51
|
Aguilar E, Garnelo Gomez B, Lozano-Duran R. Recent advances on the plant manipulation by geminiviruses. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:56-64. [PMID: 32464465 DOI: 10.1016/j.pbi.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As intracellular parasites, viruses co-opt the molecular machinery of the cells they infect in order to multiply and spread, and the extensiveness and effectiveness of this manipulation ultimately determine the outcome of the interaction between virus and host. Members of the Geminiviridae family, causal agents of devastating diseases in crops, encode only a handful of multifunctional, fast-evolving proteins, which efficiently target host proteins to re-wire plant development and physiology and enable replication and spread of the viral genome. In this review, we offer an overview of the different steps in the geminiviral invasion of the host plant, and explore the knowns and unknowns in geminivirus biology.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Borja Garnelo Gomez
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
52
|
Beam K, Ascencio-Ibáñez JT. Geminivirus Resistance: A Minireview. FRONTIERS IN PLANT SCIENCE 2020; 11:1131. [PMID: 32849693 PMCID: PMC7396689 DOI: 10.3389/fpls.2020.01131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
A continuing challenge to crop production worldwide is the spectrum of diseases caused by geminiviruses, a large family of small circular single-stranded DNA viruses. These viruses are quite diverse, some containing mono- or bi-partite genomes, and infecting a multitude of monocot and dicot plants. There are currently many efforts directed at controlling these diseases. While some of the methods include controlling the insect vector using pesticides or genetic insect resistance (Rodríguez-López et al., 2011), this review will focus on the generation of plants that are resistant to geminiviruses themselves. Genetic resistance was traditionally found by surveying the wild relatives of modern crops for resistance loci; this method is still widely used and successful. However, the quick rate of virus evolution demands a rapid turnover of resistance genes. With better information about virus-host interactions, scientists are now able to target early stages of geminivirus infection in the host, preventing symptom development and viral DNA accumulation.
Collapse
|
53
|
Luna AP, Romero-Rodríguez B, Rosas-Díaz T, Cerero L, Rodríguez-Negrete EA, Castillo AG, Bejarano ER. Characterization of Curtovirus V2 Protein, a Functional Homolog of Begomovirus V2. FRONTIERS IN PLANT SCIENCE 2020; 11:835. [PMID: 32636860 PMCID: PMC7318802 DOI: 10.3389/fpls.2020.00835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/25/2020] [Indexed: 05/30/2023]
Abstract
Geminiviruses are single-stranded DNA plant viruses with circular genomes packaged within geminate particles. Among the Geminiviridae family, Begomovirus and Curtovirus comprise the two best characterized genera. Curtovirus and Old World begomovirus possess similar genome structures with six to seven open-reading frames (ORF). Among them, begomovirus and curtovirus V2 ORFs share the same location in the viral genome, encode proteins of similar size, but show extremely poor sequence homology between the genera. V2 from Beet curly top virus (BCTV), the model species for the Curtovirus genus, as it begomoviral counterpart, suppresses post-transcriptional gene silencing (PTGS) by impairing the RDR6/SGS3 pathway and localizes in the nucleus spanning from the perinuclear region to the cell periphery. By aminoacid sequence comparison we have identified that curtoviral and begomoviral V2 proteins shared two hydrophobic domains and a putative phosphorylation motif. These three domains are essential for BCTV V2 silencing suppression activity, for the proper nuclear localization of the protein and for systemic infection. The lack of suppression activity in the mutated versions of V2 is complemented by the impaired function of RDR6 in Nicotiana benthamiana but the ability of the viral mutants to produce a systemic infection is not recovered in gene silencing mutant backgrounds. We have also demonstrated that, as its begomoviral homolog, V2 from BCTV is able to induce systemic symptoms and necrosis associated with a hypersensitive response-like (HR-like) when expressed from Potato virus X vector in N. benthamiana, and that this pathogenicity activity does not dependent of its ability to supress PTGS.
Collapse
Affiliation(s)
- Ana P Luna
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Beatriz Romero-Rodríguez
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Tábata Rosas-Díaz
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Laura Cerero
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Edgar A Rodríguez-Negrete
- CONACyT, Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Guasave, Mexico
| | - Araceli G Castillo
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Eduardo R Bejarano
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
54
|
Li H, Li F, Zhang M, Gong P, Zhou X. Dynamic Subcellular Localization, Accumulation, and Interactions of Proteins From Tomato Yellow Leaf Curl China Virus and Its Associated Betasatellite. FRONTIERS IN PLANT SCIENCE 2020; 11:840. [PMID: 32612626 PMCID: PMC7308551 DOI: 10.3389/fpls.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/26/2020] [Indexed: 05/30/2023]
Abstract
Geminiviruses contain the largest number of species of plant viruses, and cause devastating crop diseases worldwide. The development of resistance to these viruses will require a clear understanding of viral protein function and interactions. Tomato yellow leaf curl China virus (TYLCCNV) is a typical monopartite geminivirus, which is associated with a tomato yellow leaf curl China betasatellite (TYLCCNB) in the field; the complex infection of TYLCCNV/TYLCCNB leads to serious economic losses in solanaceous plants. The functions of each protein encoded by the TYLCCNV/TYLCCNB complex have not yet been examined in a targeted manner. Here, we show the dynamic subcellular localization and accumulation of six viral proteins encoded by TYLCCNV and the βC1 protein encoded by TYLCCNB in plants over time, and analyzed the effect of TYLCCNV or TYLCCNV/TYLCCNB infection on these parameters. The interaction among the seven viral proteins was also tested in this study: C2 acts as a central player in the viral protein interaction network, since it interacts with C3, C4, V2, and βC1. Self-interactions were also found for C1, C2, and V2. Together, the data presented here provide a template for investigating the function of viral proteins with or without viral infection over time, and points at C2 as a pivotal protein potentially playing a central role in the coordination of the viral life cycle.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Zhao W, Wu S, Barton E, Fan Y, Ji Y, Wang X, Zhou Y. Tomato Yellow Leaf Curl Virus V2 Protein Plays a Critical Role in the Nuclear Export of V1 Protein and Viral Systemic Infection. Front Microbiol 2020; 11:1243. [PMID: 32587585 PMCID: PMC7297916 DOI: 10.3389/fmicb.2020.01243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
Geminiviruses are an important group of circular, single-stranded DNA viruses that cause devastating diseases in crops. Geminiviruses replicate their genomic DNA in the nucleus and the newly synthesized viral DNA is subsequently transported to the cytoplasm for further cell-to-cell and long-distance movement to establish systemic infection. Thus, nucleocytoplasmic transportation is crucial for successful infection by geminiviruses. For Tomato yellow leaf curl virus (TYLCV), the V1 protein is known to bind and shuttle viral genomic DNA, however, the role of the V2 protein in this process is still unclear. Here, we report that the V1 protein is primarily localized in the nucleus when expressed but the nucleus-localized V1 protein dramatically decreases when co-expressed with V2 protein. Moreover, the V2-facilitated nuclear export of V1 protein depends on host exportin-α and a specific V1-V2 interaction. Chemical inhibition of exportin-α or a substitution at cysteine 85 of the V2 protein, which abolishes the V1-V2 interaction, blocks redistribution of the V1 protein to the perinuclear region and the cytoplasm. When the V2C85S mutation is incorporated into a TYLCV infectious clone, the TYLCV-C85S causes delayed onset of very mild symptoms compared to wild-type TYLCV, suggesting that the V1-V2 interaction and, thus, the V2-mediated nuclear export of the V1 protein is crucial for viral spread and systemic infection. Our data point to a critical role of the V2 protein in promoting the nuclear export of the V1 protein and viral systemic infection, likely by promoting V1 protein-mediated nucleocytoplasmic transportation of TYLCV genomic DNA.
Collapse
Affiliation(s)
- Wenhao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shuhua Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Elizabeth Barton
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yongjian Fan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
56
|
Luna AP, Lozano-Durán R. Geminivirus-Encoded Proteins: Not All Positional Homologs Are Made Equal. Front Microbiol 2020; 11:878. [PMID: 32431689 PMCID: PMC7214792 DOI: 10.3389/fmicb.2020.00878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ana P. Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
57
|
Perrone A, Martinelli F. Plant stress biology in epigenomic era. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110376. [PMID: 32234231 DOI: 10.1016/j.plantsci.2019.110376] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
Recent progress in "omics" methodologies allow us to gain insight into the complex molecular regulatory networks underlying plant responses to environmental stresses. Among the different genome-wide analysis, epigenomics is the most under-investigated "omic" approach requiring more critical and speculative discussion about approaches, methods and experimental designs. Epigenomics allows us to gain insight into the molecular adaptation of plants in response to environmental stresses. The identification of epigenetic marks transmitted during filial generations enables new theories to be developed on the evolution of living organisms in relation to environmental changes. The molecular mechanisms driving the capacity of plants to memorize a stress and to generate stress-resistant progenies are still unclear and scarcely investigated. The elucidation of these cryptic molecular switches will assist breeders in designing crops characterized by minimally compromised productivity in relation to stresses caused by climate change. The aim of this review is to briefly describe the most uptodate epigenomic approaches, update recent progresses in crop epigenomics in plant stress biology, and to stimulate the discussion of new epigenomic methods and approaches in the new era of "omic" sciences.
Collapse
Affiliation(s)
- Anna Perrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, 90128, Italy.
| | - Federico Martinelli
- Department of Biology, University of Firenze, Sesto Fiorentino, Florence, 50019, Italy.
| |
Collapse
|
58
|
Superinfection by PHYVV Alters the Recovery Process in PepGMV-Infected Pepper Plants. Viruses 2020; 12:v12030286. [PMID: 32151060 PMCID: PMC7150747 DOI: 10.3390/v12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023] Open
Abstract
Geminiviruses are important plant pathogens that affect crops around the world. In some geminivirus-host interactions, infected plants show recovery, a phenomenon characterized by symptom disappearance in newly emerging leaves. In pepper-Pepper golden mosaic virus (PepGMV) interaction, the host recovery process involves a silencing mechanism that includes both post-transcriptional (PTGS) and transcriptional (TGS) gene silencing pathways. Under field conditions, PepGMV is frequently found in mixed infections with Pepper huasteco yellow vein virus (PHYVV), another bipartite begomovirus. Mixed infected plants generally show a synergetic phenomenon and do not present recovery. Little is known about the molecular mechanism of this interaction. In the present study, we explored the effect of superinfection by PHYVV on a PepGMV-infected pepper plant showing recovery. Superinfection with PHYVV led to (a) the appearance of severe symptoms, (b) an increase of the levels of PepGMV DNA accumulation, (c) a decrease of the relative methylation levels of PepGMV DNA, and (d) an increase of chromatin activation marks present in viral minichromosomes. Finally, using heterologous expression and silencing suppression reporter systems, we found that PHYVV REn presents TGS silencing suppressor activity, whereas similar experiments suggest that Rep might be involved in suppressing PTGS.
Collapse
|
59
|
Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease affected tomato in Oman. Sci Rep 2019; 9:16634. [PMID: 31719590 PMCID: PMC6851148 DOI: 10.1038/s41598-019-53106-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Next generation sequencing (NGS) of DNAs amplified by rolling circle amplification from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identified a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identified infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confirmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efficiency. This is the first identification of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This finding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material. The results here may suggest that begomoviruses which do not commonly infect tomato, such as MYMIV, could be spread as a passenger of TYLCV in tomato.
Collapse
|
60
|
Wang C, Wang C, Zou J, Yang Y, Li Z, Zhu S. Epigenetics in the plant-virus interaction. PLANT CELL REPORTS 2019; 38:1031-1038. [PMID: 31065780 DOI: 10.1007/s00299-019-02414-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/25/2019] [Indexed: 05/23/2023]
Abstract
Plants have developed diverse molecular mechanisms to resist viruses. RNA silencing plays a dominant role in antiviral defense. Recent studies have correlated plant antiviral silencing to epigenetic modification in genomic DNA and protein by remodeling the expression levels of coding genes. The plant host methylation level is reprogrammed in response to viral challenge. Genomes of some viruses have been implicated in the epigenetic modification via small RNA-mediated transcriptional gene silencing and post-transcriptional gene silencing. These mechanisms can be primed prior to a virus attack through methylation changes for antiviral defense. This review highlights the findings concerning the methylation changes in plant-virus interactions and demonstrates a possible direction to improve the understanding of plant host methylation regulation in response to viral infection.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jingze Zou
- College of Biological Sciences, China Agricultural University, Beijing, 100083, China
| | - Yunshu Yang
- Beijing Academy of Food Sciences, Beijing, 100162, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Shuifang Zhu
- College of Plant Protection, China Agricultural University, Beijing, 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
61
|
RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
|
62
|
DNA Methylation Analysis of the Citrullus lanatus Response to Cucumber Green Mottle Mosaic Virus Infection by Whole-Genome Bisulfite Sequencing. Genes (Basel) 2019; 10:genes10050344. [PMID: 31067797 PMCID: PMC6562589 DOI: 10.3390/genes10050344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark associated with plant immunity, butlittle is known about its roles in viral infection of watermelon. We carried out whole-genomebisulfite sequencing of watermelon leaves at 0 h (ck), 48 h, and 25 days post-inoculation withCucumber green mottle mosaic virus (CGMMV). The number of differentially methylated regions(DMRs) increased during CGMMV infection and 2788 DMR-associated genes (DMGs) werescreened out among three libraries. Most DMRs and DMGs were obtained under the CHH context.These DMGs were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG)pathways of secondary biosynthesis and metabolism, plant-pathogen interactions, Toll-likereceptor signaling, and ABC transporters. Additionally, DMGs encoding PR1a, CaMs, calciumbindingprotein, RIN4, BAK1, WRKYs, RBOHs, STKs, and RLPs/RLKs were involved in thewatermelon-CGMMV interaction and signaling. The association between DNA methylation andgene expression was analyzed by RNA-seq and no clear relationship was detected. Moreover,downregulation of genes in the RdDM pathway suggested the reduced RdDM-directed CHHmethylation plays an important role in antiviral defense in watermelon. Our findings providegenome-wide DNA methylation profiles of watermelon and will aid in revealing the molecularmechanism in response to CGMMV infection at the methylation level.
Collapse
|
63
|
Wang Y, Wu Y, Gong Q, Ismayil A, Yuan Y, Lian B, Jia Q, Han M, Deng H, Hong Y, Hanley-Bowdoin L, Qi Y, Liu Y. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. J Virol 2019; 93:e01675-18. [PMID: 30626668 PMCID: PMC6401443 DOI: 10.1128/jvi.01675-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
In plants, RNA-directed DNA methylation (RdDM)-mediated transcriptional gene silencing (TGS) is a natural antiviral defense against geminiviruses. Several geminiviral proteins have been shown to target the enzymes related to the methyl cycle or histone modification; however, it remains largely unknown whether and by which mechanism geminiviruses directly inhibit RdDM-mediated TGS. In this study, we showed that Cotton leaf curl Multan virus (CLCuMuV) V2 directly interacts with Nicotiana benthamiana AGO4 (NbAGO4) and that the L76S mutation in V2 (V2L76S) abolishes such interaction. We further showed that V2, but not V2L76S, can suppresses RdDM and TGS. Silencing of NbAGO4 inhibits TGS, reduces the viral methylation level, and enhances CLCuMuV DNA accumulation. In contrast, the V2L76S substitution mutant attenuates CLCuMuV infection and enhances the viral methylation level. These findings reveal that CLCuMuV V2 contributes to viral infection by interaction with NbAGO4 to suppress RdDM-mediated TGS in plants.IMPORTANCE In plants, the RNA-directed DNA methylation (RdDM) pathway is a natural antiviral defense mechanism against geminiviruses. However, how geminiviruses counter RdDM-mediated defense is largely unknown. Our findings reveal that Cotton leaf curl Multan virus V2 contributes to viral infection by interaction with NbAGO4 to suppress RNA-directed DNA methylation-mediated transcriptional gene silencing in plants. Our work provides the first evidence that a geminiviral protein is able to directly target core RdDM components to counter RdDM-mediated TGS antiviral defense in plants, which extends our current understanding of viral counters to host antiviral defense.
Collapse
Affiliation(s)
- Yunjing Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yuyao Wu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Qian Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yuxiang Yuan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Bi Lian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Qi Jia
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analysis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analysis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiguo Hong
- Research Center for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yijun Qi
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, China
| |
Collapse
|