51
|
Cullen LM, Blanco JCG, Morrison TG. Cotton rat immune responses to virus-like particles containing the pre-fusion form of respiratory syncytial virus fusion protein. J Transl Med 2015; 13:350. [PMID: 26541285 PMCID: PMC4636065 DOI: 10.1186/s12967-015-0705-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Virus-like particles (VLPs) based on Newcastle disease virus (NDV) core proteins, M and NP, and containing two chimera proteins, F/F and H/G, composed of the respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective anti-RSV neutralizing antibodies in mice. Furthermore, immunization of mice with a VLP containing a F/F chimera protein with modifications previously reported to stabilize the pre-fusion form of the RSV F protein resulted in significantly improved neutralizing antibody titers over VLPs containing the wild type F protein. The goal of this study was to determine if VLPs containing the pre-fusion form of the RSV F protein stimulated protective immune responses in cotton rats, a more RSV permissive animal model than mice. METHODS Cotton rats were immunized intramuscularly with VLPs containing stabilized pre-fusion F/F chimera protein as well as the H/G chimera protein. The anti-RSV F and RSV G antibody responses were determined by ELISA. Neutralizing antibody titers in sera of immunized animals were determined in plaque reduction assays. Protection of the animals from RSV challenge was assessed. The safety of the VLP vaccine was determined by monitoring lung pathology upon RSV challenge of immunized animals. RESULTS The Pre-F/F VLP induced neutralizing titers that were well above minimum levels previously proposed to be required for a successful vaccine and titers significantly higher than those stimulated by RSV infection. In addition, Pre-F/F VLP immunization stimulated higher IgG titers to the soluble pre-fusion F protein than RSV infection. Cotton rats immunized with Pre-F/F VLPs were protected from RSV challenge, and, importantly, the VLP immunization did not result in enhanced respiratory disease upon RSV challenge. CONCLUSIONS VLPs containing the pre-fusion RSV F protein have characteristics required for a safe, effective RSV vaccine.
Collapse
Affiliation(s)
- Lori McGinnes Cullen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | | | - Trudy G Morrison
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
52
|
Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells. PLoS One 2015; 10:e0139916. [PMID: 26468884 PMCID: PMC4607166 DOI: 10.1371/journal.pone.0139916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease.
Collapse
|
53
|
Green CA, Scarselli E, Sande CJ, Thompson AJ, de Lara CM, Taylor KS, Haworth K, Del Sorbo M, Angus B, Siani L, Di Marco S, Traboni C, Folgori A, Colloca S, Capone S, Vitelli A, Cortese R, Klenerman P, Nicosia A, Pollard AJ. Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults. Sci Transl Med 2015; 7:300ra126. [PMID: 26268313 PMCID: PMC4669850 DOI: 10.1126/scitranslmed.aac5745] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) causes respiratory infection in annual epidemics, with infants and the elderly at particular risk of developing severe disease and death. However, despite its importance, no vaccine exists. The chimpanzee adenovirus, PanAd3-RSV, and modified vaccinia virus Ankara, MVA-RSV, are replication-defective viral vectors encoding the RSV fusion (F), nucleocapsid (N), and matrix (M2-1) proteins for the induction of humoral and cellular responses. We performed an open-label, dose escalation, phase 1 clinical trial in 42 healthy adults in which four different combinations of prime/boost vaccinations were investigated for safety and immunogenicity, including both intramuscular (IM) and intranasal (IN) administration of the adenovirus-vectored vaccine. The vaccines were safe and well tolerated, with the most common reported adverse events being mild injection site reactions. No vaccine-related serious adverse events occurred. RSV neutralizing antibody titers rose in response to IM prime with PanAd3-RSV and after IM boost for individuals primed by the IN route. Circulating anti-F immunoglobulin G (IgG) and IgA antibody-secreting cells (ASCs) were observed after the IM prime and IM boost. RSV-specific T cell responses were increased after the IM PanAd3-RSV prime and were most efficiently boosted by IM MVA-RSV. Interferon-γ (IFN-γ) secretion after boost was from both CD4(+) and CD8(+) T cells, without detectable T helper cell 2 (TH2) cytokines that have been previously associated with immune pathogenesis following exposure to RSV after the formalin-inactivated RSV vaccine. In conclusion, PanAd3-RSV and MVA-RSV are safe and immunogenic in healthy adults. These vaccine candidates warrant further clinical evaluation of efficacy to assess their potential to reduce the burden of RSV disease.
Collapse
Affiliation(s)
- Christopher A Green
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK.
| | - Elisa Scarselli
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Charles J Sande
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Amber J Thompson
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Catherine M de Lara
- Experimental Medicine Division, Nuffield Department of Medicine, Peter Medawar Building, University of Oxford, Oxford OX1 3SY, UK
| | - Kathryn S Taylor
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Kathryn Haworth
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | | | - Brian Angus
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| | - Loredana Siani
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Stefania Di Marco
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Cinzia Traboni
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Antonella Folgori
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Stefano Colloca
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Stefania Capone
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Alessandra Vitelli
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy
| | | | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, Peter Medawar Building, University of Oxford, Oxford OX1 3SY, UK
| | - Alfredo Nicosia
- ReiThera SRL (formerly Okairos SRL), Viale Città d'Europa 679, 00144 Rome, Italy. CEINGE, Via Gaetano Salvatore 486, 80145 Naples, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7LE, UK
| |
Collapse
|
54
|
Polack FP. The changing landscape of respiratory syncytial virus. Vaccine 2015; 33:6473-8. [PMID: 26247900 DOI: 10.1016/j.vaccine.2015.06.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
Recognition of the acute and chronic burden of respiratory syncytial virus (RSV) lower respiratory tract infections (LRTI) sparked a wave of initiatives to develop preventive and therapeutic products against the pathogen in recent years. RSV is a leading cause of hospitalization in infants in industrialized and developing countries, has been causally linked to recurrent wheezing during childhood, associated with pediatric asthma, and is an important cause of mortality in the first months of life in the developing world. Significant changes in the epidemiology, clinical manifestations, and severe consequences of LRTI may emerge in the next decade with the advent of novel preventive strategies against RSV. This manuscript outlines some of these changes and discusses potential scenarios based on the current literature and experiences with other pathogens.
Collapse
Affiliation(s)
- Fernando P Polack
- Vanderbilt Vaccine Center at Vanderbilt University, Nashville, TN, United States; Fundacion INFANT, Buenos Aires, Argentina.
| |
Collapse
|
55
|
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization among infants. Despite the significant healthcare burden, there is no licensed RSV vaccine currently available. This problem is further exacerbated as a natural RSV infection fails to elicit the development of long-lived immunity. It is well established that RSV-specific antibodies play a critical role in mediating protection from severe disease. The CD8 T-cell response is critical for mediating virus clearance following an acute RSV infection. However, the relative contribution of memory CD8 T cells in providing protection against secondary RSV infections remains unclear. In addition, data from animal models indicate that memory CD8 T-cell responses can be pathogenic under certain conditions. Herein, we provide an overview of the CD8 T-cell response elicited by RSV infection and how our current knowledge may impact future studies and vaccine development.
Collapse
Affiliation(s)
- Cory J Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
56
|
Nonglycosylated G-Protein Vaccine Protects against Homologous and Heterologous Respiratory Syncytial Virus (RSV) Challenge, while Glycosylated G Enhances RSV Lung Pathology and Cytokine Levels. J Virol 2015; 89:8193-205. [PMID: 26018164 DOI: 10.1128/jvi.00133-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED New efforts are under way to develop a vaccine against respiratory syncytial virus (RSV) that will provide protective immunity without the potential for vaccine-associated disease enhancement such as that observed in infants following vaccination with formalin-inactivated RSV vaccine. In addition to the F fusion protein, the G attachment surface protein is a target for neutralizing antibodies and thus represents an important vaccine candidate. However, glycosylated G protein expressed in mammalian cells has been shown to induce pulmonary eosinophilia upon RSV infection in a mouse model. In the current study, we evaluated in parallel the safety and protective efficacy of the RSV A2 recombinant unglycosylated G protein ectodomain (amino acids 67 to 298) expressed in Escherichia coli (REG) and those of glycosylated G produced in mammalian cells (RMG) in a mouse RSV challenge model. Vaccination with REG generated neutralizing antibodies against RSV A2 in 7/11 BALB/c mice, while RMG did not elicit neutralizing antibodies. Total serum binding antibodies against the recombinant proteins (both REG and RMG) were measured by surface plasmon resonance (SPR) and were found to be >10-fold higher for REG- than for RMG-vaccinated animals. Reduction of lung viral loads to undetectable levels after homologous (RSV-A2) and heterologous (RSV-B1) viral challenge was observed in 7/8 animals vaccinated with REG but not in RMG-vaccinated animals. Furthermore, enhanced lung pathology and elevated Th2 cytokines/chemokines were observed exclusively in animals vaccinated with RMG (but not in those vaccinated with REG or phosphate-buffered saline [PBS]) after homologous or heterologous RSV challenge. This study suggests that bacterially produced unglycosylated G protein could be developed alone or as a component of a protective vaccine against RSV disease. IMPORTANCE New efforts are under way to develop vaccines against RSV that will provide protective immunity without the potential for disease enhancement. The G attachment protein represents an important candidate for inclusion in an effective RSV vaccine. In the current study, we evaluated the safety and protective efficacy of the RSV A2 recombinant unglycosylated G protein ectodomain produced in E. coli (REG) and those of glycosylated G produced in mammalian cells (RMG) in a mouse RSV challenge model (strains A2 and B1). The unglycosylated G generated high protective immunity and no lung pathology, even in animals that lacked anti-RSV neutralizing antibodies prior to RSV challenge. Control of viral loads correlated with antibody binding to the G protein. In contrast, the glycosylated G protein provided poor protection and enhanced lung pathology after RSV challenge. Therefore, bacterially produced unglycosylated G protein holds promise as an economical approach to a protective vaccine against RSV.
Collapse
|
57
|
Vaughan K, Ponomarenko J, Peters B, Sette A. Analysis of Human RSV Immunity at the Molecular Level: Learning from the Past and Present. PLoS One 2015; 10:e0127108. [PMID: 26001197 PMCID: PMC4441423 DOI: 10.1371/journal.pone.0127108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/10/2015] [Indexed: 11/18/2022] Open
Abstract
Human RSV is one of the most prevalent viral pathogens of early childhood for which no vaccine is available. Herein we provide an analysis of RSV epitope data to examine its application to vaccine design and development. Our objective was to provide an overview of antigenic coverage, identify critical antibody and T cell determinants, and then analyze the cumulative RSV epitope data from the standpoint of functional responses using a combinational approach to characterize antigenic structure and epitope location. A review of the cumulative data revealed, not surprisingly, that the vast majority of epitopes have been defined for the two major surface antigens, F and G. Antibody and T cell determinants have been reported from multiple hosts, including those from human subjects following natural infection, however human data represent a minority of the data. A structural analysis of the major surface antigen, F, showed that the majority of epitopes defined for functional antibodies (neutralizing and/or protective) were either shown to bind pre-F or to be accessible in both pre- and post-F forms. This finding may have has implications for on-going vaccine design and development. These interpretations are in agreement with previous work and can be applied in the larger context of functional epitopes on the F protein. It is our hope that this work will provide the basis for further RSV-specific epitope discovery and investigation into the nature of antigen conformation in immunogenicity.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| | - Julia Ponomarenko
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| |
Collapse
|
58
|
Abstract
Respiratory syncytial virus (RSV) can induce severe lower respiratory tract infections in infants and is the leading cause of bronchiolitis in children worldwide. RSV-induced inflammation is believed to contribute substantially to the severity of disease. T helper (Th)2-, Th9-, and Th17-related cytokines are all observed in infants hospitalized following a severe RSV infection. These cytokines cause an influx of inflammatory cells, resulting in mucus production and reduced lung function. Consistent with the data from RSV-infected infants, CD4 T cell production of Interleukin (IL)-9, IL-13, and IL-17 has all been shown to contribute to RSV-induced disease in a murine model of RSV infection. Conversely, murine studies indicate that the combined actions of regulatory factors such as CD4 regulatory T cells and IL-10 inhibit the inflammatory cytokine response and limit RSV-induced disease. In support of this, IL-10 polymorphisms are associated with susceptibility to severe disease in infants. Insufficient regulation and excess inflammation not only impact disease following primary RSV infection it can also have a major impact following vaccination. Prior immunization with a formalin-inactivated (FI-RSV) vaccine resulted in enhanced disease in infants following a natural RSV infection. A Th2 CD4 T cell response has been implicated to be a major contributor in mediating vaccine-enhanced disease. Thus, future RSV vaccines must induce a balanced CD4 T cell response in order to facilitate viral clearance while inducing proper regulation of the immune response.
Collapse
|
59
|
Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM. RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog 2015; 11:e1004757. [PMID: 25769044 PMCID: PMC4358888 DOI: 10.1371/journal.ppat.1004757] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/20/2015] [Indexed: 12/24/2022] Open
Abstract
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells. RSV is a significant healthcare burden and is the leading cause of bronchiolitis and pneumonia during childhood. The failure of the 1960's FI-RSV vaccine trial to not only elicit protection against RSV infection, but also provoke enhanced morbidity and mortality in vaccinees has significantly hampered development of new RSV vaccines for fear of disease potentiation. Therefore we sought to determine the specific immunological mechanisms that mediate FI-RSV VED to provide a framework to evaluate factors associated with disease exacerbation. Work presented herein demonstrate for the first time that individual disease manifestations associated with FI-RSV-immunization are mediated by distinct CD4 T cell subsets and not by eosinophils. Our results stress the need to evaluate multiple disease parameters for future RSV vaccine candidates. Failure to thoroughly assess the immune response and disease manifestations associated with new candidate vaccines may lead to undesired results in vaccine trials and further hinder future vaccine development.
Collapse
Affiliation(s)
- Cory J. Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stacey M. Hartwig
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
60
|
|
61
|
Guzman E, Taylor G. Immunology of bovine respiratory syncytial virus in calves. Mol Immunol 2014; 66:48-56. [PMID: 25553595 DOI: 10.1016/j.molimm.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection. With the increasing availability of immunological reagents, the calf can be used to dissect the pathogenesis of and mechanisms of immunity to RSV infection, to analyse the ways in which the virus proteins interact with components of the innate response, and to evaluate RSV vaccine strategies. Passively transferred, neutralising bovine monoclonal antibodies, which recognise the same epitopes in the HRSV and BRSV fusion (F) protein, can protect calves against BRSV infection, and depletion of different T cells subsets in calves has highlighted the importance of CD8(+) T cells in viral clearance. Calves can be used to model maternal-antibody mediated suppression of RSV vaccine efficacy, and to increase understanding of the mechanisms responsible for RSV vaccine-enhanced respiratory disease.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
62
|
Dual proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. J Virol 2014; 89:1564-78. [PMID: 25410867 DOI: 10.1128/jvi.01536-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.
Collapse
|
63
|
Lee JS, Cho MK, Hwang HS, Ko EJ, Lee YN, Kwon YM, Kim MC, Kim KH, Lee YT, Jung YJ, Kang SM. Ginseng diminishes lung disease in mice immunized with formalin-inactivated respiratory syncytial virus after challenge by modulating host immune responses. J Interferon Cytokine Res 2014; 34:902-14. [PMID: 25051168 PMCID: PMC4217040 DOI: 10.1089/jir.2013.0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
Formalin-inactivated respiratory syncytial virus (FI-RSV) immunization is known to cause severe pulmonary inflammatory disease after subsequent RSV infection. Ginseng has been used in humans for thousands of years due to its potential health benefits. We investigated whether ginseng would have immune modulating effects on RSV infection in mice previously immunized with FI-RSV. Oral administration of mice with ginseng increased IgG2a isotype antibody responses to FI-RSV immunization, indicating T-helper type 1 (Th1) immune responses. Ginseng-treated mice that were nonimmunized or previously immunized with FI-RSV showed improved protection against RSV challenge compared with control mice without ginseng treatment. Ginseng-mediated improved clinical outcomes after live RSV infection were evidenced by diminished weight losses, decreased interleukin-4 cytokine production but increased interferon-γ production, modulation of CD3 T-cell populations toward a Th1 response, and reduced inflammatory response. Ginseng-mediated protective host immune modulation against RSV pulmonary inflammation was observed in different strains of wild-type and mutant mice. These results indicate that ginseng can modulate host immune responses to FI-RSV immunization and RSV infection, resulting in protective effects against pulmonary inflammatory disease.
Collapse
Affiliation(s)
- Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Hwaseong, Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, Korea
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| |
Collapse
|
64
|
Lambert L, Sagfors AM, Openshaw PJM, Culley FJ. Immunity to RSV in Early-Life. Front Immunol 2014; 5:466. [PMID: 25324843 PMCID: PMC4179512 DOI: 10.3389/fimmu.2014.00466] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/12/2014] [Indexed: 02/01/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the commonest cause of severe respiratory infection in infants, leading to over 3 million hospitalizations and around 66,000 deaths worldwide each year. RSV bronchiolitis predominantly strikes apparently healthy infants, with age as the principal risk factor for severe disease. The differences in the immune response to RSV in the very young are likely to be key to determining the clinical outcome of this common infection. Remarkable age-related differences in innate cytokine responses follow recognition of RSV by numerous pattern recognition receptors, and the importance of this early response is supported by polymorphisms in many early innate genes, which associate with bronchiolitis. In the absence of strong, Th1 polarizing signals, infants develop T cell responses that can be biased away from protective Th1 and cytotoxic T cell immunity toward dysregulated, Th2 and Th17 polarization. This may contribute not only to the initial inflammation in bronchiolitis, but also to the long-term increased risk of developing wheeze and asthma later in life. An early-life vaccine for RSV will need to overcome the difficulties of generating a protective response in infants, and the proven risks associated with generating an inappropriate response. Infantile T follicular helper and B cell responses are immature, but maternal antibodies can afford some protection. Thus, maternal vaccination is a promising alternative approach. However, even in adults adaptive immunity following natural infection is poorly protective, allowing re-infection even with the same strain of RSV. This gives us few clues as to how effective vaccination could be achieved. Challenges remain in understanding how respiratory immunity matures with age, and the external factors influencing its development. Determining why some infants develop bronchiolitis should lead to new therapies to lessen the clinical impact of RSV and aid the rational design of protective vaccines.
Collapse
Affiliation(s)
- Laura Lambert
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Agnes M. Sagfors
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Fiona J. Culley
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
65
|
Effect of epitope-CpG-DNA-liposome complex without carriers on vaccination of respiratory syncytial virus infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-014-4215-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
Ko EJ, Kwon YM, Lee JS, Hwang HS, Yoo SE, Lee YN, Lee YT, Kim MC, Cho MK, Lee YR, Quan FS, Song JM, Lee S, Moore ML, Kang SM. Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:99-108. [PMID: 25109662 DOI: 10.1016/j.nano.2014.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/15/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FI-RSV) causing vaccination-associated eosinophilia, FdFG VLP immunization induced low bronchoalveolar cellularity, higher ratios of CD11c(+) versus CD11b(+) phenotypic cells and CD8(+) T versus CD4(+) T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, and histology results suggest that FdFG VLP can be comparable to live RSV in conferring protection against RSV and in preventing RSV disease. This study provides evidence that a combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV prophylactic vaccine inducing balanced innate and adaptive immune responses.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Si-Eun Yoo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Animal and Plant Quarantine Agency, Anyang City, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - You Ri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jae-Min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, Republic of Korea
| | - Sujin Lee
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Martin L Moore
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
67
|
Small Animal Models for Human Metapneumovirus: Cotton Rat is More Permissive than Hamster and Mouse. Pathogens 2014; 3:633-55. [PMID: 25438015 PMCID: PMC4243432 DOI: 10.3390/pathogens3030633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/13/2014] [Accepted: 06/30/2014] [Indexed: 11/17/2022] Open
Abstract
Human metapneumovirus (hMPV) is the second most prevalent causative agent of pediatric respiratory infections worldwide. Currently, there are no vaccines or antiviral drugs against this virus. One of the major hurdles in hMPV research is the difficulty to identify a robust small animal model to accurately evaluate the efficacy and safety of vaccines and therapeutics. In this study, we compared the replication and pathogenesis of hMPV in BALB/c mice, Syrian golden hamsters, and cotton rats. It was found that BALB/c mice are not permissive for hMPV infection despite the use of a high dose (6.5 log10 PFU) of virus for intranasal inoculation. In hamsters, hMPV replicated efficiently in nasal turbinates but demonstrated only limited replication in lungs. In cotton rats, hMPV replicated efficiently in both nasal turbinate and lung when intranasally administered with three different doses (4, 5, and 6 log10 PFU) of hMPV. Lungs of cotton rats infected by hMPV developed interstitial pneumonia with mononuclear cells infiltrates and increased lumen exudation. By immunohistochemistry, viral antigens were detected at the luminal surfaces of the bronchial epithelial cells in lungs. Vaccination of cotton rats with hMPV completely protected upper and lower respiratory tract from wildtype challenge. The immunization also elicited elevated serum neutralizing antibody. Collectively, these results demonstrated that cotton rat is a robust small animal model for hMPV infection.
Collapse
|
68
|
Srinivasa BT, Fixman ED, Ward BJ. Inhibition of STAT6 during vaccination with formalin-inactivated RSV prevents induction of Th2-cell-biased airway disease. Eur J Immunol 2014; 44:2349-59. [PMID: 24796717 DOI: 10.1002/eji.201344206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 11/09/2022]
Abstract
The pattern of immune response to a vaccine antigen can influence both efficacy and adverse events. Th2-cell-deviated responses have been implicated in both human and murine susceptibility to enhanced disease following formalin-inactivated (FI) vaccines for measles and RSV. In this study, we used the Th2-cell-deviated murine model of FI-RSV vaccination to test the ability of a dominant negative, cell-penetrating peptide inhibitor of STAT6 (STAT6 inhibitory peptide (IP)) to modulate the vaccine-induced predisposition to exaggerated inflammation during later RSV infection. Intranasal delivery of STAT6-IP in BALB/c mice at the time of distal intramuscular FI-RSV vaccination (Early Intervention) markedly decreased vaccine-enhanced, Th2-cell-dependent pathology upon subsequent RSV challenge. Administration of the STAT6-IP at the time of RSV challenge (Late Intervention) had no effect. Following RSV challenge, the STAT6-IP-treated mice in the Early Intervention group had lower airway eosinophils, increased lung IFN-γ levels, as well as increased IFN-γ-secreting CD4(+) and CD8(+) cells in the lungs. Our findings demonstrate the feasibility of targeting intracellular signaling pathways as a new way to modulate vaccine-induced responses.
Collapse
Affiliation(s)
- Bharat T Srinivasa
- Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
69
|
Decrease in formalin-inactivated respiratory syncytial virus (FI-RSV) enhanced disease with RSV G glycoprotein peptide immunization in BALB/c mice. PLoS One 2013; 8:e83075. [PMID: 24376637 PMCID: PMC3871585 DOI: 10.1371/journal.pone.0083075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV) vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vaccinated mice, we hypothesized that RSV G peptides that induce antibodies with similar reactivity may limit enhanced disease after subunit or other non-live RSV vaccines. In support of this hypothesis, we show that FI-RSV vaccinated mice administered RSV G peptide vaccines had a significant reduction in enhanced disease after RSV challenge. These data support the importance of RSV G during infection to RSV disease pathogenesis and suggest that use of appropriately designed G peptide vaccines to reduce the risk of enhanced disease with non-live RSV vaccines merits further study.
Collapse
|
70
|
Derscheid RJ, Gallup JM, Knudson CJ, Varga SM, Grosz DD, van Geelen A, Hostetter SJ, Ackermann MR. Effects of formalin-inactivated respiratory syncytial virus (FI-RSV) in the perinatal lamb model of RSV. PLoS One 2013; 8:e81472. [PMID: 24324695 PMCID: PMC3855688 DOI: 10.1371/journal.pone.0081472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV) conducted in the 1960’s that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3–5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.
Collapse
Affiliation(s)
- Rachel J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jack M. Gallup
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Cory J. Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Drew D. Grosz
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Albert van Geelen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Shannon J. Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mark R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
71
|
Rigter A, Widjaja I, Versantvoort H, Coenjaerts FEJ, van Roosmalen M, Leenhouts K, Rottier PJM, Haijema BJ, de Haan CAM. A protective and safe intranasal RSV vaccine based on a recombinant prefusion-like form of the F protein bound to bacterium-like particles. PLoS One 2013; 8:e71072. [PMID: 23951084 PMCID: PMC3741363 DOI: 10.1371/journal.pone.0071072] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important cause of respiratory tract disease in infants and the elderly. Currently, no licensed vaccine against RSV is available. Here we describe the development of a safe and effective intranasal subunit vaccine that is based on recombinant fusion (F) protein bound to the surface of immunostimulatory bacterium-like particles (BLPs) derived from the food-grade bacterium Lactococcus lactis. Different variants of F were analyzed with respect to their conformation and reactivity with neutralizing antibodies, assuming that F proteins mimicking the metastable prefusion form of RSV F expose a more extensive and relevant epitope repertoire than F proteins corresponding to the postfusion structure. Our results indicate that the recombinant soluble ectodomain of RSV F readily adopts a postfusion conformation, generation of which cannot be prevented by C-terminal addition of a trimerization motif, but whose formation is prevented by mutation of the two furin cleavage sites in F. While the putative postfusion form of F is recognized well by the monoclonal antibody Palivizumab, this is much less so for the more potently neutralizing, prefusion-specific antibodies D25 and AM22. Both addition of the trimerization motif and mutation of the furin cleavage sites increased the reactivity of F with D25 and AM22, with the highest reactivity being observed for F proteins in which both these features were combined. Intranasal vaccination of mice or cotton rats with BLPs loaded with this latter prefusion-like F protein (BLP-F), resulted in the potent induction of F-specific immunoglobulins and in significantly decreased virus titers in the lungs upon RSV challenge. Moreover, and in contrast to animals vaccinated with formalin-inactivated RSV, animals that received BLP-F exhibited high levels of F-specific secretory IgA in the nose and RSV-neutralizing antibodies in sera, but did not show symptoms of enhanced disease after challenge with RSV.
Collapse
Affiliation(s)
- Alan Rigter
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Mucosis B.V., Groningen, The Netherlands
| | - Ivy Widjaja
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Mucosis B.V., Groningen, The Netherlands
| | | | - Frank E. J. Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Peter J. M. Rottier
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
72
|
Benefit and harm from immunity to respiratory syncytial virus: implications for treatment. Curr Opin Infect Dis 2013; 25:687-94. [PMID: 23086186 DOI: 10.1097/qco.0b013e32835a1d92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Human respiratory syncytial virus (RSV) infection is a major cause of morbidity in children and of morbidity and mortality in elderly or immunocompromised adults. Given prophylactically, antibody can protect against infection, but natural levels are poorly protective. Vaccination may enhance disease, and there is no well tolerated and effective vaccine or antiviral treatment. Despite over 50 years of research, therapy remains nonspecific and supportive. RECENT FINDINGS Experimental human challenge in adult volunteers is beginning to elucidate the dynamics of viral shedding and causes of disease, but investigations of naturally infected children remain logistically challenging. RSV was known to bind several surface ligands, but the recent demonstration that nucleolin acts as a receptor for the RSV fusion protein was unexpected. Recent studies increasingly emphasize the relevance of innate immune responses and the dysregulation of inflammation as key factors in causing the pathological effects of infection. Studies in both human infants and mice indicate that interleukin-17 plays a role in some forms of RSV disease and regulatory T cells may be important in controlling inflammation. SUMMARY Improved understanding of the human immune response to RSV infection continues to be needed in order to accelerate the development of vaccines and new treatments for bronchiolitis.
Collapse
|
73
|
|
74
|
Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr Top Microbiol Immunol 2013; 372:3-38. [PMID: 24362682 DOI: 10.1007/978-3-642-38919-1_1] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies.
Collapse
|
75
|
Shaw CA, Galarneau JR, Bowenkamp KE, Swanson KA, Palmer GA, Palladino G, Markovits JE, Valiante NM, Dormitzer PR, Otten GR. The role of non-viral antigens in the cotton rat model of respiratory syncytial virus vaccine-enhanced disease. Vaccine 2013; 31:306-12. [DOI: 10.1016/j.vaccine.2012.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/02/2012] [Accepted: 11/04/2012] [Indexed: 11/29/2022]
|
76
|
González PA, Bueno SM, Carreño LJ, Riedel CA, Kalergis AM. Respiratory syncytial virus infection and immunity. Rev Med Virol 2012; 22:230-44. [DOI: 10.1002/rmv.1704] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/14/2011] [Accepted: 11/20/2011] [Indexed: 12/23/2022]
|
77
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
78
|
Abstract
Viral respiratory infections cause significant morbidity and mortality in infants and young children as well as in at-risk adults and the elderly. Although many viral pathogens are capable of causing respiratory disease, vaccine development has to focus on a limited number of pathogens, such as those that commonly cause serious lower respiratory illness (LRI). Whereas influenza virus vaccines have been available for some time (see the review by Clark and Lynch in this issue), vaccines against other medically important viruses such as respiratory syncytial virus (RSV), the parainfluenza viruses (PIVs), and metapneumovirus (MPVs) are not available. This review aims to provide a brief update on investigational vaccines against RSV, the PIVs, and MPV that have been evaluated in clinical trials or are currently in clinical development.
Collapse
Affiliation(s)
- Alexander C Schmidt
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 10001, USA.
| |
Collapse
|
79
|
Krause A, Xu Y, Ross S, Wu W, Joh J, Worgall S. Absence of vaccine-enhanced RSV disease and changes in pulmonary dendritic cells with adenovirus-based RSV vaccine. Virol J 2011; 8:375. [PMID: 21801372 PMCID: PMC3166937 DOI: 10.1186/1743-422x-8-375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023] Open
Abstract
The development of a vaccine against respiratory syncytial virus (RSV) has been hampered by the risk for vaccine-enhanced RSV pulmonary disease induced by immunization with formalin-inactivated RSV (FIRSV). This study focuses on the evaluation of vaccine-enhanced pulmonary disease following immunization with AdF.RGD, an integrin-targeted adenovirus vector that expresses the RSV F protein and includes an RGD (Arg-Gly-Asp) motif. Immunization of BALB/c mice with AdF.RGD, resulted in anti-RSV protective immunity and induced increased RSV-specific IFN-γ T cell responses compared to FIRSV. RSV infection 5 wk after immunization with FIRSV induced pulmonary inflammatory responses in the lung, that was not observed with AdF.RGD. Additionally, In the FIRSV-immunized mice following infection with RSV, pulmonary DC increased and Tregs decreased. This suggests that distinct responses of pulmonary DC and Tregs are a features of vaccine-enhanced RSV disease and that immunization with an RGD-modified Ad vaccine does not trigger vaccine-enhanced disease.
Collapse
Affiliation(s)
- Anja Krause
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
80
|
Modulation of immune responses by the antimicrobial peptide, epinecidin (Epi)-1, and establishment of an Epi-1-based inactivated vaccine. Biomaterials 2011; 32:3627-36. [DOI: 10.1016/j.biomaterials.2011.01.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/20/2011] [Indexed: 01/12/2023]
|
81
|
Cormier SA, You D, Honnegowda S. The use of a neonatal mouse model to study respiratory syncytial virus infections. Expert Rev Anti Infect Ther 2011; 8:1371-80. [PMID: 21133663 DOI: 10.1586/eri.10.125] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Respiratory syncytial virus (RSV) infection is the most significant cause of viral death in infants worldwide. The significant morbidity and mortality associated with this disease underscores the urgent need for the development of an RSV vaccine. The development of an RSV vaccine has been hampered by our limited understanding of the human host immune system, which plays a significant role in RSV pathogenesis, susceptibility and vaccine efficacy. As a result, animal models have been developed to better understand the mechanisms by which RSV causes disease. Within the past few years, a revolutionary variation on these animal models has emerged--age at time of initial infection--and early studies in neonatal mice (aged <7 days at time of initial infection) indicate the validity of this model to understand RSV infection in infants. This article reviews available information on current murine and emerging neonatal mouse RSV models.
Collapse
Affiliation(s)
- Stephania A Cormier
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | | | | |
Collapse
|
82
|
Kruijsen D, Schijf MA, Lukens MV, van Uden NO, Kimpen JL, Coenjaerts FE, van Bleek GM. Local innate and adaptive immune responses regulate inflammatory cell influx into the lungs after vaccination with formalin inactivated RSV. Vaccine 2011; 29:2730-41. [PMID: 21316502 DOI: 10.1016/j.vaccine.2011.01.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/21/2011] [Accepted: 01/27/2011] [Indexed: 11/29/2022]
Abstract
Inactivated respiratory syncytial virus (RSV) vaccines tend to predispose for immune mediated enhanced disease, characterized by Th2 responses and airway hypersensitivity reactions. We show in a C57BL/6 mouse model that the early innate response elicited by the challenge virus (RSV versus influenza virus) influences the outcome of the Th1/Th2 balance in the lung after intramuscular priming with inactivated vaccine. Priming of CD4(+)/IFN-γ(+) T cells by mature dendritic cells administered intravenously and/or priming of a virus specific CD8(+) T cell response ameliorated the Th2-mediated inflammatory response in the lung, suggesting that vaccination procedures are feasible that prevent vaccine induced immune pathology.
Collapse
Affiliation(s)
- Debby Kruijsen
- Department of Pediatrics, The Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
83
|
Graham BS. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 2011; 239:149-66. [PMID: 21198670 PMCID: PMC3023887 DOI: 10.1111/j.1600-065x.2010.00972.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Respiratory syncytial virus (RSV) is an important cause of respiratory disease causing high rates of hospitalizations in infants, significant morbidity in children and adults, and excess mortality in the elderly. Major barriers to vaccine development include early age of RSV infection, capacity of RSV to evade innate immunity, failure of RSV-induced adaptive immunity to prevent reinfection, history of RSV vaccine-enhanced disease, and lack of an animal model fully permissive to human RSV infection. These biological challenges, safety concerns, and practical issues have significantly prolonged the RSV vaccine development process. One great advantage compared to other difficult viral vaccine targets is that passively administered neutralizing monoclonal antibody is known to protect infants from severe RSV disease. Therefore, the immunological goals for vaccine development are to induce effective neutralizing antibody to prevent infection and to avoid inducing T-cell response patterns associated with enhanced disease. Live-attenuated RSV and replication-competent chimeric viruses are in advanced clinical trials. Gene-based strategies, which can control the specificity and phenotypic properties of RSV-specific T-cell responses utilizing replication-defective vectors and which may improve on immunity from natural infection, are progressing through preclinical testing. Atomic level structural information on RSV envelope glycoproteins in complex with neutralizing antibodies is guiding design of new vaccine antigens that may be able to elicit RSV-specific antibody responses without induction of RSV-specific T-cell responses. These new technologies may allow development of vaccines that can protect against RSV-mediated disease in infants and establish a new immunological paradigm in the host to achieve more durable protection against reinfection.
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| |
Collapse
|
84
|
Cautivo KM, Bueno SM, Cortes CM, Wozniak A, Riedel CA, Kalergis AM. Efficient lung recruitment of respiratory syncytial virus-specific Th1 cells induced by recombinant bacillus Calmette-Guérin promotes virus clearance and protects from infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:7633-45. [PMID: 21084664 DOI: 10.4049/jimmunol.0903452] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.
Collapse
Affiliation(s)
- Kelly M Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
85
|
Melendi GA, Bridget D, Monsalvo AC, Laham FF, Acosta P, Delgado MF, Polack FP, Irusta PM. Conserved cysteine residues within the attachment G glycoprotein of respiratory syncytial virus play a critical role in the enhancement of cytotoxic T-lymphocyte responses. Virus Genes 2010; 42:46-54. [PMID: 21053062 PMCID: PMC5454483 DOI: 10.1007/s11262-010-0545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/18/2010] [Indexed: 01/21/2023]
Abstract
The cytotoxic T-lymphocyte (CTL) response plays an important role in the control of respiratory syncytial virus (RSV) replication and the establishment of a Th1-CD4+ T cell response against the virus. Despite lacking Major Histocompatibility Complex I (MHC I)-restricted epitopes, the attachment G glycoprotein of RSV enhances CTL activity toward other RSV antigens, and this effect depends on its conserved central region. Here, we report that RSV-G can also improve CTL activity toward antigens from unrelated pathogens such as influenza, and that a mutant form of RSV-G lacking four conserved cysteine residues at positions 173, 176, 182, and 186 fails to enhance CTL responses. Our results indicate that these conserved residues are essential for the wide-spectrum pro-CTL activity displayed by the protein.
Collapse
|
86
|
Gene expression differences in lungs of mice during secondary immune responses to respiratory syncytial virus infection. J Virol 2010; 84:9584-94. [PMID: 20592085 DOI: 10.1128/jvi.00302-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced immunity has been shown to alter the course of a respiratory syncytial virus (RSV) infection both in murine models and in humans. To elucidate which mechanisms underlie the effect of vaccine-induced immunity on the course of RSV infection, transcription profiles in the lungs of RSV-infected mice were examined by microarray analysis. Three models were used: RSV reinfection as a model for natural immunity, RSV challenge after formalin-inactivated RSV vaccination as a model for vaccine-enhanced disease, and RSV challenge following vaccination with recombinant RSV virus lacking the G gene (DeltaG-RSV) as a model for vaccine-induced immunity. Gene transcription profiles, histopathology, and viral loads were analyzed at 1, 2, and 5 days after RSV challenge. On the first 2 days after challenge, all mice displayed an expression pattern in the lung similar of that found in primary infection, showing a strong innate immune response. On day 5 after RSV reinfection or after challenge following DeltaG-RSV vaccination, the innate immune response was waning. In contrast, in mice with vaccine-enhanced disease, the innate immune response 5 days after RSV challenge was still present even though viral replication was diminished. In addition, only in this group was Th2 gene expression induced. These findings support a hypothesis that vaccine-enhanced disease is mediated by prolonged innate immune responses and Th2 polarization in the absence of viral replication.
Collapse
|
87
|
Treanor JJ. Viral infections of the respiratory tract: prevention and treatment. Int J Antimicrob Agents 2010; 4:1-22. [PMID: 18611586 DOI: 10.1016/0924-8579(94)90060-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/1993] [Indexed: 10/27/2022]
Abstract
The rapid discovery of specific viral agents as the cause of many acute respiratory diseases was accompanied by considerable optimism that vaccines or other control measures could be developed quickly. Subsequent experience has demonstrated that effective control of these important public health problems has been an elusive goal. However, recent exciting developments in our understanding of the molecular biology and immunology of these viruses may provide the basis for more effective strategies in the future.
Collapse
Affiliation(s)
- J J Treanor
- Infectious Diseases Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|
88
|
Anderson R, Huang Y, Langley JM. Prospects for defined epitope vaccines for respiratory syncytial virus. Future Microbiol 2010; 5:585-602. [DOI: 10.2217/fmb.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The history of vaccines for respiratory syncytial virus (RSV) illustrates the complex immunity and immunopathology to this ubiquitous virus, starting from the failed formalin-inactivated vaccine trials performed in the 1960s. An attractive alternative to traditional live or killed virus vaccines is a defined vaccine composed of discrete antigenic epitopes for which immunological activities have been characterized as comprehensively as possible. Here we present cumulative data on murine and human CD4, CD8 and neutralization epitopes identified in RSV proteins along with information regarding their associated immune responses and host-dependent variability. Identification and characterization of RSV epitopes is a rapidly expanding topic of research with potential contributions to the tailored design of improved safe and effective vaccines.
Collapse
Affiliation(s)
- Robert Anderson
- Department of Microbiology & Immunology, Pediatrics and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Yan Huang
- Department of Microbiology & Immunology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| | - Joanne M Langley
- Department of Pediatrics, Community Health & Epidemiology and Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada
| |
Collapse
|
89
|
Mapletoft JW, Latimer L, Babiuk LA, van Drunen Littel-van den Hurk S. Intranasal immunization of mice with a bovine respiratory syncytial virus vaccine induces superior immunity and protection compared to those by subcutaneous delivery or combinations of intranasal and subcutaneous prime-boost strategies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:23-35. [PMID: 19864487 PMCID: PMC2812083 DOI: 10.1128/cvi.00250-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/27/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) infects cells of the respiratory mucosa, so it is desirable to develop a vaccination strategy that induces mucosal immunity. To achieve this, various delivery routes were compared for formalin-inactivated (FI) BRSV formulated with CpG oligodeoxynucleotide (ODN) and polyphosphazene (PP). Intranasal delivery of the FI-BRSV formulation was superior to subcutaneous delivery in terms of antibody, cell-mediated, and mucosal immune responses, as well as reduction in virus replication after BRSV challenge. Although intranasal delivery of FI-BRSV also induced higher serum and lung antibody titers and gamma interferon (IFN-gamma) production in the lungs than intranasal-subcutaneous and/or subcutaneous-intranasal prime-boost strategies, no significant differences were observed in cell-mediated immune responses or virus replication in the lungs of challenged mice. Interleukin 5 (IL-5), eotaxin, and eosinophilia were enhanced after BRSV challenge in the lungs of subcutaneously immunized mice compared to unvaccinated mice, but not in the lungs of mice immunized intranasally or through combinations of the intranasal and subcutaneous routes. These results suggest that two intranasal immunizations with FI-BRSV formulated with CpG ODN and PP are effective and safe as an approach to induce systemic and mucosal responses, as well to reduce virus replication after BRSV challenge. Furthermore, intranasal-subcutaneous and subcutaneous-intranasal prime-boost strategies were also safe and almost as efficacious. In addition to the implications for the development of a protective BRSV vaccine for cattle, formulation with CpG ODN and PP could also prove important in the development of a mucosal vaccine that induces protective immunity against human RSV.
Collapse
Affiliation(s)
- John W Mapletoft
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | | | | | | |
Collapse
|
90
|
Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice, with no evidence of immunopathology. J Virol 2009; 84:1110-23. [PMID: 19889768 DOI: 10.1128/jvi.01709-09] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious respiratory infections in children as well as a serious cause of disease in elderly and immunosuppressed populations. There are no licensed vaccines available to prevent RSV disease. We have developed a virus-like particle (VLP) vaccine candidate for protection from RSV. The VLP is composed of the NP and M proteins of Newcastle disease virus (NDV) and a chimeric protein containing the cytoplasmic and transmembrane domains of the NDV HN protein and the ectodomain of the human RSV G protein (H/G). Immunization of mice with 10 or 40 microg total VLP-H/G protein by intraperitoneal or intramuscular inoculation stimulated antibody responses to G protein which were as good as or better than those stimulated by comparable amounts of UV-inactivated RSV. Immunization of mice with two doses or even a single dose of these particles resulted in the complete protection of mice from RSV replication in the lungs. Immunization with these particles induced neutralizing antibodies with modest titers. Upon RSV challenge of VLP-H/G-immunized mice, no enhanced pathology in the lungs was observed, although lungs of mice immunized in parallel with formalin-inactivated RSV (FI-RSV) showed the significant pathology that has previously been documented after immunization with FI-RSV. Thus, the VLP-H/G candidate vaccine was immunogenic in BALB/c mice and prevented replication of RSV in murine lungs, with no evidence of immunopathology. These data support further development of virus-like particle vaccine candidates for protection against RSV.
Collapse
|
91
|
Oshansky CM, Zhang W, Moore E, Tripp RA. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 2009; 4:279-97. [PMID: 19327115 DOI: 10.2217/fmb.09.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the isolation of respiratory syncytial virus (RSV) in 1956, its significance as an important human pathogen in infants, the elderly and the immunocompromised has been established. Many important mechanisms contributing to RSV infection, replication and disease pathogenesis have been uncovered; however, there is still insufficient knowledge in these and related areas, which must be addressed to facilitate the development of safe and effective vaccines and therapeutic treatments. A better understanding of the molecular pathogenesis of RSV infection, particularly the host-cell response and transcription profiles to RSV infection, is required to advance disease intervention strategies. Substantial information is accumulating regarding how RSV proteins modulate molecular signaling and regulation of cytokine and chemokine responses to infection, molecular signals regulating programmed cell death, and innate and adaptive immune responses to infection. This review discusses RSV manipulation of the host response to infection and related disease pathogenesis.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
92
|
Characterization of respiratory syncytial virus M- and M2-specific CD4 T cells in a murine model. J Virol 2009; 83:4934-41. [PMID: 19264776 DOI: 10.1128/jvi.02140-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M(213-223) (FKYIKPQSQFI) and M2(27-37) (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-gamma), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-A(b)-restricted pattern. Construction of fluorochrome-conjugated peptide-I-A(b) class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-gamma expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M(209-223) peptide-activated CD4 T cells reduced IFN-gamma and IL-2 production in M- and M2-specific CD8 T-cell responses to D(b)-M(187-195) and K(d)-M2(82-90) peptides more than M2(25-39) peptide-stimulated CD4 T cells. This correlated with the fact that I-A(b)-M(209-223) tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-A(b)-M2(26-39) tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-A(b) tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.
Collapse
|
93
|
Murine host responses to respiratory syncytial virus (RSV) following intranasal administration of a Protollin-adjuvanted, epitope-enhanced recombinant G protein vaccine. J Clin Virol 2009; 44:287-91. [PMID: 19233722 DOI: 10.1016/j.jcv.2009.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Immunization of mice with the G protein of respiratory syncytial virus (RSV) characteristically induces an immune response that is partially protective, but which can prime for pulmonary eosinophilia. We have shown previously that the N191A mutation in a recombinant RSV G protein fragment is associated with reduced pulmonary eosinophilic infiltration when administered with alum subcutaneously in BALB/c mice followed by RSV challenge. We hypothesize that the performance of this "epitope enhanced" recombinant G protein fragment may be further improved by combining with the newly developed adjuvant, Protollin, coupled with intranasal delivery. OBJECTIVES To investigate efficacy of an intranasally delivered, Protollin-adjuvanted, epitope-enhanced recombinant G protein vaccine in BALB/c mice. STUDY DESIGN Recombinant protein, designated Trx-G128-229, consisted of a bacterially expressed central fragment (amino acids 128-229) of the RSV Long strain G protein fused to a fragment of thioredoxin (Trx). BALB/c mice were chosen to evaluate the effectiveness of wild type and epitope-enhanced Trx-G128-229 as a nasal vaccine with the adjuvant Protollin. RESULTS The intranasal administration of Trx-G128-229 with Protollin conferred similar protection against RSV challenge as subcutaneously administered Trx-G128-229 with alum, but with markedly reduced eosinophilia and the Th2 cytokine IL-13. CONCLUSIONS These results support the concept of an RSV vaccine optimized by combined strategies, including epitope enhancement and judicious selection of adjuvants.
Collapse
|
94
|
|
95
|
Bueno SM, González PA, Cautivo KM, Mora JE, Leiva ED, Tobar HE, Fennelly GJ, Eugenin EA, Jacobs WR, Riedel CA, Kalergis AM. Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci U S A 2008; 105:20822-7. [PMID: 19075247 PMCID: PMC2634951 DOI: 10.1073/pnas.0806244105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, because of an inefficient immunological memory, RSV infection provides limited immune protection against reinfection. Furthermore, RSV can induce an inadequate Th2-type immune response that causes severe respiratory tract inflammation and obstruction. It is thought that effective RSV clearance requires the induction of balanced Th1-type immunity, involving the activation of IFN-gamma-secreting cytotoxic T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which has been used in newborns for decades in several countries as a tuberculosis vaccine. Here, we show that immunization with recombinant BCG strains expressing RSV antigens promotes protective Th1-type immunity against RSV in mice. Activation of RSV-specific T cells producing IFN-gamma and IL-2 was efficiently obtained after immunization with recombinant BCG. This type of T cell immunity was protective against RSV challenge and caused a significant reduction of inflammatory cell infiltration in the airways. Furthermore, mice immunized with recombinant BCG showed no weight loss and reduced lung viral loads. These data strongly support recombinant BCG as an efficient vaccine against RSV because of its capacity to promote protective Th1 immunity.
Collapse
Affiliation(s)
- Susan M. Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Pablo A. González
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Kelly M. Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Jorge E. Mora
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Eduardo D. Leiva
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Hugo E. Tobar
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Glenn J. Fennelly
- The Lewis M. Fraad Department of Pediatrics, Jacobi Medical Center, Bronx, NY 10461
- Departments of Pediatrics and
| | | | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Laboratorio de Biologia Celular y Farmacologia, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alexis M. Kalergis
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
96
|
Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, Diaz L, Trento A, Chang HY, Mitzner W, Ravetch J, Melero JA, Irusta PM, Polack FP. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 2008; 15:34-41. [PMID: 19079256 PMCID: PMC2987729 DOI: 10.1038/nm.1894] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/24/2008] [Indexed: 11/29/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of hospitalization in infants. A formalin-inactivated RSV vaccine was used to immunize children in 1966 and elicited non-protective, pathogenic antibody. Two immunized infants died and 80% were hospitalized after subsequent RSV exposure. No vaccine was licensed since. A widely accepted hypothesis attributed vaccine failure to formalin disruption of protective antigens. Instead, we show that lack of protection was not due to alterations caused by formalin, but to low antibody avidity for protective epitopes. Lack of antibody affinity maturation followed poor Toll-like receptor stimulation. This study explains why the inactivated RSV vaccine failed to protect and consequently led to severe disease, hampering vaccine development for forty-two years. Also, it suggests that inactivated RSV vaccines may be rendered safe and effective by inclusion of TLR-agonists in their formulation. In addition, it identifies affinity maturation as a critical factor for the safe immunization of infants.
Collapse
|
97
|
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants and is an important source of morbidity and mortality in the elderly and immunocompromised. This review will discuss the humoral and cellular adaptive immune responses to RSV infection and how these responses are shaped in the immature immune system of the infant and the aged environment of the elderly. Furthermore, we will provide an overview of our current understanding of the role the various arms of the adaptive immune response play in mediating the delicate balance between the successful elimination of the virus from the host and the induction of immunopathology. Efficacious immunization against RSV remains a high priority within the field and we will highlight recent advances made in vaccine design.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology, 51 Newton Road, 3−532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA Tel.: +1 319 335 8433 Fax: +1 319 335 9006
| | - Steven M Varga
- Department of Microbiology, Interdisciplinary Graduate Program in Immunology, 51 Newton Road, 3−532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA Tel.: +1 319 335 7784 Fax: +1 319 335 9006
| |
Collapse
|
98
|
Bueno SM, González PA, Pacheco R, Leiva ED, Cautivo KM, Tobar HE, Mora JE, Prado CE, Zúñiga JP, Jiménez J, Riedel CA, Kalergis AM. Host immunity during RSV pathogenesis. Int Immunopharmacol 2008; 8:1320-9. [PMID: 18687294 DOI: 10.1016/j.intimp.2008.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/30/2008] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
Abstract
Infection by respiratory syncytial virus (RSV) is the leading cause of childhood hospitalization as well as a major health and economic burden worldwide. Unfortunately, RSV infection provides only limited immune protection to reinfection, mostly due to inadequate immunological memory, which leads to an exacerbated inflammatory response in the respiratory tract promoting airway damage during virus clearance. This exacerbated and inefficient immune-inflammatory response triggered by RSV, has often been attributed to the induction of a Th2-biased immunity specific for some of the RSV antigens. These features of RSV infection suggest that the virus might possess molecular mechanisms to enhance allergic-type immunity in the host in order to prevent clearance by cytotoxic T cells and ensure survival and dissemination to other hosts. In this review, we discuss recent findings that contribute to explain the components of the innate and adaptive immune response that are involved in RSV-mediated disease exacerbation. Further, the virulence mechanisms used by RSV to avoid activation of protective immune responses are described.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Nucleus on Immunology and Immunotherapy. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Mapletoft JW, Oumouna M, Kovacs-Nolan J, Latimer L, Mutwiri G, Babiuk LA, van Drunen Littel-van den Hurk S. Intranasal immunization of mice with a formalin-inactivated bovine respiratory syncytial virus vaccine co-formulated with CpG oligodeoxynucleotides and polyphosphazenes results in enhanced protection. J Gen Virol 2008; 89:250-260. [PMID: 18089749 DOI: 10.1099/vir.0.83300-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As respiratory syncytial virus (RSV) targets the mucosal surfaces of the respiratory tract, induction of both systemic and mucosal immunity will be critical for optimal protection. In this study, the ability of an intranasally delivered, formalin-inactivated bovine RSV (FI-BRSV) vaccine co-formulated with CpG oligodeoxynucleotides (ODN) and polyphosphazenes (PP) to induce systemic and mucosal immunity, as well as protection from BRSV challenge, was evaluated. Intranasal immunization of mice with FI-BRSV formulated with CpG ODN and PP resulted in both humoral and cell-mediated immunity, characterized by enhanced production of BRSV-specific serum IgG, as well as increased gamma interferon and decreased interleukin-5 production by in vitro-restimulated splenocytes. These mice also developed mucosal immune responses, as was evident from increased production of BRSV-specific IgG and IgA in lung-fragment cultures. Indeed, the increases in serum and mucosal IgG, and in particular mucosal IgA and virus-neutralizing antibodies, were the most critical differences observed between FI-BRSV formulated with both CpG ODN and PP in comparison to formulations with CpG ODN, non-CpG ODN or PP individually. Finally, FI-BRSV/CpG/PP was the only formulation that resulted in a significant reduction in viral replication upon BRSV challenge. Co-formulation of CpG ODN and PP is a promising new vaccine platform technology that may have applications in mucosal immunization in humans.
Collapse
Affiliation(s)
- John W Mapletoft
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Mustapha Oumouna
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Jennifer Kovacs-Nolan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Laura Latimer
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - George Mutwiri
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | | |
Collapse
|
100
|
The role of T cells in the enhancement of respiratory syncytial virus infection severity during adult reinfection of neonatally sensitized mice. J Virol 2008; 82:4115-24. [PMID: 18272579 DOI: 10.1128/jvi.02313-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of infantile bronchiolitis and hospitalization. Severe RSV disease is associated with the development of wheezing in later life. In a mouse model of the delayed effects of RSV, the age at primary infection determines responses to reinfection in adulthood. During primary RSV infection, neonatal BALB/c mice developed only mild disease and recruited CD8 cells that were defective in gamma interferon production. Secondary reinfection of neonatally primed mice caused enhanced inflammation and profuse lung T-cell recruitment. CD4 cell depletion during secondary RSV challenge attenuated disease (measured by weight loss); depletion of CD8 cells also markedly attenuated disease severity but enhanced lung eosinophilia, and depletion of both CD4 and CD8 cells together completely abrogated weight loss. Depletion of CD8 (but not CD4) cells during primary neonatal infection was protective against weight loss during adult challenge. Therefore, T cells, in particular CD8 T cells, play a central role in the outcome of neonatal infection by enhancing disease during secondary challenge. These findings demonstrate a crucial role for T cells in the regulation of immune responses after neonatal infection.
Collapse
|