET-BEOGRAD 2016. [DOI: 10.1515/acve-2016-0045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The present study aims to characterize ESBL-producing Escherichia coli isolated from healthy cattle and sheep in the Burdur province of Turkey. Fecal samples from a total of 200 cattle and 200 sheep were tested and ESBL-producing E. coli was isolated from 31 (15.5%) cattle and three (1.5%) sheep samples using the Clinical and Laboratory Standards Institute’s combined disk method. Among the ESBL gene classes detected by PCR, blaCTX-M was the most frequent type, followed by the blaTEM and blaSHV families. ESBL-producing E. coli isolates showed co-resistance to multiple classes of antibiotics including aminoglycosides, phenicols, quinolones, folate pathway inhibitors and tetracyclines. The resistance rates were higher in the cattle isolates than in the sheep isolates. Phylogenetic grouping of the E. coli isolates indicated group A (particularly A1) was the predominant phylogenetic group (19/34, 55.9%), followed by groups B1 (9/34, 26.5%) and D (6/34, 17.6%); none of the isolates belonged to group B2. The study shows that ESBL-producing E. coli isolates exist in the intestinal flora of healthy cattle and sheep in the Burdur province of Turkey. This is the first report showing the emergence of CTX-M type ESBL-producing E. coli in sheep farms in Turkey
Collapse
Affiliation(s)
- Faruk Pehlivanoglu
- Department of Microbiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hulya Turutoglu
- Department of Microbiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Dilek Ozturk
- Department of Microbiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hakan Yardimci
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
74
|
Msolo L, Igbinosa EO, Okoh AI. Prevalence and antibiogram profiles of Escherichia coli O157:H7 isolates recovered from three selected dairy farms in the Eastern Cape Province, South Africa. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
75
|
Gómez-Gallego C, Junnila J, Männikkö S, Hämeenoja P, Valtonen E, Salminen S, Beasley S. A canine-specific probiotic product in treating acute or intermittent diarrhea in dogs: A double-blind placebo-controlled efficacy study. Vet Microbiol 2016; 197:122-128. [PMID: 27938673 DOI: 10.1016/j.vetmic.2016.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022]
Abstract
A double-blind placebo-controlled intervention study on 60 dogs recruited from a pool of canine patients visiting a veterinary practice and diagnosed with acute diarrhea was conducted. The dogs received in randomized manner either a sour-milk product containing three canine-derived Lactobacillus sp. probiotics in combination of Lactobacillus fermentum VET 9A, L. rhamnosus VET 16A, and L. plantarum VET 14A (2×109cfu/ml), or placebo. Stool consistency, general well-being, and the numbers of specific pathogens in stool samples were analyzed. Our results demonstrated that the treatment with the study sour-milk product had a normalizing effect on canine stool consistency. The treatment also enhanced the well-being of the pet by maintaining appetite and may reduce vomiting. In addition, the concentrations of Clostridium perfringens and Enterococcus faecium, which typically increase during diarrhea episodes in dogs, were decreased in probiotic group feces when compared with the placebo group. Taken together, the sour-milk with the specific probiotic combination had a normalizing effect on acute diarrhea in dogs which was associated with decreased numbers of potential pathogens in the feces of probiotic-treated dogs.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4 A, 20014, Turku, Finland
| | - Jouni Junnila
- Oy 4Pharma Ltd, Lemminkäisenkatu 1, 20520, Turku, Finland
| | - Sofia Männikkö
- Oy 4Pharma Ltd, Lemminkäisenkatu 1, 20520, Turku, Finland
| | | | | | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Itäinen Pitkäkatu 4 A, 20014, Turku, Finland
| | - Shea Beasley
- Vetcare Ltd, Liedontie 45, 04600, Mäntsälä, Finland.
| |
Collapse
|
76
|
Climate, lactation, and treatment factors influence faecal shedding ofEscherichia coliO157 pathotypes in dairy cows. Epidemiol Infect 2016; 145:115-125. [DOI: 10.1017/s0950268816001928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYAmong pathogens shed by cattle,Escherichia coliO157 ranks highest in those causing human illness. To date, prevalence and risk factors for O157 shedding have been assessed in feedlot, but not dairy cattle. The study aimed to determine prevalence levels and risk factors for O157 atypical enteropathogenicE. coli(aEPEC) and enterohaemorrhagicE. coli(EHEC) shedding in dairy cattle. Dairy cattle (n= 899) within the first 21 days of lactation were sampled monthly over the course of 1 year, on three dry lot dairies surrounding Fort Collins, CO. During visits multiple factors were measured (disease history, pharmaceutical use, climate measures, etc.), and cattle faeces were collected and assessed for presence of O157 and virulence genes. Logistic regression analysis was performed using O157 outcomes and measured factors. Prevalence of O157 aEPEC was 3·7%, while EHEC was 3·0%. Many potential risk factors were highly correlated, and used to build separate multivariable models. An increase in humidity was positively associated with aEPEC, while fluid faeces and history of disease showed a negative association. Meanwhile, an increase in temperature and antibiotic treatment was positively associated with EHEC, while more days in milk, higher hygiene score and cow contact were negatively associated. These results may guide mitigation strategies that reduce O157 shedding, and contamination of the human food chain.
Collapse
|
77
|
Pehlivanoglu F, Turutoglu H, Ozturk D. CTX-M-15-Type Extended-Spectrum Beta-Lactamase-ProducingEscherichia colias Causative Agent of Bovine Mastitis. Foodborne Pathog Dis 2016; 13:477-82. [DOI: 10.1089/fpd.2015.2114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Faruk Pehlivanoglu
- Department of Microbiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hulya Turutoglu
- Department of Microbiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Dilek Ozturk
- Department of Microbiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
78
|
Woods TA, Mendez HM, Ortega S, Shi X, Marx D, Bai J, Moxley RA, Nagaraja TG, Graves SW, Deshpande A. Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples for Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2016; 6:92. [PMID: 27630828 PMCID: PMC5005322 DOI: 10.3389/fcimb.2016.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) are a serious threat to the health, with approximately half of the STEC related food-borne illnesses attributable to contaminated beef. We developed an assay that was able to screen samples for several important STEC associated serogroups (O26, O45, O103, O104, O111, O121, O145, O157) and three major virulence factors (eae, stx1, stx2) in a rapid and multiplexed format using the Multiplex oligonucleotide ligation-PCR (MOL-PCR) assay chemistry. This assay detected unique STEC DNA signatures and is meant to be used on samples from various sources related to beef production, providing a multiplex and high-throughput complement to the multiplex PCR assays currently in use. Multiplex oligonucleotide ligation-PCR (MOL-PCR) is a nucleic acid-based assay chemistry that relies on flow cytometry/image cytometry and multiplex microsphere arrays for the detection of nucleic acid-based signatures present in target agents. The STEC MOL-PCR assay provided greater than 90% analytical specificity across all sequence markers designed when tested against panels of DNA samples that represent different STEC serogroups and toxin gene profiles. This paper describes the development of the 11-plex assay and the results of its validation. This highly multiplexed, but more importantly dynamic and adaptable screening assay allows inclusion of additional signatures as they are identified in relation to public health. As the impact of STEC associated illness on public health is explored additional information on classification will be needed on single samples; thus, this assay can serve as the backbone for a complex screening system.
Collapse
Affiliation(s)
- Travis A Woods
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque, NM, USA
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New MexicoAlbuquerque, NM, USA; The New Mexico ConsortiumLos Alamos, NM, USA
| | - Sandy Ortega
- Translational Biomedical Sciences, University of Rochester Rochester, NY, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - David Marx
- Department of Statistics, University of Nebraska-Lincoln Lincoln, NE, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Rodney A Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln Lincoln, NE, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Steven W Graves
- Department of Chemical and Biological Engineering, University of New Mexico Albuquerque, NM, USA
| | - Alina Deshpande
- Los Alamos National Laboratory, Analytics, Intelligence and Technology Division Los Alamos, NM, USA
| |
Collapse
|
79
|
Gonzalez AGM, Cerqueira AMF, Guth BEC, Coutinho CA, Liberal MHT, Souza RM, Andrade JRC. Serotypes, virulence markers and cell invasion ability of Shiga toxin-producing Escherichia coli strains isolated from healthy dairy cattle. J Appl Microbiol 2016; 121:1130-43. [PMID: 27426967 DOI: 10.1111/jam.13230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 01/25/2023]
Abstract
AIM The occurrence of virulence markers, serotypes and invasive ability were investigated in Shiga toxin-producing Escherichia coli (STEC) isolated from faecal samples of healthy dairy cattle at Rio de Janeiro State, Brazil. METHODS AND RESULTS From 1562 stx-positive faecal samples, 105 STEC strains were isolated by immuno-magnetic separation (IMS) or plating onto MacConkey agar (MC) followed by colony hybridisation. Fifty (47·6%) strains belonged to nine serotypes (O8:H19, O22:H8, O22:H16, O74:H42, O113:H21, O141:H21, O157:H7, O171:H2 and ONT:H21). The prevalent serotypes were O157:H7 (12·4%), O113:H21 (6·7%) and O8:H19 (5·7%). Virulence genes were identified by polymerase chain reaction (PCR). E-hlyA (77·1%) was the more prevalent virulence marker, followed by espP (64·8%), saa (39%), eae (24·8%) and astA (21·9%). All O157:H7 strains carried the γ (gamma) variant of the locus of enterocyte effacement (LEE) genes and the stx2c gene, while the stx1/stx2 genotype prevailed among the eae-negative strains. None of the eae-positive STEC produced the localized adherence (LA) phenotype in HEp-2 or Caco-2 cells. However, intimate attachment (judged by the fluorescent actin staining test) was detected in some eae-positive strains, both in HEp-2 (23·1%) and in Caco-2 cells (11·5%). Most strains (87·5%) showed 'peripheral association' (PA) adherence phenotype to undifferentiated Caco-2 cells. Twenty-five (92·6%) of 27 strains invaded Caco-2 cells. The highest average value of invasion (9·6%) was observed among the eae-negative bovine strains from serotypes described in human disease. CONCLUSION Healthy dairy cattle is a reservoir of STEC carrying virulence genes and properties associated with human disease. SIGNIFICANCE AND IMPACT OF THE STUDY Although reports of human disease associated with STEC are scarce in Brazil, the colonization of the animal reservoir by potentially pathogenic strains offers a significant risk to our population.
Collapse
Affiliation(s)
- A G M Gonzalez
- Departamento de Bromatologia, Universidade Federal Fluminense, Niterói, Brasil.
| | - A M F Cerqueira
- Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, Brasil
| | - B E C Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - C A Coutinho
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - M H T Liberal
- Centro Estadual de Pesquisa em Sanidade Animal, Pesagro-Rio, Niterói, Brasil
| | - R M Souza
- Centro Estadual de Pesquisa em Sanidade Animal, Pesagro-Rio, Niterói, Brasil
| | - J R C Andrade
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
80
|
Abia ALK, Ubomba-Jaswa E, Momba MNB. Occurrence of diarrhoeagenic Escherichia coli virulence genes in water and bed sediments of a river used by communities in Gauteng, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15665-15674. [PMID: 27137190 DOI: 10.1007/s11356-016-6762-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
In most developing countries, especially in Southern Africa, little is known about the presence of diarrhoeagenic Escherichia coli (DEC) pathotypes in riverbed sediments. The present study sought to investigate the presence of DEC virulence genes in riverbed sediments of the Apies River, a river used by many communities in Gauteng, South Africa. Water and sediment samples were collected from the river between July and August 2013 (dry season) and also between January and February 2014 (wet season) following standard procedures. Isolation of E. coli was done using the Colilert®-18 Quanti-Tray® 2000 system. DNA was extracted from E. coli isolates using the InstaGene™ matrix from Bio-Rad and used as template DNA for real-time PCR. Water pH, temperature, dissolved oxygen, electrical conductivity and turbidity were measured in situ. Over 59 % of 180 samples analysed were positive for at least one of the seven DEC virulence genes investigated. The eaeA gene was the most isolated gene (29.44 %) while the ipaH gene the least isolated (8.33 %). The ipaH gene (p = 0.012) and the ST gene (stIa, p = 0.0001, and stIb, p = 0.019) were positively correlated with temperature. The detection of diarrhoeagenic E. coli virulence genes in the sediments of the Apies River shows that the sediments of this river might not only be a reservoir of faecal indicator bacteria like E. coli but also pathogenic strains of this bacterium. These organisms could represent a public health risk for poor communities relying on this water source for various purposes such as drinking and recreational use. There is therefore an urgent need to monitor these DEC pathotypes especially in areas without adequate water supplies.
Collapse
Affiliation(s)
- Akebe Luther King Abia
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Private Bag X 680, Pretoria, 0001, South Africa
| | - Eunice Ubomba-Jaswa
- Natural Resources and the Environment, CSIR, PO Box 395, Pretoria, 0001, South Africa.
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Science, Tshwane University of Technology, Arcadia Campus, 175 Nelson Mandela Drive, Private Bag X 680, Pretoria, 0001, South Africa.
| |
Collapse
|
81
|
Kennedy NM, Mukherjee N, Banerjee P. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. J Food Prot 2016; 79:1259-65. [PMID: 27357048 DOI: 10.4315/0362-028x.jfp-15-504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level.
Collapse
Affiliation(s)
- Nicole M Kennedy
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA
| | - Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA; Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
82
|
Phenotypic H-Antigen Typing by Mass Spectrometry Combined with Genetic Typing of H Antigens, O Antigens, and Toxins by Whole-Genome Sequencing Enhances Identification of Escherichia coli Isolates. J Clin Microbiol 2016; 54:2162-8. [PMID: 27307455 PMCID: PMC4963523 DOI: 10.1128/jcm.00422-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
Mass spectrometry-based phenotypic H-antigen typing (MS-H) combined with whole-genome-sequencing-based genetic identification of H antigens, O antigens, and toxins (WGS-HOT) was used to type 60 clinical Escherichia coli isolates, 43 of which were previously identified as nonmotile, H type undetermined, or O rough by serotyping or having shown discordant MS-H and serotyping results. Whole-genome sequencing confirmed that MS-H was able to provide more accurate data regarding H antigen expression than serotyping. Further, enhanced and more confident O antigen identification resulted from gene cluster based typing in combination with conventional typing based on the gene pair comprising wzx and wzy and that comprising wzm and wzt The O antigen was identified in 94.6% of the isolates when the two genetic O typing approaches (gene pair and gene cluster) were used in conjunction, in comparison to 78.6% when the gene pair database was used alone. In addition, 98.2% of the isolates showed the existence of genes for various toxins and/or virulence factors, among which verotoxins (Shiga toxin 1 and/or Shiga toxin 2) were 100% concordant with conventional PCR based testing results. With more applications of mass spectrometry and whole-genome sequencing in clinical microbiology laboratories, this combined phenotypic and genetic typing platform (MS-H plus WGS-HOT) should be ideal for pathogenic E. coli typing.
Collapse
|
83
|
Kürekci C, Arkadaş M, Avşar YK. Occurrence, genetic characterization and antimicrobial resistance of extended spectrum β-lactamase producing Escherichia coli isolated from Sürk samples, a traditional turkish cheese. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9355-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
Cheng K, She YM, Chui H, Domish L, Sloan A, Hernandez D, McCorrister S, Ma J, Xu B, Reimer A, Knox JD, Wang G. Mass Spectrometry-Based Escherichia coli H Antigen/Flagella Typing: Validation and Comparison with Traditional Serotyping. Clin Chem 2016; 62:839-47. [PMID: 27052506 DOI: 10.1373/clinchem.2015.244236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 03/01/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Escherichia coli H antigen typing with antisera, a useful method for flagella clinical identification and classification, is a time-consuming process because of the need to induce flagella growth and the occurrence of undetermined strains. We developed an alternative rapid and analytically sensitive mass spectrometry (MS) method, termed MS-based H antigen typing (MS-H), and applied it at the protein sequence level for H antigen typing. We also performed a comparison with traditional serotyping on reference strains and clinical isolates. METHODS On the basis of international guidelines, the analytical selectivity and sensitivity, imprecision, correlation, repeatability, and reproducibility of the MS-H platform was evaluated using reference strains. Comparison of MS-H typing and serotyping was performed using 302 clinical isolates from 5 Canadian provinces, and discrepant results between the 2 platforms were resolved through whole genome sequencing. RESULTS Repeated tests on reference strain EDL933 demonstrated a lower limit of the measuring interval at the subsingle colony (16.97 μg or 1.465 × 10(7) cells) level and close correlation (r(2) > 0.99) between cell culture biomass and sequence coverage. The CV was <10.0% among multiple repeats with 4 reference strains. Intra- and interlaboratory tests demonstrated that the MS-H method was robust and reproducible under various sample preparation and instrumentation conditions. Using discrepancy analysis via whole genome sequencing, performed on isolates with discrepant results, MS-H accurately identified 12.3% more isolates than conventional serotyping. CONCLUSIONS MS-H typing of E. coli is useful for fast and accurate flagella typing and could be very useful during E. coli outbreaks.
Collapse
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada;
| | - Yi-Min She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Huixia Chui
- Henan Centre of Disease Control and Prevention, Henan Province, China
| | - Larissa Domish
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Drexler Hernandez
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stuart McCorrister
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bianli Xu
- Henan Centre of Disease Control and Prevention, Henan Province, China
| | - Aleisha Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - J David Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
85
|
Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H, Geornaras I, Woerner DR, Jones KL, Ruiz J, Boucher C, Morley PS, Belk KE. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain. Appl Environ Microbiol 2016; 82:2433-2443. [PMID: 26873315 PMCID: PMC4959480 DOI: 10.1128/aem.00078-16] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022] Open
Abstract
Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Noelle R Noyes
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Enrique Doster
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer N Martin
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lyndsey M Linke
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Roberta J Magnuson
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Hua Yang
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ifigenia Geornaras
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Dale R Woerner
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Jaime Ruiz
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
| | - Christina Boucher
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
| | - Paul S Morley
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
86
|
McConnel CS, Stenkamp-Strahm CM, Rao S, Linke LM, Magnuson RJ, Hyatt DR. Antimicrobial Resistance Profiles in Escherichia coli O157 Isolates from Northern Colorado Dairies. J Food Prot 2016; 79:484-7. [PMID: 26939660 PMCID: PMC8641561 DOI: 10.4315/0362-028x.jfp-15-321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157 (EcO157) infections can lead to serious disease and death in humans. Although the ecology of EcO157 is complex, ruminant animals serve as an important reservoir for human infection. Dairy cattle are unique because they may be a source of contamination for milk, meat, and manure-fertilized crops. Foodborne dairy pathogens such as EcO157 are of primary importance to public health. Antimicrobial resistance (AMR) is a complex phenomenon that complicates the treatment of serious bacterial infections and is of increasing concern. In the face of recommended use restrictions for antimicrobial agents in livestock operations, current AMR patterns in known foodborne pathogens should be documented. The objective of this study was to document AMR patterns in EcO157 isolates from dairies in northern Colorado using antimicrobial agents commonly found on dairies and representative of medically important antimicrobial drug classes. Seventy-five EcO157 isolates were recovered from three dairies. Six isolates were resistant to at least 1 of the 10 tested antimicrobial agents: four were resistant to streptomycin, sulfisoxazole, and tetracycline; one was resistant to streptomycin and tetracycline; and one was resistant to only tetracycline. All resistant isolates were from a single dairy. Overall, a low prevalence (8%) of AMR was observed among the 75 EcO157 isolates. No significant effects on AMR profiles due to virulence genes, parity, or previous antimicrobial treatments within the current lactation period were detected. The results of this study provide background information for future comparative studies investigating AMR trends. Future studies should include more participating farms and more samples and should control for potential confounding factors of AMR that may underlie individual farm variation.
Collapse
Affiliation(s)
- Craig S McConnel
- Department of Clinical Sciences, Colorado Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Chloe M Stenkamp-Strahm
- Department of Clinical Sciences, Colorado Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Lyndsey M Linke
- Department of Clinical Sciences, Colorado Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Roberta J Magnuson
- Department of Clinical Sciences, Colorado Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Doreene R Hyatt
- Department of Microbiology, Immunology and Pathology, Colorado Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
87
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
88
|
Molecular screening and characterization of Shiga toxin-producing Escherichia coli in retail foods. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
89
|
Neher S, Hazarika AK, Barkalita LM, Borah P, Bora DP, Sharma RK. Isolation and characterization of Shiga toxigenic Escherichia coli of animal and bird origin by multiplex polymerase chain reaction. Vet World 2016; 9:123-7. [PMID: 27051196 PMCID: PMC4819360 DOI: 10.14202/vetworld.2016.123-127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022] Open
Abstract
AIM The purpose of this study was to determine the virulence genes and serotype of Shiga toxin producing Escherichia coli (STEC) strains isolated from animals and birds. MATERIALS AND METHODS A total of 226 different samples viz., fecal, intestinal content, rectal swab and heart blood were collected from different clinically affected/healthy animals and birds and were streaked on McConkeys' lactose agar and eosin methylene blue agar for isolation of E. coli, confirmed by staining characteristics and biochemical tests. By polymerase chain reaction (PCR) all the E. coli isolates were screened for certain virulence genes, viz., Shiga toxin 1 (stx1), stx2 and eae and enterohemolytic (Ehly) phenotype was observed in washed sheep blood agar plate. All the isolated E. coli strains were forwarded to the National Salmonella and Escherichia Centre, Central Research Institute, Kasauli (Himachal Pradesh) for serotyping. RESULTS Out of 226 samples 138 yielded E. coli. All the isolates were screened for molecular detection of different virulent genes, viz. stx1, stx2 and eae, based on which 36 (26.08%) were identified as STEC. Among those STEC isolates, 15 (41.67%), 14 (38.89%), 1 (2.78%) exhibited eae, stx2, stx1 alone, respectively, whereas 4 (11.11%) and 2 (5.56%) carried both stx1 and stx2, stx2 and eae, respectively. Among the STEC isolates 22 were belonged to 15 different sero-groups, viz., O2, O20, O22, O25, O43, O60, O69, O90, O91, O95, O106, O118, O130, O162 and O170 and others were untypable. Ehly phenotype was observed in 10 (27.78%) the STEC isolates. CONCLUSION The present study concluded that STEC could be isolated from both clinically affected as well as healthy animals and birds. Regular monitoring of more samples from animal and bird origin is important to identify natural reservoir of STEC to prevent zoonotic infection.
Collapse
Affiliation(s)
- S. Neher
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - A. K. Hazarika
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - L. M. Barkalita
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - P. Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - D. P. Bora
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - R. K. Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| |
Collapse
|
90
|
Iwu CJ, Iweriebor BC, Obi LC, Okoh AI. Occurrence of non-O157 Shiga toxin-producing Escherichia coli in two commercial swine farms in the Eastern Cape Province, South Africa. Comp Immunol Microbiol Infect Dis 2016; 44:48-53. [DOI: 10.1016/j.cimid.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022]
|
91
|
Doregiraee F, Alebouyeh M, Nayeri Fasaei B, Charkhkar S, Tajedin E, Zali MR. Isolation of atypical enteropathogenic and shiga toxin encoding Escherichia coli strains from poultry in Tehran, Iran. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2016; 9:53-7. [PMID: 26744615 PMCID: PMC4702042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIM The purpose of this study was to investigate the prevalence of enteropathogenic Escherichia coli (EPEC) and shiga toxin producing E. coli (STEC) strains in healthy broilers in Iran. BACKGROUND STEC and EPEC strains as diarrheagenic E. coli are among the most prevalent causative agents in acute diarrhea. Domestic animals, mainly cattle and sheep, have been implicated as the principal reservoirs of these pathotypes; however their prevalence among the broilers is varied among different countries. PATIENTS AND METHODS A total of 500 cloacal swab samples from broilers of five different poultry houses (A-E) were collected to investigate the presence of stx1, stx2, hly, eae, and bfp virulence genes among the E. coli isolates by polymerase chain reaction. The shiga toxin encoding strains were evaluated serologically to detect their interaction with a commercial antiserum against O157 antigen. RESULTS Out of the 500 collected samples, 444 E. coli strains were isolated. Three strains (0.67%) presented at least one of the studied virulence genes (stx2, hly and eae), two strains were identified as STEC (stx2 (+), O157:nonH7) and one as an atypical EPEC strains (eae (+) bfp (-)). CONCLUSION The study established the presence of STEC and atypical EPEC in healthy broilers in Iran. Poultry might serve as vectors for transmission of pathogenic E. coli to human populations.
Collapse
Affiliation(s)
- Fatemeh Doregiraee
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Charkhkar
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Elahe Tajedin
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
92
|
Pant Pai N, Daher J. Multiplexed testing for HIV and related bacterial and viral co-infections at the point-of-care: quo vadis? Expert Rev Mol Diagn 2015; 15:463-9. [PMID: 25795042 DOI: 10.1586/14737159.2015.1021335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, there has been a paradigm shift toward an understanding of the need to screen select sub-populations for several sexually transmitted and blood-borne infections simultaneously, at one time with various rapid point-of-care (POC) technologies, rather than one infection at a time. This is an encouraging and promising change, however many contextual factors need to be considered before implementing such technologies. In this editorial, we highlight some challenges, issues and concerns regarding implementation, integration, and uptake of these technologies across global settings. However, careful planning and well thought out implementation plan that include investments in training health care professionals, improving test and treat algorithms, rapid protocols on communicating actionable results to providers, and timely action, will bring about the desired impact in patient's lives. This is especially true in settings where they stand to achieve the maximum desired public health and social impact.
Collapse
Affiliation(s)
- Nitika Pant Pai
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
93
|
Kaiser ML, Williams ML, Basta N, Hand M, Huber S. When Vacant Lots Become Urban Gardens: Characterizing the Perceived and Actual Food Safety Concerns of Urban Agriculture in Ohio. J Food Prot 2015; 78:2070-80. [PMID: 26555531 DOI: 10.4315/0362-028x.jfp-15-181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was intended to characterize the perceived risks of urban agriculture by residents of four low-income neighborhoods in which the potential exists for further urban agriculture development and to provide data to support whether any chemical hazards and foodborne pathogens as potential food safety hazards were present. Sixty-seven residents participated in focus groups related to environmental health, food security, and urban gardening. In addition, soils from six locations were tested. Residents expressed interest in the development of urban gardens to improve access to healthy, fresh produce, but they had concerns about soil quality. Soils were contaminated with lead (Pb), zinc, cadmium (Cd), and copper, but not arsenic or chromium. Results from our study suggest paint was the main source of soil contamination. Detectable polyaromatic hydrocarbon (PAH) levels in urban soils were well below levels of concern. These urban soils will require further management to reduce Pb and possibly Cd bioavailability to decrease the potential for uptake into food crops. Although the number of locations in this study is limited, results suggest lower levels of soil contaminants at well-established gardens. Soil tillage associated with long-term gardening could have diluted the soil metal contaminants by mixing the contaminants with clean soil. Also, lower PAH levels in long-term gardening could be due to enhanced microbial activity and PAH degradation, dilution, or both due to mixing, similar to metals. No foodborne pathogen targets were detected by PCR from any of the soils. Residents expressed the need for clearness regarding soil quality and gardening practices in their neighborhoods to consume food grown in these urban areas. Results from this study suggest long-term gardening has the potential to reduce soil contaminants and their potential threat to food quality and human health and to improve access to fresh produce in low-income urban communities.
Collapse
Affiliation(s)
- Michelle L Kaiser
- The Ohio State University College of Social Work, 1947 North College, Stillman Hall, Columbus, Ohio 43210, USA.
| | - Michele L Williams
- Ohio Agricultural Research and Development Center, Food Animal Health Research Program, The Ohio State University, Wooster, Ohio 44691, USA; Department of Biology and Marine Science, Jacksonville University, 2800 University Boulevard N, Jacksonville, FL 32211, USA
| | - Nicholas Basta
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, 410C Kottman Hall, 2021 Coffey Road, Columbus, Ohio 43210, USA 6940, USA
| | - Michelle Hand
- The Ohio State University College of Social Work, 1947 North College, Stillman Hall, Columbus, Ohio 43210, USA
| | - Sarah Huber
- The Ohio State University College of Social Work, 1947 North College, Stillman Hall, Columbus, Ohio 43210, USA
| |
Collapse
|
94
|
Yin S, Rusconi B, Sanjar F, Goswami K, Xiaoli L, Eppinger M, Dudley EG. Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 2015; 16:733. [PMID: 26416807 PMCID: PMC4587872 DOI: 10.1186/s12864-015-1934-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023] Open
Abstract
Background Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen that causes severe human diseases including hemolytic uremic syndrome (HUS). The virulence factor that mediates HUS, Shiga toxin (Stx), is encoded within the genome of a lambdoid prophage. Although draft sequences are publicly available for a large number of E. coli O157:H7 strains, the high sequence similarity of stx-converting bacteriophages with other lambdoid prophages poses challenges to accurately assess the organization and plasticity among stx-converting phages due to assembly difficulties. Methods To further explore genome plasticity of stx-converting prophages, we enriched phage DNA from 45 ciprofloxacin-induced cultures for subsequent 454 pyrosequencing to facilitate assembly of the complete phage genomes. In total, 22 stx2a-converting phage genomes were closed. Results Comparison of the genomes distinguished nine distinct phage sequence types (PSTs) delineated by variation in obtained sequences, such as single nucleotide polymorphisms (SNPs) and insertion sequence element prevalence and location. These nine PSTs formed three distinct clusters, designated as PST1, PST2 and PST3. The PST2 cluster, identified in two clade 8 strains, was related to stx2a-converting phages previously identified in non-O157 Shiga-toxin producing E. coli (STEC) strains associated with a high incidence of HUS. The PST1 cluster contained phages related to those from E. coli O157:H7 strain Sakai (lineage I, clade 1), and PST3 contained a single phage that was distinct from the rest but most related to the phage from E. coli O157:H7 strain EC4115 (lineage I/II, clade 8). Five strains carried identical stx2a-converting phages (PST1-1) integrated at the same chromosomal locus, but these strains produced different levels of Stx2. Conclusion The stx2a-converting phages of E. coli O157:H7 can be categorized into at least three phage types. Diversification within a phage type is mainly driven by IS629 and by a small number of SNPs. Polymorphisms between phage genomes may help explain differences in Stx2a production between strains, however our data indicates that genes encoded external to the phage affect toxin production as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1934-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Yin
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brigida Rusconi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Fatemeh Sanjar
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Kakolie Goswami
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lingzi Xiaoli
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark Eppinger
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA. .,Center of Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA. .,427 Food Science Building, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
95
|
Ferreira MR, Silva TDS, Stella AE, Conceição FR, Reis EFD, Moreira CN. Detection of virulence factors and antimicrobial resistance patterns in shiga toxin-producing Escherichia coli isolates from sheep. PESQUISA VETERINARIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x2015000900002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: In order to detect virulence factors in Shiga toxin-producing Escherichia coli (STEC) isolates and investigate the antimicrobial resistance profile, rectal swabs were collected from healthy sheep of the races Santa Inês and Dorper. Of the 115 E. coli isolates obtained, 78.3% (90/115) were characterized as STEC, of which 52.2% (47/90) carried stx1 gene, 33.3% (30/90) stx2 and 14.5% (13/90) both genes. In search of virulence factors, 47.7% and 32.2% of the isolates carried the genes saa and cnf1. According to the analysis of the antimicrobial resistance profile, 83.3% (75/90) were resistant to at least one of the antibiotics tested. In phylogenetic classification grouped 24.4% (22/90) in group D (pathogenic), 32.2% (29/90) in group B1 (commensal) and 43.3% (39/90) in group A (commensal). The presence of several virulence factors as well as the high number of multiresistant isolates found in this study support the statement that sheep are potential carriers of pathogens threatening public health.
Collapse
|
96
|
Cruz P, Mehretu AM, Buttner MP, Trice T, Howard KM. Development of a polymerase chain reaction assay for the rapid detection of the oral pathogenic bacterium, Selenomonas noxia. BMC Oral Health 2015; 15:95. [PMID: 26272608 PMCID: PMC4536781 DOI: 10.1186/s12903-015-0071-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
Background In recent studies, periodontal health has been linked to being overweight and/or obese. Among common oral bacteria, Selenomonas noxia has been implicated in converting periodontal health to disease, and Selenomonas species have also been found in gastric ulcers. The objective of this study was to develop and validate a quantitative polymerase chain reaction (qPCR) assay for the specific and rapid detection of S. noxia. Methods Two oligonucleotide primer pairs and one probe were designed and tested to determine optimal amplification signal with three strains of S. noxia. The PCR assay was tested against fourteen non-target organisms, including closely related oral Selenomonads, one phylogenetically closely related bacterium, and two commonly isolated oral bacteria. Results One of the primer sets was more sensitive at detecting the target organism and was selected for optimization and validation experiments. The designed primers and probe amplified the target organism with 100 % specificity. PCR inhibition was observed with an internal positive control, and inhibition was resolved by diluting the DNA extract. Conclusions The qPCR assay designed in this study can be used to specifically detect S. noxia in the clinical setting and in future research involving the enhanced detection of S. noxia. The assay can also be used in epidemiological studies for understanding the role of S. noxia in disease processes including, but not limited to, oral health and obesity of infectious origin.
Collapse
Affiliation(s)
- Patricia Cruz
- Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las Vegas, 4504 S. Maryland Parkway, Box 3064, Las Vegas, NV, 89154-3064, USA.
| | - Arthuro M Mehretu
- MPH Program, Epidemiology & Biostatistics Concentration, Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada, Las Vegas, NV, USA. .,Southern Nevada Health District, Las Vegas, NV, USA.
| | - Mark P Buttner
- Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las Vegas, 4504 S. Maryland Parkway, Box 3064, Las Vegas, NV, 89154-3064, USA.
| | - Theresa Trice
- Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las Vegas, 4504 S. Maryland Parkway, Box 3064, Las Vegas, NV, 89154-3064, USA.
| | - Katherine M Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
97
|
Brandal LT, Wester AL, Lange H, Løbersli I, Lindstedt BA, Vold L, Kapperud G. Shiga toxin-producing escherichia coli infections in Norway, 1992-2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infect Dis 2015; 15:324. [PMID: 26259588 PMCID: PMC4531490 DOI: 10.1186/s12879-015-1017-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/08/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) infection is associated with haemolytic uremic syndrome (HUS). Therefore Norway has implemented strict guidelines for prevention and control of STEC infection. However, only a subgroup of STEC leads to HUS. Thus, identification of determinants differentiating high risk STEC (HUS STEC) from low risk STEC (non-HUS STEC) is needed to enable implementation of graded infectious disease response. METHODS A national study of 333 STEC infections in Norway, including one STEC from each patient or outbreak over two decades (1992-2012), was conducted. Serotype, virulence profile, and genotype of each STEC were determined by phenotypic or PCR based methods. The association between microbiological properties and demographic and clinical data was assessed by univariable analyses and multiple logistic regression models. RESULTS From 1992 through 2012, an increased number of STEC cases including more domestically acquired infections were notified in Norway. O157 was the most frequent serogroup (33.6 %), although a decrease of this serogroup was seen over the last decade. All 25 HUS patients yielded STEC with stx2, eae, and ehxA. In a multiple logistic regression model, age ≤5 years (OR = 16.7) and stx2a (OR = 30.1) were independently related to increased risk of HUS. eae and hospitalization could not be modelled since all HUS patients showed these traits. The combination of low age (≤5 years) and the presence of stx2a, and eae gave a positive predictive value (PPV) for HUS of 67.5 % and a negative predictive value (NPV) of 99.0 %. SF O157:[H7] and O145:H?, although associated with HUS in the univariable analyses, were not independent risk factors. stx1 (OR = 0.1) was the sole factor independently associated with a reduced risk of HUS (NPV: 79.7 %); stx2c was not so. CONCLUSIONS Our results indicate that virulence gene profile and patients' age are the major determinants of HUS development.
Collapse
Affiliation(s)
- Lin T Brandal
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
- Division of Infectious Disease Control, Department of Foodborne Infections, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403, Oslo, Norway.
| | - Astrid L Wester
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Heidi Lange
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Inger Løbersli
- Department of Foodborne Infections, The Norwegian Institute of Public Health, Oslo, Norway.
| | | | - Line Vold
- Department of Infectious Disease Epidemiology, The Norwegian Institute of Public Health, Oslo, Norway.
| | - Georg Kapperud
- Division of Infectious Disease Control, The Norwegian Institute of Public Health, Oslo, Norway.
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
98
|
Pehlivanlar Önen S, Aslantaş Ö, Şebnem Yılmaz E, Kürekci C. Prevalence of β-Lactamase Producing Escherichia coli from Retail Meat in Turkey. J Food Sci 2015; 80:M2023-9. [PMID: 26256548 DOI: 10.1111/1750-3841.12984] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/23/2015] [Indexed: 11/30/2022]
Abstract
Extended spectrum β-lactamase (ESBL) and plasmid-mediated AmpC β-lactamase (pAmpC) producing Escherichia coli have been shown to be present in humans and animals representing a significant problem worldwide. This study aimed to search the presence of ESBL and/or AmpC-producing E. coli in retail meats (chicken and beef) in Turkey. A total of 88 β-lactamase-producing E. coli were isolated from chicken (n = 81/100) and beef meat (n = 7/100) samples and their susceptibility to several antimicrobials were tested using disc diffusion method. E. coli isolates were further characterized for their phylogenetic groups. β-Lactamase encoding (blaTEM , blaSHV , blaOXA , blaCTX-M , and blaAmpC ) and quinolone resistance genes (qnrA, qnrB, qnrS, qepA, and acc(6')-Ib-cr) were also secreened by polymerase chain reaction (PCR). However, in regard to β-lactamase genes, 84 of 88 isolates were positive for blaCTX-M-1 (n = 39), blaCTX-M-3 (n = 5), blaCTX-M-15 (n = 4), blaTEM-1b (n = 2), blaSHV-12 (n = 1), blaCTX-M-1 /blaTEM-1b (n = 10), blaCTX-M-1 /blaTEM-1b /blaSHV-5 (n = 1), blaCTX-M-1 /blaCMY-2 (n = 1) and blaTEM-1b /blaCMY-2 (n = 6), blaCTX-M-15 /blaSHV-12 (n = 1), blaCTX-M-15 /blaTEM-1b (n = 1), blaTEM-1b /blaSHV-12 (n = 1), and blaCMY-2 (n = 12) genes. Resistance to cefuroxime (75.6% and 85.7%), nalidixic acid (89% and 85.7%), tetracycline (91.4% and 100%), streptomycin (40.2% and 100%), and trimethoprim-sulfamethoxazole (36.6% and 85.7%) was observed among strains isolated from chicken and beef, respectively. However, all isolates were found to be susceptible to amikacin, imipenem, and cefepime. Resistance to ampicillin and cefoxitin was significantly linked to blaCMY-2 gene, while there was a significant correlation between CTX-M type ESBL and antimicrobial resistance to cefuroxime and streptomycin (P < 0.05). The results of this study suggest that raw chicken retail meats are highly contaminated with ESBL-producing E. coli implementing a great risk to human health in Turkey.
Collapse
Affiliation(s)
- Sevda Pehlivanlar Önen
- Dept. of Food Hygiene and Technology, Faculty of Veterinary Medicine, Mustafa Kemal Univ, Hatay, Turkey
| | - Özkan Aslantaş
- Dept. of Microbiology, Faculty of Veterinary Medicine, Mustafa Kemal Univ, Hatay, Turkey
| | - Ebru Şebnem Yılmaz
- Dept. of Biology, Faculty of Art and Science, Mustafa Kemal Univ, Hatay, Turkey
| | - Cemil Kürekci
- Dept. of Food Hygiene and Technology, Faculty of Veterinary Medicine, Mustafa Kemal Univ, Hatay, Turkey
| |
Collapse
|
99
|
Prevalence of E. coli O157:H7 in water sources: an overview on associated diseases, outbreaks and detection methods. Diagn Microbiol Infect Dis 2015; 82:249-64. [DOI: 10.1016/j.diagmicrobio.2015.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/28/2015] [Accepted: 03/22/2015] [Indexed: 11/21/2022]
|
100
|
López-Quintana B, Rivas-González P, Toro-Rueda C, Enríquez-Crego A. Infección por Salmonella enterica subespecie salamae en un paciente ecuatoguineano consumidor de carne de tortuga. Enferm Infecc Microbiol Clin 2015; 33:430-1. [DOI: 10.1016/j.eimc.2014.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|