51
|
Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 2012; 50:2951-63. [PMID: 22760050 DOI: 10.1128/jcm.00860-12] [Citation(s) in RCA: 596] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.
Collapse
|
52
|
Towards a pathogenic Escherichia coli detection platform using multiplex SYBR®Green Real-time PCR methods and high resolution melting analysis. PLoS One 2012; 7:e39287. [PMID: 22761753 PMCID: PMC3382608 DOI: 10.1371/journal.pone.0039287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/17/2012] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2) producing E. coli (VTEC or STEC respectively) have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA) has requested the monitoring of the “top-five” serogroups (O26, O103, O111, O145 and O157) most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae) in the case of VTEC, or aggregative protein (aggR), in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM) analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform.
Collapse
|
53
|
Staples M, Graham R, Doyle C, Smith H, Jennison A. Prolonged and mixed non-O157 Escherichia coli infection in an Australian household. Clin Microbiol Infect 2012; 18:E140-3. [DOI: 10.1111/j.1469-0691.2012.03790.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
Norwegian sheep are an important reservoir for human-pathogenic Escherichia coli O26:H11. Appl Environ Microbiol 2012; 78:4083-91. [PMID: 22492457 DOI: 10.1128/aem.00186-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous national survey of Escherichia coli in Norwegian sheep detected eae-positive (eae(+)) E. coli O26:H11 isolates in 16.3% (80/491) of the flocks. The purpose of the present study was to evaluate the human-pathogenic potential of these ovine isolates by comparing them with E. coli O26 isolates from humans infected in Norway. All human E. coli O26 isolates studied carried the eae gene and shared flagellar type H11. Two-thirds of the sheep flocks and 95.1% of the patients harbored isolates containing arcA allele type 2 and espK and were classified as enterohemorrhagic E. coli (EHEC) (stx positive) or EHEC-like (stx negative). These isolates were further divided into group A (EspK2 positive), associated with stx(2-EDL933) and stcE(O103), and group B (EspK1 positive), associated with stx(1a). Although the stx genes were more frequently present in isolates from patients (46.3%) than in those from sheep flocks (5%), more than half of the ovine isolates in the EHEC/EHEC-like group had multiple-locus variable number of tandem repeat analysis (MLVA) profiles that were identical to those seen in stx-positive human O26:H11 isolates. This indicates that EHEC-like ovine isolates may be able to acquire stx-carrying bacteriophages and thereby have the possibility to cause serious illness in humans. The remaining one-third of the sheep flocks and two of the patients had isolates fulfilling the criteria for atypical enteropathogenic E. coli (aEPEC): arcA allele type 1 and espK negative (group C). The majority of these ovine isolates showed MLVA profiles not previously seen in E. coli O26:H11 isolates from humans. However, according to their virulence gene profile, the aEPEC ovine isolates should be considered potentially pathogenic for humans. In conclusion, sheep are an important reservoir of human-pathogenic E. coli O26:H11 isolates in Norway.
Collapse
|
55
|
Serotypes and virulence profiles of non-O157 Shiga toxin-producing Escherichia coli isolates from bovine farms. Appl Environ Microbiol 2011; 77:8662-8. [PMID: 22003024 DOI: 10.1128/aem.06190-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are clinically significant food-borne pathogens. However, there is a dearth of information on serotype prevalence and virulence gene distribution, data essential for the development of public health protection monitoring and control activities for the meat and dairy industries. Thus, the objective of this study was to examine the prevalence of non-O157 STEC on beef and dairy farms and to characterize the isolates in terms of serotype and virulence markers. Bovine fecal samples (n = 1,200) and farm soil samples (n = 600) were collected from 20 farms throughout Ireland over a 12-month period. Shiga toxin-positive samples were cultured and colonies examined for the presence of stx₁ and/or stx₂ genes by PCR. Positive isolates were serotyped and examined for a range of virulence factors, including eaeA, hlyA, tir, espA, espB, katP, espP, etpD, saa, sab, toxB, iha, lpfA(O157/OI-141), lpfA(O113), and lpfA(O157/OI-154). Shiga toxin and intimin genes were further examined for known variants. Significant numbers of fecal (40%) and soil (27%) samples were stx positive, with a surge observed in late summer-early autumn. One hundred seven STEC isolates were recovered, representing 17 serotypes. O26:H11 and O145:H28 were the most clinically significant, with O113:H4 being the most frequently isolated. However, O2:H27, O13/O15:H2, and ONT:H27 also carried stx₁ and/or stx₂ and eaeA and may be emerging pathogens.
Collapse
|
56
|
Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes. Appl Environ Microbiol 2011; 77:6699-702. [PMID: 21803918 DOI: 10.1128/aem.00370-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Specificity analysis for stx or Stx subtypes in Escherichia coli showed that the PCR assays we tested did not detect stx(1d) and stx(2f), and some also missed stx(2b) and stx(2g). Most of the serological assays examined did not detect Stx2c, Stx2e, Stx2f, and Stx2g, and some strain-to-strain variation in reactivity was observed for Stx2b.
Collapse
|
57
|
Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir. Appl Environ Microbiol 2011; 77:2916-25. [PMID: 21421787 DOI: 10.1128/aem.02554-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cattle comprise a main reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC). The significant differences in host prevalence, transmissibility, and virulence phenotypes among strains from bovine and human sources are of major interest to the public health community and livestock industry. Genomic analysis revealed divergence into three lineages: lineage I and lineage I/II strains are commonly associated with human disease, while lineage II strains are overrepresented in the asymptomatic bovine host reservoir. Growing evidence suggests that genotypic differences between these lineages, such as polymorphisms in Shiga toxin subtypes and synergistically acting virulence factors, are correlated with phenotypic differences in virulence, host ecology, and epidemiology. To assess the genomic plasticity on a genome-wide scale, we have sequenced the whole genome of strain EC869, a bovine-associated E. coli O157:H7 isolate. Comparative phylogenomic analysis of this key isolate enabled us to place accurately bovine lineage II strains within the genetically homogenous E. coli O157:H7 clade. Identification of polymorphic loci that are anchored both in the chromosomal backbone and horizontally acquired regions allowed us to associate bovine genotypes with altered virulence phenotypes and host prevalence. This study catalogued numerous novel lineage II-specific genome signatures, some of which appear to be associated intimately with the altered pathogenic potential and niche adaptation within the bovine rumen. The presented extended list of polymorphic markers is valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies of this emerging human pathogen.
Collapse
|
58
|
Martin A, Beutin L. Characteristics of Shiga toxin-producing Escherichia coli from meat and milk products of different origins and association with food producing animals as main contamination sources. Int J Food Microbiol 2011; 146:99-104. [DOI: 10.1016/j.ijfoodmicro.2011.01.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/23/2010] [Accepted: 01/29/2011] [Indexed: 11/25/2022]
|
59
|
Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 2010; 8:465-87. [PMID: 21117940 DOI: 10.1089/fpd.2010.0673] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA.
| | | |
Collapse
|
60
|
Phylogenetic analysis and Shiga toxin production profiling of Shiga toxin-producing/enterohemorrhagic Escherichia coli clinical isolates. Microb Pathog 2010; 49:246-51. [DOI: 10.1016/j.micpath.2010.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023]
|
61
|
Verotoxins in bovine and meat verotoxin-producing Escherichia coli isolates: type, number of variants, and relationship to cytotoxicity. Appl Environ Microbiol 2010; 77:73-9. [PMID: 21037301 DOI: 10.1128/aem.01445-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we determined vt subtypes and evaluated verotoxicity in basal as well as induced conditions of verotoxin-producing Escherichia coli (VTEC) strains isolated from cattle and meat products. Most (87%) of the 186 isolates carried a vt(2) gene. Moreover, the vt(2) subtype, which is associated with serious disease, was present in 42% of our VTEC collection. The other vt subtypes detected were vt(1), vt(1d), vt(2vha), vt(2vhb), vt(2O118), vt(2d) (mucus activatable), and vt(2g). A total of 41 (22%) of the isolates possessed more than one vt subtype in its genome, and among them the most frequent combination was vt(1)/vt(2), but we also observed multiple combinations among vt(2) subtypes. Differences in verotoxicity titers were found among a selection of 54 isolates. Among isolates with a single vt(2) variant, those carrying the vt(2) subtype had high titers under both uninduced and induced conditions. However, the highest increase in cytotoxicity under mitomycin C treatment was detected among the strains carrying vt(2vha) or vt(2hb) variants. Notably, the isolates carrying the vt(1) subtype showed a lesser increase than that of most of the vt(2)-positive VTEC strains. Furthermore, the presence of more than one vt gene variant in the same isolate was not reflected in higher titers, and generally the titers were lower than those for strains with only one gene variant. The main observation was that both basal and induced cytotoxic effects seemed to be associated with the type and number of vt variants more than with the serotype or origin of the isolate.
Collapse
|
62
|
Lauri A, Castiglioni B, Morabito S, Tozzoli R, Consolandi C, Mariani P. A tool based on Ligation Detection Reaction-Universal Array (LDR-UA) for the characterization of VTEC by identification of virulence-associated and serogroup-specific genes. Mol Cell Probes 2010; 25:35-43. [PMID: 20969949 DOI: 10.1016/j.mcp.2010.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Verocytoxigenic Escherichia coli (VTEC) are zoonotic pathogens whose natural reservoir is represented by ruminants, particularly cattle. Infections are mainly acquired by consumption of undercooked contaminated food of animal origin, contact with infected animals and contaminated environment. VTEC O157 is the most frequently isolated serogroup from cases of human disease, however, other VTEC serogroups, such as O26, O111, O145 and O103, are increasingly reported as causing Hemolytic Uremic Syndrome (HUS) worldwide. The identification of VTEC is troublesome, hindering the development of effective prevention strategies. In fact, VTEC are morphologically indistinguishable from harmless E. coli and their pathogenic potential is not strictly dependent on the serogroup, but relies on the presence of a collection of virulence genes. We developed a diagnostic tool for VTEC based on the Ligation Detection Reaction coupled to Universal Array (LDR-UA) for the simultaneous identification of virulence factors and serogroup-associated genes. The method includes the investigation of 40 sites located in 13 fragments from 12 genes (sodCF1/F2, adfO, terB, ehxA, eae, vtx1, vtx2, ihp1, wzx, wbdI, rfbE, dnaK) and was evaluated by performing a trial on a collection of 67 E. coli strains, both VTEC and VT-negative E. coli, as well as on 25 isolates belonging to other related species. Results of this study showed that the LDR-UA technique was specific in identifying the target microorganism. Moreover, due to its higher throughput, the LDR-UA can be a valid and cheaper alternative to real time PCR-based (rt-PCR) methods for VTEC identification.
Collapse
|
63
|
Döpfer D, Sekse C, Beutin L, Solheim H, van der Wal F, de Boer A, Slettemeås J, Wasteson Y, Urdahl A. Pathogenic potential and horizontal gene transfer in ovine gastrointestinalEscherichia coli. J Appl Microbiol 2010; 108:1552-62. [DOI: 10.1111/j.1365-2672.2009.04575.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
Horcajo P, Domínguez-Bernal G, De La Fuente R, Ruiz-Santa-Quiterai JA, Orden JA. Association of Vt1C with Verotoxin-Producing Escherichia Coli from Goats and Sheep. J Vet Diagn Invest 2010; 22:332-4. [DOI: 10.1177/104063871002200234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A total of 232 verotoxin 1 (VT1)-positive, VT-producing Escherichia coli (VTEC) strains isolated from goats, sheep, and cattle were analyzed for the presence of the vt1c gene by polymerase chain reaction. One hundred and forty of the 144 (97.2%) caprine strains and 55 of the 63 (87.3%) ovine strains possessed the vt1c gene. In contrast, the gene was not detected in any of the 25 bovine strains. These results show that the vt1c gene is found in caprine VTEC strains and confirm that gene is associated with ovine VTEC strains.
Collapse
Affiliation(s)
- Pilar Horcajo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Ricardo De La Fuente
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - José A. Orden
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| |
Collapse
|
65
|
Genetic profiles of Shiga toxin and intimin genes found in stool broth cultures: a 2-year reference laboratory study. Diagn Microbiol Infect Dis 2009; 65:85-92. [DOI: 10.1016/j.diagmicrobio.2009.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 01/02/2023]
|
66
|
BAYLIS CHRISTOPHERL. Raw milk and raw milk cheeses as vehicles for infection by Verocytotoxin-producingEscherichia coli. INT J DAIRY TECHNOL 2009. [DOI: 10.1111/j.1471-0307.2009.00504.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
67
|
Shiga toxin, cytolethal distending toxin, and hemolysin repertoires in clinical Escherichia coli O91 isolates. J Clin Microbiol 2009; 47:2061-6. [PMID: 19403777 DOI: 10.1128/jcm.00201-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains of serogroup O91 are the most common human pathogenic eae-negative STEC strains. To facilitate diagnosis and subtyping of these pathogens, we genotypically and phenotypically characterized 100 clinical STEC O91 isolates. Motile strains expressed flagellar antigens H8 (1 strain), H10 (2 strains), H14 (52 strains), and H21 (20 strains) or were H nontypeable (Hnt) (10 strains); 15 strains were nonmotile. All nonmotile and Hnt strains possessed the fliC gene encoding the flagellin subunit of the H14 antigen (fliC(H14)). Most STEC O91 strains possessed enterohemorrhagic E. coli hlyA and expressed an enterohemolytic phenotype. Among seven stx alleles identified, stx(2dact), encoding mucus- and elastase-activatable Stx2d, was present solely in STEC O91:H21, whereas most strains of the other serotypes possessed stx(1). Moreover, only STEC O91:H21 possessed the cdt-V cluster, encoding cytolethal distending toxin V; the toxin was regularly expressed and was lethal to human microvascular endothelial cells. Infection with STEC O91:H21 was associated with hemolytic-uremic syndrome (P = 0.0015), whereas strains of the other serotypes originated mostly in patients with nonbloody diarrhea. We conclude that STEC O91 clinical isolates belong to at least four lineages that differ by H antigens/fliC types, stx genotypes, and non-stx putative virulence factors, with accumulation of virulence determinants in the O91:H21 lineage. Isolation of STEC O91 from patients' stools on enterohemolysin agar and the rapid initial subtyping of these isolates using fliC genotyping facilitate the identification of these emerging pathogens in clinical and epidemiological studies and enable prediction of the risk of a severe clinical outcome.
Collapse
|
68
|
Strauch E, Hammerl JA, Konietzny A, Schneiker-Bekel S, Arnold W, Goesmann A, Pühler A, Beutin L. Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in Escherichia coli O157:H7. Infect Immun 2008; 76:5466-77. [PMID: 18824528 PMCID: PMC2583581 DOI: 10.1128/iai.00875-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/19/2008] [Accepted: 09/19/2008] [Indexed: 01/03/2023] Open
Abstract
The production of Shiga toxin (Stx) (verocytotoxin) is a major virulence factor of Escherichia coli O157:H7 strains (Shiga toxin-producing E. coli [STEC] O157). Two types of Shiga toxins, designated Stx1 and Stx2, are produced in STEC O157. Variants of the Stx2 type (Stx2, Stx2c) are associated with high virulences of these strains for humans. A bacteriophage designated 2851 from a human STEC O157 encoding the Stx2c variant was described previously. Nucleotide sequence analysis of the phage 2851 genome revealed 75 predicted coding sequences and indicated a mosaic structure typical for lambdoid phages. Analyses of free phages and K-12 phage 2851 lysogens revealed that upon excision from the bacterial chromosome, the loss of a phage-encoded IS629 element leads to fusion of phage antA and antB genes, with the generation of a recombined antAB gene encoding a strong antirepressor. In wild-type E. coli O157 as well as in K-12 strains, phage 2851 was found to be integrated in the sbcB locus. Additionally, phage 2851 carries an open reading frame which encodes an OspB-like type III effector similar to that found in Shigella spp. Investigation of 39 stx(2c) E. coli O157 strains revealed that all except 1 were positive for most phage 2851-specific genes and possessed a prophage with the same border sequences integrated into the sbcB locus. Phage 2851-specific sequences were absent from most stx(2c)-negative E. coli O157 strains, and we suggest that phage 2851-like phages contributed significantly to the dissemination of the Stx2c variant toxin within this group of E. coli.
Collapse
Affiliation(s)
- Eckhard Strauch
- Molecular Diagnostics and Genetics, Department of Biological Safety, Federal Institute for Risk Assessment (BfR), 12277 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Toma C, Nakasone N, Miliwebsky E, Higa N, Rivas M, Suzuki T. Differential adherence of Shiga toxin-producing Escherichia coli harboring saa to epithelial cells. Int J Med Microbiol 2008; 298:571-8. [DOI: 10.1016/j.ijmm.2007.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 09/06/2007] [Accepted: 12/11/2007] [Indexed: 11/27/2022] Open
|
70
|
Scheiring J, Andreoli SP, Zimmerhackl LB. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2008; 23:1749-60. [PMID: 18704506 PMCID: PMC6901419 DOI: 10.1007/s00467-008-0935-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022]
Abstract
Hemolytic uremic syndrome (HUS) is the most common cause of acute renal failure in childhood and the reason for chronic renal replacement therapy. It leads to significant morbidity and mortality during the acute phase. In addition to acute morbidity and mortality, long-term renal and extrarenal complications can occur in a substantial number of children years after the acute episode of HUS. The most common infectious agents causing HUS are enterohemorrhagic Escherichia coli (EHEC)-producing Shiga toxin (and belonging to the serotype O157:H7) and several non-O157:H7 serotypes. D(+) HUS is an acute disease characterized by prodromal diarrhea followed by acute renal failure. The classic clinical features of HUS include the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. HUS mortality is reported to be between 3% and 5%, and death due to HUS is nearly always associated with severe extrarenal disease, including severe central nervous system (CNS) involvement. Approximately two thirds of children with HUS require dialysis therapy, and about one third have milder renal involvement without the need for dialysis therapy. General management of acute renal failure includes appropriate fluid and electrolyte management, antihypertensive therapy if necessary, and initiation of renal replacement therapy when appropriate. The prognosis of HUS depends on several contributing factors. In general "classic" HUS, induced by EHEC, has an overall better outcome. Totally different is the prognosis in patients with atypical and particularly recurrent HUS. However, patients with severe disease should be screened for genetic disorders of the complement system or other underlying diseases.
Collapse
Affiliation(s)
- Johanna Scheiring
- Department of Pediatrics I, Medical University Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | | | - Lothar Bernd Zimmerhackl
- Department of Pediatrics I, Medical University Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| |
Collapse
|
71
|
Orth D, Grif K, Zimmerhackl LB, Würzner R. Prevention and treatment of enterohemorrhagic Escherichia coli infections in humans. Expert Rev Anti Infect Ther 2008; 6:101-8. [PMID: 18251667 DOI: 10.1586/14787210.6.1.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infections with enterohemorrhagic Escherichia coli (EHEC) result in various clinical symptoms and outcomes ranging from watery or bloody diarrhea to the life-threatening hemolytic-uremic syndrome (HUS). Shiga toxins (Stxs) are supposed to play a major role in the pathogenesis of EHEC infections; however, the role of other putative virulence factors is not fully elucidated. So far, there is only supportive therapy available for the treatment of both EHEC-associated diarrhea and HUS. Antibiotic therapy for the treatment of EHEC-associated diarrhea is discussed. In recent years other therapeutic strategies have been developed, including Gb3 receptor analogues, that bind Stx in the gut or in the circulation, passive immunization with Stx-neutralizing monoclonal antibodies, or active immunization with Stx1 And Stx2 toxoids as a preventive procedure. These approaches have been demonstrated to be effective in animal models but clinical trials are lacking.
Collapse
Affiliation(s)
- Dorothea Orth
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University and Austrian Reference Centre for Enterohaemorrhagic Escherichia coli, Schöpfstr. 41, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
72
|
Krüger A, Lucchesi PMA, Parma AE. Evaluation of vt2-subtyping methods for identifying vt2g in verotoxigenic Escherichia coli. J Med Microbiol 2008; 56:1474-1478. [PMID: 17965347 DOI: 10.1099/jmm.0.47307-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) are important pathogens that can cause severe human disease, including haemorrhagic colitis and haemolytic-uraemic syndrome. A new variant of verotoxin, vt2g, has recently been described. It was possible to find this variant for the first time in Argentina among VTEC isolated from cattle. The present study evaluated the identification of this gene with three conventional methods used for subtyping the vt2 gene. The results show that it is possible to screen VTEC strains for the presence of vt2g without the implementation of new protocols.
Collapse
Affiliation(s)
- Alejandra Krüger
- Lab. Inmunoquímica y Biotecnología, Depto. Sanidad Animal y Medicina Preventiva, Fac. Cs. Veterinarias, Universidad Nacional del Centro Pcia. Buenos Aires. Pinto 399 (7000), Tandil, Argentina
| | - Paula M A Lucchesi
- Lab. Inmunoquímica y Biotecnología, Depto. Sanidad Animal y Medicina Preventiva, Fac. Cs. Veterinarias, Universidad Nacional del Centro Pcia. Buenos Aires. Pinto 399 (7000), Tandil, Argentina
| | - Alberto E Parma
- Lab. Inmunoquímica y Biotecnología, Depto. Sanidad Animal y Medicina Preventiva, Fac. Cs. Veterinarias, Universidad Nacional del Centro Pcia. Buenos Aires. Pinto 399 (7000), Tandil, Argentina
| |
Collapse
|
73
|
Orth D, Grif K, Khan AB, Naim A, Dierich MP, Würzner R. The Shiga toxin genotype rather than the amount of Shiga toxin or the cytotoxicity of Shiga toxin in vitro correlates with the appearance of the hemolytic uremic syndrome. Diagn Microbiol Infect Dis 2007; 59:235-42. [PMID: 17931818 DOI: 10.1016/j.diagmicrobio.2007.04.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 10/22/2022]
Abstract
Shiga toxins (Stx) are believed to play a key role in the pathogenesis of diseases caused by Stx-producing Escherichia coli (STEC), including the potentially life-threatening hemolytic uremic syndrome (HUS). In this study, 201 STEC strains collected from patients and environmental sources were investigated with regard to the stx genotypes and pathogenicity. The stx(2) and stx(2c) alleles were associated with high virulence and the ability to cause HUS, whereas stx(2d), stx(2e,)stx(1), and stx(1c) occurred in milder or asymptomatic infections. Quantification of Stx using an enzyme immunoassay and the Vero cell cytotoxicity assay showed no significant differences between the strains associated with HUS and those causing milder diseases. We hypothesize that the stx genotype and perhaps other yet unknown virulence factors rather than the amount of Stx or the in vitro cytotoxicity correlate with the development of HUS.
Collapse
Affiliation(s)
- Dorothea Orth
- Austrian Reference Centre for Enterohaemorrhagic Escherichia coli, Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
74
|
Vu-Khac H, Cornick NA. Prevalence and genetic profiles of Shiga toxin-producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. Vet Microbiol 2007; 126:356-63. [PMID: 17716835 DOI: 10.1016/j.vetmic.2007.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/22/2022]
Abstract
We investigated the prevalence of Shiga toxin-producing Escherichia coli (STEC) in 568 healthy domestic animals (buffaloes, cattle, and goats) from 98 farms in the central region of Vietnam. The aims of this study were to determine if the prevalence of STEC in South East Asia is similar to that in other parts of the world, to characterize the virulence gene profiles from the recovered STEC and to determine if the recovered STEC belong to serotypes commonly associated with human disease. STEC and intimin-positive strains were recovered from 27% of buffaloes, 23% of cattle, and 38.5% of goats. Seventy percent of buffalo farms, 60% of cattle farms and 100% goat farms were positive for STEC. Of 170 STEC strains, 99 carried both stx1 and stx2 genes, 36 carried the stx2 gene, and 35 carried the stx1 gene. The eae gene was found in six caprine isolates, but not in buffalo or bovine isolates. Among 173 E. coli strains (170 STEC and 3 intimin-positive), 110 carried the ehxA gene, 106 possessed the saa gene. Further characterization of stx subtypes demonstrated that among 134 stx1-containing isolates, 107 belonged to the stx1c subtype and 27 were the stx1 subtype. Of the 132 stx2-containing isolates, 36 were stx2, 34 were stx2c, 43 were stx2d subtype, 3 belonged to stx2g, and 16 strains were stx2d(act). The stx2c variant was dominant in strains isolated from buffalo while the stx2d variant occurred more frequently in caprine isolates. Only 9 (5%) STEC strains contained genes encoding for serotypes O26, O91, O121, O145, and O157 LPS, which are more frequently associated with human infections. The results of this study provide data for understanding of epidemiology of STEC among domestic animals in Vietnam and indicate that buffaloes are also an important reservoir of STEC.
Collapse
Affiliation(s)
- Hung Vu-Khac
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2130 Vet. Med. Bldg, Ames, IA 50011-1250, USA
| | | |
Collapse
|
75
|
Ishii S, Meyer KP, Sadowsky MJ. Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. Appl Environ Microbiol 2007; 73:5703-10. [PMID: 17644637 PMCID: PMC2074926 DOI: 10.1128/aem.00275-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains in water may originate from various sources, including humans, farm and wild animals, waterfowl, and pets. However, potential human health hazards associated with E. coli strains present in various animal hosts are not well known. In this study, E. coli strains from diverse human and animal sources in Minnesota and western Wisconsin were analyzed for the presence of genes coding for virulence factors by using multiplex PCR and biochemical reactions. Of the 1,531 isolates examined, 31 (2%) were found to be Shiga toxin-producing E. coli (STEC) strains. The majority of these strains, which were initially isolated from the ruminants sheep, goats, and deer, carried the stx(1c) and/or stx(2d), ehxA, and saa genes and belonged to E. coli phylogenetic group B1, indicating that they most likely do not cause severe human diseases. All the STEC strains, however, lacked eae. In contrast, 26 (1.7%) of the E. coli isolates examined were found to be potential enteropathogenic E. coli (EPEC) strains and consisted of several intimin subtypes that were distributed among various human and animal hosts. The EPEC strains belonged to all four phylogenetic groups examined, suggesting that EPEC strains were relatively widespread in terms of host animals and genetic background. Atypical EPEC strains, which carried an EPEC adherence factor plasmid, were identified among E. coli strains from humans and deer. DNA fingerprint analyses, done using the horizontal, fluorophore-enhanced repetitive-element, palindromic PCR technique, indicated that the STEC, potential EPEC, and non-STEC ehxA-positive E. coli strains were genotypically distinct and clustered independently. However, some of the potential EPEC isolates were genotypically indistinguishable from nonpathogenic E. coli strains. Our results revealed that potential human health hazards associated with pathogenic E. coli strains varied among the animal hosts that we examined and that some animal species may harbor a greater number of potential pathogenic strains than other animal species.
Collapse
Affiliation(s)
- Satoshi Ishii
- University of Minnesota, Department of Soil, Water, and Climate, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
76
|
Beutin L, Miko A, Krause G, Pries K, Haby S, Steege K, Albrecht N. Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes. Appl Environ Microbiol 2007; 73:4769-75. [PMID: 17557838 PMCID: PMC1951031 DOI: 10.1128/aem.00873-07] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.
Collapse
Affiliation(s)
- Lothar Beutin
- National Reference Laboratory for Escherichia coli, Centre for Infectiology and Pathogen Characterization (4Z), Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
77
|
Schuurman T, Roovers A, van der Zwaluw WK, van Zwet AA, Sabbe LJM, Kooistra-Smid AMD, van Duynhoven YTHP. Evaluation of 5'-nuclease and hybridization probe assays for the detection of shiga toxin-producing Escherichia coli in human stools. J Microbiol Methods 2007; 70:406-15. [PMID: 17614150 DOI: 10.1016/j.mimet.2007.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/29/2007] [Accepted: 05/22/2007] [Indexed: 01/01/2023]
Abstract
5'-Nuclease and a hybridization probe assays for the detection of shiga toxin-producing Escherichia coli were validated with regard to selectivity, analytical sensitivity, reproducibility and clinical performance. Both assays were capable of detecting the classical stx(1) and stx(2) genes when challenged with reference strains of E. coli (n=40), although 1 to 4 minority sequence variants, whose clinical relevance is limited (stx(1c), stx(1d), and stx(2f)), were detected less efficiently or not at all by one or both assays. No cross reaction was observed for both assays with 37 strains representing other gastrointestinal pathogens, or normal gastrointestinal flora. Analytical sensitivity ranged from 3.07 to 3.52 log(10) and 3.42 to 4.63 log(10) CFU/g of stool for 5'-nuclease and hybridization probe assay, respectively. Reproducibility was high with coefficients of variation of </=5% for both inter- and intra-assay variation. Clinical performance was identical with a panel of archived positive specimens (n=19) and a prospective panel of stools associated with bloody diarrhea (n=115). In conclusion, both assays proved to be sensitive and reproducible.
Collapse
Affiliation(s)
- Tim Schuurman
- Department of Research and Development, Laboratory for Infectious Diseases, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
78
|
Müller D, Greune L, Heusipp G, Karch H, Fruth A, Tschäpe H, Schmidt MA. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl Environ Microbiol 2007; 73:3380-90. [PMID: 17400780 PMCID: PMC1907121 DOI: 10.1128/aem.02855-06] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal pathogenic Escherichia coli represents a global health problem for mammals, including humans. At present, diarrheagenic E. coli bacteria are grouped into seven major pathotypes that differ in their virulence factor profiles, severity of clinical manifestations, and prognosis. In this study, we developed and evaluated a one-step multiplex PCR (MPCR) for the straightforward differential identification of intestinal pathotypes of E. coli. The specificity of this novel MPCR was validated by using a subset of reference strains and further confirmed by PCR-independent pheno- and genotypic characterization. Moreover, we tested 246 clinical E. coli isolates derived from diarrhea patients from several distinct geographic regions. Interestingly, besides strains belonging to the defined and well-described pathotypes, we identified five unconventional strains expressing intermediate virulence factor profiles. These strains have been further characterized and appear to represent intermediate strains carrying genes and expressing factors associated with enteropathogenic E. coli, Shiga toxin-producing E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli alike. These strains represent further examples of the extraordinary plasticity of the E. coli genome. Moreover, this implies that the important identification of specific pathotypes has to be based on a broad matrix of indicator genes. In addition, the presence of intermediate strains needs to be accounted for.
Collapse
Affiliation(s)
- Daniel Müller
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
79
|
Beutin L, Steinrück H, Krause G, Steege K, Haby S, Hultsch G, Appel B. Comparative evaluation of the Ridascreen Verotoxin enzyme immunoassay for detection of Shiga-toxin producing strains of Escherichia coli (STEC) from food and other sources. J Appl Microbiol 2007; 102:630-9. [PMID: 17309611 DOI: 10.1111/j.1365-2672.2006.03139.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS To evaluate the suitability of the commercially distributed Ridascreen Verotoxin enzyme immunoassay (EIA) for detection of known genetic types of the Vero (Shiga) toxins 1 (Stx1) and 2 (Stx2) families and to determine its relative sensitivity and specificity. METHODS AND RESULTS The Ridascreen-EIA was compared with the Vero cell assay, a P(1)-glycoprotein receptor EIA and with stx gene-specific PCs for detection of Stx with 43 Shiga toxin-producing strains of Escherichia coli (STEC) reference strains and with 241 test strains. The Ridascreen-EIA detects strains producing Stx1 and variants Stx1c and Stx1d, as well as Stx2 and variants Stx2d1, Stx2d2, Stx2e, Stx2d, Stx2-O118 (Stx2d-ount), Stx2-NV206, Stx2f and Stx2g. The assay showed a relative sensitivity of 95.7% and a relative specificity of 98.7%. Some of the Stx2-O118-, Stx2e- and Stx2g-producing STEC were not detected with the Ridascreen-EIA probably because of low amount of toxin produced by these strains. CONCLUSIONS The Ridascreen-EIA is able to detect all known types of Stx and is applicable for routine screening of bacterial isolates owing to its high specificity. It is less applicable for testing samples where low amounts of Stx are expected, such as mixed cultures and certain Stx2 variants. SIGNIFICANCE AND IMPACT OF THE STUDY This study presents a first comprehensive evaluation of the Ridascreen-EIA, a rapid standardized STEC screening test for routine diagnostic laboratories. Data are presented on the type of the spectrum of Stx that are detected with this immunoassay and its advantages and limits for practical use.
Collapse
Affiliation(s)
- L Beutin
- National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment BfR, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
80
|
Aldick T, Bielaszewska M, Zhang W, Brockmeyer J, Schmidt H, Friedrich AW, Kim KS, Schmidt MA, Karch H. Hemolysin from Shiga toxin-negative Escherichia coli O26 strains injures microvascular endothelium. Microbes Infect 2006; 9:282-90. [PMID: 17314059 DOI: 10.1016/j.micinf.2006.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
We identified Shiga toxin gene (stx)-negative Escherichia coli O26:H11 and O26:NM (nonmotile) strains as the only pathogens in the stools of five patients with hemolytic-uremic syndrome (HUS). Because the absence of stx in E. coli associated with HUS is unusual, we examined the strains for potential virulence factors and interactions with microvascular endothelial cells which are the major targets affected during HUS. All five isolates possessed the enterohemorrhagic E. coli (EHEC)-hlyA gene encoding EHEC hemolysin (EHEC-Hly), expressed the enterohemolytic phenotype, and were cytotoxic, in dose- and time-dependent manners, to human brain microvascular endothelial cells (HBMECs). Significantly reduced cytotoxicity in an EHEC-Hly-negative spontaneous derivative of one of these strains, and a dose- and time-dependent cytotoxicity of recombinant E. coli O26 EHEC-Hly to HBMECs, suggest that the endothelial cytotoxicity of these strains was mediated by EHEC-Hly. The toxicity of EHEC-Hly to microvascular endothelial cells plausibly contributes to the virulence of the stx-negative E. coli O26 strains and to the pathogenesis of HUS.
Collapse
Affiliation(s)
- Thomas Aldick
- Institute of Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Robert Koch Str. 41, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
The objective of this review is to highlight the importance of cattle in human disease due to Shiga toxin-producing Escherichia coli (STEC) and to discuss features of STEC that are important in human disease. Healthy dairy and beef cattle are a major reservoir of a diverse group of STEC that infects humans through contamination of food and water, as well as through direct contact. Infection of humans by STEC may result in combinations of watery diarrhea, bloody diarrhea, and hemolytic uremic syndrome. Systems of serotyping, subtyping, and virulence typing of STEC are used to aid in epidemiology, diagnosis, and pathogenesis studies. Severe disease and outbreaks of disease are most commonly due to serotype O157:H7, which, like most other highly pathogenic STEC, colonize the large intestine by means of a characteristic attaching and effacing lesion. This lesion is induced by a bacterial type III secretion system that injects effector proteins into the intestinal epithelial cell, resulting in profound changes in the architecture and metabolism of the host cell and intimate adherence of the bacteria. Severe disease in the form of bloody diarrhea and the hemolytic uremic syndrome is attributable to Shiga toxin (Stx), which exists as 2 major types, Stx1 and Stx2. The stx genes are encoded on temperate bacteriophages in the chromosome of the bacteria, and production and release of the toxin are highly dependent on induction of the phages. Regulation of the genes involved in induction of the attaching and effacing lesion, and production of Stx is complex. In addition to these genes that are clearly implicated in virulence, there are several putative virulence factors. A major public health goal is to prevent STEC-induced disease in humans. Studies aimed at understanding factors that affect carriage and shedding of STEC by cattle and factors that contribute to development of disease in humans are considered to be important in achieving this objective.
Collapse
Affiliation(s)
- C L Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.
| |
Collapse
|
82
|
Orth D, Grif K, Dierich MP, Würzner R. Prevalence, structure and expression of urease genes in Shiga toxin-producing Escherichia coli from humans and the environment. Int J Hyg Environ Health 2006; 209:513-20. [PMID: 16877040 DOI: 10.1016/j.ijheh.2006.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 01/06/2023]
Abstract
A component of the ure gene cluster in E. coli, ureC, encodes a subunit of urease. We have investigated the distribution of ureC in 202 Shiga toxin-producing E. coli (STEC) strains from Austria belonging to 61 different serotypes. These strains were of human (n=150), animal (n=38), and food (n=14) origin. ureC was present in all 72 E. coli O157:H7 and O157:NM (non-motile) strains, as well as in all 29 strains of serotypes O26:H11/NM, O111:H8/NM and O145:NM. In contrast, none of eight sorbitol-fermenting E. coli O157:NM were ureC-positive. ureC occurred significantly more frequently among STEC that carry eae (113 of 132; 85.6%) than among eae-negative STEC strains (four of 70; 5.7%; p<0.0001). However, only 4 (2%) of the 202 strains (3.4% of ureC positive strains) expressed urease activity. There was no significant association (p=0.56) between urease expression and the source of the isolates (humans vs. animals). Nucleotide sequence analysis of PCR amplicons derived from all seven genes of the ure cluster in STEC of 10 different serotypes demonstrated a high degree of homology (>or=99%), indicating a recent acquisition of not necessarily expressed ure genes.
Collapse
Affiliation(s)
- Dorothea Orth
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University and Austrian Reference Laboratory for Enterohaemorrhagic E. coli, Schöpfstr. 41, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
83
|
Beutin L. Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. ACTA ACUST UNITED AC 2006; 53:299-305. [PMID: 16930272 DOI: 10.1111/j.1439-0450.2006.00968.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Shiga toxin (Stx) [Verotoxin (VT)]-producing Escherichia coli (STEC), also called enterohaemorrhagic E. coli or VTEC are emerging zoonotic agents and became most important as human pathogens, particularly in the industrialized countries. Production of cytotoxins, also called Stx or VT, is the major pathogenicity determinant of STEC, which can cause life-threatening haemorrhagic diseases in humans. The spectrum of STEC phenotypes is diverse and domestic and wildlife animals constitute important reservoirs for these bacteria. STEC are spread from animal faeces to the environment, water and food. Ingestion of contaminated foodstuff and water, as well as contact with the environment, STEC-excreting animals or humans are the major sources of human infection. Economical changes in animal and food production, alteration of consumer habits and lack of specific immune response, particularly in urbanized populations, have contributed to the recent spread of STEC as a zoonotic agent. Supranational surveillance networks as well as national reference laboratories as sentinels play an important role in the prevention and control of STEC infections in humans. Development of new vaccines and probiotics may serve as future tools to control the spread of STEC in animals and humans.
Collapse
Affiliation(s)
- L Beutin
- National Reference Laboratory for Escherichia coli (NRL-E.coli), Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany.
| |
Collapse
|
84
|
Wu XY, Chapman T, Trott DJ, Bettelheim K, Do TN, Driesen S, Walker MJ, Chin J. Comparative analysis of virulence genes, genetic diversity, and phylogeny of commensal and enterotoxigenic Escherichia coli isolates from weaned pigs. Appl Environ Microbiol 2006; 73:83-91. [PMID: 17056683 PMCID: PMC1797122 DOI: 10.1128/aem.00990-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
If the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays. Of 36 extraintestinal VGs, only 8 were detected (fimH, traT, fyuA, hlyA, kpsMtII, k5, iha, and ompT) in the ETEC collection. Among these, hlyA (alpha-hemolysin) and iha (nonhemagglutinating adhesin) occurred significantly more frequently among the ETEC isolates than in the commensal isolates. Clustering analysis based on the VG profiles separated commensal and ETEC isolates and even differentiated serogroup O141 from O149. On the other hand, pulsed-field gel electrophoresis (PFGE) successfully clustered ETEC isolates according to both serotype and geographical origin. In contrast, the commensal isolates were heterogeneous with respect to both serotype and DNA fingerprint. This study has validated the use of VG profiling to examine pathogenic relationships between porcine ETEC isolates. The clonal relationships of these isolates can be further clarified by PFGE fingerprinting. The presence of extraintestinal VGs in porcine ETEC confirmed the hypothesis that individual virulence gene acquisitions can occur concurrently against a background of horizontal gene transfers of pathogenicity islands. Over time, this could enable specific clonotypes to respond to host selection pressure and to evolve into new strains with increased virulence.
Collapse
Affiliation(s)
- Xi-Yang Wu
- Elizabeth Macarthur Agricultural Institute, NSW DPI, PMB 8, Camden, NSW 2570, Australia
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Eklund M, Bielaszewska M, Nakari UM, Karch H, Siitonen A. Molecular and phenotypic profiling of sorbitol-fermenting Escherichia coli O157:H- human isolates from Finland. Clin Microbiol Infect 2006; 12:634-41. [PMID: 16774559 DOI: 10.1111/j.1469-0691.2006.01478.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study investigated the occurrence of virulence-associated genes, including stx1, stx2, stx2c, stx2d, stx2e, eae and its subtypes (alpha, beta, gamma, epsilon), efa1, cdt-V cluster, enterohaemorrhagic Escherichia coli (EHEC)-hlyA, katP, espP, etpD, sfpA and the flagellar fliC gene, in nine sorbitol-fermenting (SF), beta-glucuronidase-positive E. coli O157:H- (non-motile) isolates obtained from humans in Finland between 1997 and 2001. In addition, the production of Shiga toxin (Stx), cytolethal distending toxin (CDT)-V and EHEC haemolysin (EHEC-Hly) was studied, and the phage type (PT) and pulsed-field gel electrophoresis (PFGE) types were determined. All nine isolates carried eae-gamma, efa1, EHEC-hlyA, etpD, sfpA and fliC; eight also harboured the cdt-V gene cluster and five were positive for stx2. None of the isolates harboured stx1, stx2c, stx2d, stx2e, katP or espP. All isolates harbouring the corresponding genes also produced Stx2 and CDT-V in titres ranging from 1:32 to 1:128 and from 1:2 to 1:4, respectively. None of the isolates expressed EHEC-Hly on enterohaemolysin agar. Seven isolates belonged to PT88 and two had a PT88 variant pattern. Seven isolates showed a close genetic relationship, with a PFGE similarity index (SI) of 92-98%. Two isolates, temporally the first and last, obtained 5 years apart, were the most divergent (SI of 71% and 85%, respectively). The study demonstrated that SF E. coli O157:H- isolates from Finland are closely related and show a close relationship with SF E. coli O157 strains isolated in Germany. This finding suggests a clonality of SF E. coli O157:H- isolates from different geographical regions.
Collapse
Affiliation(s)
- M Eklund
- Enteric Bacteria Laboratory, Department of Bacterial and Inflammatory Diseases, National Public Health Institute (KTL), Helsinki, Finland
| | | | | | | | | |
Collapse
|
86
|
Friedrich AW, Lukas R, Mellmann A, Köck R, Zhang W, Mathys W, Bielaszewska M, Karch H. Urease genes in non-O157 Shiga toxin-producing Escherichia coli: mostly silent but valuable markers for pathogenicity. Clin Microbiol Infect 2006; 12:483-6. [PMID: 16643528 DOI: 10.1111/j.1469-0691.2006.01379.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of ureC was investigated among 294 Escherichia coli isolates, comprising 72 strains from the E. coli standard reference collection (ECOR), 62 strains from the diarrhoeagenic E. coli (DEC) collection, and 160 clinical isolates of Shiga toxin-producing E. coli (STEC). The ureC gene was more frequent among STEC isolates harbouring eae than among those lacking eae (p < 0.0001). All clinical STEC isolates of serogroups O111 and O145 contained ureC, but only two of 294 isolates expressed urease activity. The silencing of urease expression could not be linked to a stop codon in ureD. The frequent occurrence of ure genes in eae-positive STEC isolates makes them valuable markers for virulence.
Collapse
Affiliation(s)
- A W Friedrich
- Institut für Hygiene, Universitätsklinikum Münster, Robert-Koch-Strasse 41, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Lucchesi PMA, Krüger A, Parma AE. Distribution of saa gene variants in verocytotoxigenic Escherichia coli isolated from cattle and food. Res Microbiol 2006; 157:263-6. [PMID: 16171978 DOI: 10.1016/j.resmic.2005.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/22/2005] [Accepted: 07/07/2005] [Indexed: 11/19/2022]
Abstract
The pathogenesis of verocytotoxigenic Escherichia coli (VTEC) infection in humans is multifactorial, given that verocytotoxins are the principal virulence factor. Most strains causing serious diseases possess the eae gene that encodes the adhesin intimin, but its presence is not essential for virulence as some cases are caused by eae-negative strains. An autoagglutinating adhesin designated Saa was found in some eae-negative strains. This protein varies in size as a consequence of variation in the number of copies of a 37-aa repeat unit in the C-terminal region. Based on these findings, we designed PCR primers to amplify the region coding for these differences to detect saa gene variants present in VTEC strains isolated in Argentina from cattle and meat. The gene saa was detected in 36 (31.6%) eae-negative strains and 5 variants were found. Strains isolated from cattle possessed 4 saa variants, whereas 2 variants were present in isolates from meat. Saa variant 1 predominated (18 strains) and was distributed in strains isolated both from cattle and from meat. Our study revealed the existence of two novel saa variants, termed 4 and 5, which have a higher number of 111-bp repeats than saa genes previously studied.
Collapse
Affiliation(s)
- Paula M A Lucchesi
- Lab. Inmunoquímica y Biotecnología, Depto. Sanidad Animal y Medicina Preventiva, Fac. Cs. Veterinarias, Universidad Nacional del Centro Pcia. Buenos Aires, Tandil, Argentina.
| | | | | |
Collapse
|
88
|
Sonntag AK, Bielaszewska M, Mellmann A, Dierksen N, Schierack P, Wieler LH, Schmidt MA, Karch H. Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interactions with intestinal epithelial cells. Appl Environ Microbiol 2006; 71:8855-63. [PMID: 16332882 PMCID: PMC1317431 DOI: 10.1128/aem.71.12.8855-8863.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thirteen Escherichia coli strains harboring stx2e were isolated from 11,056 human stools. This frequency corresponded to the presence of the stx2e allele in 1.7% of all Shiga toxin-producing E. coli (STEC) strains. The strains harboring stx2e were associated with mild diarrhea (n = 9) or asymptomatic infections (n = 4). Because STEC isolates possessing stx2e are porcine pathogens, we compared the human STEC isolates with stx2e-harboring E. coli isolated from piglets with edema disease and postweaning diarrhea. All pig isolates possessed the gene encoding the F18 adhesin, and the majority possessed adhesin involved in diffuse adherence; these adhesins were absent from all the human STEC isolates. In contrast, the high-pathogenicity island encoding an iron uptake system was found only in human isolates. Host-specific patterns of interaction with intestinal epithelial cells were observed. All human isolates adhered to human intestinal epithelial cell lines T84 and HCT-8 but not to pig intestinal epithelial cell line IPEC-J2. In contrast, the pig isolates completely lysed human epithelial cells but not IPEC-J2 cells, to which most of them adhered. Our data demonstrate that E. coli isolates producing Shiga toxin 2e have imported specific virulence and fitness determinants which allow them to adapt to the specific hosts in which they cause various forms of disease.
Collapse
Affiliation(s)
- Anne-Katharina Sonntag
- Institute of Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University Hospital Münster, Robert Koch Str. 41, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are the pathogenic subgroup of Shiga toxin (Stx)-producing E. coli. EHEC can cause non-bloody and bloody diarrhoea, and the haemolytic uraemic syndrome (HUS). HUS is a major cause of acute renal failure in children. E. coli O57:H7 is the predominant, but far from being the only, serotype that can cause HUS. The cascade leading from gastrointestinal infection to renal impairment is complex, with the microvascular endothelium being the major histopathological target. EHEC also produce non-Stx molecules, such as cytolethal distending toxin, which can contribute to the endothelial or vascular injury. Because there are no specific therapies for EHEC infections, efficient reservoir and human preventive strategies are important areas of ongoing investigations. This review will focus on the microbiology, epidemiology, and pathophysiology of EHEC-associated diseases, and illustrate future challenges and opportunities for their control.
Collapse
Affiliation(s)
- Helge Karch
- Institute for Hygiene, and National Consulting Laboratory on Haemolytic Uraemic Syndrome, University Hospital Münster, Robert Koch Str. 41, D-48149 Münster, Germany.
| | | | | |
Collapse
|
90
|
Mellmann A, Bielaszewska M, Zimmerhackl LB, Prager R, Harmsen D, Tschäpe H, Karch H. Enterohemorrhagic Escherichia coli in Human Infection: In Vivo Evolution of a Bacterial Pathogen. Clin Infect Dis 2005; 41:785-92. [PMID: 16107974 DOI: 10.1086/432722] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 04/26/2005] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) cause most cases of the hemolytic uremic syndrome (HUS) worldwide. To investigate genetic changes in EHEC during the course of human infection, we analyzed consecutive stool samples and shed isolates from patients with HUS, focusing on the genes encoding Shiga toxin (stx) and intimin (eae). METHODS Sequential stool samples from 210 patients with HUS were investigated for the persistence of E. coli strains harboring stx and/or eae. Initial stool samples were collected during the acute phase of HUS, and subsequent stool samples were collected 3-16 days later (median interval, 8 days). RESULTS Organisms that were stx and eae positive (stx+/eae+ strains; n=137) or stx negative and eae positive (stx-/eae+ strains; n=5) were detected in the initial stool samples from 142 patients. Subsequently, the proportion of those who shed stx+/eae+ strains decreased to 13 of 210 patients, whereas the proportion of those who shed strains that were stx-/eae+ increased to 12 of 210 patients. Seven patients who initially excreted strains that were stx+/eae+ shed, at second analysis, stx-/eae+ strains of the same serotypes; they had no free fecal Shiga toxin at follow-up. Comparison of the initial and follow-up isolates from these patients with use of molecular-epidemiological methods revealed loss of stx genes and genomic rearrangement. CONCLUSIONS We demonstrate the loss of a critical bacterial virulence factor from pathogens during very brief intervals in the human host. These genetic changes have evolutionary, diagnostic, and clinical implications. Generation of stx- mutants might contribute to subclonal evolution and evolutionary success.
Collapse
Affiliation(s)
- Alexander Mellmann
- Institute for Hygiene, National Consulting Laboratory on Hemolytic Uremic Syndrome and IZKF Munster, Munster, Germany.
| | | | | | | | | | | | | |
Collapse
|
91
|
Bielaszewska M, Zhang W, Tarr PI, Sonntag AK, Karch H. Molecular profiling and phenotype analysis of Escherichia coli O26:H11 and O26:NM: secular and geographic consistency of enterohemorrhagic and enteropathogenic isolates. J Clin Microbiol 2005; 43:4225-8. [PMID: 16081985 PMCID: PMC1233958 DOI: 10.1128/jcm.43.8.4225-4228.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fifty-eight enterohemorrhagic Escherichia coli O26:H11 or O26:NM (nonmotile) strains and 44 atypical enteropathogenic E. coli O26:H11 or O26:NM strains isolated from patients in 11 countries during 52 years share a common pool of non-stx virulence genes, fitness loci, and genotypic and phenotypic diagnostic markers. These findings indicate close relatedness between these pathotypes and provide a basis for their clinical laboratory diagnosis.
Collapse
Affiliation(s)
- Martina Bielaszewska
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University Hospital Münster, Robert Koch Str. 41, 48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
92
|
Creuzburg K, Köhler B, Hempel H, Schreier P, Jacobs E, Schmidt H. Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding Shiga toxin 1. MICROBIOLOGY-SGM 2005; 151:941-950. [PMID: 15758239 DOI: 10.1099/mic.0.27632-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sequence of 50 625 bp of chromosomal DNA derived from Shiga-toxin (Stx)-producing Escherichia coli (STEC) O111: H- strain 1639/77 was determined. This DNA fragment contains the cryptic Stx1-encoding prophage CP-1639 and its flanking chromosomal regions. The genome of CP-1639 basically resembles that of lambdoid phages in structure, but contains three IS629 elements, one of which disrupts the gene of a tail fibre component. The prophage genome lacks parts of the recombination region including integrase and excisionase genes. Moreover, a capsid protein gene is absent. CP-1639 is closely associated with an integrase gene of an ancient integrative element. This element consists of three ORFs of unknown origin and a truncated integrase gene homologous to intA of CP4-57. By PCR analysis and sequencing, it was shown that this integrative element is present in a number of non-O157 STEC serotypes and in non-STEC strains, where it is located at the 3'-end of the chromosomal ssrA gene. Whereas in most E. coli O111: H- strains, prophages are inserted in this site, E. coli O26 strains contain the integrative element not connected to a prophage. In E. coli O103 strains, the genetic structure of this region is variable. Comparison of DNA sequences of this particular site in E. coli O157: H7 strain EDL933, E. coli O111: H- strain 1639/77 and E. coli K-12 strain MG1655 showed that the ssrA gene is associated in all cases with the presence of foreign DNA. The results of this study have shown that the cryptic prophage CP-1639 is associated with an integrative element at a particular site in the E. coli chromosome that possesses high genetic variability.
Collapse
Affiliation(s)
- Kristina Creuzburg
- Institut für Medizinische Mikrobiologie und Hygiene der TU Dresden, Germany
| | - Bernd Köhler
- Institut für Hygiene und Mikrobiologie der Bayerischen Julius Maximilians Universität Würzburg, Germany
| | - Helena Hempel
- Institut für Medizinische Mikrobiologie und Hygiene der TU Dresden, Germany
| | - Peter Schreier
- Lehrstuhl für Lebensmittelchemie der Bayerischen Julius Maximilians Universität Würzburg, Germany
| | - Enno Jacobs
- Institut für Medizinische Mikrobiologie und Hygiene der TU Dresden, Germany
| | - Herbert Schmidt
- Institut für Medizinische Mikrobiologie und Hygiene der TU Dresden, Germany
| |
Collapse
|
93
|
Ewers C, Schüffner C, Weiss R, Baljer G, Wieler LH. Molecular characteristics of Escherichia coli serogroup O78 strains isolated from diarrheal cases in bovines urge further investigations on their zoonotic potential. Mol Nutr Food Res 2005; 48:504-14. [PMID: 15538707 DOI: 10.1002/mnfr.200400063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the virulence properties and clonal relationship of 21 Escherichia coli strains of serogroup O78 isolated from diarrhoeic cattle and calves. Isolates were screened for 18 genes representing virulence features of different Escherichia coli pathotypes. None of the strains harboured enterotoxin-genes estIa/Ib, eltIa/Ib, or Shiga toxin (stx) genes, genes involved in adhesion (eae, f5, f41) hemolysin gene hlyA or invasion gene ipaC. With a high prevalence we detected enterotoxin astA (61.9%), genes involved in iron acquisition, like fyuA, irp (each 57.1%) and iucD (81.0%), and the operon sequence of Colicin V plasmids (38.1%). Some strains possessed toxin genes cdt-IIIB and cnf1/2 (both 14.3%), the invasion gene tia (23.8%), and the serine protease encoding gene espP (23.8%). Moreover, we could show that E. coli O78 strains under investigation were able to adhere to and invade MDBK-cells with varying efficiencies. The results indicate that the closely related O78 strains, constituting two major PFGE-clusters, harbor various virulence features for bovine intestinal disease but cannot be grouped into one of the common E. coli intestinal pathogenic or other pathotypes according to their virulence gene pattern. Nevertheless, the ability to adhere, invade or harbor toxin genes lets us suggest that O78 strains isolated from diarrheal cases in bovines urges further investigations on the zoonotic potential of these strains.
Collapse
Affiliation(s)
- Christa Ewers
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
94
|
Bielaszewska M, Sinha B, Kuczius T, Karch H. Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation, and death of human endothelial cells. Infect Immun 2005; 73:552-62. [PMID: 15618195 PMCID: PMC538959 DOI: 10.1128/iai.73.1.552-562.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, cytolethal distending toxin V (CDT-V), a new member of the CDT family, was identified in Shiga toxin-producing Escherichia coli (STEC) O157 and particular non-O157 serotypes. Here we investigated the biological effects of CDT-V from STEC O157:H(-) (strain 493/89) on human endothelial cells, which are believed to be major pathogenetic targets in severe STEC-mediated diseases. CDT-V caused dose-dependent G(2)/M cell cycle arrest leading to distension, inhibition of proliferation, and death in primary human umbilical vein endothelial cells (HUVEC) and two endothelial cell lines, EA.hy 926 cells (HUVEC derived) and human brain microvascular endothelial cells (HBMEC). The cell cycle effects of CDT-V were cell type specific. In HUVEC and EA.hy 926 cells, CDT-V caused a slowly developing but persistent G(2)/M block which resulted in delayed nonapoptotic cell death. In contrast, in HBMEC, CDT-V induced a rapidly evolving but transient G(2)/M block which was followed by progressive, mostly apoptotic cell death. In both HBMEC and EA.hy 926 cells, G(2)/M arrest was preceded by the early accumulation of a phosphorylated inactive form of cdc2 kinase. Significant G(2)/M arrest and inhibition of proliferation in both HUVEC and each of the endothelial cell lines were induced by 2 to 15 min of exposure to CDT-V, indicating that the effects of the toxin are irreversible. CDT-V-treated HBMEC and EA.hy 926 cells displayed fragmented nuclei and expressed phosphorylated histone protein H2AX, indicative of DNA damage followed by a DNA repair response. Our data demonstrate that CDT-V causes irreversible damage to human endothelial cells and thus may contribute to the pathogenesis of STEC-mediated diseases.
Collapse
Affiliation(s)
- Martina Bielaszewska
- Institut für Hygiene, Universitätsklinikum Münster, Robert-Koch Str. 41, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
95
|
Zweifel C, Schumacher S, Blanco M, Blanco JE, Tasara T, Blanco J, Stephan R. Phenotypic and genotypic characteristics of non-O157 Shiga toxin-producing Escherichia coli (STEC) from Swiss cattle. Vet Microbiol 2005; 105:37-45. [PMID: 15607082 DOI: 10.1016/j.vetmic.2004.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 10/04/2004] [Accepted: 10/11/2004] [Indexed: 11/22/2022]
Abstract
A total of 42 Shiga toxin-producing (STEC) strains from slaughtered healthy cattle in Switzerland were characterized by phenotypic and genotypic traits. The 42 sorbitol-positive, non-O157 STEC strains belonged to 26 O:H serotypes (including eight new serotypes) with four serotypes (O103:H2, O113:H4, O116:H-, ONT:H-) accounting for 38.1% of strains. Out of 16 serotypes previously found in human STEC (71% of strains), nine serotypes (38% of strains) were serotypes that have been associated with hemolytic-uremic syndrome (HUS). Polymerase chain reaction (PCR) analysis showed that 18 (43%) strains carried the stx1 gene, 20 strains (48%) had the stx2 gene, and four (9%) strains had both stx1 and stx2 genes. Of strains encoding for stx2 variants, 63% were positive for stx2 subtype. Enterohemolysin (ehxA), intimin (eae), STEC autoagglutinating adhesin (saa) were detected in 17%, 21%, and 19% of the strains, respectively. Amongst the seven intimin-positive strains, one possessed intimin type beta1 (O5:H-), one intimin gamma1 (O145:H), one intimin gamma2/theta, (O111:H21), and four intimin epsilon (O103:H2). The strains belonged to 29 serovirotypes (association between serotypes and virulence factors). O103:H2 stx1eae-epsilon ehxA, O116:H- stx2, and ONT:H- stx2c were the most common accounting for 29% of the strains. Only one strain (2.4%) of serovirotype O145:H- stx1stx2eae-gamma1ehxA showed a pattern of highly virulent human strains. This is the first study providing characterization data of bovine non-O157 STEC in Switzerland, and underlining the importance of the determination of virulence factors (including intimin types) in addition to serotypes to assess the potential pathogenicity of these strains for humans.
Collapse
Affiliation(s)
- C Zweifel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 272, 8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
96
|
AKTER JASMIN, DAS SURESHCHANDRA, RAMAMURTHY THANDAVARAYAN, ASHRAF HASAN, SAHA DEBASISH, FARUQUE ABUSYEDGOLAM, NAIR GOPINATHBALAKRISH, SALAM MOHAMMEDABDUS. PREVALENCE AND CHARACTERISTICS OF ESCHERICHIA COLI ISOLATES HARBOURING SHIGA TOXIN GENES (STX) FROM ACUTE DIARRHOEAL PATIENTS IN DHAKA, BANGLADESH. Trop Med Health 2005. [DOI: 10.2149/tmh.33.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
97
|
Vanselow BA, Krause DO, McSweeney CS. The Shiga toxin-producing Escherichia coli, their ruminant hosts, and potential on-farm interventions: a review. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ar04129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emergence of Shiga toxin-producing Escherichia coli serotype O157:H7 as a major human pathogen over the last 2 decades has focused attention on this organism’s ruminant hosts. Despite implementation of conventional control methods, people continue to become seriously ill from contaminated meat or other food products, manure-contaminated drinking and recreational water, and direct contact with ruminants. E. coli O157:H7 can cause life-threatening disease, and is a particular threat to children, through acute and chronic kidney damage. Compared with other food-borne bacteria, E. coli O157:H7 has a remarkably low infectious dose and is environmentally robust. Cattle are largely unaffected by this organism and have been identified as the major source of E. coli O157:H7 entering the human food chain. Other Shiga toxin-producing E. coli can be pathogenic to humans and there is increasing evidence that their significance has been underestimated. Governments around the world have acted to tighten food safety regulations, and to investigate animal sources and on-farm control of this and related organisms. Potential intervention strategies on-farm include: feed and water hygiene, altered feeding regimes, specific E. coli vaccines, antibacterials, antibiotics, probiotics, and biological agents or products such as bacteriophages, bacteriocins, or colicins.
Collapse
|
98
|
Friedrich AW, Nierhoff KV, Bielaszewska M, Mellmann A, Karch H. Phylogeny, clinical associations, and diagnostic utility of the pilin subunit gene (sfpA) of sorbitol-fermenting, enterohemorrhagic Escherichia coli O157:H-. J Clin Microbiol 2004; 42:4697-701. [PMID: 15472329 PMCID: PMC522318 DOI: 10.1128/jcm.42.10.4697-4701.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasmid-borne sfpA gene encodes the pilin subunit in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H-. We investigated the distribution of sfpA among 600 E. coli isolates comprising the complete E. coli standard reference (ECOR) and diarrheagenic E. coli (DEC) strain collections and clinical isolates associated with enteric disease. sfpA was detected in DEC3F SF EHEC O157:H- strain 493/89, each of 107 SF EHEC O157:H- clinical isolates, and 14 Shiga toxin-negative SF E. coli O157:H- strains which contained eae, which encodes gamma-intimin, and fliC, which encodes the H7 antigen. sfpA was absent from all other strains, including the ECOR strain collection, all non-SF EHEC O157:H7 strains, and all E. coli O55:H7 strains (E. coli O55:H7 is the postulated ancestor of Shiga toxin-producing E. coli [STEC] O157). These results suggest that there was a single acquisition of the sfpA gene in the nonmotile SF E. coli O157 branch, presumably after the eae-encoding pathogenicity island (the locus of enterocyte effacement) was acquired and motility was lost. We then applied the sfpA PCR in combination with rfbO157, stx, and eae PCRs to screen 636 stool samples from patients with diarrhea or hemolytic-uremic syndrome for SF STEC O157:H-. In 27 cases, the simultaneous presence of the sfpA, eae, and rfbO157 amplicons indicated the presence of SF E. coli O157:H- strains, and the result was subsequently confirmed by isolation. All but two of these strains possessed stx2. None of the other stool samples was positive by the sfpA PCR; 59 of these stool samples contained EHEC O157:H7. The sfpA gene can be recommended as a target for screening for SF E. coli O157:H-.
Collapse
|
99
|
Kuczius T, Bielaszewska M, Friedrich AW, Zhang W. A rapid method for the discrimination of genes encoding classical Shiga toxin (Stx) 1 and its variants, Stx1c and Stx1d, inEscherichia coli. Mol Nutr Food Res 2004; 48:515-21. [PMID: 15538710 DOI: 10.1002/mnfr.200400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subtyping of Shiga toxin (Stx)-encoding genes by conventional polymerase chain reaction (PCR) is time-consuming. We developed a single step real-time fluorescence PCR with melting curve analysis to distinguish rapidly stx1 from its variants, stx1c and stx1d. Melting temperatures (Tm) of 206 Stx-producing Escherichia coli (STEC) identified to harbor stx1 or stx1c were analyzed using a specific hybridization probe over the variable region. 170 of 171 stx1-harboring STEC displayed Tm of 69 degrees C to 70 degrees C, whereas 34 of 35 strains containing stx1c had Tm of 65 degrees C-66 degrees C. This constant and reproducible difference of 4 degrees C demonstrated that melting curve analysis is a reliable technique to differentiate stx1 from stx1c. Two isolates displayed atypical Tm. Sequence analysis showed that one of them was 100% identical to stx1d within a 511 bp DNA stretch. Our data demonstrate that real-time PCR is a rapid and reliable tool to differentiate stx1 from stx1c and stx1d and to detect new stx1 variants. Because stx1-harboring STEC cause diarrhoea and hemolytic-uremic syndrome, whereas those containing stx1c are often shed asymptomatically, a rapid differentiation between stx1 and its variants using the procedure developed here has both clinical implications and a direct significance for the risk assessment analysis of STEC isolated from foods.
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institut für Hygiene, Universitätsklinikum Münster, Münster, Germany.
| | | | | | | |
Collapse
|
100
|
Djordjevic SP, Ramachandran V, Bettelheim KA, Vanselow BA, Holst P, Bailey G, Hornitzky MA. Serotypes and virulence gene profiles of shiga toxin-producing Escherichia coli strains isolated from feces of pasture-fed and lot-fed sheep. Appl Environ Microbiol 2004; 70:3910-7. [PMID: 15240263 PMCID: PMC444789 DOI: 10.1128/aem.70.7.3910-3917.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains possessing genes for enterohemolysin (ehxA) and/or intimin (eae), referred to here as complex STEC (cSTEC), are more commonly recovered from the feces of humans with hemolytic uremic syndrome and hemorrhagic colitis than STEC strains that do not possess these accessory virulence genes. Ruminants, particularly cattle and sheep, are recognized reservoirs of STEC populations that may contaminate foods destined for human consumption. We isolated cSTEC strains from the feces of longitudinally sampled pasture-fed sheep, lot-fed sheep maintained on diets comprising various combinations of silage and grain, and sheep simultaneously grazing pastures with cattle to explore the diversity of cSTEC serotypes capable of colonizing healthy sheep. A total of 67 cSTEC serotypes were isolated, of which 21 (31.3%), mainly isolated from lambs, have not been reported. Of the total isolations, 58 (86.6%) were different from cSTEC serotypes isolated from a recent study of longitudinally sampled healthy Australian cattle (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Our data suggest that cSTEC serotypes O5:H(-), O75:H8, O91:H(-), O123:H(-), and O128:H2 are well adapted to colonizing the ovine gastrointestinal tract, since they were the most prevalent serotypes isolated from both pasture-fed and lot-fed sheep. Collectively, our data show that Australian sheep are colonized by diverse cSTEC serotypes that are rarely isolated from healthy Australian cattle.
Collapse
Affiliation(s)
- Steven P Djordjevic
- Elizabeth Macarthur Agricultural Institute, NSW Agriculture, Camden, New South Wales 2570, Australia.
| | | | | | | | | | | | | |
Collapse
|