52
|
Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008; 14:429-36. [PMID: 18376405 DOI: 10.1038/nm1745] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/29/2008] [Indexed: 11/09/2022]
Abstract
Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells. This DC-mediated transfer of HTLV-1 involves heparan sulfate proteoglycans and neuropilin-1 and results in long-term productive infection and interleukin-2-independent transformation of the CD4(+) T cells. These studies, along with observations of HTLV-1-infected DCs in the peripheral blood of infected individuals, indicate that DCs have a central role in HTLV-1 transmission, dissemination and persistence in vivo. In addition to altering the current paradigm concerning how HTLV-1 transmission occurs, these studies suggest that impairment of DC function after HTLV-1 infection plays a part in pathogenesis.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, Science Applications International Corporation-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|
53
|
Selection of mutant CHO clones resistant to murine gammaherpesvirus 68 infection. Virology 2008; 373:376-86. [PMID: 18191980 DOI: 10.1016/j.virol.2007.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/14/2007] [Accepted: 12/03/2007] [Indexed: 11/20/2022]
Abstract
Murine gammaherpesvirus 68 (MHV68) is used as a model to study gammaherpesvirus pathogenesis both in tissue culture systems and in vivo. We used a gene-trapping approach to get insight into cellular factors involved in MHV68 infection. By generating a library of gene-trapped CHO cells, we were able to isolate several clones that exhibited various degrees of resistance to MHV68-induced cytopathic effect. Clones that showed the highest degree of resistance were affected at the early stage of the viral cycle, with the vast majority of these clones being deficient for heparan sulfate (HS) expression at the cell surface. Heparan sulfate expression could be restored in all the HS-deficient clones by expression of EXT1, an enzyme that is essential for the biosynthesis of HS. Consistent with the role of HS in viral entry, HS-deficient CHO cells did not support viral internalization. Cell surface heparan sulfate proteoglycans (HSPG) are mostly composed of HS chains attached to two families of core proteins, the transmembrane syndecans and the GPI-anchored glypicans. Treatment of CHO cells with phosphatidylinositol-specific phospholipase C (PI-PLC) did not significantly affect the level of HS expression, indicating that the glypicans are not a major source of HSPG in CHO cells. By contrast, treatment of CHO cells with PMA, a drug known to accelerate syndecan shedding, resulted in a decrease in both HS expression and susceptibility to MHV68; these effects were abolished by TIMP-3, a specific inhibitor of syndecan shedding. All together, our results confirm the essential role of HS in MHV68 infection and identify the syndecans as a major source of HSPG used by the virus as coreceptors to infect CHO cells.
Collapse
|
54
|
Kim WM, Sigalov AB. Viral pathogenesis, modulation of immune receptor signaling and treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:325-49. [PMID: 19065800 PMCID: PMC7122915 DOI: 10.1007/978-0-387-09789-3_22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that target immune receptor transmembrane signaling. Uncovering the exact molecular mechanisms underlying these critical points in viral pathogenesis will not only help us understand strategies used by viruses to escape from the host immune surveillance but also reveal new therapeutic targets for antiviral as well as immunomodulatory therapy. In this chapter, based on our current understanding of transmembrane signal transduction mediated by multichain immune recognition receptors (MIRRs) and the results of sequence analysis, we discuss the MIRR-targetingviral strategies of immune evasion and suggest their possible mechanisms that, in turn, reveal new points of antiviral intervention. We also show how two unrelated enveloped viruses, human immunodeficiency virus and human cytomegalovirus, use a similar mechanism to modulate the host immune response mediated by two functionally different MIRRs-T-cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly nonviral pathogens.
Collapse
Affiliation(s)
- Walter M Kim
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
55
|
Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design a nd development. They can be targeted bysmall molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages. In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design. Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Collapse
|
56
|
Poiesi C, De Francesco MA, Baronio M, Manca N. HIV-1 p17 binds heparan sulfate proteoglycans to activated CD4(+) T cells. Virus Res 2007; 132:25-32. [PMID: 18036696 DOI: 10.1016/j.virusres.2007.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 12/19/2022]
Abstract
We have previously shown that HIV-1 p17 binds to activated peripheral blood mononuclear cells and enhances secretion of pro-inflammatory cytokines, but we were unable to define a ligand on activated cells. In this work we evaluate the hypothesis that HIV-1 p17 may be a heparin/heparan sulfate-binding protein. HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH. Soluble heparins and heparan sulfate but not chondroitin 4-sulfate and dextran sulfate inhibit binding of HIV-1 p17 to heparin solid phase and to activated CD4(+) T cells. Furthermore the inhibition of cell sulfatation by chlorate treatment completely counteracts HIV-1 p17 binding to activated cells. These results indicate for the first time that HIV-1 p17 can be ascribed to the heparin binding protein family and suggest that this interaction might play a key role in the ability of the protein to induce an inflammatory effect on activated cells.
Collapse
Affiliation(s)
- Claudio Poiesi
- Institute of Microbiology, University of Brescia Medical School, Brescia, Italy.
| | | | | | | |
Collapse
|
57
|
Kinet S, Swainson L, Lavanya M, Mongellaz C, Montel-Hagen A, Craveiro M, Manel N, Battini JL, Sitbon M, Taylor N. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells. Retrovirology 2007; 4:31. [PMID: 17504522 PMCID: PMC1876471 DOI: 10.1186/1742-4690-4-31] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 05/15/2007] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. RESULTS As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. CONCLUSION Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes.
Collapse
Affiliation(s)
- Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Louise Swainson
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Madakasira Lavanya
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Cedric Mongellaz
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Amélie Montel-Hagen
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Marco Craveiro
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | - Nicolas Manel
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
- Present address : Skirball Institute of Biomolecular Medicine, NYU School of Medicine, NY, NY 10016, USA
| | - Jean-Luc Battini
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| | | | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier (IGMM), 1919 Rte de Mende, F-34293 Montpellier Cedex 5, France
- CNRS, Montpellier, France
- Université Montpellier 2, IFR122, Montpellier, France
| |
Collapse
|
58
|
Chevalier SA, Walic M, Calattini S, Mallet A, Prévost MC, Gessain A, Mahieux R. Construction and characterization of a full-length infectious simian T-cell lymphotropic virus type 3 molecular clone. J Virol 2007; 81:6276-85. [PMID: 17428869 PMCID: PMC1900091 DOI: 10.1128/jvi.02538-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Together with their simian T-cell lymphotropic virus (STLV) equivalent, human T-cell lymphotropic virus type 1 (HTLV-1), HTLV-2, and HTLV-3 form the primate T-cell lymphotropic virus (PTLV) group. Over the years, understanding the biology and pathogenesis of HTLV-1 and HTLV-2 has been widely improved by the creation of molecular clones. In contrast, so far, PTLV-3 experimental studies have been restricted to the overexpression of the tax gene using reporter assays. We have therefore decided to construct an STLV-3 molecular clone. We generated a full-length STLV-3 proviral clone (8,891 bp) by PCR amplification of overlapping fragments. This STLV-3 molecular clone was then transfected into 293T cells. Reverse transcriptase PCR experiments followed by sequence analysis of the amplified products allowed us to establish that both gag and tax/rex mRNAs were transcribed. Western blotting further demonstrated the presence of the STLV-3 p24gag protein in the cell culture supernatant from transfected cells. Transient transfection of 293T cells and of 293T-long terminal repeat-green fluorescent protein cells with the STLV-3 clone promoted syncytium formation, a hallmark of PTLV Env expression, as well as the appearance of fluorescent cells, also demonstrating that the Tax3 protein was expressed. Virus particles were visible by electron microscopy. These particles are infectious, as demonstrated by our cell-free-infection experiments with purified virions. All together, our data demonstrate that the STLV-3 molecular clone is functional and infectious. This clone will give us a unique opportunity to study in vitro the different pX transcripts and the putative presence of antisense transcripts and to evaluate the PTLV-3 pathogenicity in vivo.
Collapse
Affiliation(s)
- Sébastien Alain Chevalier
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
59
|
Takenouchi N, Jones KS, Lisinski I, Fugo K, Yao K, Cushman SW, Ruscetti FW, Jacobson S. GLUT1 is not the primary binding receptor but is associated with cell-to-cell transmission of human T-cell leukemia virus type 1. J Virol 2006; 81:1506-10. [PMID: 17108050 PMCID: PMC1797527 DOI: 10.1128/jvi.01522-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GLUT1 has recently been suggested to be a binding receptor for human T-cell leukemia virus type 1 (HTLV-1). We used a novel, short-term assay to define the role of GLUT1 in cell-to-cell transmission. Although increasing cell surface levels of GLUT1 enhanced HTLV-I transfer, efficient virus spread correlated largely with heparan sulfate proteoglycan (HSPG) expression on target cells. Moreover, since activated CD4+ T cells and cord blood lymphocytes that are susceptible to HTLV-1 infection expressed undetectable levels of surface GLUT1, these results indicate that GLUT1 and HSPGs are important for efficient cell-to-cell transmission of HTLV-1 but raise concerns on the role of GLUT1 as the HTLV-1 primary binding receptor.
Collapse
Affiliation(s)
- Norihiro Takenouchi
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20982, USA
| | | | | | | | | | | | | | | |
Collapse
|