51
|
Abstract
A mandatory step in the formation of an infectious retroviral particle is the acquisition of its envelope glycoprotein (Env). This step invariably occurs by Env positioning itself in the host membrane at the location of viral budding and being incorporated along with the host membrane into the viral particle. In some ways, this step of the viral life cycle would appear to be imprecise. There is no specific sequence in Env or in the retroviral structural protein, Gag, that is inherently required for the production of an infectious Env-containing particle. Additionally, Env-defective proviruses can efficiently produce infectious particles with any of a number of foreign retroviral Env glycoproteins or even glycoproteins from unrelated viral families, a process termed pseudotyping. However, mounting evidence suggests that Env incorporation is neither passive nor random. Rather, several redundant mechanisms appear to contribute to the carefully controlled process of Env acquisition, many of which are apparently used by a wide variety of enveloped viruses. This review presents and discusses the evidence for these different mechanisms contributing to incorporation.
Collapse
Affiliation(s)
- Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, 65211, USA.
| |
Collapse
|
52
|
Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate. J Virol 2011; 85:3584-95. [PMID: 21270152 DOI: 10.1128/jvi.02266-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag assembles into virus particles predominantly at the plasma membrane (PM). Previously, we observed that phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] is essential for Gag binding to the plasma membrane and virus release in HeLa cells. In the current study, we found that PI(4,5)P(2) also facilitates Gag binding to the PM and efficient virus release in T cells. Notably, serial passage of HIV-1 in an A3.01 clone that expresses polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P(2), yielded an adapted mutant with a Leu-to-Arg change at matrix residue 74 (74LR). Virus replication in T cells expressing 5ptaseIV was accelerated by the 74LR mutation relative to replication of wild type HIV-1 (WT). This accelerated replication of the 74LR mutant was not due to improved virus release. In control T cells, the 74LR mutant releases virus less efficiently than does the WT, whereas in cells expressing 5ptaseIV, the WT and the 74LR mutant are similarly inefficient in virus release. Unexpectedly, we found that the 74LR mutation increased virus infectivity and compensated for the inefficient virus release. Altogether, these results indicate that PI(4,5)P(2) is essential for Gag-membrane binding, targeting of Gag to the PM, and efficient virus release in T cells, which in turn likely promotes efficient virus spread in T cell cultures. In T cells with low PI(4,5)P(2) levels, however, the reduced virus particle production can be compensated for by a mutation that enhances virus infectivity.
Collapse
|
53
|
Jolly C. T cell polarization at the virological synapse. Viruses 2010; 2:1261-1278. [PMID: 21994679 PMCID: PMC3185707 DOI: 10.3390/v2061261] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/20/2010] [Accepted: 05/28/2010] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell spread of HIV-1 between CD4(+) T cells takes place at multimolecular structures called virological synapses. A defining feature of the virological synapse is polarization of viral assembly and budding at sites of T cell-T cell contact. Recent work is beginning to address how viral proteins are targeted to the virological synapse and the molecular mechanisms that regulate HIV-1 egress by cell-to-cell spread. This review discusses our current understanding of these processes and considers how T cell polarization during other forms of intercellular communication may provide insight into HIV-1 assembly and dissemination.
Collapse
Affiliation(s)
- Clare Jolly
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, W1T 4JF, UK
| |
Collapse
|
54
|
Affiliation(s)
- Joshua S. Klein
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JK); (PB)
| | - Pamela J. Bjorkman
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JK); (PB)
| |
Collapse
|
55
|
Chow JYH, Jeffries CM, Kwan AH, Guss JM, Trewhella J. Calmodulin disrupts the structure of the HIV-1 MA protein. J Mol Biol 2010; 400:702-14. [PMID: 20488189 DOI: 10.1016/j.jmb.2010.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 01/06/2023]
Abstract
The MA protein from HIV-1 is a small, multifunctional protein responsible for regulating various stages of the viral replication cycle. To achieve its diverse tasks, MA interacts with host cell proteins and it has been reported that one of these is the ubiquitous calcium-sensing calmodulin (CaM), which is up-regulated upon HIV-1 infection. The nature of the CaM-MA interaction has been the subject of structural studies, using peptides based on the MA sequence, that have led to conflicting conclusions. The results presented here show that CaM binds intact MA with 1:1 stoichiometry in a Ca(2+)-dependent manner and that the complex adopts a highly extended conformation in solution as revealed by small-angle X-ray scattering. Alterations in tryptophan fluorescence suggest that the two buried tryptophans (W16 and W36) located in the first two alpha-helices of MA mediate the CaM interaction. Major chemical shift changes occur in the NMR spectrum of MA upon complex formation, whereas chemical shift changes in the CaM spectrum are quite modest and are assigned to residues within the normal target protein-binding hydrophobic clefts of CaM. The NMR data indicate that CaM binds MA via its N- and C-terminal lobes and induces a dramatic conformational change involving a significant loss of secondary and tertiary structure within MA. Circular dichroism experiments suggest that MA loses approximately 20% of its alpha-helical content upon CaM binding. Thus, CaM binding is expected to impact upon the accessibility of interaction sites within MA that are involved in its various functions.
Collapse
Affiliation(s)
- John Y H Chow
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
56
|
Abstract
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus-liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of 'leaky' fusion to the observed prefusion structures is discussed.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
57
|
Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 2009; 83:12196-203. [PMID: 19776118 DOI: 10.1128/jvi.01197-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P(2) through headgroup and 2' acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P(2)-containing membranes, that PI(4,5)P(2) binding tolerates 2' acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P(2) analogues do not compete effectively with PI(4,5)P(2)-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P(2)-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.
Collapse
|
58
|
Jin J, Sherer NM, Heidecker G, Derse D, Mothes W. Assembly of the murine leukemia virus is directed towards sites of cell-cell contact. PLoS Biol 2009; 7:e1000163. [PMID: 19636361 PMCID: PMC2709449 DOI: 10.1371/journal.pbio.1000163] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 06/17/2009] [Indexed: 11/18/2022] Open
Abstract
We have investigated the underlying mechanism by which direct cell-cell contact enhances the efficiency of cell-to-cell transmission of retroviruses. Applying 4D imaging to a model retrovirus, the murine leukemia virus, we directly monitor and quantify sequential assembly, release, and transmission events for individual viral particles as they happen in living cells. We demonstrate that de novo assembly is highly polarized towards zones of cell-cell contact. Viruses assembled approximately 10-fold more frequently at zones of cell contact with no change in assembly kinetics. Gag proteins were drawn to adhesive zones formed by viral Env glycoprotein and its cognate receptor to promote virus assembly at cell-cell contact. This process was dependent on the cytoplasmic tail of viral Env. Env lacking the cytoplasmic tail while still allowing for contact formation, failed to direct virus assembly towards contact sites. Our data describe a novel role for the viral Env glycoprotein in establishing cell-cell adhesion and polarization of assembly prior to becoming a fusion protein to allow virus entry into cells.
Collapse
Affiliation(s)
- Jing Jin
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan M. Sherer
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gisela Heidecker
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - David Derse
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Walther Mothes
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
59
|
Alfadhli A, Barklis RL, Barklis E. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 2009; 387:466-72. [PMID: 19327811 DOI: 10.1016/j.virol.2009.02.048] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 12/31/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P(2)). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P(2). Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Microbiology, Oregon Health & Science University, Portland, 97201-3098, USA
| | | | | |
Collapse
|
60
|
Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J Virol 2009; 83:5375-87. [PMID: 19297499 DOI: 10.1128/jvi.00109-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly occurs predominantly at the plasma membrane of infected cells. The targeting of assembly to intracellular compartments such as multivesicular bodies (MVBs) generally leads to a significant reduction in virus release efficiency, suggesting that MVBs are a nonproductive site for HIV-1 assembly. In the current study, we make use of an HIV-1 Gag-matrix mutant, 29/31KE, that is MVB targeted. We previously showed that this mutant is severely defective for virus particle production in HeLa cells but more modestly affected in primary macrophages. To more broadly examine the consequences of MVB targeting for virus production, we investigated 29/31KE particle production in a range of cell types. Surprisingly, this mutant supported highly efficient assembly and release in T cells despite its striking MVB Gag localization. Manipulation of cellular endocytic pathways revealed that unlike Vpu-defective HIV-1, which demonstrated intracellular Gag localization as a result of Gag endocytosis from the plasma membrane, 29/31KE mutant Gag was targeted directly to an MVB compartment. The 29/31KE mutant was unable to support multiple-round replication; however, this defect could be reversed by truncating the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 and by the acquisition of a 16EK change in matrix. The 16EK/29/31KE matrix mutant replicated efficiently in the MT-4 T-cell line despite maintaining an MVB-targeting phenotype. These results indicate that MVB-targeted Gag can be efficiently released from T cells and primary macrophages, suggesting that under some circumstances, late endosomal compartments can serve as productive sites for HIV-1 assembly in these physiologically relevant cell types.
Collapse
|
61
|
Bhatia AK, Kaushik R, Campbell NA, Pontow SE, Ratner L. Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail. Virology 2008; 384:233-41. [PMID: 19059618 DOI: 10.1016/j.virol.2008.10.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/14/2008] [Accepted: 10/30/2008] [Indexed: 12/21/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) domain is involved in both early and late events of the viral life cycle. Simultaneous mutation of critical serine residues in MA has been shown previously to dramatically reduce phosphorylation of MA. However, the role of phosphorylation in viral replication remains unclear. Viruses harboring serine to alanine substitutions at positions 9, 67, 72, and 77 are severely impaired in their ability to infect target cells. In addition, the serine mutant viruses are defective in their ability to fuse with target cell membranes. Interestingly, both the fusion defect and the infectivity defect can be rescued by truncation of the long cytoplasmic tail of gp41 envelope protein (gp41CT). Sucrose density gradient analysis also reveals that these mutant viruses have reduced levels of gp120 envelope protein incorporated into the virions as compared to wild type virus. Truncation of the gp41CT rescues the envelope incorporation defect. Here we propose a model in which mutation of specific serine residues prevents MA interaction with lipid rafts during HIV-1 assembly and thereby impairs recruitment of envelope to the sites of viral budding.
Collapse
Affiliation(s)
- Ajay K Bhatia
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
62
|
Murakami T. Roles of the interactions between Env and Gag proteins in the HIV-1 replication cycle. Microbiol Immunol 2008; 52:287-95. [PMID: 18557900 DOI: 10.1111/j.1348-0421.2008.00008.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Env and Gag proteins of HIV-1 are the two major structural proteins of this retrovirus. The interactions between Env and Gag proteins and their regulation in HIV-1 are required for several steps of the replication cycle, involving not only virus assembly, specifically Env incorporation, but also entry steps after virus maturation. A large number of host factors and certain membrane microdomains appear to engage both in transport/trafficking of Env and/or Gag proteins, and in the interactions of these two proteins. The present review briefly summarizes our current knowledge regarding the roles of the interactions between Env and Gag proteins in the virus replication cycle.
Collapse
|
63
|
Izumi Y, Watanabe H, Watanabe N, Aoyama A, Jinbo Y, Hayashi N. Solution X-ray Scattering Reveals a Novel Structure of Calmodulin Complexed with a Binding Domain Peptide from the HIV-1 Matrix Protein p17. Biochemistry 2008; 47:7158-66. [DOI: 10.1021/bi702416b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yoshinobu Izumi
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroki Watanabe
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Noriko Watanabe
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Aki Aoyama
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yuji Jinbo
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nobuhiro Hayashi
- Graduate Program of Human Sensing and Functional Sensor Engineering, Yamagata University, 4-3-16, Jo-nan, Yonezawa, Yamagata 992-8510, Japan, and Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
64
|
Jung C, Le Doux JM. Lentiviruses inefficiently incorporate human parainfluenza type 3 envelope proteins. Biotechnol Bioeng 2008; 99:1016-27. [PMID: 17705232 DOI: 10.1002/bit.21622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that the envelope glycoproteins of human parainfluenza type 3 (HPIV3), F and HN, are able to pseudotype lentiviruses, but the titers of these viruses are too low for use in clinical gene transfer. In this study we investigated the cause of these low titers. We compared the mRNA and protein expression levels of HN and F in transfected cells and in cells infected with wild-type HPIV3. Transfected cells contained similar levels of HN and F cytosolic mRNA, but fewer cell-surface HN and F proteins (3.8- and 1.3-fold less, respectively), than cells infected with wild-type HPIV3. To increase expression of HN in transfected cells, we codon-optimized HN and used it to transfect lentivirus producer cells. Cell surface expression of HN, as well as the amount of HN incorporated into virus particles, increased two- to threefold. Virus titers increased 1.2- to 6.4-fold, and the transduction efficiency of polarized MDCK cells via their apical surfaces increased 1.4-fold. Interestingly, even though codon optimization improved the expression levels of HN and virus titers, we found that HPIV3 pseudotyped viruses contained about 14-fold fewer envelope proteins than lentiviruses pseudotyped with the amphotropic envelope protein. Taken together, our findings suggest that titers are low, not because virus producer cells express levels of HPIV3 envelope proteins that are too low, but because too few of these proteins are incorporated by the lentiviruses for them to be able to efficiently transduce cells.
Collapse
Affiliation(s)
- Cindy Jung
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia 30332-0535, USA
| | | |
Collapse
|
65
|
Manrique JM, Affranchino JL, González SA. In vitro binding of simian immunodeficiency virus matrix protein to the cytoplasmic domain of the envelope glycoprotein. Virology 2008; 374:273-9. [PMID: 18255119 DOI: 10.1016/j.virol.2008.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/19/2022]
Abstract
Incorporation of the envelope (Env) glycoprotein into budding virions is a key step in the replication cycle of lentiviruses. Previously, we provided genetic and biochemical evidence indicating that Env packaging into simian immunodeficiency virus (SIV) particles is mediated by the association of the Env cytoplasmic domain (CD) with the matrix (MA) domain of Gag. In this study, we developed an in vitro binding assay that, based on recombinant proteins expressed in bacteria, allowed us to demonstrate the physical interaction between the SIV Env CD and the MA in the absence of other viral or cellular proteins. We show that this association is blocked by mutations in each of the interacting domains that have been reported to interfere in vivo with the incorporation of Env into SIV virions. Moreover, we determined that the binding of SIV MA to the Env CD is saturable with a dissociation constant of 7x10(-7) M. Interestingly, the SIV MA is capable of specifically interacting in vitro with the human immunodeficiency virus type 1 Env CD, but not with that of the distantly related feline immunodeficiency virus. Our results strongly support the notion that the association between the SIV MA and Env CD plays a central role in the process of SIV Env incorporation into Gag-made particles.
Collapse
Affiliation(s)
- Julieta M Manrique
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Villanueva 1324, C1426BMJ Buenos Aires, Argentina
| | | | | |
Collapse
|
66
|
Vzorov AN, Weidmann A, Kozyr NL, Khaoustov V, Yoffe B, Compans RW. Role of the long cytoplasmic domain of the SIV Env glycoprotein in early and late stages of infection. Retrovirology 2007; 4:94. [PMID: 18081926 PMCID: PMC2242802 DOI: 10.1186/1742-4690-4-94] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 12/14/2007] [Indexed: 02/04/2023] Open
Abstract
Background The Env glycoproteins of retroviruses play an important role in the initial steps of infection involving the binding to cell surface receptors and entry by membrane fusion. The Env glycoprotein also plays an important role in viral assembly at a late step of infection. Although the Env glycoprotein interacts with viral matrix proteins and cellular proteins associated with lipid rafts, its possible role during the early replication events remains unclear. Truncation of the cytoplasmic tail (CT) of the Env glycoprotein is acquired by SIV in the course of adaptation to human cells, and is known to be a determinant of SIV pathogenicity. Results We compared SIV viruses with full length or truncated (T) Env glycoproteins to analyze possible differences in entry and post-entry events, and assembly of virions. We observed that early steps in replication of SIV with full length or T Env were similar in dividing and non-dividing cells. However, the proviral DNA of the pathogenic virus clone SIVmac239 with full length Env was imported to the nucleus about 20-fold more efficiently than proviral DNA of SIVmac239T with T Env, and 100-fold more efficiently than an SIVmac18T variant with a single mutation A239T in the SU subunit and with a truncated cytoplasmic tail (CT). In contrast, proviral DNA of SIVmac18 with a full length CT and with a single mutation A239T in the SU subunit was imported to the nucleus about 50-fold more efficiently than SIVmac18T. SIV particles with full length Env were released from rhesus monkey PBMC, whereas a restriction of release of virus particles was observed from human 293T, CEMx174, HUT78 or macrophages. In contrast, SIV with T Envs were able to overcome the inhibition of release in human HUT78, CEMx174, 293T or growth-arrested CEMx174 cells and macrophages resulting in production of infectious particles. We found that the long CT of the Env glycoprotein was required for association of Env with lipid rafts. An Env mutant C787S which eliminated palmitoylation did not abolish Env incorporation into lipid rafts, but prevented virus assembly. Conclusion The results indicate that the long cytoplasmic tail of the SIV Env glycoprotein may govern post-entry replication events and plays a role in the assembly process.
Collapse
Affiliation(s)
- Andrei N Vzorov
- Dept. of Microbiology and Immunology and Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Scholz I, Still A, Dhenub TC, Coday K, Webb M, Barklis E. Analysis of human immunodeficiency virus matrix domain replacements. Virology 2007; 371:322-35. [PMID: 17996264 DOI: 10.1016/j.virol.2007.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/21/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
The matrix (MA) domain of the HIV-1 structural precursor Gag (PrGag) protein targets PrGag proteins to membrane assembly sites, and facilitates incorporation of envelope proteins into virions. To evaluate the specific requirements for the MA membrane-binding domain (MBD) in HIV-1 assembly and replication, we examined viruses in which MA was replaced by alternative MBDs. Results demonstrated that the pleckstrin homology domains of AKT protein kinase and phospholipase C delta1 efficiently directed the assembly and release of virus-like particles (VLPs) from cells expressing chimeric proteins. VLP assembly and release also were mediated in a phorbol ester-dependent fashion by the cysteine-rich binding domain of phosphokinase Cgamma. Although alternative MBDs promoted VLP assembly and release, the viruses were not infectious. Notably, PrGag processing was reduced, while cleavage of GagPol precursors resulted in the accumulation of Pol-derived intermediates within virions. Our results indicate that the HIV-1 assembly machinery is flexible with regard to its means of membrane association, but that alternative MBDs can interfere with the elaboration of infectious virus cores.
Collapse
Affiliation(s)
- Isabel Scholz
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
68
|
Blay WM, Kasprzyk T, Misher L, Richardson BA, Haigwood NL. Mutations in envelope gp120 can impact proteolytic processing of the gp160 precursor and thereby affect neutralization sensitivity of human immunodeficiency virus type 1 pseudoviruses. J Virol 2007; 81:13037-49. [PMID: 17855534 PMCID: PMC2169095 DOI: 10.1128/jvi.01215-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The design of an efficient human immunodeficiency virus (HIV) immunogen able to generate broad neutralizing antibodies (NAbs) remains an elusive goal. As more data emerge, it is becoming apparent that one important aspect of such an immunogen will be the proper representation of the envelope protein (Env) as it exists on native virions. Important questions that are yet to be fully addressed include what factors dictate Env processing, how different Env forms are represented on the virion, and ultimately how these issues influence the development and efficacy of NAbs. Recent data have begun to illuminate the extent to which changes in gp41 can impact the overall structure and neutralizing sensitivity of Env. Here, we present evidence to suggest that minor mutations in gp120 can significantly impact Env processing. We analyzed the gp120 sequences of 20 env variants that evolved in multiple macaques over 8 months of infection with simian/human immunodeficiency virus 89.6P. Variant gp120 sequences were subcloned into gp160 expression plasmids with identical cleavage motifs and gp41 sequences. Cells cotransfected with these plasmids and delta env genomes were able to produce competent virus. The resulting pseudoviruses incorporated high levels of Env onto virions that exhibited a range of degrees of virion-associated Env cleavage (15 to 40%). Higher levels of cleavage correlated with increased infectivity and increased resistance to macaque plasma, HIV immunoglobulin, soluble CD4, and human monoclonal antibodies 4E10, 2F5, and b12. Based on these data, we discuss a model whereby changes in gp120 of 89.6P impact Env processing and thereby mediate escape from a range of neutralizing agents.
Collapse
Affiliation(s)
- Wendy M Blay
- Seattle Biomedical Research Institute, 307 Westlake Ave. N, Seattle, WA 98019, USA
| | | | | | | | | |
Collapse
|
69
|
Chan WE, Chen SSL. The dominant-negative action of a fusion protein containing the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 in virus replication. J Biomed Sci 2007; 14:717-29. [PMID: 17610148 DOI: 10.1007/s11373-007-9186-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022] Open
Abstract
We previously described a novel mode of downregulation of human immunodeficiency virus type 1 (HIV-1) Gag expression by a cytoplasmic domain fusion protein of the envelope (Env) transmembrane protein, beta-galactosidase (beta-gal)/706-856, which contains the cytoplasmic tail of gp41 fused at the C terminus of Escherichia coli beta-gal. In the present study, we showed that this mediator conferred a dose-dependent dominant interference with virus infectivity. In the context of an HIV-1 provirus, this inhibitor downregulated steady-state Env expression. Paradoxically, Env overexpression suppressed beta-gal/706-856-mediatd Gag downregulation. Sucrose gradient ultracentrifugation and confocal microscopy revealed that Gag, Env, and beta-gal/706-856 had stable interactions and formed aggregated complexes in perinuclear regions. Moreover, Env overexpression hindered colocalization of Gag with beta-gal/706-856 in the perinuclear region. Further cytoplasmic domain mapping analyses showed a correlation between the ability of cytoplasmic subdomains to downregulate Gag expression and the ability of these subdomains to stably interact with Gag. These studies show that redirection of Gag from its cytoplasmic synthesis site to a perinuclear compartment is a prerequisite for beta-gal/706-856-mediated Gag downregulation. The results also illustrate that the dynamic interplay among Gag, Env, and beta-gal/706-856 can modulate Gag and Env expression, thus controlling HIV-1 infection.
Collapse
Affiliation(s)
- Woan-Eng Chan
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Yen-Chiu-Yuan Road, Section 2, Nankang, Taipei 11529, Taiwan, ROC
| | | |
Collapse
|
70
|
Abstract
The HIV-1 structural protein matrix (MA) is involved in a number of essential steps during infection and appears to possess multiple, seemingly conflicting targeting signals. Although MA has long been known to be crucial for virion assembly, details regarding this function, and the domains responsible for mediating it, are still emerging. MA has also been implicated in nuclear import of HIV cDNA and is purported to contain a nuclear targeting signal. Little is known about how these opposing plasma membrane and nuclear targeting signals are regulated and which signals predominate at various stages of infection. Additionally, MA has recently been implicated in a number of novel roles during infection including viral entry/uncoating, cytoskeletal-mediated transport, and targeting viral assembly to lipid rafts. Here we discuss our current understanding of MA's functions during infection and explore the recent advancements made in elucidating the mechanism of these processes. It appears that MA possesses a cache of targeting signals that are likely to be regulated throughout the infectious cycle by a combination of structural and biochemical modifications including phosphorylation, myristoylation, and multimerization. The ability of HIV to modify the properties of MA at specific stages of infection is central to the multifunctional behavior of MA and the efficiency of HIV infection. The recently reported success of drugs specifically designed to block MA function (Haffar O, Dubrovsky L, and Lowe R et al. J Virol 2005;79:13028-13036) confirms the importance of this protein for HIV infection and highlights a potentially new avenue in multivalent drug therapy.
Collapse
Affiliation(s)
- Anna C Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
71
|
Bukrinskaya A. HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 2007; 124:1-11. [PMID: 17210199 DOI: 10.1016/j.virusres.2006.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 01/17/2023]
Abstract
Significant progress has been achieved in the last few years concerning the human immunodeficiency virus (HIV-1) life cycle, mostly in the fields of cellular receptors for the virus, virus assembly and budding of virus particles from the cell surface. Meanwhile, some aspects, such as postentry events, virus maturation and the regulatory role of individual viral proteins remain poorly defined. This review summarizes some recent findings concerning the role of Gag Pr55 and its proteolytic processing in the HIV-1 life cycle with particular emphasis on the functions of matrix protein p17 (MA), the protein which plays a key role in regulation of the early and late steps of viral morphogenesis. Based on our recent observations, the possibility is discussed that two subsets of MA exist, one cleaved from the Gag precursor in the host cell (cMA), and the other cleaved in the virions (vMA). It is suggested that two MA fractions possess diverse functions and are involved in different stages of virus morphogenesis as key regulators of the viral life cycle.
Collapse
Affiliation(s)
- Alissa Bukrinskaya
- D.I.Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Moscow 123098, RF, Russia.
| |
Collapse
|
72
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
73
|
Alfadhli A, Huseby D, Kapit E, Colman D, Barklis E. Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer. J Virol 2006; 81:1472-8. [PMID: 17108052 PMCID: PMC1797500 DOI: 10.1128/jvi.02122-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane-binding matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) structural precursor Gag (PrGag) protein oligomerizes in solution as a trimer and crystallizes in three dimensions as a trimer unit. A number of models have been proposed to explain how MA trimers might align with respect to PrGag capsid (CA) N-terminal domains (NTDs), which assemble hexagonal lattices. We have examined the binding of naturally myristoylated HIV-1 matrix (MyrMA) and matrix plus capsid (MyrMACA) proteins on membranes in vitro. Unexpectedly, MyrMA and MyrMACA proteins both assembled hexagonal cage lattices on phosphatidylserine-cholesterol membranes. Membrane-bound MyrMA proteins did not organize into trimer units but, rather, organized into hexamer rings. Our results yield a model in which MA domains stack directly above NTD hexamers in immature particles, and they have implications for HIV assembly and interactions between MA and the viral membrane glycoproteins.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Vollum Institute and Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Mail Code L220, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | | | | | | | |
Collapse
|
74
|
Lopez-Vergès S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci U S A 2006; 103:14947-52. [PMID: 17003132 PMCID: PMC1595456 DOI: 10.1073/pnas.0602941103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The presence of the envelope glycoprotein Env in HIV-1 virions is essential for infectivity. To date, the molecular mechanism by which Env is packaged into virions has been largely unknown. Here, we show that TIP47 (tail-interacting protein of 47 kDa), which has been shown to interact with Env, also binds the MA (matrix) domain of HIV-1 Gag protein and that these three proteins form a ternary complex. Mutations in Gag that abrogate interaction with TIP47 inhibit Env incorporation and virion infectivity as well as colocalization between Gag and Env. We also show that TIP47 silencing impairs Env incorporation and infectivity and abolishes coimmunoprecipitation of Gag with Env. In contrast, overexpression of TIP47 increases Env packaging. Last, we demonstrate that TIP47 can interact simultaneously with Env and Gag. Taken together, our results show that TIP47 is a cellular cofactor that plays an essential role in Env incorporation, allowing the encounter and the physical association between HIV-1 Gag and Env proteins during the viral assembly process.
Collapse
Affiliation(s)
- Sandra Lopez-Vergès
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Grégory Camus
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Guillaume Blot
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Roxane Beauvoir
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
| | - Richard Benarous
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
- *To whom correspondence may be addressed at:
Institut Cochin, 27 Rue du Faubourg Saint Jacques, F-75014 Paris, France. E-mail:
or
| | - Clarisse Berlioz-Torrent
- Institut Cochin, Département Maladies Infectieuses, F-75014 Paris, France; Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, F-75014 Paris, France; and Faculté de Médecine René Descartes, Université Paris 5, Unité Mixte de Recherche 3, F-75014 Paris, France
- *To whom correspondence may be addressed at:
Institut Cochin, 27 Rue du Faubourg Saint Jacques, F-75014 Paris, France. E-mail:
or
| |
Collapse
|
75
|
Andersen KB, Diep HA, Zedeler A. Murine leukemia virus transmembrane protein R-peptide is found in small virus core-like complexes in cells. J Gen Virol 2006; 87:1583-1588. [PMID: 16690922 DOI: 10.1099/vir.0.81527-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The core of the retrovirus Murine leukemia virus (MLV) consists of the Gag precursor protein and viral RNA. It assembles at the cytoplasmic face of the cell membrane where, by an unclear mechanism, it collects viral envelope proteins embedded in the cell membrane and buds off. The C-terminal half of the short cytoplasmic tail of the envelope transmembrane protein (TM) is cleaved off to yield R-peptide and fusion-active TM. In Moloney MLV particles, R-peptide was found to bind to core particles. In cells, R-peptide and low amounts of uncleaved TM were found to be associated with small core-like complexes, i.e. mild detergent-insoluble, Gag-containing complexes with a density of 1.23 g ml(-1) and a size of 150-200 S. Our results suggest that TM associates with the assembling core particle through the R-peptide before budding and that this is the mechanism by which the budding virus acquires the envelope proteins.
Collapse
Affiliation(s)
- Klaus Bahl Andersen
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Huong Ai Diep
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anne Zedeler
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
76
|
Davis MR, Jiang J, Zhou J, Freed EO, Aiken C. A mutation in the human immunodeficiency virus type 1 Gag protein destabilizes the interaction of the envelope protein subunits gp120 and gp41. J Virol 2006; 80:2405-17. [PMID: 16474147 PMCID: PMC1395406 DOI: 10.1128/jvi.80.5.2405-2417.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Gag protein of human immunodeficiency virus type 1 (HIV-1) associates with the envelope protein complex during virus assembly. The available evidence indicates that this interaction involves recognition of the gp41 cytoplasmic tail (CT) by the matrix protein (MA) region of Pr55(Gag). Here we show that substitution of Asp for Leu at position 49 (L49D) in MA results in a specific reduction in particle-associated gp120 without affecting the levels of gp41. Mutant virions were markedly reduced in single-cycle infectivity despite a relatively modest defect in fusion with target cells. Studies with HIV-1 particles containing decreased levels of envelope proteins suggested that the L49D mutation also inhibits a postentry step in infection. Truncation of the gp41 tail, or pseudotyping by vesicular stomatitis virus glycoprotein, restored both the fusion and infectivity of L49D mutant virions to wild-type levels. Truncation of gp41 also resulted in equivalent levels of gp120 on particles with and without the MA mutation and enhanced the replication of the L49D mutant virus in T cells. The impaired fusion and infectivity of L49D mutant particles were also complemented by a single point mutation in the gp41 CT that disrupted the tyrosine-containing endocytic motif. Our results suggest that an altered interaction between the MA domain of Gag and the gp41 cytoplasmic tail leads to dissociation of gp120 from gp41 during HIV-1 particle assembly, thus resulting in impaired fusion and infectivity.
Collapse
Affiliation(s)
- Melody R Davis
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | |
Collapse
|
77
|
Pisoni G, Bertoni G, Boettcher P, Ponti W, Moroni P. Phylogenetic analysis of the gag region encoding the matrix protein of small ruminant lentiviruses: Comparative analysis and molecular epidemiological applications. Virus Res 2006; 116:159-67. [PMID: 16293335 DOI: 10.1016/j.virusres.2005.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 09/12/2005] [Accepted: 09/28/2005] [Indexed: 11/25/2022]
Abstract
Little sequence information exists on the matrix-protein (MA) encoding region of small ruminant lentiviruses (SRLV). Fifty-two novel sequences were established and permitted a first phylogenetic analysis of this region of the SRLV genome. The variability of the MA encoding region is higher compared to the gag region encoding the capsid protein and surprisingly close to that reported for the env gene. In contrast to primate lentiviruses, the deduced amino acid sequences of the N- and C-terminal domains of MA are variable. This permitted to pinpoint a basic domain in the N-terminal domain that is conserved in all lentiviruses and likely to play an important functional role. Additionally, a seven amino acid insertion was detected in all MVV strains, which may be used to differentiate CAEV and MVV isolates. A molecular epidemiology analysis based on these sequences indicates that the Italian lentivirus strains are closely related to each other and to the CAEV-CO strain, a prototypic strain isolated three decades ago in the US. This suggests a common origin of the SRLV circulating in the monitored flocks, possibly related to the introduction of infected goats in a negative population. Finally, this study shows that the MA region is suitable for phylogenetic studies and may be applied to monitor SRLV eradication programs.
Collapse
Affiliation(s)
- Giuliano Pisoni
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milano, via Celoria 10, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
78
|
Ndung'u T, Sepako E, McLane MF, Chand F, Bedi K, Gaseitsiwe S, Doualla-Bell F, Peter T, Thior I, Moyo SM, Gilbert PB, Novitsky VA, Essex M. HIV-1 subtype C in vitro growth and coreceptor utilization. Virology 2006; 347:247-60. [PMID: 16406460 DOI: 10.1016/j.virol.2005.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 10/28/2005] [Accepted: 11/19/2005] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus type 1 subtype C (HIV-1C) accounts for about 50% of all HIV infections in the pandemic and is the predominant subtype in the heavily burdened region of southern Africa. HIV-1C possesses unique genetic and phenotypic features that might be associated with biological differences compared to other subtypes. Here, we generated virus isolates from individuals at different stages of HIV-1C infection and investigated the chemokine receptor repertoire that the derived HIV-1C isolates may utilize for entry. Our results show that the R5 phenotype predominates among viruses in Botswana, with a lesser contribution of viruses showing the dualtropic X4R5 phenotype. No viruses of pure X4 phenotype were found, which suggests no discernable evolution of HIV-1C to a monotropic X4 phenotype as the epidemic ages in Botswana. Usage of other coreceptors was rare and apparently insignificant. These results enhance our understanding of HIV-1C biology, with implications for designing and testing therapeutic and prophylactic agents.
Collapse
Affiliation(s)
- Thumbi Ndung'u
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Private Bag BO320, Bontleng, Gaborone, Botswana, Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Song C, Micoli K, Bauerova H, Pichova I, Hunter E. Amino acid residues in the cytoplasmic domain of the Mason-Pfizer monkey virus glycoprotein critical for its incorporation into virions. J Virol 2005; 79:11559-68. [PMID: 16140733 PMCID: PMC1212598 DOI: 10.1128/jvi.79.18.11559-11568.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of an infectious retrovirus requires the incorporation of the envelope glycoprotein complex during the process of particle budding. We have recently demonstrated that amino acid substitutions of a tyrosine residue in the cytoplasmic domain block glycoprotein incorporation into budding Mason-Pfizer monkey virus (M-PMV) particles and abrogate infectivity (C. Song, S. R. Dubay, and E. Hunter, J. Virol. 77:5192-5200, 2003). To investigate the contribution of other amino acids in the cytoplasmic domain to the process of glycoprotein incorporation, we introduced alanine-scanning mutations into this region of the transmembrane protein. The effects of the mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of two cytoplasmic residues, valine 20 and histidine 21, inhibits viral protease-mediated cleavage of the cytoplasmic domain that is observed during virion maturation, but the mutant virions show only moderately reduced infectivity. We also demonstrate that the cytoplasmic domain of the M-PMV contains three amino acid residues that are absolutely essential for incorporation of glycoprotein into virions. In addition to the previously identified tyrosine at residue 22, an isoleucine at position 18 and a leucine at position 25 each mediate the process of incorporation and efficient release of virions. While isoleucine 18 may be involved in direct interactions with immature capsids, antibody uptake studies showed that leucine 25 and tyrosine 22 are part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein. These results demonstrate that the cytoplasmic domain of M-PMV Env, in part through its YXXL-mediated endocytosis and intracellular trafficking signals, plays a critical role in the incorporation of glycoprotein into virions.
Collapse
Affiliation(s)
- Chisu Song
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
80
|
Provitera P, El-Maghrabi R, Scarlata S. The effect of HIV-1 Gag myristoylation on membrane binding. Biophys Chem 2005; 119:23-32. [PMID: 16183191 DOI: 10.1016/j.bpc.2005.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/01/2005] [Accepted: 08/16/2005] [Indexed: 11/30/2022]
Abstract
During the viral life cycle, an HIV protein, Gag, assembles at the host membrane, specifically at lipid raft regions, at very high concentrations leading to viral particle budding. Gag is post-translationally modified with an N-terminal myristate group which is thought to target Gag to lipid rafts thus aiding in assembly. Here we have analyzed the membrane binding of myristoylated HIV-1 Gag and a non-myristoylated form of HIV-1 Gag to various membrane models. After assessing the extent of myristoylation by HPLC and radiometric assays, we compared membrane binding using fluorescence methods. We found that myristoylated Gag shows a greater than twofold increase in binding affinity to model rafts. A structural model to explain these results is presented.
Collapse
Affiliation(s)
- Paxton Provitera
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11796-8661, USA
| | | | | |
Collapse
|
81
|
Martin G, Beauséjour Y, Thibodeau J, Tremblay MJ. Envelope glycoproteins are dispensable for insertion of host HLA-DR molecules within nascent human immunodeficiency virus type 1 particles. Virology 2005; 335:286-90. [PMID: 15840527 DOI: 10.1016/j.virol.2005.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
HLA-DR is a host-derived protein present at the surface of HIV-1. To clarify the mechanism through which this molecule is inserted within viruses, we monitored whether the incorporation process might be influenced by the level of virus-encoded envelope (Env) glycoproteins. Wild-type virions and viruses either lacking or bearing lower levels of Env were produced in different cell types. Results from a virus capture test indicate that HLA-DR is efficiently incorporated and at comparable levels in the tested virus preparations. Therefore, Env does not play an active role in the acquisition of host HLA-DR by emerging HIV-1 particles.
Collapse
Affiliation(s)
- Geneviève Martin
- Laboratory of Human Immuno-Retrovirology, Research Center in Infectious Diseases, RC709, CHUL Research Center, 2705 Laurier Boulevard, Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
82
|
Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS, Woodruff E, Wang JJ, Spearman P. AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 2005; 120:663-74. [PMID: 15766529 DOI: 10.1016/j.cell.2004.12.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 12/26/2022]
Abstract
Gag proteins direct the process of retroviral particle assembly and form the major protein constituents of the viral core. The matrix region of the HIV-1 Gag polyprotein plays a critical role in the transport of Gag to the plasma membrane assembly site. Recent evidence indicates that Gag trafficking to late endosomal compartments, including multivesicular bodies, occurs prior to viral particle budding from the plasma membrane. Here we demonstrate that the matrix region of HIV-1 Gag interacts directly with the delta subunit of the AP-3 complex, and that this interaction plays an important functional role in particle assembly. Disruption of this interaction eliminated Gag trafficking to multivesicular bodies and diminished HIV particle formation. These studies illuminate an early step in retroviral particle assembly and provide evidence that the trafficking of Gag to late endosomes is part of a productive particle assembly pathway.
Collapse
Affiliation(s)
- Xinhong Dong
- Department of Pediatrics and Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Deml L, Speth C, Dierich MP, Wolf H, Wagner R. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol 2005; 42:259-77. [PMID: 15488613 DOI: 10.1016/j.molimm.2004.06.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several previous reports have clearly demonstrated the strong effectiveness of human immunodeficiency virus (HIV) Gag polyprotein-based virus-like particles (VLP) to stimulate humoral and cellular immune responses in complete absence of additional adjuvants. Yet, the mechanisms underlying the strong immunogenicity of these particulate antigens are still not very clear. However, current reports strongly indicate that these VLP act as "danger signals" to trigger the innate immune system and possess potent adjuvant activity to enhance the immunogenicity of per se only weakly immunogenic peptides and proteins. Here, we review the current understanding of how various particle-associated substances and other impurities may contribute to the observed immune-activating properties of these complex immunogens.
Collapse
Affiliation(s)
- Ludwig Deml
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Straurr-Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
84
|
Manrique ML, González SA, Affranchino JL. Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses. Virology 2004; 329:157-67. [PMID: 15476883 DOI: 10.1016/j.virol.2004.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 06/22/2004] [Accepted: 07/29/2004] [Indexed: 11/16/2022]
Abstract
To investigate the functional relationship between the matrix (MA) proteins of feline and simian immunodeficiency viruses (FIV and SIV, respectively), we generated chimeric proviruses in which the MA-coding region of an SIV infectious molecular clone was partially or fully replaced by its FIV counterpart. Chimeric SIV proviruses containing the amino-terminal 36 residues or the central and carboxy-terminal regions of the FIV MA assembled into virions as efficiently as wild-type SIV. However, the resulting virions were noninfectious in single-cycle infectivity assays. Furthermore, a chimeric SIV provirus containing the entire FIV MA was found to be severely impaired in virion production due to inefficient membrane binding of the chimeric Gag polyprotein. Interestingly, the assembly defective phenotype of this chimeric Gag precursor could be reversed either by introducing the G31K/G33K double amino acid substitution in the FIV-derived MA domain or by coexpression with wild-type SIV Gag. Of note, a chimeric FIV provirus expressing the SIV MA not only assembled into particles as efficiently as wild-type FIV, but also replicated in feline T cells with wild-type kinetics. Our results thus provide novel information about the functional homology between the MA proteins of distantly related lentiviruses.
Collapse
Affiliation(s)
- Mariana L Manrique
- Centro de Virología Animal (CEVAN-CONICET), C1414DEM Buenos Aires, Argentina
| | | | | |
Collapse
|
85
|
Barnard RJO, Narayan S, Dornadula G, Miller MD, Young JAT. Low pH is required for avian sarcoma and leukosis virus Env-dependent viral penetration into the cytosol and not for viral uncoating. J Virol 2004; 78:10433-41. [PMID: 15367609 PMCID: PMC516436 DOI: 10.1128/jvi.78.19.10433-10441.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel entry mechanism has been proposed for the avian sarcoma and leukosis virus (ASLV), whereby interaction with specific cell surface receptors activates or primes the viral envelope glycoprotein (Env), rendering it sensitive to subsequent low-pH-dependent fusion triggering in acidic intracellular organelles. However, ASLV fusion seems to proceed to a lipid mixing stage at neutral pH, leading to the suggestion that low pH might instead be required for a later stage of viral entry such as uncoating (L. J. Earp, S. E. Delos, R. C. Netter, P. Bates, and J. M. White. J. Virol. 77:3058-3066, 2003). To address this possibility, hybrid virus particles were generated with the core of human immunodeficiency virus type 1 (HIV-1), a known pH-independent virus, and with subgroups A or B ASLV Env proteins. Infection of cells by these pseudotyped virions was blocked by lysosomotropic agents, as judged by inhibition of HIV-1 DNA synthesis. Furthermore, by using HIV-1 cores that contain a Vpr-beta-lactamase fusion protein (Vpr-BlaM) to monitor viral penetration into the cytosol, we demonstrated that virions bearing ASLV Env, but not HIV-1 Env, enter the cytosol in a low-pH-dependent manner. This effect was independent of the presence of the cytoplasmic tail of ASLV Env. These studies provide strong support for the model, indicating that low pH is required for ASLV Env-dependent viral penetration into the cytosol and not for viral uncoating.
Collapse
Affiliation(s)
- Richard J O Barnard
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, USA
| | | | | | | | | |
Collapse
|
86
|
Wong SBJ, Buck CB, Shen X, Siliciano RF. An Evaluation of Enforced Rapid Proteasomal Degradation as a Means of Enhancing Vaccine-Induced CTL Responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:3073-83. [PMID: 15322167 DOI: 10.4049/jimmunol.173.5.3073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 Gag protein is an attractive target for CTL-based vaccine strategies because it shows less sequence variability than other HIV-1 proteins. In an attempt to increase the immunogenicity of HIV-1 Gag, we created Gag variants that were targeted to the proteasomal pathway for rapid degradation. This enhanced rate of degradation was associated with increased presentation of MHC class I-associated antigenic peptides on the cell surface. Despite this, immunizing mice with either plasmid DNA or recombinant vaccinia vectors expressing unstable Gag failed to produce significant increases in bulk CTL responses or Ag-specific production of IFN-gamma by CD8(+) T cells compared with mice immunized with stable forms of Gag. Production of IFN-gamma by CD4(+) T cells was also impaired, and we speculate that the abrogation of CD4(+) T cell help was responsible for the impaired CTL response. These results suggest that vaccine strategies designed to increase the density of peptide-MHC class I complexes on the surfaces of APC may not necessarily enhance immunogenicity with respect to CTL responses.
Collapse
Affiliation(s)
- S B Justin Wong
- Program in Cellular and Molecular Medicine, Department of Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
87
|
Beauséjour Y, Tremblay MJ. Envelope glycoproteins are not required for insertion of host ICAM-1 into human immunodeficiency virus type 1 and ICAM-1-bearing viruses are still infectious despite a suboptimal level of trimeric envelope proteins. Virology 2004; 324:165-72. [PMID: 15183063 DOI: 10.1016/j.virol.2004.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 02/10/2004] [Accepted: 03/10/2004] [Indexed: 11/19/2022]
Abstract
Previous works have indicated that incorporation of surface glycoprotein into retroviruses such as the human immunodeficiency virus type 1 (HIV-1) is not a highly specific process because several cellular glycoproteins can be inserted within the mature viral particle. The mechanism(s) that govern the acquisition of such host constituents have remained so far elusive. In this study, we have investigated the role played by the viral envelope (Env) of HIV-1 in the acquisition of host intercellular adhesion molecule type I (ICAM-1). ICAM-1 proteins were still present on viruses carrying much lower levels of gp120/gp41 due to a mutation in the matrix (MA) domain or on Env-deficient viruses when produced in immortalized and primary human cell lines. Interestingly, infectivity of an HIV-1 MA mutant that carry a suboptimal amount of Env proteins was restored to a certain degree by the presence of ICAM-1 when infection was performed in cells expressing an activated form of its natural counter-ligand, LFA-1.
Collapse
Affiliation(s)
- Yannick Beauséjour
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| | | |
Collapse
|
88
|
Chan WE, Wang YL, Lin HH, Chen SSL. Effect of extension of the cytoplasmic domain of human immunodeficiency type 1 virus transmembrane protein gp41 on virus replication. J Virol 2004; 78:5157-69. [PMID: 15113898 PMCID: PMC400382 DOI: 10.1128/jvi.78.10.5157-5169.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The biological significance of the presence of a long cytoplasmic domain in the envelope (Env) transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1) is still not fully understood. Here we examined the effects of cytoplasmic tail elongation on virus replication and characterized the role of the C-terminal cytoplasmic tail in interactions with the Gag protein. Extensions with six and nine His residues but not with fewer than six His residues were found to severely inhibit virus replication through decreased Env electrophoretic mobility and reduced Env incorporation compared to the wild-type virus. These two mutants also exhibited distinct N glycosylation and reduced cell surface expression. An extension of six other residues had no deleterious effect on infectivity, even though some mutants showed reduced Env incorporation into the virus and/or decreased cell surface expression. We further show that these elongated cytoplasmic tails in a format of the glutathione S-transferase fusion protein still interacted effectively with the Gag protein. In addition, the immediate C terminus of the cytoplasmic tail was not directly involved in interactions with Gag, but the region containing the last 13 to 43 residues from the C terminus was critical for Env-Gag interactions. Taken together, our results demonstrate that HIV-1 Env can tolerate extension at its C terminus to a certain degree without loss of virus infectivity and Env-Gag interactions. However, extended elongation in the cytoplasmic tail may impair virus infectivity, Env cell surface expression, and Env incorporation into the virus.
Collapse
Affiliation(s)
- Woan-Eng Chan
- Institute of Biomedical Sciences, Academia Sinica, 128 Section 2 Yen-Chiu-Yuan Road, Nankang, Taipei 11529, Taiwan, Republic of China
| | | | | | | |
Collapse
|
89
|
Ohki S, Thacore H, Flanagan TD. Effects of temperature on viral glycoprotein mobility and a possible role of internal "viroskeleton" proteins in Sendai virus fusion. J Membr Biol 2004; 199:73-83. [PMID: 15383918 DOI: 10.1007/s00232-004-0678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/22/2004] [Indexed: 10/26/2022]
Abstract
The effect of temperature on fusion of Sendai virus with target membranes and mobility of the viral glycoproteins was studied with fluorescence methods. When intact virus was used, the fusion threshold temperature (20-22 degrees C) was not altered regardless of the different types of target membranes. Viral glycoprotein mobility in the intact virus increased with temperature, particularly sharply at the fusion threshold temperature. This effect was suppressed by the presence of erythrocyte ghosts and/or dextran sulfate in the virus suspension. In these cases also, no change in the fusion threshold temperature was observed. On the other hand, reconstituted viral envelopes (virosomes) bearing viral glycoproteins but lacking matrix proteins were capable of fusing with erythrocyte ghosts even at temperatures lower than the fusion threshold temperature and no fusion threshold temperature was observed over the range of 10-40 degrees C. The mobility of viral glycoproteins on virosomes was much greater and virtually temperature-independent. The intact virus treated with an actin-affector, jasplakinolide, reduced the extent of fusion with erythrocyte ghosts and the mobility of viral glycoproteins, while the treatment of virosomes with the same drug did not affect the extent of fusion of virosomes with erythrocyte ghosts and the mobility of the glycoproteins. These results suggest that viral matrix proteins including actins affect viral glycoprotein mobility and may be responsible for the temperature threshold phenomenon observed in Sendai virus fusion.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
90
|
Schiavoni I, Trapp S, Santarcangelo AC, Piacentini V, Pugliese K, Baur A, Federico M. HIV-1 Nef Enhances Both Membrane Expression and Virion Incorporation of Env Products. J Biol Chem 2004; 279:22996-3006. [PMID: 15033985 DOI: 10.1074/jbc.m312453200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of human immunodeficiency virus Nef increases the viral infectivity through mechanisms still not fully elucidated. Here we report that wild-type (wt) human immunodeficiency virus, type 1 (HIV-1), particles were neutralized by higher concentrations of either anti-Env glycoprotein (gp) 41 antibodies or recombinant soluble human CD4 compared with Deltanef HIV-1. This appeared to be the result of a Nef-induced increase of virion incorporation of both gp41 (transmembrane (TM)) and surface gp120 Env products likely originating from enhanced steady-state levels of cell membrane-associated Env products. This, in turn, seemed to be the consequence of a reduced retention of the Env precursor. Most interesting, we found that both the Nef-directed increase of Env membrane expression and the Nef-induced enhancement of HIV-1 infectivity relied on the presence of the intracytoplasmic domain of TM, supporting the hypothesis of a functional correlation between these effects. Mutagenesis studies allowed us to establish that the two leucine residues at the TM C terminus, which are part of a sorting motif involved in the control of Env membrane expression, and the 181-210-residue Nef C-terminal region were critically involved in the Nef/Env functional interaction. In conclusion, we propose that Nef increases the infectivity of HIV-1 at least in part by enhancing the amounts of Env products incorporated into virus particles.
Collapse
Affiliation(s)
- Ilaria Schiavoni
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, 00161 Italy
| | | | | | | | | | | | | |
Collapse
|
91
|
Kaushik R, Ratner L. Role of human immunodeficiency virus type 1 matrix phosphorylation in an early postentry step of virus replication. J Virol 2004; 78:2319-26. [PMID: 14963128 PMCID: PMC369234 DOI: 10.1128/jvi.78.5.2319-2326.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The matrix domain (MA) is important for targeting of human immunodeficiency virus type 1 Gag assembly to the plasma membrane, envelope incorporation into virions, preintegration complex import into the nucleus, and nuclear export of viral RNA. Myristylation and phosphorylation are key regulatory events for MA function. Previous studies have indicated that MA phosphorylation at serine (Ser) residues is important for viral replication. This study defines the molecular mechanisms of virus particle assembly and infectivity through a detailed study of the role of MA serine phosphorylation. We show that the combined mutation of Ser residues at positions 9, 67, 72, and 77 impairs viral infectivity in dividing and nondividing cells, although the assembly of these Ser mutant viruses is comparable to that of wild-type virus. This defect can be rescued by pseudotyping these mutant viruses with vesicular stomatitis virus G protein, suggesting that these serine residues are critical in an early postentry step of viral infection. The phosphorylation level of MA in defective mutant viruses was severely reduced compared to that of the wild type, suggesting that phosphorylation of Ser-9, -67, -72, and -77 is important for an early postentry step during virus infection.
Collapse
Affiliation(s)
- Rajnish Kaushik
- Department of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
92
|
Murakami T, Ablan S, Freed EO, Tanaka Y. Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 2004; 78:1026-31. [PMID: 14694135 PMCID: PMC368813 DOI: 10.1128/jvi.78.2.1026-1031.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.
Collapse
Affiliation(s)
- Tsutomu Murakami
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | |
Collapse
|
93
|
Ellenrieder AD, Kremer W, Kattenbeck B, Hantschel O, Horn G, Kalbitzer HR, Modrow S. The central domain of the matrix protein of HIV-1: influence on protein structure and virus infectivity. Biol Chem 2004; 385:303-13. [PMID: 15134345 DOI: 10.1515/bc.2004.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The central region of the matrix protein p17 of HIV-1 is known to be essential during virus assembly. We substituted alanines for amino acid triplets in this region of p17 (amino acid residues 47 to 55: NPG LLE TSE). Introduction of the respective mutations into the gag-coding sequence of HI-proviruses and subsequent transfection into Cos-7 cells led to particle production and release. Exchange of LLE resulted in the production of non-infectious particles. These residues may be important for correct folding and assembly of the processed matrix protein and the production of infectious HIV. In vitro studies of wild-type and mutated matrix proteins using spectroscopic methods (NMR, fluorescence, CD) yielded detailed data about structure and stability. Two-dimensional NMR spectroscopy showed that wild-type and mutant proteins (p17-NPG and p17-TSE) are well folded. Besides structural changes at the mutated site, chemical shift changes indicate small but significant long range structural rearrangements. The stability against chemically and thermally induced unfolding of the mutants p17-NPG and p17-TSE was slightly decreased, while that of p17-LLE was drastically diminished. The alterations have only a local effect on protein folding for the mutants p17-NPG and p17-TSE, and the globular tertiary structure remains nearly unchanged. For p17-LLE, however, the substitutions seem to trigger significant changes in structural elements.
Collapse
Affiliation(s)
- Anja-Daniela Ellenrieder
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
94
|
Dekker S, Toussaint W, Panayotou G, de Wit T, Visser P, Grosveld F, Drabek D. Intracellularly expressed single-domain antibody against p15 matrix protein prevents the production of porcine retroviruses. J Virol 2003; 77:12132-9. [PMID: 14581550 PMCID: PMC254262 DOI: 10.1128/jvi.77.22.12132-12139.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of porcine endogenous retroviruses presents a potential risk of transmission of infectious diseases (xenozoonosis) if tissues and organs from genetically modified pigs are to be used in xenotransplantation. Here, we report that intracellular expression of a llama single-domain antibody against p15, the matrix domain protein of the porcine endogenous retrovirus Gag polyprotein, blocks retrovirus production, providing the possibility of eliminating the risk of infection in xenotransplantation.
Collapse
Affiliation(s)
- Sylvia Dekker
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus Medical Center Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
95
|
Manrique JM, Celma CCP, Hunter E, Affranchino JL, González SA. Positive and negative modulation of virus infectivity and envelope glycoprotein incorporation into virions by amino acid substitutions at the N terminus of the simian immunodeficiency virus matrix protein. J Virol 2003; 77:10881-8. [PMID: 14512538 PMCID: PMC224977 DOI: 10.1128/jvi.77.20.10881-10888.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The matrix (MA) protein of the simian immunodeficiency viruses (SIVs) is encoded by the amino-terminal region of the Gag precursor and is the component of the viral capsid that lines the inner surface of the virus envelope. Previously, we identified domains in the SIV MA that are involved in the transport of Gag to the plasma membrane and in particle assembly. In this study, we characterized the role in the SIV life cycle of highly conserved residues within the SIV MA region spanning the two N-terminal alpha-helices H1 and H2. Our analyses identified two classes of MA mutants: (i) viruses encoding amino acid substitutions within alpha-helices H1 or H2 that were defective in envelope (Env) glycoprotein incorporation and exhibited impaired infectivity and (ii) viruses harboring mutations in the beta-turn connecting helices H1 and H2 that were more infectious than the wild-type virus and displayed an enhanced ability to incorporate the Env glycoprotein. Remarkably, among the latter group of MA mutants, the R22L/G24L double amino acid substitution increased virus infectivity eightfold relative to the wild-type virus in single-cycle infectivity assays, an effect that correlated with a similar increase in Env incorporation. Furthermore, the R22L/G24L MA mutation partially or fully complemented single-point MA mutations that severely impair or block Env incorporation and virus infectivity. Our finding that the incorporation of the Env glycoprotein into virions can be upregulated by specific mutations within the SIV MA amino terminus strongly supports the notion that the SIV MA domain mediates Gag-Env association during particle formation.
Collapse
Affiliation(s)
- Julieta M Manrique
- Centro de Virología Animal (CEVAN-CONICET), C1414DEM Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
96
|
Lori F, Guallini P, Galluzzi L, Lisziewicz J. Gene therapy approaches to HIV infection. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 2:245-52. [PMID: 12421095 DOI: 10.2165/00129785-200202040-00004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The HIV pandemic represents a new challenge to biomedical research. What began as a handful of recognized cases among homosexual men in the US has become a global pandemic of such proportions that it clearly ranks as one of the most destructive viral scourges in history. In the past few years new treatments and drugs have been developed and tested, but the development of a new generation of therapies remains a major priority, because of the lack of chemotherapeutic drugs or vaccines that show long-term efficacy in vivo. Recently, gene therapeutic strategies for the treatment of patients with HIV infection have received increased attention because they are able to offer the possibility of simultaneously targeting multiple sites in the HIV genome, thereby minimizing the production of resistant virus. Recombinant genes for gene therapy can be classified as expressing interfering proteins (intracellular antibodies, dominant negative proteins) or interfering RNAs (antisense RNAs, ribozymes, RNA decoys). The latter group offers the advantage of avoiding the stimulation of host immune response which might progressively decrease the efficacy of proteins. The stumbling block to achieving lasting antiviral effects is still represented by the lack of efficient gene transfer techniques capable of generating persistent transgene expression and a high number of transduced cells relative to untransduced cells. Novel delivery vectors, such as lentiviruses, might overcome some of these shortcomings. The use of recombinant genes to generate immunity is a very promising concept that is rapidly expanding. Since the immune system can significantly amplify the response to tiny amounts of antigen, DNA vaccines can indeed be delivered by exploiting traditional gene therapy approaches without the need of high transduction efficiency.
Collapse
Affiliation(s)
- Franco Lori
- Research Institute for Genetic and Human Therapy at IRCCS Policlinico S. Matteo, Pavia, Italy.
| | | | | | | |
Collapse
|
97
|
Kobayashi M, Iida A, Ueda Y, Hasegawa M. Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 2003; 77:2607-14. [PMID: 12551999 PMCID: PMC141089 DOI: 10.1128/jvi.77.4.2607-2614.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 11/14/2002] [Indexed: 11/20/2022] Open
Abstract
We describe the development of novel lentivirus vectors based on simian immunodeficiency virus from African green monkey (SIVagm) pseudotyped with Sendai virus (SeV) envelope glycoproteins. SeV fusion (F) and hemagglutinin-neuraminidase (HN) proteins were successfully incorporated into the SIVagm-based vector by truncation of the cytoplasmic tail of the F protein and by addition of the cytoplasmic tail of SIVagm transmembrane envelope protein to the N terminus of the HN protein. As with the vesicular stomatitis virus G glycoprotein-pseudotyped vector, the mutant SeV F- and HN-pseudotyped SIVagm vector was able to transduce various types of animal and human cell lines. Furthermore, the vector was able to transduce an enhanced green fluorescent protein reporter gene into polarized epithelial cells of rat trachea from the apical and basolateral sides. Therefore, SeV F- and HN-pseudotyped SIVagm vectors have considerable potential for effective use in gene therapy for various therapies, including respiratory diseases.
Collapse
Affiliation(s)
- Masanori Kobayashi
- DNAVEC Research Inc., 1-25-11 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | |
Collapse
|
98
|
Riffel N, Harlos K, Iourin O, Rao Z, Kingsman A, Stuart D, Fry E. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure 2002; 10:1627-36. [PMID: 12467570 DOI: 10.1016/s0969-2126(02)00896-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Matrix proteins associated with the viral membrane are important in the formation of the viral particle and in virus maturation. The 1.0 A crystal structure of the ecotropic Gammaretrovirus Moloney murine leukemia virus (M-MuLV) matrix protein reveals the conserved topology of other retroviral matrix proteins, despite undetectable sequence similarity. The N terminus (normally myristylated) is exposed and adjacent to a basic surface patch, features likely to contribute to membrane binding. The four proteins in the asymmetric unit make varied contacts. The M-MuLV matrix structure is intermediate, between those of the lentiviruses and other retroviruses. The protein fold appears to be maintained, in part, by the conservation of side chain packing, which may provide a useful tool for searching for weak distant similarities in proteins.
Collapse
Affiliation(s)
- Nico Riffel
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
99
|
Dorfman T, Popova E, Pizzato M, Göttlinger HG. Nef enhances human immunodeficiency virus type 1 infectivity in the absence of matrix. J Virol 2002; 76:6857-62. [PMID: 12050401 PMCID: PMC136271 DOI: 10.1128/jvi.76.13.6857-6862.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef enhances the serine phosphorylation of the human immunodeficiency virus type 1 matrix (MA) protein, which suggests that MA may be a functional target of Nef. Using mutants that remain infectious despite the absence of most or all of MA, we show in the present study that the ability of Nef to enhance virus infectivity is not compromised even if MA is entirely replaced by a heterologous lipid anchor.
Collapse
Affiliation(s)
- Tatyana Dorfman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
100
|
Affiliation(s)
- H G Göttlinger
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Masachusetts, USA.
| |
Collapse
|