51
|
Ahn JH, Xu Y, Jang WJ, Matunis MJ, Hayward GS. Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 2001; 75:3859-72. [PMID: 11264375 PMCID: PMC114877 DOI: 10.1128/jvi.75.8.3859-3872.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 01/19/2001] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early protein IE2 is a nuclear phosphoprotein that is believed to be a key regulator in both lytic and latent infections. Using yeast two-hybrid screening, small ubiquitin-like modifiers (SUMO-1, SUMO-2, and SUMO-3) and a SUMO-conjugating enzyme (Ubc9) were isolated as IE2-interacting proteins. In vitro binding assays with glutathione S-transferase (GST) fusion proteins provided evidence for direct protein-protein interaction. Mapping data showed that the C-terminal end of SUMO-1 is critical for interaction with IE2 in both yeast and in vitro binding assays. IE2 was efficiently modified by SUMO-1 or SUMO-2 in cotransfected cells and in cells infected with a recombinant adenovirus expressing HCMV IE2, although the level of modification was much lower in HCMV-infected cells. Two lysine residues at positions 175 and 180 were mapped as major alternative SUMO-1 conjugation sites in both cotransfected cells and an in vitro sumoylation assay and could be conjugated by SUMO-1 simultaneously. Although mutations of these lysine residues did not interfere with the POD (or ND10) targeting of IE2, overexpression of SUMO-1 enhanced IE2-mediated transactivation in a promoter-dependent manner in reporter assays. Interestingly, many other cellular proteins identified as IE2 interaction partners in yeast two-hybrid assays also interact with SUMO-1, suggesting that either directly bound or covalently conjugated SUMO moieties may act as a bridge for interactions between IE2 and other SUMO-1-modified or SUMO-1-interacting proteins. When we investigated the intracellular localization of SUMO-1 in HCMV-infected cells, the pattern changed from nuclear punctate to predominantly nuclear diffuse in an IE1-dependent manner at very early times after infection, but with some SUMO-1 protein now associated with IE2 punctate domains. However, at late times after infection, SUMO-1 was predominantly detected within viral DNA replication compartments containing IE2. Taken together, these results show that HCMV infection causes the redistribution of SUMO-1 and that IE2 both physically binds to and is covalently modified by SUMO moieties, suggesting possible modulation of both the function of SUMO-1 and protein-protein interactions of IE2 during HCMV infection.
Collapse
Affiliation(s)
- J H Ahn
- Molecular Virology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
52
|
Marintcheva B, Weller SK. Residues within the conserved helicase motifs of UL9, the origin-binding protein of herpes simplex virus-1, are essential for helicase activity but not for dimerization or origin binding activity. J Biol Chem 2001; 276:6605-15. [PMID: 11062243 DOI: 10.1074/jbc.m007743200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UL9, an essential gene for herpes simplex virus type 1 (HSV-1) DNA replication, exhibits helicase and origin DNA binding activities. It has been hypothesized that UL9 binds and unwinds the HSV-1 origin of replication, creating a replication bubble and promoting the assembly of the viral replication machinery; however, direct confirmation of this hypothesis has not been possible. Based on the presence of conserved helicase motifs, UL9 has been classified as a superfamily II helicase. Mutations in conserved residues of the helicase motifs I-VI of UL9 have been isolated, and most of them fail to complement a UL9 null virus in vivo (Martinez R., Shao L., and Weller S. (1992) J. Virol. 66, 6735-6746). In addition, mutants in motifs I, II, and VI were found to be transdominant (Malik, A. K., and Weller, S. K. (1996) J. Virol. 70, 7859-7866). Here we present the characterization of the biochemical properties of the UL9 helicase motif mutants. We report that mutations in motifs I-IV and VI affect the ATPase activity, and all but the motif III mutation completely abolish the helicase activity. In addition, mutations in these motifs do not interfere with UL9 dimerization or the ability of UL9 to bind the HSV-1 origin of replication. Based on the similarity of the helicase motif sequences between UL9 and UvrB, another superfamily II member with helicase-like activity, we were able to map the UL9 mutations on the structure of the UvrB protein and provide an explanation for the observed phenotypes. Our results indicate that the helicase function of UL9 is indispensable for viral replication, supporting the hypothesis that UL9 is essential for unwinding the HSV-1 origin of replication in vivo. Furthermore, the data presented provide insights into the mechanism of transdominance of the UL9 helicase motif mutants.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
53
|
Burkham J, Coen DM, Hwang CB, Weller SK. Interactions of herpes simplex virus type 1 with ND10 and recruitment of PML to replication compartments. J Virol 2001; 75:2353-67. [PMID: 11160739 PMCID: PMC114819 DOI: 10.1128/jvi.75.5.2353-2367.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2000] [Accepted: 12/06/2000] [Indexed: 12/12/2022] Open
Abstract
Many of the events required for productive herpes simplex virus type 1 (HSV-1) infection occur within globular nuclear domains called replication compartments, whose formation appears to depend on interactions with cellular nuclear domains 10 (ND10). We have previously demonstrated that the formation of HSV-1 replication compartments involves progression through several stages, including the disruption of intact ND10 (stage I to stage II) and the formation of PML-associated prereplicative sites (stage III) and replication compartments (stage IV) (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). In this paper, we show that some, but not all, PML isoforms are recruited to stage III foci and replication compartments. Genetic experiments showed that the recruitment of PML isoforms to stage III prereplicative sites and replication compartments requires the localization of the HSV-1 polymerase protein (UL30) to these foci but does not require polymerase catalytic activity. We also examined the stages of viral infection under conditions affecting ND10 integrity. Treatment with factors that increase the stability of ND10, arsenic trioxide and the proteasome inhibitor MG132, inhibited viral disruption of ND10, formation of replication compartments, and production of progeny virus. These results strengthen the previously described correlation between ND10 disruption and productive viral infection.
Collapse
Affiliation(s)
- J Burkham
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
54
|
Wu FY, Ahn JH, Alcendor DJ, Jang WJ, Xiao J, Hayward SD, Hayward GS. Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 2001; 75:1487-506. [PMID: 11152521 PMCID: PMC114054 DOI: 10.1128/jvi.75.3.1487-1506.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Six predicted Kaposi's sarcoma virus herpesvirus (KSHV) proteins have homology with other well-characterized herpesvirus core DNA replication proteins and are expected to be essential for viral DNA synthesis. Intact Flag-tagged protein products from all six were produced from genomic expression vectors, although the ORF40/41 transcript encoding a primase-helicase component proved to be spliced with a 127-bp intron. The intracellular localization of these six KSHV replication proteins and the mechanism of their nuclear translocation were investigated. SSB (single-stranded DNA binding protein, ORF6) and PPF (polymerase processivity factor, ORF59) were found to be intrinsic nuclear proteins, whereas POL (polymerase, ORF9), which localized in the cytoplasm on its own, was translocated to the nucleus when cotransfected with PPF. PAF (primase-associated factor, ORF40/41), a component of the primase-helicase tripartite subcomplex together with PRI (primase, ORF56) and HEL (helicase, ORF44), required the presence of all five other replication proteins for efficient nuclear translocation. Surprisingly, even in the absence of a lytic cycle replication origin (ori-Lyt) and any known initiator or origin binding protein, the protein products of all six KSHV core replication genes cooperated in a transient cotransfection assay to form large globular shaped pseudo-replication compartments (pseudo-RC), which excluded cellular DNA. These pseudo-RC structures were confirmed to include POL, SSB, PRI, and PAF but did not contain any newly synthesized DNA. Similar to the human cytomegalovirus system, the peripheries of these KSHV pre-RC were also found to be surrounded by punctate PML oncogenic domains (PODs). Furthermore, by transient cotransfection, the six KSHV core replication machinery proteins successfully replicated a plasmid containing EBV ori-Lyt in the presence of the Epstein-Barr virus-encoded DNA binding initiator protein, ZTA. The KSHV-encoded K8 (ORF-K8) protein, which is a distant evolutionary homologue to ZTA, was incorporated into pseudo-RC structures formed by transient cotransfection with the six core KSHV replication genes. However, unlike ZTA, K8 displayed a punctate nuclear pattern both in transfected cells and at early stages of lytic infection and colocalized with the cellular PML proteins in PODs. Finally, K8 was also found to accumulate in functional viral RC, detected by incorporation of pulse-labeled bromodeoxyuridine into newly synthesized DNA in both tetradecanoyl phorbol acetate-induced JSC-1 primary effusion lymphoblasts and in KSHV lytically infected endothelial cells.
Collapse
Affiliation(s)
- F Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Nuclear Export of Herpes Virus RNA. Curr Top Microbiol Immunol 2001. [DOI: 10.1007/978-3-642-56597-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Bell P, Lieberman PM, Maul GG. Lytic but not latent replication of epstein-barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. J Virol 2000; 74:11800-10. [PMID: 11090180 PMCID: PMC112463 DOI: 10.1128/jvi.74.24.11800-11810.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear domains called ND10 (nuclear domain 10) are discrete nuclear protein aggregations characterized by a set of interferon-upregulated proteins including Sp100 and PML, where papova-, adeno-, and herpesviruses begin their transcription and DNA replication. Both the alpha- and betaherpesvirus subfamilies disrupt ND10 upon infection by dispersing and/or destroying ND10-associated proteins. We studied the effect of the gammaherpesvirus Epstein-Barr virus (EBV) on ND10 and its spatial distribution in the nucleus of cells during latency and lytic reactivation. In latently infected Burkitt's lymphoma, lymphoblastoid, and D98/HR1 cells, ND10 were intact, as judged by immunofluorescence localization of PML, Sp100, NDP55, and Daxx. Fluorescent in situ hybridization revealed no association between viral episomes and ND10 during latency, implying that the maintenance replication of EBV, which depends on host cell proliferation, occurs independent of ND10. As in mitosis, the EBV genomes were attached to interphase chromosomes, suggesting that they are unable to move freely within the interchromosomal space and thus unable to associate with the interchromosomally located ND10 or other nuclear domains. Upon lytic activation, ND10 became dispersed in cells expressing lytic proteins. Redistribution of ND10 proteins occurred sequentially at different stages of the lytic cycle, with Sp100, Daxx, and NDP55 dispersed before and PML dispersed after the onset of lytic replication. ND10 remnants were retained until the early stages of lytic replication, and replicating EBV genomes were frequently found beside this nuclear domain; the number of replication domains was usually lower than the average latent virus frequency. Thus, latency does not require or induce interaction of EBV with ND10 for transcription and replication, whereas lytic replication triggers dispersion of ND10 proteins and occurs in close association with PML aggregates. The required movement of chromosome-attached latent EBV episomes to ND10 after reactivation from latency might include physical release of the chromosome-bound episomes. Only episomes contacting ND10 after such a release might be able to begin lytic replication.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
57
|
Mapelli M, Mühleisen M, Persico G, van Der Zandt H, Tucker PA. The 60-residue C-terminal region of the single-stranded DNA binding protein of herpes simplex virus type 1 is required for cooperative DNA binding. J Virol 2000; 74:8812-22. [PMID: 10982323 PMCID: PMC102075 DOI: 10.1128/jvi.74.19.8812-8822.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 06/30/2000] [Indexed: 01/16/2023] Open
Abstract
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.
Collapse
Affiliation(s)
- M Mapelli
- Structural Biology Programme, European Molecular Biology Laboratory, D69012 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
58
|
Ahn JH, Hayward GS. Disruption of PML-associated nuclear bodies by IE1 correlates with efficient early stages of viral gene expression and DNA replication in human cytomegalovirus infection. Virology 2000; 274:39-55. [PMID: 10936087 DOI: 10.1006/viro.2000.0448] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human cytomegalovirus (HCMV) infection, both of the major immediate-early proteins IE1(IE68, UL123) and IE2(IE86, UL122) target to PML protein-associated nuclear bodies known as PODs or ND10 at very early times after infection. IE1 causes a redistribution of both PML and IE1 from the PODs into a nuclear diffuse form, whereas IE2 initially localizes adjacent to PODs but later associates with viral DNA replication compartments. The peripheries of PODs are also believed to be sites for initiation of both viral IE transcription and DNA replication. However, because IE1 is nonessential at high multiplicity of infection (m.o.i.) in HF cells, the exact role of these processes in viral infection has been enigmatic. Therefore, we investigated the effects of overexpression of PML in the presence or absence of IE1 on the intranuclear distribution of IE2 and formation of viral DNA replication compartments, as well as on the levels of delayed-early and late viral transcription and protein accumulation. Infection with wild-type HCMV(Towne) and the IE1-deleted derivative HCMV(CR208), which fails to disrupt PODs, was compared in a pair of related astrocytoma/glioblastoma cell lines, the U373-Neo control and a variant U373-PML that constitutively overexpresses PML(560) in much larger than normal PODs. IFA studies on the localization patterns for IE1, IE2, and PML showed that, although the numbers of IE2-positive cells were not significantly reduced in either the wild-type virus-infected U373-PML cell line or in DeltaIE1-infected control cells, POD disruption by IE1 in wild-type virus infection was delayed by up to 6 h in U373-PML cells compared to control cells. Furthermore, there was considerable enhancement of IE2 colocalization with PODs in Delta IE1-infected U373-PML cells. Formation of viral DNA replication compartments in the U373-PML cell line was also greatly delayed, measured at fivefold lower after wild-type virus infection and 12-fold lower after infection with Delta IE1 than in the control cell line at 48 h at an m.o.i. of 1.0. The levels of representative early and late viral proteins detected by Western blotting were suppressed by fivefold and 22-fold at 24 and 72 h, respectively, in the U373-PML cell line, even with high m. o.i. wild-type HCMV infection. Decreased viral protein levels also occurred when control cells were infected with the Delta IE1 virus and these two effects were additive in the U373-PML cell line. Similarly, when U373-PML cells were infected with recombinant HCMV expressing an extragenic luciferase reporter gene under the control of viral early (Pol) or late (pp28) promoters, their transcriptional activation was reduced up to fivefold at both high and low m.o.i. compared to that of the control cells. Overall, these results suggest that POD disruption by IE1 and subsequent redistribution of both PML and IE1 at very early times after infection may play an important role in the efficient utilization of cellular transcription and replication machinery by HCMV and contribute to rapid progression of the HCMV lytic cycle.
Collapse
Affiliation(s)
- J H Ahn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
59
|
Spencer CA, Kruhlak MJ, Jenkins HL, Sun X, Bazett-Jones DP. Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation. J Cell Biol 2000; 150:13-26. [PMID: 10893252 PMCID: PMC2185571 DOI: 10.1083/jcb.150.1.13] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
All nuclear RNA synthesis is repressed during the mitotic phase of the cell cycle. In addition, RNA polymerase II (RNAP II), nascent RNA and many transcription factors disengage from DNA during mitosis. It has been proposed that mitotic transcription repression and disengagement of factors are due to either mitotic chromatin condensation or biochemical modifications to the transcription machinery. In this study, we investigate the requirement for chromatin condensation in establishing mitotic transcription repression and factor loss, by analyzing transcription and RNAP II localization in mitotic cells infected with herpes simplex virus type 1. We find that virus-infected cells enter mitosis and that mitotic viral DNA is maintained in a nucleosome-free and noncondensed state. Our data show that RNAP II transcription is repressed on cellular genes that are condensed into mitotic chromosomes and on viral genes that remain nucleosome free and noncondensed. Although RNAP II may interact indirectly with viral DNA during mitosis, it remains transcriptionally unengaged. This study demonstrates that mitotic repression of transcription and loss of transcription factors from mitotic DNA can occur independently of nucleosomal chromatin condensation.
Collapse
Affiliation(s)
- C A Spencer
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2.
| | | | | | | | | |
Collapse
|
60
|
LaBoissière S, O'Hare P. Analysis of HCF, the cellular cofactor of VP16, in herpes simplex virus-infected cells. J Virol 2000; 74:99-109. [PMID: 10590096 PMCID: PMC111518 DOI: 10.1128/jvi.74.1.99-109.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1999] [Accepted: 09/17/1999] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) immediate-early (IE) gene expression is initiated via the recruitment of the structural protein VP16 onto specific sites upstream of each IE gene promoter in a multicomponent complex (TRF.C) that also includes the cellular proteins Oct-1 and HCF. In vitro results have shown that HCF binds directly to VP16 and stabilizes TRF.C. Results from transfection assays have also indicated that HCF is involved in the nuclear import of VP16. However, there have been no reports on the role or the fate of HCF during HSV type 1 (HSV-1) infection. Here we show that the intracellular distribution of HCF is dramatically altered during HSV-1 infection and that the protein interacts with and colocalizes with VP16. Moreover, viral protein synthesis and replication were significantly reduced after infection of a BHK-21-derived temperature-sensitive cell line (tsBN67) which contains a mutant HCF unable to associate with VP16 at the nonpermissive temperature. Intracellular distribution of HCF and of newly synthesized VP16 in tsBN67-infected cells was similar to that observed in Vero cells, suggesting that late in infection the trafficking of both proteins was not dependent on their association. We constructed a stable cell line (tsBN67r) in which the temperature-sensitive phenotype was rescued by using an epitope-tagged wild-type HCF. In HSV-1-infected tsBN67r cells at the nonpermissive temperature, direct binding of HCF to VP16 was observed, but virus protein synthesis and replication were not restored to levels observed at the permissive temperature or in wild-type BHK cells. Together these results indicate that the factors involved in compartmentalization of VP16 alter during infection and that late in infection, VP16 and HCF may have additional roles reflected in their colocalization in replication compartments.
Collapse
Affiliation(s)
- S LaBoissière
- Marie Curie Research Institute, Oxted, Surrey RH8 OTL, United Kingdom
| | | |
Collapse
|
61
|
Ahn JH, Jang WJ, Hayward GS. The human cytomegalovirus IE2 and UL112-113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). J Virol 1999; 73:10458-71. [PMID: 10559364 PMCID: PMC113101 DOI: 10.1128/jvi.73.12.10458-10471.1999] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During human cytomegalovirus (HCMV) infection, the periphery of promyelocytic leukemia protein (PML)-associated nuclear bodies (also known as PML oncogenic domains [PODs] or ND10) are sites for both input viral genome deposition and immediate-early (IE) gene transcription. At very early times after infection, the IE1 protein localizes to and subsequently disrupts PODs, whereas the IE2 protein localizes within or adjacent to PODs. This process appears to be required for efficient viral gene expression and DNA replication. We have investigated the initiation of viral DNA replication compartment formation by studying the localization of viral IE proteins, DNA replication proteins, and the PML protein during productive infection. Localization of IE2 adjacent to PODs between 2 and 6 h after infection was confirmed by confocal microscopy of human fibroblasts (HF cells) infected with both wild-type HCMV(Towne) and with an IE1-deletion mutant HCMV(CR208) that fails to disrupt PODs. In HCMV(Towne)-infected HF cells at 24 to 48 h, IE2 also accumulated in newly formed viral DNA replication compartments containing the polymerase processivity factor (UL44), the single-stranded DNA binding protein (SSB; UL57), the UL112-113 accessory protein, and newly incorporated bromodeoxyuridine (BrdU). Double labeling of the HCMV(CR208)-infected HF cells demonstrated that formation of viral DNA replication compartments initiates within granular structures that bud from the periphery of some of the PODs and subsequently coalesce into larger structures that are flanked by PODs. In transient DNA transfection assays, both the N terminus (codons 136 to 290) and the C terminus (codons 379 to 579) of IE2 exon 5, but not the central region between them, were found to be necessary for both the punctate distribution of IE2 and its association with PODs. Like IE2, the UL112-113 accessory replication protein was also distributed in a POD-associated pattern in both DNA-transfected and virus-infected cells beginning at 6 h. Furthermore, when all six replication core machinery proteins (polymerase complex, SSB, and helicase-primase complex) were expressed together in the presence of UL112-113, they also accumulated at POD-associated sites, suggesting that the UL112-113 protein (but not IE2) may play a role in recruitment of viral replication fork proteins into the periphery of PODs. These results show that (i) subsequent to accumulating at the periphery of PODs, IE2 is incorporated together with the core proteins into viral DNA replication compartments that initiate from the periphery of PODs and then grow to fill the space between groups of PODs, and (ii) the UL112-113 protein appears to have a key role in assembling and recruiting the core replication machinery proteins in the initial stages of viral replication compartment formation.
Collapse
Affiliation(s)
- J H Ahn
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
62
|
Biswas N, Weller SK. A mutation in the C-terminal putative Zn2+ finger motif of UL52 severely affects the biochemical activities of the HSV-1 helicase-primase subcomplex. J Biol Chem 1999; 274:8068-76. [PMID: 10075707 DOI: 10.1074/jbc.274.12.8068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex that is composed of the products of the UL5, UL52, and UL8 genes. A subcomplex consisting of the UL5 and UL52 proteins retains all the enzymatic activities exhibited by the holoenzyme in vitro. The UL52 protein contains a putative zinc finger at its C terminus which is highly conserved among both prokaryotic and eukaryotic primases. We constructed a mutation in which two highly conserved cysteine residues in the zinc finger motif were replaced with alanine residues. A UL52 expression plasmid containing the mutation in the zinc finger region is unable to support the growth of a UL52 mutant virus in a transient complementation assay. Wild type and mutant UL5.UL52 subcomplexes were purified from insect cells infected with recombinant baculoviruses. Surprisingly, the mutant protein was severely affected in all biochemical activities tested; no helicase or primase activities could be detected, and the mutant protein retains only about 9% of wild type levels of single-stranded DNA-dependent ATPase activity. Gel mobility shift assays showed that DNA binding is severely affected as well; the mutant subcomplex only retains approximately 8% of wild type levels of binding to a forked substrate. On the other hand, the mutant protein retains its ability to interact with UL5 as indicated by copurification and with UL8 as indicated by a supershifted band in the gel mobility shift assay. In addition, the ability of individual subunits to bind single-stranded DNA was examined by photo cross-linking. In the wild type UL5.UL52 subcomplex, both subunits are able to bind an 18-mer of oligo(dT). The mutant subcomplex was severely compromised in the ability of both UL5 and UL52 to bind the oligonucleotide; total cross-linking was only 2% of wild type levels. These results are consistent with the proposal that the putative zinc binding motif of UL52 is required not only for binding of the UL52 subunit to DNA and for primase activity but also for optimal binding of UL5 to DNA and for the subsequent ATPase and helicase activities.
Collapse
Affiliation(s)
- N Biswas
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
63
|
Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT. Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol 1999; 73:1001-9. [PMID: 9882301 PMCID: PMC103920 DOI: 10.1128/jvi.73.2.1001-1009.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 10/28/1998] [Indexed: 01/12/2023] Open
Abstract
Many DNA viruses replicate their genomes at nuclear foci in infected cells. Using indirect immunofluorescence in combination with fluorescence in situ hybridization, we colocalized the human papillomavirus (HPV) replicating proteins E1 and E2 and the replicating origin-containing plasmid to nuclear foci in transiently transfected cells. The host replication protein A (RP-A) was also colocalized to these foci. These nuclear structures were identified as active sites of viral DNA synthesis by bromodeoxyuridine (BrdU) pulse-labeling. Unexpectedly, the great majority of RP-A and BrdU incorporation was found in these HPV replication domains. Furthermore, E1, E2, and RP-A were also colocalized to nuclear foci in the absence of an origin-containing plasmid. These observations suggest a spatial reorganization of the host DNA replication machinery upon HPV DNA replication or E1 and E2 expression. Alternatively, viral DNA replication might be targeted to host nuclear domains that are active during the late S phase, when such domains are limited in number. In a fraction of cells expressing E1 and E2, the promyelocytic leukemia protein, a component of nuclear domain 10 (ND10), was either partially or completely colocalized with E1 and E2. Since ND10 structures were recently hypothesized to be sites of bovine papillomavirus virion assembly, our observation suggests that HPV DNA amplification might be partially coupled to virion assembly.
Collapse
Affiliation(s)
- C S Swindle
- Departments of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
64
|
Weisshart K, Chow CS, Coen DM. Herpes simplex virus processivity factor UL42 imparts increased DNA-binding specificity to the viral DNA polymerase and decreased dissociation from primer-template without reducing the elongation rate. J Virol 1999; 73:55-66. [PMID: 9847307 PMCID: PMC103808 DOI: 10.1128/jvi.73.1.55-66.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased approximately 15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA approximately 2-fold faster than did Pol and dissociated approximately 10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, approximately 15 [corrected] nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented.
Collapse
Affiliation(s)
- K Weisshart
- Department of Biological Chemistry and Molecular Pharmacology and Committee on Virology, Harvard Medical School, Boston Massachusetts 02115, USA
| | | | | |
Collapse
|
65
|
Burkham J, Coen DM, Weller SK. ND10 protein PML is recruited to herpes simplex virus type 1 prereplicative sites and replication compartments in the presence of viral DNA polymerase. J Virol 1998; 72:10100-7. [PMID: 9811750 PMCID: PMC110544 DOI: 10.1128/jvi.72.12.10100-10107.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1998] [Accepted: 08/20/1998] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection results in the disruption of ND10 (also called nuclear bodies, PODs, or PML-associated bodies), which are nuclear matrix domains of unknown function present in mammalian cells. After ND10 disruption, viral transcription and DNA replication occur in globular nuclear domains called replication compartments. In this report we define four stages of infection by using antibodies to ICP8 (also called SSB and UL29) and the ND10 antigen PML. Immediately after infection, cells contain intact ND10 as detected by staining for PMLs (stage I); within 1 hour, however, ND10 are disrupted and cells begin to exhibit diffuse staining for the major viral DNA binding protein, ICP8 (stage II). After all ND10 have been disrupted, foci which resemble but are not equivalent to ND10 appear, containing both PML and ICP8 (stage III). Cells infected with mutants defective in the helicase-primase or origin binding protein are unable to form stage III foci. Cells infected with a mutant that is null for the polymerase catalytic subunit, however, form stage III-like ICP8 foci which do not contain PML. Thus, stage III foci recruit the cellular PML protein in the presence but not the absence of HSV polymerase. PML was recruited to stage III foci in some but not all cells infected with a mutant defective in the polymerase accessory protein, UL42. Thus, UL42 is not required for the recruitment of PML to viral foci. In wild-type infection, stage III cells are quickly replaced by cells containing replication compartments (stage IV). PML and ICP8 staining are both observed within replication compartments, indicating a potential role for PML in HSV-1 replication. Models for the role of ND10 proteins in the formation of replication compartments are discussed.
Collapse
Affiliation(s)
- J Burkham
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
66
|
Abstract
It is becoming clear that the cell nucleus is not only organized in domains but that these domains are also organized relative to each other and to the genome. Specific nuclear domains, enriched in different proteins and RNAs, are often found next to each other and next to specific gene loci. Several lines of investigation suggest that nuclear domains are involved in facilitating or regulating gene expression. The emerging view is that the spatial relationship between different domains and genes on different chromosomes, as found in the nucleolus, is a common organizational principle in the nucleus, to allow an efficient and controlled synthesis and processing of a range of gene transcripts.
Collapse
Affiliation(s)
- W Schul
- E.C. Slater Instituut, University of Amsterdam, BioCentrum Amsterdam, The Netherlands
| | | | | |
Collapse
|
67
|
Oleksiewicz MB, Wolfinbarger JB, Bloom ME. A comparison between permissive and restricted infections with Aleutian mink disease parvovirus (ADV): characterization of the viral protein composition at nuclear sites of virus replication. Virus Res 1998; 56:41-51. [PMID: 9784064 DOI: 10.1016/s0168-1702(98)00053-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used three-color fluorescent labeling and confocal microscopy to compare the permissive and the antibody-mediated, restricted replication of Aleutian mink disease parvovirus (ADV). In both permissive (CRFK cells) and restricted (K562 cells) situations, both ADV non-structural proteins (NS1 and NS2) concentrated at focal sites in the nucleus, which also contained viral DNA. Bromodeoxyuridine labeling demonstrated that these sites also supported active ADV single-strand DNA synthesis, indicating that they were replication compartments. ADV capsid proteins were located in intranuclear shells surrounding the replication compartments. At later time points, NS2 was readily detected in the cytoplasm of permissively infected CRFK cells, whereas the cytoplasmic presence of NS2 was much less pronounced in the K562 cells. These results showed that both permissive and restricted ADV replication are associated with a tight nuclear subcompartmentalization of viral products. Furthermore, differences between the permissive and restricted virus-cell interactions were noted, suggesting that there may be a morphological basis for examining the outcome of ADV infection.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | | |
Collapse
|
68
|
Abstract
The herpes simplex virus type 1 (HSV-1) UL12 gene encodes an alkaline pH-dependent deoxyribonuclease termed alkaline nuclease. A recombinant UL12 knockout mutant, AN-1, is severely compromised for growth, and analysis of this mutant suggests that UL12 plays a role in processing complex DNA replication intermediates (R. Martinez, R. T. Sarisky, P. C. Weber, and S. K. Weller, (1996) J. Virol. 70, 2075-2085). This processing step may be required for the generation of capsids that are competent for egress from the nucleus to the cytoplasm. In this report, we address the question of whether the AN-1 growth phenotype is due to the loss of UL12 catalytic activity. We constructed two point mutations in a highly conserved region (motif II) of UL12 and purified wild-type and mutant enzymes from a baculovirus expression system. Both mutant proteins are stable, soluble, and competent for correct nuclear localization, suggesting that they have retained an intact global conformation. Neither mutant protein, however, exhibits exonuclease activity. In order to examine the in vivo effects of these mutations, we determined whether expression of mutant proteins from amplicon plasmids could complement AN-1. While the wild-type plasmid complements the growth of the null mutant, neither UL12 mutant can do so. Loss of exonuclease activity therefore correlates with loss of in vivo function.
Collapse
Affiliation(s)
- J N Goldstein
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA
| | | |
Collapse
|
69
|
Angeletti PC, Engler JA. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J Virol 1998; 72:2896-904. [PMID: 9525610 PMCID: PMC109735 DOI: 10.1128/jvi.72.4.2896-2904.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Accepted: 12/18/1997] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) replicative complexes form at discrete sites on the nuclear matrix (NM) via an interaction mediated by the precursor of the terminal protein (pTP). The identities of cellular proteins involved in these complexes have remained obscure. We present evidence that pTP binds to a multifunctional pyrimidine biosynthesis enzyme found at replication domains on the NM. Far-Western blotting identified proteins of 150 and 240 kDa that had pTP binding activity. Amino acid sequencing of the 150-kDa band revealed sequence identity to carbamyl phosphate synthetase I (CPS I) and a high degree of homology to the related trifunctional enzyme known as CAD (for carbamyl phosphate synthetase, aspartate transcarbamylase, and dihydroorotase). Western blotting with an antibody directed against CAD detected a 240-kDa band that comigrated with that detected by pTP far-Western blotting. Binding experiments showed that a pTP-CAD complex was immunoprecipitable from cell extracts in which pTP was expressed by a vaccinia virus recombinant. Additionally, in vitro-translated epitope-tagged pTP and CAD were immunoprecipitable as a complex, indicating the occurrence of a protein-protein interaction. Confocal fluorescence microscopy of Ad-infected NM showed that pTP and CAD colocalized in nuclear foci. Both pTP and CAD were confirmed to colocalize with active sites of replication detected by bromodeoxyuridine incorporation. These data support the concept that the pTP-CAD interaction may allow anchorage of Ad replication complexes in the proximity of required cellular factors and may help to segregate replicated and unreplicated viral DNA.
Collapse
Affiliation(s)
- P C Angeletti
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, 35294-0005, USA
| | | |
Collapse
|
70
|
Church GA, Dasgupta A, Wilson DW. Herpes simplex virus DNA packaging without measurable DNA synthesis. J Virol 1998; 72:2745-51. [PMID: 9525593 PMCID: PMC109718 DOI: 10.1128/jvi.72.4.2745-2751.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 12/30/1997] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus (HSV) type 1 DNA synthesis and packaging occur within the nuclei of infected cells; however, the extent to which the two processes are coupled remains unclear. Correct packaging is thought to be dependent upon DNA debranching or other repair processes, and such events commonly involve new DNA synthesis. Furthermore, the HSV UL15 gene product, essential for packaging, nevertheless localizes to sites of active DNA replication and may link the two events. It has previously been difficult to determine whether packaging requires concomitant DNA synthesis due to the complexity of these processes and of the viral life cycle; however, we have recently described a model system which simplifies the study of HSV assembly. Cells infected with HSV strain tsProt.A accumulate unpackaged capsids at the nonpermissive temperature of 39 degrees C. Following release of the temperature block, these capsids proceed to package viral DNA in a single, synchronous wave. Here we report that, when DNA replication was inhibited prior to release of the temperature block, DNA packaging and later events in viral assembly nevertheless occurred at near-normal levels. We conclude that, under our conditions, HSV DNA packaging does not require detectable levels of DNA synthesis.
Collapse
Affiliation(s)
- G A Church
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
71
|
Lamberti C, Weller SK. The herpes simplex virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J Virol 1998; 72:2463-73. [PMID: 9499108 PMCID: PMC109547 DOI: 10.1128/jvi.72.3.2463-2473.1998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1997] [Accepted: 12/10/1997] [Indexed: 02/06/2023] Open
Abstract
Six genes, including UL32, have been implicated in the cleavage and packaging of herpesvirus DNA into preassembled capsids. We have isolated a UL32 insertion mutant which is capable of near-wild-type levels of viral DNA synthesis; however, the mutant virus is unable to cleave and package viral DNA, consistent with the phenotype of a previously isolated temperature-sensitive herpes simplex virus type 1 mutant, tsN20 (P. A. Schaffer, G. M. Aron, N. Biswal, and M. Benyesh-Melnick, Virology 52:57-71, 1973). A polyclonal antibody which recognizes UL32 was previously used by Chang et al. (Y. E. Chang, A. P. Poon, and B. Roizman, J. Virol. 70:3938-3946, 1996) to demonstrate that UL32 accumulates predominantly in the cytoplasm of infected cells. In this report, a functional epitope-tagged version of UL32 showed that while UL32 is predominantly cytoplasmic, some nuclear staining which colocalizes with the major DNA binding protein (ICP8, UL29) in replication compartments can be detected. We have also used a monoclonal antibody (5C) specific for the hexon form of major capsid protein VP5 to study the distribution of capsids during infection. In cells infected with wild-type KOS (6 and 8 h postinfection), 5C staining patterns indicate that capsids are present in nuclei within replication compartments. These results suggest that cleavage and packaging occur in replication compartments at least at 6 and 8 h postinfection. Cells infected with the UL32 mutant exhibit a hexon staining pattern which is more diffusely distributed throughout the nucleus and which is not restricted to replication compartments. We propose that UL32 may play a role in "bringing" preassembled capsids to the sites of DNA packaging and that the failure to localize to replication compartments may explain the cleavage/packaging defect exhibited by this mutant. These results suggest that the UL32 protein is required at a step distinct from those at which other cleavage and packaging proteins are required and may be involved in the correct localization of capsids within infected cells.
Collapse
Affiliation(s)
- C Lamberti
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA
| | | |
Collapse
|
72
|
Chang YE, Van Sant C, Krug PW, Sears AE, Roizman B. The null mutant of the U(L)31 gene of herpes simplex virus 1: construction and phenotype in infected cells. J Virol 1997; 71:8307-15. [PMID: 9343183 PMCID: PMC192289 DOI: 10.1128/jvi.71.11.8307-8315.1997] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Earlier studies have shown that the U(L)31 protein is homogeneously distributed throughout the nucleus and cofractionates with nuclear matrix. We report the construction from an appropriate cosmid library a deletion mutant which replicates in rabbit skin cells carrying the U(L)31 gene under a late (gamma1) viral promoter. The mutant virus exhibits cytopathic effects and yields 0.01 to 0.1% of the yield of wild-type parent virus in noncomplementing cells but amounts of virus 10- to 1,000-fold higher than those recovered from the same cells 3 h after infection. Electron microscopic studies indicate the presence of small numbers of full capsids but a lack of enveloped virions. Viral DNA extracted from the cytoplasm of infected cells exhibits free termini indicating cleavage/packaging of viral DNA from concatemers for packaging into virions, but analyses of viral DNAs by pulsed-field electrophoresis indicate that at 16 h after infection, both the yields of viral DNA and cleavage of viral DNA for packaging are decreased. The repaired virus cannot be differentiated from the wild-type parent. These results suggest the possibility that U(L)31 protein forms a network to enable the anchorage of viral products for the synthesis and/or packaging of viral DNA into virions.
Collapse
Affiliation(s)
- Y E Chang
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
73
|
Lukonis CJ, Burkham J, Weller SK. Herpes simplex virus type 1 prereplicative sites are a heterogeneous population: only a subset are likely to be precursors to replication compartments. J Virol 1997; 71:4771-81. [PMID: 9151871 PMCID: PMC191699 DOI: 10.1128/jvi.71.6.4771-4781.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
When herpes simplex virus type 1 (HSV-1) DNA replication is blocked by viral polymerase inhibitors, such as phosphonoacetic acid (PAA) or acyclovir (ACV), UL29 (ICP8) localizes to numerous punctate nuclear foci which are called prereplicative sites. Since this pattern can form in cells infected with mutants which are defective in UL5, UL8, UL9, or UL52 in the presence of polymerase inhibitors (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996; L. M. Liptak, S. L. Uprichard, and D. M. Knipe, J. Virol. 70:1759-1767, 1996), we previously proposed that it is unlikely that these numerous UL29 foci actually represent a functional subassembly of viral replication proteins that could lead to the formation of replication compartments (C. J. Lukonis and S. K. Weller, J. Virol. 70:1751-1758, 1996). In this paper, we have investigated the requirement for formation of the prereplicative site pattern by using double mutants of HSV. From the analysis of mutants lacking both UL5 and UL9, we conclude that neither viral helicase is required for the prereplicative site pattern to form as long as a polymerase inhibitor is present. From the analysis of mutants defective in both UL30 and UL5, we suggest that the prereplicative site pattern can form under conditions in which viral and/or cellular polymerases are inhibited. Furthermore, reexamination of the UL29 staining pattern in cells infected with wild-type virus in the presence of PAA reveals that at least two different UL29 staining patterns can be detected in these cells. One population of cells contains numerous (greater than 20) punctate UL29 foci which are sites of cellular DNA synthesis. In another population of cells, fewer punctate foci (less than 15) are detected, and these structures do not colocalize with sites of cellular DNA synthesis. Instead, they colocalize with PML, a component of nuclear matrix structures known as ND10. We propose that ND10-associated UL29 sites represent domains at which replication compartments form.
Collapse
Affiliation(s)
- C J Lukonis
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | | | |
Collapse
|