51
|
Gordadze AV, Onunwor CW, Peng R, Poston D, Kremmer E, Ling PD. EBNA2 amino acids 3 to 30 are required for induction of LMP-1 and immortalization maintenance. J Virol 2004; 78:3919-29. [PMID: 15047808 PMCID: PMC374290 DOI: 10.1128/jvi.78.8.3919-3929.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2), a direct transcriptional activator of viral and cellular genes, is required for EBV-induced B-cell transformation. The functional role of conserved regions within the amino terminus of the protein preceding the poly-proline region has yet to be fully characterized. Thus, we tested whether the EBNA2 amino-terminal 30 amino acid residues, containing evolutionarily conserved region 1, are required for stimulating viral and cellular gene expression necessary for B-cell transformation in a viral transcomplementation assay. We found that these residues are required for its ability to induce LMP-1 expression in lymphoblastoid cell lines (LCLs), to stimulate LMP-1 promoter reporter plasmids in transient-cotransfection assays, and to rescue LCL growth following inactivation of endogenous wild-type EBNA2 protein. Deletion of amino acid residues 3 to 30 also impaired its ability to self-associate in coimmunoprecipitation assays. These data indicate that EBNA2 residues 3 to 30 comprise an essential domain required for induction of LMP-1 expression and, consequently, for maintenance of the immortalized phenotype of LCLs. The ability to self-associate into dimers or multimers conferred by this domain may be an important mechanism for these effects.
Collapse
Affiliation(s)
- Alexey V Gordadze
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
52
|
Yue W, Davenport MG, Shackelford J, Pagano JS. Mitosis-specific hyperphosphorylation of Epstein-Barr virus nuclear antigen 2 suppresses its function. J Virol 2004; 78:3542-52. [PMID: 15016877 PMCID: PMC371044 DOI: 10.1128/jvi.78.7.3542-3552.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) is a key gene expressed in EBV type III latent infection that can transactivate numerous promoters, including those for all the other type III viral latency genes as well as cellular genes responsible for cell proliferation. EBNA-2 is essential for EBV-mediated immortalization of primary B lymphocytes. We now report that EBNA-2, a phosphoprotein, is hyperphosphorylated specifically in mitosis. Evidence that the cyclin-dependent kinase p34(cdc2) may be involved in this hyperphosphorylation includes (i) coimmunoprecipitation of EBNA-2 and p34(cdc2), suggesting physical association; (ii) temporal correlation between hyperphosphorylation of EBNA-2 and an increase in p34(cdc2) kinase activity; and (iii) ability of purified p34(cdc2)/cyclin B1 kinase to phosphorylate EBNA-2 in vitro. Hyperphosphorylation of EBNA-2 appears to suppress its ability to transactivate the latent membrane protein 1 (LMP-1) promoter by about 50%. The association between EBNA-2 and PU.1 is also decreased by about 50% in M-phase-arrested cells, as shown by coimmunoprecipitation from cell lysates, suggesting that hyperphosphorylation of EBNA-2 impairs its affinity for PU.1. Finally, endogenous LMP-1 mRNA levels in M phase are around 55% of those in asynchronously growing cells. These results suggest that regulation of gene expression during type III latency may be regulated in a cell-cycle-related manner.
Collapse
Affiliation(s)
- Wei Yue
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
53
|
Kato K, Yokoyama A, Tohya Y, Akashi H, Nishiyama Y, Kawaguchi Y. Identification of protein kinases responsible for phosphorylation of Epstein-Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol 2004; 84:3381-3392. [PMID: 14645919 DOI: 10.1099/vir.0.19454-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization. Earlier studies have shown that the major site of phosphorylation of EBNA-LP by cellular kinase(s) is a serine residue at position 35 (Ser-35) and that the phosphorylation of Ser-35 is critical for regulation of the coactivator function of EBNA-LP (Yokoyama et al., J Virol 75, 5119-5128, 2001). In the present study, we have attempted to identify protein kinase(s) responsible for the phosphorylation of EBNA-LP at Ser-35. A purified chimeric protein consisting of glutathione S-transferase (GST) fused to a domain of EBNA-LP containing Ser-35 was found to be specifically phosphorylated by purified cdc2 in vitro, while GST fused to a mutated domain of EBNA-LP in which Ser-35 was replaced with alanine was not. In addition, overexpression of cdc2 in mammalian cells caused a significant increase in the phosphorylation of EBNA-LP, while this increased phosphorylation was eliminated if Ser-35 of EBNA-LP was replaced with alanine. These results indicate that the cellular protein kinase cdc2 mediates the phosphorylation of EBNA-LP at Ser-35. Recently, we reported that cdc2 and conserved protein kinases encoded by herpesviruses phosphorylate the same amino acid residue of target proteins (Kawaguchi et al., J Virol 77, 2359-2368, 2003). Consistent with this, the EBV-encoded conserved protein kinase BGLF4 specifically mediated the phosphorylation of EBNA-LP at Ser-35. These results indicate that the coactivator function of EBNA-LP can be regulated by the activity of these cellular and viral protein kinases.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akihiko Yokoyama
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yukinobu Tohya
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukihiro Nishiyama
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasushi Kawaguchi
- PRESTO, Japan Science and Technology Corporation, Tachikawa, Tokyo 190-0012, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
54
|
Peng CW, Xue Y, Zhao B, Johannsen E, Kieff E, Harada S. Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci U S A 2004; 101:1033-8. [PMID: 14732686 PMCID: PMC327146 DOI: 10.1073/pnas.0307808100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Epstein-Barr virus nuclear leader protein LP (EBNALP) and EBNA2 are expressed first in lymphocyte infection, coordinately regulate cell and viral gene transcription, and are critical for lymphocyte outgrowth into lymphoblastoid cell lines (LCLs). We have now found that EBNALP readily associated with EBNA2 or with the EBNA2 C-terminal acidic activation domain (E2AD) when both components were expressed by bacteria. In lymphoblasts, EBNALP and EBNA2 did not stably associate. However, EBNALP deleted for only 10 C-terminal amino acids stably associated with EBNA2 in lymphoblasts or with EBNA2 acidic activating domain from bacteria. The E2AD was essential for EBNALP coactivation of the latent membrane protein 1 promoter in lymphoblasts; EBNALP could coactivate with a deficient mutant EBNA2, EBNA2W(454)T, but not with EBNA2 deleted for E2AD. Moreover, EBNALP 31 amino acids (dW2Y1) with 24 C- or N-terminal amino acids was a specific and efficient affinity matrix for EBNA2 or EBNALP. Even an EBNALP 22-aa peptide, dW2, specifically bound EBNALP or EBNA2. These biochemical interactions between EBNALP and EBNA2 enable coordinated transcriptional regulation of cell and viral gene expression in lymphoblasts only when the interaction is unstable; deletion of the EBNALP C-terminal 10 aa stabilized association with EBNA2 and prevented coactivation. Because EBNALPd10 dominantly inhibited EBNALP coactivation with EBNA2, EBNALPd10 expression in LCLs may be useful in assessing the role of EBNALP coactivation in LCL growth or survival.
Collapse
Affiliation(s)
- Chih-Wen Peng
- Program in Virology and Departments of Medicine, Brigham and Women's Hospital and Harvard University, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
55
|
Izumi KM. Epstein-Barr virus signal transduction and B-lymphocyte growth transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 36:269-88. [PMID: 15171616 DOI: 10.1007/978-3-540-74264-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Latent EBV growth transformation of resting B-cells into indefinitely proliferating cell lines is a successful viral strategy for survival in its host and the basis of several human malignancies. EBV transforms cell growth through viral proteins that modify cell gene expression at the level of transcription or by appropriating signaling pathways. Analyses of the EBV-transforming protein LMP1 have begun to reveal that this receptor transduces critical signals by appropriating the TNF receptor signal transduction pathway to activate NF-kappaB and MAPK. While this has brought an important aspect into clearer focus, future progress in delineating the underlying mechanism of transformation, which will be essential to devising effective therapies to treat EBV-associated malignancies, will depend on resolving the intricacies of TRAF signal transduction. Since expression of cytokines, receptors, and anti-apoptotic proteins are regulated by TRAF signaling, another critical issue is delineating the genes that are specifically targeted by LMP1 in order to transform B-lymphocyte growth.
Collapse
Affiliation(s)
- K M Izumi
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
56
|
Affiliation(s)
- Jenny O'Nions
- Faculty of Medicine, Department of Virology and Ludwig Institute for Cancer Research, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
57
|
Li H, Minarovits J. Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation. Adv Cancer Res 2003; 89:133-56. [PMID: 14587872 DOI: 10.1016/s0065-230x(03)01004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus associated with a wide spectrum of malignant neoplasms. Expression of latent (growth transformation-associated) EBV genes is host cell specific. Transcripts for EBV-encoded nuclear antigens (EBNAs) are initiated at one of the alternative promoters: Wp, Cp (for EBNA1-6), or Qp (for EBNA1 only). Wp is active shortly after EBV infection of human B cells in vitro but is progressively methylated and silenced in established lymphoblastoid cell lines (LCLs). In parallel Cp, an unmethylated, lymphoid-specific promoter is switched on. In contrast, Cp is methylated and silent in Burkitt's lymphoma (BL) cell lines, which keep the phenotype of BL biopsy cells (group I BL lines). These cells use Qp for the initiation of EBNA1 messages. Qp is unmethylated both in group I BLs (Qp on) and in LCLs (Qp off). Thus, DNA methylation does not play a role in silencing Qp. In LCLs and nasopharyngeal carcinoma (NPC) cells, transcripts for latent membrane protein 1 (LMP1) are initiated from LMP1p, a promoter regulated by CpG methylation. LMPlp is silent in group I BL lines but can be activated by demethylating agents. Promoter silencing by CpG methylation involves both direct interference with transcription factor binding (Wp, Cp) and indirect mechanisms involving the recruitment of histone deacetylases (LMPlp). A dyad symmetry sequence(DS) within oriP (the latent origin of EBV replication) and intragenic RNA polymerase III control regions of EBER 1 and 2 transcription units are invariably unmethylated in EBV-carrying cells.
Collapse
Affiliation(s)
- Hul Li
- Microbiological Research Group, National Center for Epidemiology, H-1529 Budapest, Hungary
| | | |
Collapse
|
58
|
Atkinson PGP, Coope HJ, Rowe M, Ley SC. Latent Membrane Protein 1 of Epstein-Barr Virus Stimulates Processing of NF-κB2 p100 to p52. J Biol Chem 2003; 278:51134-42. [PMID: 14532284 DOI: 10.1074/jbc.m304771200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have identified a limited number of cellular receptors that can stimulate an alternative NF-kappa B activation pathway that depends upon the inducible processing of NF-kappa B2 p100 to p52. Here it is shown that the latent membrane protein (LMP)-1 of Epstein-Barr virus can trigger this signaling pathway in both B cells and epithelial cells. LMP1-induced p100 processing, which is mediated by the proteasome and is dependent upon de novo protein synthesis, results in the nuclear translocation of p52.RelB dimers. Previous studies have established that LMP1 also stimulates the canonical NF-kappa B-signaling pathway that triggers phosphorylation and degradation of I kappa B alpha. Interestingly, LMP1 activation of these two NF-kappa B pathways is shown here to require distinct regions of the LMP1 C-terminal cytoplasmic tail. Thus, C-terminal-activating region 1 is required for maximal triggering of p100 processing but is largely dispensable for stimulation of I kappa B alpha phosphorylation. In contrast, C-terminal-activating region 2 is critical for maximal LMP1 triggering of I kappa B alpha phosphorylation and up-regulation of p100 levels but does not contribute to activation of p100 processing. Because p100 deletion mutants that constitutively produce p52 oncogenically transform fibroblasts in vitro, it is likely that stimulation of p100 processing by LMP1 will play an important role in its transforming function.
Collapse
Affiliation(s)
- Peter G P Atkinson
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
59
|
Maruo S, Johannsen E, Illanes D, Cooper A, Kieff E. Epstein-Barr Virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J Virol 2003; 77:10437-47. [PMID: 12970429 PMCID: PMC228516 DOI: 10.1128/jvi.77.19.10437-10447.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To evaluate the role of Epstein-Barr Virus (EBV) nuclear antigen 3A (EBNA3A) in the continuous proliferation of EBV-infected primary B lymphocytes as lymphoblastoid cell lines (LCLs), we derived LCLs that are infected with a recombinant EBV genome that expresses EBNA3A fused to a 4-hydroxy-tamoxifen (4HT)-dependent mutant estrogen receptor hormone binding domain (EBNA3AHT). The LCLs grew similarly to wild-type LCLs in medium with 4HT despite a reduced level of EBNA3AHT fusion protein expression. In the absence of 4HT, EBNA3AHT moved from the nucleus to the cytoplasm and was degraded. EBNA3AHT-infected LCLs were unable to grow in medium without 4HT. The precise time to growth arrest varied inversely with cell density. Continued maintenance in medium without 4HT resulted in cell death, whereas readdition of 4HT restored cell growth. Expression of other EBNAs and LMP1, of CD23, and of c-myc was unaffected by EBNA3A inactivation. Wild-type EBNA3A expression from an oriP plasmid transfected into the LCLs protected the EBNA3AHT-infected LCLs from growth arrest and death in medium without 4HT, whereas EBNA3B or EBNA3C expression was unable to protect the LCLs from growth arrest and death. These experiments indicate that EBNA3A has a unique and critical role for the maintenance of LCL growth and ultimately survival. The EBNA3AHT-infected LCLs are also useful for genetic and biochemical analyses of the role of EBNA3A domains in LCL growth.
Collapse
Affiliation(s)
- Seiji Maruo
- Department of Medicine and Microbiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
60
|
Matsuda G, Nakajima K, Kawaguchi Y, Yamanashi Y, Hirai K. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol Immunol 2003; 47:91-9. [PMID: 12636258 DOI: 10.1111/j.1348-0421.2003.tb02790.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in EBV-induced transformation. An earlier report (Y. Kawaguchi et al., J. Virol. 74: 10104-10111, 2000) showed that EBNA-LP interacts with a cellular protein HS1-associated protein X-1 (HAX-1). The predicted amino acid sequence of HAX-1 exhibits similarity to that of another cellular protein Nip3 which has been shown to interact with cellular and viral anti-apoptotic proteins such as Bcl-2 and BHRF1, an EBV homolog of Bcl-2. Here we investigated whether HAX-1, like Nip3, interacts with Bcl-2 proteins and report the following. (i) A purified chimeric protein consisting of gluthathione S-transferase (GST) fused to BHRF1 (GST-BHRF1) or Bcl-2 (GST-Bcl-2) specifically pulled down HAX-1 transiently expressed in COS-7 cells. (ii) GST-BHRF1 or GST-Bcl-2 was not able to pull down EBNA-LP transiently expressed in COS-7 cells, whereas each of the GST fusion proteins formed complexes with EBNA-LP in the presence of RAX-1. These results indicated that EBNA-LP interacts with the viral and cellular Bcl-2 proteins through HAX-1, suggesting that EBNA-LP possesses a potential function in the regulation of apoptosis in EBV-infected cells.
Collapse
Affiliation(s)
- Go Matsuda
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
61
|
Johansen LM, Deppmann CD, Erickson KD, Coffin WF, Thornton TM, Humphrey SE, Martin JM, Taparowsky EJ. EBNA2 and activated Notch induce expression of BATF. J Virol 2003; 77:6029-40. [PMID: 12719594 PMCID: PMC154003 DOI: 10.1128/jvi.77.10.6029-6040.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immortalization of human B lymphocytes by Epstein-Barr virus (EBV) requires the virus-encoded transactivator EBNA2 and the products of both viral and cellular genes which serve as EBNA2 targets. In this study, we identified BATF as a cellular gene that is up-regulated dramatically within 24 h following the infection of established and primary human B cells with EBV. The transactivation of BATF is mediated by EBNA2 in a B-cell-specific manner and is duplicated in non-EBV-infected B cells by the expression of mammalian Notch proteins. In contrast to other target genes activated by EBNA2, the BATF gene encodes a member of the AP-1 family of transcription factors that functions as a negative regulator of AP-1 activity and as an antagonist of cell growth. A potential role for BATF in promoting EBV latency is supported by studies in which BATF was shown to negatively impact the expression of a BZLF1 reporter gene and to reduce the frequency of lytic replication in latently infected cells. The identification of BATF as a cellular target of EBV provides important new information on how programs of viral and cellular gene expression may be coordinated to promote viral latency and control lytic-cycle entry.
Collapse
Affiliation(s)
- Lisa M Johansen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Igarashi M, Kawaguchi Y, Hirai K, Mizuno F. Physical interaction of Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol 2003; 84:319-327. [PMID: 12560563 DOI: 10.1099/vir.0.18615-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and plays a critical role in EBV-induced transformation. To identify the cellular proteins associating with EBNA-LP, we performed a yeast two-hybrid screen using EBNA-LP cDNA containing a single W1W2 domain as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) A cDNA in the positive yeast colony was found to encode a cellular protein, human oestrogen-related receptor 1 (hERR1), which is a constitutive transcriptional activator of the various types of oestrogen response elements. (ii) A purified chimeric protein consisting of glutathione S-transferase (GST) fused to hERR1 specifically formed complexes with EBNA-LPs containing one (EBNA-LPR1), two (EBNA-LPR2) or four W1W2 repeats (EBNA-LPR4) transiently expressed in COS-7 cells. Reciprocally, GST fused to EBNA-LPR1 or EBNA-LPR2 pulled down hERR1 transiently expressed in COS-7 cells. (iii) Mutational analyses of EBNA-LP revealed that the Y2 domain of EBNA-LP is responsible for the interaction with hERR1 and two leucines in the Y2 domain (Leu-78 and -82), which are conserved among a subset of primate gammaherpesviruses, are interactive sites for hERR1. So far, it has been reported that the only domain of EBNA-LP critical for EBV-induced transformation is the Y1Y2 domain. Potential roles of hERR1 in EBV-induced transformation are discussed.
Collapse
Affiliation(s)
- Mie Igarashi
- Department of Microbiology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasushi Kawaguchi
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kanji Hirai
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Fumio Mizuno
- Department of Microbiology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
63
|
Abstract
To elucidate the mechanisms by which Epstein-Barr virus (EBV) latency III gene expression transforms primary B lymphocytes to lymphoblastoid cell lines (LCLs), the associated alterations in cell gene expression were assessed by using 4,146 cellular cDNAs arrayed on nitrocellulose filters and real-time reverse transcription-PCR (RT-PCR). A total of 1,405 of the 4,146 cDNAs were detected using cDNA probes from poly(A)(+) RNA of IB4 LCLs, a non-EBV-infected Burkitt's lymphoma (BL) cell line, BL41, or EBV latency III-converted BL41 cells (BL41EBV). Thirty-eight RNAs were consistently twofold more abundant in the IB4 LCL and BL41EBV than in BL41 by microarray analysis. Ten of these are known to be EBV induced. A total of 23 of 28 newly identified EBV-induced genes were confirmed by real-time RT-PCR. In addition, nine newly identified genes and CD10 were EBV repressed. These EBV-regulated genes encode proteins involved in signal transduction, transcription, protein biosynthesis and degradation, and cell motility, shape, or adhesion. Seven of seven newly identified EBV-induced RNAs were more abundant in newly established LCLs than in resting B lymphocytes. Surveys of eight promoters of newly identified genes implicate NF-kappaB or PU.1 as potentially important mediators of EBV-induced effects through LMP1 or EBNA2, respectively. Thus, examination of the transcriptional effects of EBV infection can elucidate the molecular mechanisms by which EBV latency III alters B lymphocytes.
Collapse
Affiliation(s)
- Kara L Carter
- The Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
64
|
Dufva M, Flodin J, Nerstedt A, Rüetschi U, Rymo L. Epstein-Barr virus nuclear antigen 5 inhibits pre-mRNA cleavage and polyadenylation. Nucleic Acids Res 2002; 30:2131-43. [PMID: 12000833 PMCID: PMC115292 DOI: 10.1093/nar/30.10.2131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The long-standing suspicion that Epstein-Barr virus nuclear antigen 5 (EBNA5) is involved in transcription regulation was recently confirmed by the observation by several groups that EBNA5 cooperates with EBNA2 in activation of the LMP1 promoter. In attempts to elucidate the molecular basis for the EBNA5-mediated enhancement of EBNA2 transactivation, we obtained evidence of an additional function of EBNA5: at high but still biologically relevant levels, EBNA5 acted as a repressor of gene expression by interfering with the processing of pre-mRNA. Transient transfections with reporter plasmids revealed that EBNA5 repressed reporter mRNA and protein expression in the cytoplasm, but did not lower the steady-state level of reporter RNA in the total cellular RNA fraction. We have excluded that repression occurred as a consequence of cell death induced by EBNA5. Using the RNase protection assay with a probe comprising the pre-mRNA cleavage and polyadenylation site, EBNA5 was found to inhibit 3'-end cleavage and polyadenylation of pre-mRNAs from the reporter plasmids investigated. The effect of inhibitory levels of EBNA5 on chromosomal genes was examined in transient transfections by expression profiling using a cDNA microarray panel containing 588 genes. The results showed that EBNA5 could also inhibit the expression of chromosomal genes and did it in a discriminatory manner. This is consistent with the notion that a regulatory mechanism exists in the cell that confers specificity to the selection by EBNA5 of target genes for repression.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
65
|
Spender LC, Cornish GH, Sullivan A, Farrell PJ. Expression of transcription factor AML-2 (RUNX3, CBF(alpha)-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol 2002; 76:4919-27. [PMID: 11967309 PMCID: PMC136164 DOI: 10.1128/jvi.76.10.4919-4927.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify cell proteins regulated by the Epstein-Barr virus (EBV) transcription factor EBNA-2, we analyzed a cell line with conditional EBNA-2 activity by using microarray expression profiling. This led to the identification of two novel target genes induced by EBNA-2. The first of these, interleukin-16, is an immunomodulatory cytokine involved in the regulation of CD4 T cells. The second, AML-2, is a member of the Runt domain family of transcription factors. Quiescent B cells initially expressed AML-1 but, 48 h after virus infection, the levels of AML-1 decreased dramatically, whereas the amount of AML-2 protein increased. Analysis of a panel of B-cell lines indicated that AML-2 expression is normally predominant in EBV latency III, whereas AML-1 is associated with EBV latency I or EBV-negative cells. The AML genes are the first example of cell transcription factors whose expression correlates with the latency I/III phenotype.
Collapse
Affiliation(s)
- Lindsay C Spender
- Ludwig Institute for Cancer Research, Imperial College Faculty of Medicine, London W2 1PG, United Kingdom
| | | | | | | |
Collapse
|
66
|
Han I, Xue Y, Harada S, Orstavik S, Skalhegg B, Kieff E. Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol 2002; 22:2136-46. [PMID: 11884601 PMCID: PMC133669 DOI: 10.1128/mcb.22.7.2136-2146.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HA95, a nuclear protein homologous to AKAP95, has been identified in immune precipitates of the Epstein-Barr virus (EBV) coactivating nuclear protein EBNA-LP from EBV-transformed lymphoblastoid cells (LCLs). We now find that HA95 and EBNA-LP are highly associated in LCLs and in B-lymphoma cells where EBNA-LP is expressed by gene transfer. Binding was also evident in yeast two-hybrid assays. HA95 binds to the EBNA-LP repeat domain that is the principal coactivator of transcription. EBNA-LP localizes with HA95 and causes HA95 to partially relocalize with EBNA-LP in promyelocytic leukemia nuclear bodies. Protein kinase A catalytic subunit alpha (PKAcsalpha) is significantly associated with HA95 in the presence or absence of EBNA-LP. Although EBNA-LP is not a PKA substrate, HA95 or PKAcsalpha expression in B lymphoblasts specifically down-regulates the strong coactivating effects of EBNA-LP. The inhibitory effects of PKAcsalpha are reversed by coexpression of protein kinase inhibitor. PKAcsalpha also inhibits EBNA-LP coactivation with the EBNA-2 acidic domain fused to the Gal4 DNA binding domain. Furthermore, EBNA-LP- and EBNA-2-induced expression of the EBV oncogene, LMP1, is down-regulated by PKAcsalpha or HA95 expression in EBV-infected lymphoblasts. These experiments indicate that HA95 and EBNA-LP localize PKAcsalpha at nuclear sites where it can affect transcription from specific promoters. The role of HA95 as a scaffold for transcriptional regulation is discussed.
Collapse
Affiliation(s)
- Innoc Han
- Ewha Institute of Neuroscience, Ewha University Medical School, Seoul 110-783, Korea
| | | | | | | | | | | |
Collapse
|
67
|
Tanaka M, Yokoyama A, Igarashi M, Matsuda G, Kato K, Kanamori M, Hirai K, Kawaguchi Y, Yamanashi Y. Conserved region CR2 of Epstein-Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol 2002; 76:1025-32. [PMID: 11773378 PMCID: PMC135869 DOI: 10.1128/jvi.76.3.1025-1032.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Self-association of viral proteins is important for many of their functions, including enzymatic, transcriptional, and transformational activities. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) contains various numbers of W1W2 repeats and a unique carboxyl-terminal Y1Y2 domain. It was reported that EBNA-LP associates with a variety of cellular proteins and plays a critical role in EBV-induced transformation. We report here that EBNA-LP self-associates in vivo and the domain responsible for the homotypic association is a multifunctional domain mediating nuclear localization, nuclear matrix association, and EBNA-2-dependent coactivator function of the protein. Our conclusions are based on the following observations. (i) EBNA-LP interacts with itself or its derivatives in the yeast two-hybrid system. (ii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with EBNA-LP transiently expressed in COS-7 cells. (iii) When Flag epitope-tagged EBNA-LP with either one or two W1W2 repeats and EBNA-LP containing four W1W2 repeats were coexpressed in COS-7 cells, the latter was specifically coimmunoprecipitated with the former. (iv) Mutational analyses of EBNA-LP with deletion mutants revealed that the region between codons 19 and 39 (relative to the first amino acid residue of the W2 domain) is essential for self-association of the protein. The mapped region almost completely overlaps with CR2 and CR3, regions conserved among a subset of primate gamma-herpesviruses and critical for EBNA-2-dependent coactivator function. Amino acid substitutions in CR2 alone abolished the ability of the protein to self-interact. This laboratory previously reported that CR2 is also responsible for nuclear localization and nuclear matrix association (A. Yokoyama, Y. Kawaguchi, I. Kitabayashi, M. Ohki, and K. Hirai, Virology 279:401-413, 2001). (v) Sucrose gradient sedimentation showed that amino acid substitutions in CR2 reduced the ability of the protein to form protein complexes in B cells. These results suggest that self-association of EBNA-LP may be important for its various functions and interactions of the protein with multiple cellular proteins.
Collapse
Affiliation(s)
- Michiko Tanaka
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Lin J, Johannsen E, Robertson E, Kieff E. Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol 2002; 76:232-42. [PMID: 11739688 PMCID: PMC135708 DOI: 10.1128/jvi.76.1.232-242.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) regulates virus and cell genes and is essential for EBV-mediated transformation of primary B lymphocytes. EBNA-3C associates with the cellular DNA sequence-specific transcription factors RBP-Jkappa and PU.1 and coactivates the EBV LMP1 promoter with EBNA-2 in BL2 and Raji cells under conditions of restrictive growth. We now find that EBNA-3C is similar to EBNA-LP in coactivating the LMP1 promoter with EBNA-2 in non-EBV-infected Burkitt lymphoma cells under conditions of maximal cell growth, whereas the EBV Cp promoter is repressed under the same conditions. EBNA-3A and EBNA-3B coactivation are at most 40% that of EBNA-3C. The RBP-Jkappa binding sites of EBNA-2 and the LMP1 promoter are not required for EBNA-3C coactivation, whereas the PU.1 site in the LMP1 promoter is required for EBNA-2-mediated activation and EBNA-3C coactivation. EBNA-3C amino acids (aa) 365 to 545, including most of the previously identified repression domain (M. Bain, R. J. Watson, P. J. Farrell, and M. J. Allday, J. Virol. 70:2481-2489, 1996), are necessary and sufficient for coactivation with wild-type EBNA-2. EBNA-3C can also coactivate with the EBNA-2 acidic activating domain; this activation does not require aa 343 to 545. These data indicate that there are at least two mechanisms by which EBNA-3C coactivates the LMP1 promoter with EBNA-2. Of the proteins that interact with EBNA-3C in a yeast two-hybrid screen, only the ubiquitin-like proteins SUMO-1 and SUMO-3/hSMT3B map to aa 365 to 545, implicating these molecules in EBNA-3C coactivation. In addition, SUMO-1 associates at a high level with EBNA-3C in lymphoblasts. Promoter coactivation by EBNA-3C is likely to be important in ensuring adequate levels of LMP1, while inhibition of the EBNA-Cp promoter under the same conditions prevents uncontrolled up-regulation of EBNA expression from a positive-feedback loop.
Collapse
Affiliation(s)
- Jeffrey Lin
- Virology Program and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
69
|
McCann EM, Kelly GL, Rickinson AB, Bell AI. Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 2001; 82:3067-3079. [PMID: 11714985 DOI: 10.1099/0022-1317-82-12-3067] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Co-operation between the Epstein-Barr virus (EBV)-coded leader protein EBNA-LP and the nuclear antigen EBNA2 appears to be critical for efficient virus-induced B cell transformation. Here we report the genetic analysis of EBNA-LP function using two transient co-transfection assays of co-operativity, activation of latent membrane protein 1 (LMP1) expression from a resident EBV genome in Akata-BL cells and activation of an EBNA2-responsive reporter construct. Small deletions were introduced into each of five conserved regions (CRs) of EBNA-LP sequence present in type 1 and type 2 EBV strains and in several primate lymphocryptovirus EBNA-LP homologues. Deletions within all three CRs in the EBNA-LP W1W2 repeat domain completely abrogated function, through inhibition of nuclear localization in the cases of CR1 and CR2 but not of CR3; deletions within CR4 and CR5 in the Y1Y2 unique domain had relatively little effect, yet loss of the whole Y2 sequence blocked activity. Alanine substitution of serine residues within potential phosphorylation sites identified two mutants of particular interest. Substitution of three such residues (S34,36,63) within W1W2 not only abrogated EBNA-LP activity but was associated with a complete loss of EBNA2 detectability in co-transfected cells, implying possible destabilization of the co-expressed EBNA2 protein. More importantly the individual substitution of S36 completely blocked EBNA-LP/EBNA2 co-operativity while retaining EBNA2 expression. We infer critical roles for the CR3 domain and for the S36 residue in EBNA-LP's co-operative function.
Collapse
Affiliation(s)
- Eamon M McCann
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Gemma L Kelly
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Alan B Rickinson
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Andrew I Bell
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| |
Collapse
|
70
|
Abstract
Epstein-Barr virus (EBV) is able to infect primary B-lymphocytes but usually does not proceed to replicate more virions. Instead, EBV persists as an incomplete virus and expresses 12 gene products that transform the growth of these cells into continuously proliferating lymphoblastoid cell lines. Because EBV is associated with several human malignancies, there is intense interest in delineating the molecular functions of these EBV gene products in transformation. This review focuses on the recombinant EBV technologies that have been developed to introduce specific mutations into EBV and test the functions of these EBV genes in primary B-lymphocyte growth transformation.
Collapse
Affiliation(s)
- K M Izumi
- Department of Microbiology, Harvard Medical School and Medicine, Brigham and Women's Hospital, 857 Channing Laboratory, 181 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
71
|
Zimber-Strobl U, Strobl LJ. EBNA2 and Notch signalling in Epstein-Barr virus mediated immortalization of B lymphocytes. Semin Cancer Biol 2001; 11:423-34. [PMID: 11669604 DOI: 10.1006/scbi.2001.0409] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) has the ability to immortalize B cells. A viral key protein for immortalization is the transactivator EBNA2 that controls expression of several viral and cellular genes. EBNA2 is tethered to promoters by interacting with the cellular repressor RBP-J. This resembles the physiological activation of RBP-J-repressed promoters by activated Notch receptors (Notch-IC). Since EBNA2 and Notch-IC have been shown to be partially interchangeable in regard to activation of target genes in B cell lines and modulation of differentiation processes it is conceivable that EBNA2 is a biological equivalent of an activated Notch receptor.
Collapse
Affiliation(s)
- U Zimber-Strobl
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany.
| | | |
Collapse
|
72
|
Harris RS, Croom-Carter DS, Rickinson AB, Neuberger MS. Epstein-Barr virus and the somatic hypermutation of immunoglobulin genes in Burkitt's lymphoma cells. J Virol 2001; 75:10488-92. [PMID: 11581418 PMCID: PMC114624 DOI: 10.1128/jvi.75.21.10488-10492.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested that Epstein-Barr virus (EBV) might suppress antibody maturation either by facilitating bypass of the germinal center reaction or by inhibiting hypermutation directly. However, by infecting the Burkitt's lymphoma (BL) cell line Ramos, which hypermutates constitutively and can be considered a transformed analogue of a germinal center B cell, with EBV as well as by transfecting it with selected EBV latency genes, we demonstrate that expression of EBV gene products does not lead to an inhibition of hypermutation. Moreover, we have identified two natural EBV-positive BL cell lines (ELI-BL and BL16) that hypermutate constitutively. Thus, contrary to expectations, EBV gene products do not appear to affect somatic hypermutation.
Collapse
Affiliation(s)
- R S Harris
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | | | | | |
Collapse
|
73
|
Bandobashi K, Maeda A, Teramoto N, Nagy N, Székely L, Taguchi H, Miyoshi I, Klein G, Klein E. Intranuclear localization of the transcription coadaptor CBP/p300 and the transcription factor RBP-Jk in relation to EBNA-2 and -5 in B lymphocytes. Virology 2001; 288:275-82. [PMID: 11601899 DOI: 10.1006/viro.2001.1103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the expression and the localization of the cellular proteins CBP/p300 and RBP-Jk in in vitro EBV-infected human B lymphocytes in relation to the EBNA-2 and EBNA-5 proteins. We found that the level of CBP/p300 was elevated drastically by EBV infection and also after activation by CD40 ligation. Thus the increase in CBP/p300 expression in the EBV-infected cells is related to the virus-induced activation and proliferation of the cells. EBNA-2 and RBP-Jk colocalized in the nucleoplasm, which is in accordance with their functional interaction. We confirmed earlier reports about the presence and colocalization of EBNA-5 and CBP in the nuclear POD bodies. On the other hand, neither EBNA-2 nor p300 was detected in the PODs. The expression of these two proteins overlapped in some distinct dots of the nucleoplasm. Taken together, the different patterns of CBP and p300 expression and their different localization in relation to the PML bodies and two EBV-encoded proteins in the B cells may provide some clue to their distinct functional roles.
Collapse
Affiliation(s)
- K Bandobashi
- Microbiology and Tumor Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Niedobitek G, Meru N, Delecluse HJ. Epstein-Barr virus infection and human malignancies. Int J Exp Pathol 2001. [PMID: 11488990 DOI: 10.1111/j.1365-2613.2001.iep190.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a herpes virus which establishes a life-long persistent infection in over 90% of the human adult population world-wide. Based on its association with a variety of lymphoid and epithelial malignancies, EBV has been classified as a group 1 carcinogen by the International Agency for Research on Cancer. In this article we discuss the evidence supporting an aetiological role for EBV in the pathogenesis of human tumours. The biology of EBV infection will be described with special emphasis on viral transforming gene products. A brief survey of EBV-associated tumours is followed by a discussion of specific problems. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated tumours also in patients without clinically manifest immunodeficiencies. Finally, the timing of EBV infection in the pathogenesis of virus-associated malignancies is discussed. There is good evidence that EBV infection precedes expansion of the malignant cell populations in some virus-associated tumours. However, this is clearly not always the case and for some of these tumours there are indications that clonal genetic alterations may occur prior to EBV infection. Thus, whilst there is good evidence to suggest that EBV is a human carcinogen, its precise role(s) in the development of virus-associated human tumours requires clarification.
Collapse
Affiliation(s)
- G Niedobitek
- Pathologisches Institut, Friedrich-Alexander-Universität, Krankenhausstr. 8-10, 91054 Erlangen, Germany. gerald.niedobitek @patho.imed.uni-erlangen.de
| | | | | |
Collapse
|
75
|
Yin H, Morioka H, Towle CA, Vidal M, Watanabe T, Weissbach L. Evidence that HAX-1 is an interleukin-1 alpha N-terminal binding protein. Cytokine 2001; 15:122-37. [PMID: 11554782 DOI: 10.1006/cyto.2001.0891] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During studies aimed at understanding the function of the N-terminal peptide of interleukin-1 alpha (IL-1 NTP, amino acids 1-112), which is liberated from the remainder of IL-1 alpha during intracellular processing, we identified by yeast two-hybrid analysis a putative interacting protein previously designated as HAX-1. In vitro binding studies and transient transfection experiments confirmed that HAX-1 can associate with the IL-1 NTP. HAX-1 was first identified as a protein that associates with HS1, a target of non-receptor protein tyrosine kinases within haematopoietic cells. Recent data have also revealed interactions between HAX-1 and three disparate proteins, polycystin-2 (derived from the PKD2 gene), a protein linked to polycystic kidney disease, cortactin, and Epstein-Barr virus nuclear antigen leader protein (EBNA-LP). Sequence analysis of different HAX-1 binding domains revealed a putative consensus binding motif that is present in various intracellular proteins. Overlapping peptides comprising the IL-1 NTP were synthesized, and binding experiments revealed that discrete peptides were capable of interacting with HAX-1. HAX-1 may serve to retain the IL-1 NTP in the cytoplasm, and complex formation between the IL-1 NTP and HAX-1 may play a role in motility and/or adhesion of cells.
Collapse
Affiliation(s)
- H Yin
- Orthopaedic Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
76
|
Dufva M, Olsson M, Rymo L. Epstein-Barr virus nuclear antigen 5 interacts with HAX-1, a possible component of the B-cell receptor signalling pathway. J Gen Virol 2001; 82:1581-1587. [PMID: 11413368 DOI: 10.1099/0022-1317-82-7-1581] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a yeast two-hybrid screen of a B-cell cDNA library with an Epstein-Barr nuclear antigen 5 (EBNA5) molecule containing seven repeats of the W(1)W(2) domain as bait, we have isolated the EBNA5-interacting protein HAX-1. HAX-1 has previously been shown to associate with HS1, a protein specifically expressed in cells of the haematopoietic lineage, and is thought to be involved in signal transduction in B-cells. Immunofluorescence experiments showed that HAX-1 co-localized with the hsp60 protein that is associated with the mitochondria in the cell cytoplasm. Pull down experiments with a fusion protein between glutathione S-transferase and the seven copy repeat EBNA5 synthesized in bacteria and in yeast cells confirmed that HAX-1 can interact with EBNA5 in vitro. Conventionally, EBNA5 is regarded as a nuclear protein. However, we show here that the smallest EBNA5 species, composed of the unique Y domain and only one copy of the W(1)W(2) repeat domain, like HAX-1, co-localizes with the mitochondrial hsp60 protein in the B-cell cytoplasm. Furthermore, immunoprecipitation experiments demonstrate that the single repeat EBNA5 associates with HAX-1 in transfected B-lymphoblastoid cells.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden1
| | - Maria Olsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden1
| | - Lars Rymo
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Göteborg University, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden1
| |
Collapse
|
77
|
Abstract
The Epstein-Barr virus (EBV) is a herpes virus which establishes a life-long persistent infection in over 90% of the human adult population world-wide. Based on its association with a variety of lymphoid and epithelial malignancies, EBV has been classified as a group 1 carcinogen by the International Agency for Research on Cancer. In this article we discuss the evidence supporting an aetiological role for EBV in the pathogenesis of human tumours. The biology of EBV infection will be described with special emphasis on viral transforming gene products. A brief survey of EBV-associated tumours is followed by a discussion of specific problems. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated tumours also in patients without clinically manifest immunodeficiencies. Finally, the timing of EBV infection in the pathogenesis of virus-associated malignancies is discussed. There is good evidence that EBV infection precedes expansion of the malignant cell populations in some virus-associated tumours. However, this is clearly not always the case and for some of these tumours there are indications that clonal genetic alterations may occur prior to EBV infection. Thus, whilst there is good evidence to suggest that EBV is a human carcinogen, its precise role(s) in the development of virus-associated human tumours requires clarification.
Collapse
Affiliation(s)
- G Niedobitek
- Pathologisches Institut, Friedrich-Alexander-Universität, Krankenhausstr. 8-10, 91054 Erlangen, Germany. gerald.niedobitek @patho.imed.uni-erlangen.de
| | | | | |
Collapse
|
78
|
Tanner JE, Alfieri C. The Epstein-Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis 2001; 3:60-9. [PMID: 11395971 DOI: 10.1034/j.1399-3062.2001.003002060.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transplant patients are at particular risk for developing post-transplant lymphoproliferative disease (PTLD) following administration of immunosuppressive therapy. In many cases the PTLD lesions express Epstein-Barr virus (EBV) latent and lytic genes as well as elevated levels of host cytokines. An outline of the potential contributions of EBV, host cytokines and T cells, and the immunosuppressive cyclosporine A, tacrolimus, and anti-CD3 antibody in the mechanism and pathogenesis of this disease is presented and discussed.
Collapse
Affiliation(s)
- J E Tanner
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa Medical School, Ottawa, Ontario, Canada
| | | |
Collapse
|
79
|
Abstract
The Epstein-Barr virus (EBV) is a herpes virus which establishes a life-long persistent infection in over 90% of the human adult population world-wide. Based on its association with a variety of lymphoid and epithelial malignancies, EBV has been classified as a group 1 carcinogen by the International Agency for Research on Cancer. In this article we discuss the evidence supporting an aetiological role for EBV in the pathogenesis of human tumours. The biology of EBV infection will be described with special emphasis on viral transforming gene products. A brief survey of EBV-associated tumours is followed by a discussion of specific problems. Evidence is presented which suggests that failures of the EBV-specific immunity may play a role in the pathogenesis of EBV-associated tumours also in patients without clinically manifest immunodeficiencies. Finally, the timing of EBV infection in the pathogenesis of virus-associated malignancies is discussed. There is good evidence that EBV infection precedes expansion of the malignant cell populations in some virus-associated tumours. However, this is clearly not always the case and for some of these tumours there are indications that clonal genetic alterations may occur prior to EBV infection. Thus, whilst there is good evidence to suggest that EBV is a human carcinogen, its precise role(s) in the development of virus-associated human tumours requires clarification.
Collapse
Affiliation(s)
- Gerald Niedobitek
- Pathologisches Institut, Friedrich-Alexander-UniversitätKrankenhausstr. 8–10, 91054 Erlangen, Germany
| | - Nadine Meru
- Pathologisches Institut, Friedrich-Alexander-UniversitätKrankenhausstr. 8–10, 91054 Erlangen, Germany
| | | |
Collapse
|
80
|
Yokoyama A, Tanaka M, Matsuda G, Kato K, Kanamori M, Kawasaki H, Hirano H, Kitabayashi I, Ohki M, Hirai K, Kawaguchi Y. Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol 2001; 75:5119-28. [PMID: 11333893 PMCID: PMC114917 DOI: 10.1128/jvi.75.11.5119-5128.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a phosphoprotein suggested to play important roles in EBV-induced immortalization of B cells. One of the potential functions of EBNA-LP is a cooperative induction with EBNA-2 of viral and cellular gene expression, including that of the genes for viral latent membrane protein 1 (LMP-1) and cellular cyclin D2. We report here that the phosphorylation of EBNA-LP by cellular kinase(s) is critical to its ability to cooperate with EBNA-2 in up-regulating the expression of LMP-1 in a B-lymphoma cell line. Our conclusion is based on the following observations. (i) Mass-spectrometric analysis of purified EBNA-LP and mutational analyses of EBNA-LP revealed that the serine residue at position 35 in the W2 repeat domain is the major phosphorylation site of EBNA-LP in vivo. (ii) Substitutions of this site in each W2 repeat domain with alanine markedly reduced the ability of the protein to induce LMP-1 expression in combination with EBNA-2 in Akata cells. (iii) Replacement at the major phosphorylation sites with glutamic acids restored the wild-type phenotype. It is well established that this substitution mimics constitutive phosphorylation. These results indicated that the coactivator function of EBNA-LP is regulated by phosphorylation.
Collapse
Affiliation(s)
- A Yokoyama
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Epstein-Barr virus (EBV) latent infection is tightly associated with the development of lymphoid and epithelial human malignancies. The disruption of cell-growth checkpoints is mediated by a limited number of viral proteins that interfere with signal transduction mechanisms and transcription control in the infected cell. Genetic and biochemical evidence supports the notion that EBV-mediated transformation relies extensively on interference with cytokine signaling networks. This is achieved through direct modulation of cytokine receptor signaling mechanisms as well as alterations in the expression levels of various cytokines. The principal effector of these interventions is the EBV latent membrane protein 1 (LMP1) which plays a central role in the transformation process. This viral protein mimics activated receptors of the tumor necrosis factor receptor superfamily to promote cell growth and antiapoptotic mechanisms. LMP1 and other EBV latent proteins upregulate cytokines and growth factors which participate in autocrine and paracrine loops that are likely to promote cell transformation and modulate immune responses. This report will review the molecular mechanisms that underlie the disruption of cytokine signaling mechanisms in EBV-mediated transformation with a particular emphasis on the LMP1 mechanism of function.
Collapse
Affiliation(s)
- G Mosialos
- Institute of Immunology, Biomedical Sciences Research Center Al. Fleming, 14-16 Al. Fleming Str., Vari 16672, Greece.
| |
Collapse
|
82
|
Bornkamm GW, Hammerschmidt W. Molecular virology of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 2001; 356:437-59. [PMID: 11313004 PMCID: PMC1088437 DOI: 10.1098/rstb.2000.0781] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) interacts with its host in three distinct ways in a highly regulated fashion: (i) EBV infects human B lymphocytes and induces proliferation of the infected cells, (ii) it enters into a latent phase in vivo that follows the proliferative phase, and (iii) it can be reactivated giving rise to the production of infectious progeny for reinfection of cells of the same type or transmission of the virus to another individual. In healthy people, these processes take place simultaneously in different anatomical and functional compartments and are linked to each other in a highly dynamic steady-state equilibrium. The development of a genetic system has paved the way for the dissection of those processes at a molecular level that can be studied in vitro, i.e. B-cell immortalization and the lytic cycle leading to production of infectious progeny. Polymerase chain reaction analyses coupled to fluorescent-activated cell sorting has on the other hand allowed a descriptive analysis of the virus-host interaction in peripheral blood cells as well as in tonsillar B cells in vivo. This paper is aimed at compiling our present knowledge on the process of B-cell immortalization in vitro as well as in vivo latency, and attempts to integrate this knowledge into the framework of the viral life cycle in vivo.
Collapse
Affiliation(s)
- G W Bornkamm
- Institut für Klinische Molekularbiologie und Tumorgenetik, Abteilung für Genvektoren, GSF-Forschungszentrum für Umwelt und Gesundheit, Marchioninistrasse 25, D-83177 München, Germany.
| | | |
Collapse
|
83
|
Spender LC, Cornish GH, Rowland B, Kempkes B, Farrell PJ. Direct and indirect regulation of cytokine and cell cycle proteins by EBNA-2 during Epstein-Barr virus infection. J Virol 2001; 75:3537-46. [PMID: 11264343 PMCID: PMC114845 DOI: 10.1128/jvi.75.8.3537-3546.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Accepted: 01/19/2001] [Indexed: 01/12/2023] Open
Abstract
We have studied the pathways of regulation of cytokine and cell cycle control proteins during infection of human B lymphocytes by Epstein-Barr virus (EBV). Among 30 cytokine RNAs analyzed by the RNase protection assay, tumor necrosis factor alpha (TNF-alpha), granulocyte colony-stimulating factor, lymphotoxin (LT), and LTbeta were found to be regulated within 20 h of EBV infection of primary B cells. Similar results were obtained using the estrogen-regulated EBNA-2 cell line EREB2.5, in which RNAs for LT and TNF-alpha were induced within 6 h of activation of EBNA-2. Expression of Notch also caused an induction of TNF-alpha RNA. The induction of TNF-alpha RNA by EBNA-2 was indirect, and constitutive expression of either LMP-1 or c-myc proteins did not substitute for EBNA-2 in induction of TNF-alpha RNA. Cyclin D2 is also an indirect target of EBNA-2-mediated transactivation. EBNA-2 was found to activate the cyclin D2 promoter in a transient-transfection assay. A mutant of EBNA-2 that does not bind RBP-Jkappa retained some activity in this assay, and activation did not depend on the presence of B-cell-specific factors. Deletion analysis of the cyclin D2 promoter revealed that removal of sequences containing E-box c-myc consensus DNA binding sequences did not reduce EBNA-2-mediated activation of the cyclin D2 promoter in the transient-transfection assay. The results indicate that cytokines are an early target of EBNA-2 and that EBNA-2 can regulate cyclin D2 transcription in EBV-infected cells by mechanisms additional to the c-myc pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Anisomycin/pharmacology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cells, Cultured
- Cyclin D2
- Cyclin-Dependent Kinase Inhibitor p27
- Cyclins/genetics
- Cyclins/metabolism
- Cycloheximide/pharmacology
- Cytokines/genetics
- Cytoskeletal Proteins
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Estrogens/pharmacology
- Fluorescent Antibody Technique
- Gene Expression Regulation/drug effects
- Granulocyte Colony-Stimulating Factor/genetics
- Herpesvirus 4, Human/physiology
- Humans
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Lymphotoxin-alpha/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Microtubule-Associated Proteins/metabolism
- Mutation/genetics
- Nuclease Protection Assays
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Notch
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/genetics
- Tumor Suppressor Proteins
- Viral Proteins
Collapse
Affiliation(s)
- L C Spender
- Ludwig Institute for Cancer Research, Imperial College School of Medicine, London W2 1PG, United Kingdom
| | | | | | | | | |
Collapse
|
84
|
Damania B, Jung JU. Comparative analysis of the transforming mechanisms of Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and Herpesvirus saimiri. Adv Cancer Res 2001; 80:51-82. [PMID: 11034540 DOI: 10.1016/s0065-230x(01)80012-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Members of the gamma herpesvirus family include the lymphocryptoviruses (gamma-1 herpesviruses) and the rhadinoviruses (gamma-2 herpesviruses). Gammaherpesvirinae uniformly establish long-term, latent, reactivatable infection of lymphocytes, and several members of the gamma herpesviruses are associated with lymphoproliferative diseases. Epstein-Barr virus is a lymphocryptovirus, whereas Kaposi sarcoma-associated herpesvirus and Herpesvirus saimiri are members of the rhadinovirus family. Genes encoded by these viruses are involved in a diverse array of cellular signaling pathways. This review attempts to cover our understanding of how viral proteins deregulate cellular signaling pathways that ultimately contribute to the conversion of normal cells to cancerous cells.
Collapse
Affiliation(s)
- B Damania
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | |
Collapse
|
85
|
Höfelmayr H, Strobl LJ, Marschall G, Bornkamm GW, Zimber-Strobl U. Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells. J Virol 2001; 75:2033-40. [PMID: 11160707 PMCID: PMC114787 DOI: 10.1128/jvi.75.5.2033-2040.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) and latent membrane protein 1 (LMP1) are essential for immortalization of human B cells by EBV. EBNA2 and activated Notch transactivate genes by interacting with the cellular transcription factor RBP-Jkappa/CBF1. Therefore, EBNA2 can be regarded as a functional homologue of activated Notch. We have shown previously that the intracellular domain of Notch1 (Notch1-IC) is able to transactivate EBNA2-regulated viral promoters and to induce phenotypic changes in B cells similar to those caused by EBNA2. Here we investigated whether Notch1-IC can substitute for EBNA2 in the maintenance of B-cell proliferation. Using an EBV-immortalized lymphoblastoid cell line in which EBNA2 function can be regulated by estrogen, we demonstrate that murine Notch1-IC, in the absence of functional EBNA2, is unable to maintain LMP1 expression and to maintain cell proliferation. However, in a lymphoblastoid cell line expressing LMP1 independently of EBNA2, murine Notch1-IC can transiently maintain proliferation after EBNA2 inactivation. After 4 days, cell numbers do not increase further, and cells in the G2 phase of the cell cycle start to die. In contrast to EBNA2, murine Notch1-IC is unable to upregulate the expression of the c-myc gene in these cells.
Collapse
Affiliation(s)
- H Höfelmayr
- Institute for Clinical Molecular Biology and Tumor Genetics, GSF National Research Center of Environment and Health, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
86
|
Han I, Harada S, Weaver D, Xue Y, Lane W, Orstavik S, Skalhegg B, Kieff E. EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol 2001; 75:2475-81. [PMID: 11160753 PMCID: PMC114833 DOI: 10.1128/jvi.75.5.2475-2481.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EBNA-LP-associated proteins were identified by sequencing proteins that immunoprecipitated with Flag epitope-tagged EBNA-LP (FLP) from lymphoblasts in which FLP was stably expressed. The association of EBNA-LP with Hsp70 (72/73) was confirmed, and sequences of DNA-PK catalytic subunit (DNA-PKcs), HA95, Hsp27, prolyl 4-hydroxylase alpha-1 subunit, alpha-tubulin, and beta-tubulin were identified. The fraction of total cellular HA95 that associated with FLP was very high, while progressively lower fractions of the total DNA-PKcs, Hsp70, Hsp 27, alpha-tubulin, and beta-tubulin specifically associated with EBNA-LP as determined by immunoblotting with antibodies to these proteins. EBNA-LP bound to two domains in the DNA-PKcs C terminus and DNA-PKcs associated with the EBNA-LP repeat domain. DNA-PKcs that was bound to EBNA-LP phosphorylated p53 or EBNA-LP in vitro, and the phosphorylation of EBNA-LP was inhibited by Wortmannin, a specific in vitro inhibitor of DNA-PKcs.
Collapse
Affiliation(s)
- I Han
- Channing Laboratory, Harvard Medical School, Boston, Massachusetts 02445, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Harada S, Yalamanchili R, Kieff E. Epstein-Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol 2001; 75:2482-7. [PMID: 11160754 PMCID: PMC114834 DOI: 10.1128/jvi.75.5.2482-2487.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous genetic and biochemical analyses have indicated that the Epstein-Barr virus EBNA-2 amino terminus is important for primary B-lymphocyte growth transformation and may be involved in self-association. We now report that EBNA-2 has at least two domains, amino acids 1 to 60 and 96 to 210, which independently mediate homotypic association, 1 to 60 with 1 to 60 and 96 to 210 with 96 to 210. EBNA-2 self-association is likely to be critical to the ability of EBNA-2 to interact simultaneously with multiple cellular transcription factors, coactivators, and histone acetyltransferases through its RBPJkappa binding and acidic activating domains.
Collapse
Affiliation(s)
- S Harada
- Program in Virology and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
88
|
Yokoyama A, Kawaguchi Y, Kitabayashi I, Ohki M, Hirai K. The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology 2001; 279:401-13. [PMID: 11162796 DOI: 10.1006/viro.2000.0715] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a growing body of evidence for the importance of the nuclear matrix in various nuclear events including gene expression and DNA replication. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is a nuclear matrix-associated protein that has been suggested to play an important role in EBV-induced transformation. To define the biological significance of the association of EBNA-LP with the nuclear matrix, we mapped the domain of EBNA-LP responsible for nuclear matrix association and investigated the functions of the EBNA-LP mutant mutagenized by substitution of alanines for the cluster of arginine residues in the mapped region. The results of the present study were as follows. (i) Transiently expressed EBNA-LP in COS-7 or BOSC23 cells was associated with the nuclear matrix, similarly to that in EBV-infected B cells. (ii) Mutational analysis of EBNA-LP revealed that a 10-amino acid segment of EBNA-LP is critical for nuclear matrix association of the protein. Interestingly, the identified region overlapped with the region CR2 of EBNA-LP conserved among a subset of primate gammaherpesviruses. The identified segment is referred to as EBNA-LP NMTS (nuclear matrix targeting signal). (iii) The EBNA-LP mutant with the arginine to alanine substitutions in NMTS was no longer localized not only to the nuclear matrix but also to the nucleus. (iv) The EBNA-LP mutant lacked its ability to coactivate EBNA-2-dependent transactivation. These results indicated that EBNA-LP needs to be localized in the nucleus and/or associated with the nuclear matrix through CR2 to elicit its function such as the coactivation of the EBNA-2-dependent transcriptional activation.
Collapse
Affiliation(s)
- A Yokoyama
- Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 1-5-45, Yushima, Bunkyo-ku, 113-8510, Japan
| | | | | | | | | |
Collapse
|
89
|
Kawaguchi Y, Nakajima K, Igarashi M, Morita T, Tanaka M, Suzuki M, Yokoyama A, Matsuda G, Kato K, Kanamori M, Hirai K. Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol 2000; 74:10104-11. [PMID: 11024139 PMCID: PMC102049 DOI: 10.1128/jvi.74.21.10104-10111.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and has been suggested to play an important role in EBV-induced transformation. To identify the cellular factors interacting with EBNA-LP, we performed a yeast two-hybrid screen, using EBNA-LP cDNA containing four W1W2 repeats as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) All three cDNAs in positive yeast colonies were found to encode the same cellular protein, HS1-associated protein X-1 (HAX-1), which is localized mainly in the cytoplasm and has been suggested to be involved in the regulation of B-cell signal transduction and apoptosis. (ii) Mutational analysis of EBNA-LP revealed that the association with HAX-1 is mediated by the W1W2 repeat domain. (iii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with HAX-1 transiently expressed in COS-7 cells. (iv) When EBNA-LP and HAX-1 were coexpressed in COS-7 cells, EBNA-LP was specifically coimmunoprecipitated with HAX-1. (v) Careful cell fractionation experiments of an EBV-infected lymphoblastoid cell line revealed that EBNA-LP is localized in the cytoplasm as well as in the nucleus. (vi) When EBNA-LP containing four W1W2 repeats was expressed in COS-7 cells, EBNA-LP was detected mainly in the nucleus by immunofluorescence assay. Interestingly, when EBNA-LP containing a single W1W2 repeat was expressed in COS-7 cells, EBNA-LP was localized predominantly in the cytoplasm and was colocalized with HAX-1. These results indicate that EBNA-LP is in fact present and may have a significant function in the cytoplasm, possibly by interacting with and affecting the function of HAX-1.
Collapse
Affiliation(s)
- Y Kawaguchi
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Peng R, Tan J, Ling PD. Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol 2000; 74:9953-63. [PMID: 11024123 PMCID: PMC102033 DOI: 10.1128/jvi.74.21.9953-9963.2000] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-LP is a latent protein whose function is not fully understood. Recent studies have shown that EBNA-LP may be an important EBNA2 cofactor by enhancing EBNA2 stimulation of the latency C and LMP-1 promoters. To further our understanding of EBNA-LP function, we have introduced a series of mutations into evolutionarily conserved regions and tested the mutant proteins for the ability to enhance EBNA2 stimulation of the latency C and LMP-1 promoters. Three conserved regions (CR1 to CR3) are located in the repeat domains that are essential for the EBNA2 cooperativity function. In addition, three serine residues are also well conserved in the repeat domains. Clustered alanine mutations were introduced into CR1 to CR3, and the conserved serines were also changed to alanine residues in an EBNA-LP with two repeats, which is the minimal protein able to cooperate with EBNA2. Mutations introduced into CR1a had no effect on EBNA-LP function, while mutations introduced into CR1b resulted in EBNA-LP with slightly decreased activity. Mutations in CR1c and CR2 resulted in proteins that no longer localized exclusively to the nucleus and also had no EBNA2 cooperation activity. Mutations introduced into conserved serines S5/71 resulted in proteins with slightly higher activity, while mutations introduced into conserved serines S35/101 or in CR3 (which contains S60/126) resulted in EBNA-LP proteins with substantially reduced activity. The potential karyophilic signals within EBNA-LP CR1c and CR2 were also examined by introducing oligonucleotides encoding these positively charged amino acid groupings into a cytoplasmic test protein, herpes simplex virus DeltaIE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBNA-LP amino acids 43 and 50 (109 to 117 in the second W repeat) comprising CR2, while EBNA-LP amino acids 29 to 36 (91 to 98 in the second W repeat) were unable to function independently as a nuclear localization signal. However, a combination of amino acids 29 to 50 resulted in more efficient nuclear localization than with amino acids 43 to 50 alone. These results indicate that EBNA-LP has a bipartite nuclear localization signal and that efficient nuclear localization is essential for EBNA2 cooperativity function. Interestingly, EBNA-LP with only a single repeat localized exclusively to the cytoplasm, providing an explanation for why this isoform has no activity. In addition, two conserved serine residues which are distinct from nuclear import functions are important for EBNA2 cooperativity function.
Collapse
Affiliation(s)
- R Peng
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
91
|
Young LS, Dawson CW, Eliopoulos AG. The expression and function of Epstein-Barr virus encoded latent genes. Mol Pathol 2000; 53:238-47. [PMID: 11091847 PMCID: PMC1186976 DOI: 10.1136/mp.53.5.238] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2000] [Indexed: 01/15/2023]
Abstract
The association of Epstein-Barr virus (EBV) with various malignancies is well established but the pattern of EBV latent gene expression in these different tumours is variable, reflecting distinct aspects of the virus-cell interaction. These different forms of EBV latency are associated with phenotypic variation and highlight the influence of EBV latent proteins on cell growth and survival. The EBV latent proteins have distinct functions associated with the maintenance of EBV infection and the control of various signalling and transcriptional pathways that facilitate the proliferation and survival of infected cells. Understanding the function of these EBV latent proteins will not only provide insight into the mechanisms governing fundamental cell processes but will also identify targets for novel treatment.
Collapse
Affiliation(s)
- L S Young
- CRC Institute for Cancer Studies, University of Birmingham Medical School, UK.
| | | | | |
Collapse
|
92
|
Delecluse HJ, Hammerschmidt W. The genetic approach to the Epstein-Barr virus: from basic virology to gene therapy. Mol Pathol 2000; 53:270-9. [PMID: 11091851 PMCID: PMC1186980 DOI: 10.1136/mp.53.5.270] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The Epstein-Barr virus (EBV) infects humans and the genome of this infectious agent has been detected in several tumour types, ranging from lymphomas to carcinomas. The analysis of the functions of the numerous viral proteins encoded by EBV has been impeded by the large size of the viral genome, which renders the construction of viral mutants difficult. To overcome these limitations, several genetic systems have been developed that allow the modification of the viral genome. Two different approaches, depending on the host cell type in which the viral mutants are generated, have been used in the past. Traditionally, mutants were constructed in EBV infected eukaryotic cells, but more recently, approaches that make use of a recombinant EBV cloned in Escherichia coli have been proposed. The phenotype associated with the inactivation or modification of nearly 20 of the 100 EBV viral genes has been reported in the literature. In most of the reported cases, the EBV latent genes that mediate the ability of EBV to immortalize infected cells were the targets of the genetic analysis, but some virus mutants in which genes involved in DNA lytic replication or infection were disrupted have also been reported. The ability to modify the viral genome also opens the way to the construction of viral strains with medical relevance. A cell line infected by a virus that lacks the EBV packaging sequences can be used as a helper cell line for the encapsidation of EBV based viral vectors. This cell line will allow the evaluation of EBV as a gene transfer system with applications in gene therapy. Finally, genetically modified non-pathogenic strains will provide a basis for the design of an attenuated EBV live vaccine.
Collapse
Affiliation(s)
- H J Delecluse
- GSF-National Research Center for Environment and Health, Department Gene Vectors, München, Germany.
| | | |
Collapse
|
93
|
Abstract
Several of the gamma-herpesviruses are known to have cellular transforming and oncogenic properties. The genomes of eight distinct gamma-herpesviruses have been sequenced, and the resulting database of information has enabled the identification of genetic similarities and differences between evolutionarily closely related and distant viruses of the subfamily and between the gamma-herpesviruses and other members of the herpesvirus family. The recognition of coincident loci of genetic divergence between individual gamma-herpesviruses and the identification of novel genes and cellular gene homologues in these genomic regions has delineated a subset of genes that are likely to contribute to the unique biological properties of these viruses. These genes, together with gamma-herpesvirus conserved genes not found in viruses outside the family, might be responsible for virus specific pathogenicity and pathogenic effects, such as viral associated neoplasia, characteristic of the subfamily. The presence of the gamma-herpesvirus major divergent genomic loci and the apparent increased mutational frequencies of homologous genes (where they occur) within these regions, indicates that these loci possess particular features that drive genetic divergence. Whatever the mechanisms underlying this phenomenon, it potentially provides the basis for the relatively rapid adaptation and evolution of gamma-herpesviruses and the diversity of biological and pathogenic properties.
Collapse
Affiliation(s)
- J Nicholas
- Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| |
Collapse
|
94
|
Webster-Cyriaque J, Middeldorp J, Raab-Traub N. Hairy leukoplakia: an unusual combination of transforming and permissive Epstein-Barr virus infections. J Virol 2000; 74:7610-8. [PMID: 10906215 PMCID: PMC112282 DOI: 10.1128/jvi.74.16.7610-7618.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesviruses are characterized by distinct states of infection. Typically in permissive herpesvirus infection, abundant virus production results in cell lysis. In latent transforming Epstein-Barr virus (EBV) infection, viral proteins that induce cell growth are expressed. The immunodeficiency-associated hairy leukoplakia (HLP) lesion is the only pathologic manifestation of permissive EBV infection; however, within HLP, viral proteins characteristic of latent infection have also been detected. In this study, we further analyzed expression of EBV latent genes and investigated their contribution to the unique histologic phenotype of HLP. Coexpression of lytic and transforming viral proteins was detected simultaneously within individual HLP keratinocytes. LMP1 has now been shown to be uniformly expressed in the affected tissue, and it is associated and colocalizes with tumor necrosis factor receptor-associated factor (TRAF) signaling molecules. Effects induced by activated TRAF signaling that were detected in HLP included activation of NF-kappaB and c-Jun terminal kinase 1 (JNK1) and upregulated expression of epidermal growth factor receptor (EGFR), CD40, A20, and TRAFs. This study identifies a novel state of EBV infection with concurrent expression of replicative and transforming proteins. It is probable that both replicative and latent proteins contribute to HLP development and induce many of the histologic features of HLP, such as acanthosis and hyperproliferation. In contrast to other permissive herpesvirus infections, expression of EBV transforming proteins within the permissively infected HLP tissue enables epithelial cell survival and may enhance viral replication.
Collapse
Affiliation(s)
- J Webster-Cyriaque
- Lineberger Comprehensive Cancer Center, Department of Dental Ecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
95
|
Zhao B, Sample CE. Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol 2000; 74:5151-60. [PMID: 10799590 PMCID: PMC110868 DOI: 10.1128/jvi.74.11.5151-5160.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2000] [Accepted: 03/16/2000] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) protein is a transcriptional regulator of viral and cellular genes that is essential for EBV-mediated immortalization of B lymphocytes in vitro. EBNA-3C can inhibit transcription through an association with the cellular DNA-binding protein Jkappa, a function shared by EBNA-3A and EBNA-3B. Here, we report a mechanism by which EBNA-3C can activate transcription from the EBV latent membrane protein 1 (LMP-1) promoter in conjunction with EBNA-2. Jkappa DNA-binding sites were not required for this activation, and a mutant EBNA-3C protein unable to bind Jkappa activated transcription as efficiently as wild-type EBNA-3C, indicating that EBNA-3C can regulate transcription through a mechanism that is independent of Jkappa. Furthermore, activation of the LMP-1 promoter is a unique function of EBNA-3C, not shared by EBNA-3A and EBNA-3B. The DNA element through which EBNA-3C activates the LMP-1 promoter includes a Spi-1/Spi-B binding site, previously characterized as an important EBNA-2 response element. Although this element has considerable homology to mouse immunoglobulin light chain promoter sequences to which the mouse homologue of Spi-1 binds with its dimerization partner IRF4, we demonstrate that the IRF4-like binding sites in the LMP-1 promoter do not play a role in EBNA-3C-mediated activation. Both EBNA-2 and EBNA-3C were required for transcription mediated through a 41-bp region of the LMP-1 promoter encompassing the Spi binding site. However, EBNA-3C had no effect on transcription mediated in conjunction with the EBNA-2 activation domain fused to the GAL4 DNA-binding domain, suggesting that it does not function as an adapter between EBNA-2 and the cellular transcriptional machinery. Like EBNA-2, EBNA-3C bound directly to both Spi-1 and Spi-B in vitro. This interaction was mediated by a region of EBNA-3C encompassing a likely basic leucine zipper (bZIP) domain and the ets domain of Spi-1 or Spi-B, reminiscent of interactions between bZIP and ets domains of other transcription factors that result in their targeting to DNA. There are many examples of regulation of the hematopoietic-specific Spi transcription factors through protein-protein interactions, and a similar regulation by EBNA-3C, in conjunction with EBNA-2, is likely to be an important and unique contribution of EBNA-3C to EBV-mediated immortalization.
Collapse
Affiliation(s)
- B Zhao
- Program in Viral Oncogenesis and Tumor Immunology, Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
96
|
Cahir-McFarland ED, Davidson DM, Schauer SL, Duong J, Kieff E. NF-kappa B inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. Proc Natl Acad Sci U S A 2000; 97:6055-60. [PMID: 10811897 PMCID: PMC18557 DOI: 10.1073/pnas.100119497] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) transforms B lymphocytes into lymphoblastoid cell lines usurping the Notch and tumor necrosis factor receptor pathways to effect transcription including NF-kappaB activation. To determine whether NF-kappaB activity is essential in the growth and survival of EBV-transformed lymphoblastoid cell lines, a nondegradable IkappaBalpha mutant was expressed under tetracycline regulation. Despite continued Bcl-2 and Bcl-x/L expression, NF-kappaB inhibition induced apoptosis as evidenced by poly(ADP-ribose) polymerase cleavage, nuclear condensation and fragmentation, and hypodiploid DNA content. Both caspase 3 and 8 activation and loss of mitochondrial membrane potential were observed in apoptotic cells. However, caspase inhibition failed to block apoptosis. These experiments indicate that NF-kappaB inhibitors may be useful in the therapy of EBV-induced cellular proliferation.
Collapse
Affiliation(s)
- E D Cahir-McFarland
- The Channing Laboratory and Department of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02130, USA
| | | | | | | | | |
Collapse
|
97
|
Kirby H, Rickinson A, Bell A. The activity of the Epstein-Barr virus BamHI W promoter in B cells is dependent on the binding of CREB/ATF factors. J Gen Virol 2000; 81:1057-66. [PMID: 10725433 DOI: 10.1099/0022-1317-81-4-1057] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The programme of Epstein-Barr virus (EBV) gene expression that leads to virus-induced growth transformation of resting B lymphocytes is initiated through activation of the BamHI W promoter, Wp. The factors regulating Wp, and the basis of its preferential activity in B cells, remain poorly understood. Previous work has identified a B cell-specific enhancer region which is critical for Wp function and which contains three binding sites for cellular factors. Here we focus on one of these sites and show, using bandshift assays, that it interacts with three members of the CREB/ATF family of cell transcription factors, CREB1, ATF1 and ATFa. A mutation which abrogates the binding of these factors reduces Wp reporter activity specifically in B cell lines, whereas a mutation which converts the site to a consensus CREB-binding sequence maintains wild-type promoter function. Furthermore Wp activity in B cell, but not in non-B cell, lines could be inhibited by cotransfection of expression plasmids expressing dominant negative forms of CREB1 and ATF1. Increasing the basal activity of CREB/ATF proteins in cells by treatment with protein kinase A or protein kinase C agonists led to small increases in Wp activity in B cell lines, but did not restore promoter activity in non-B cell lines up to B cell levels. We conclude that CREB/ATF factors are important activators of Wp in a B cell environment but require additional B cell-specific factors in order to mediate their effects.
Collapse
Affiliation(s)
- H Kirby
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK
| | | | | |
Collapse
|
98
|
Abstract
Epstein-Barr virus (EBV) efficiently induces growth of human B cells and prevents cell death. Considerable progress has been made in understanding these processes, the role of EBV in human cancer cells and the relationship of viral gene expression to virus persistence and cancer.
Collapse
Affiliation(s)
- B Wensing
- Ludwig Institute for Cancer Research, Imperial College School of Medicine, London, UK
| | | |
Collapse
|
99
|
Peng R, Gordadze AV, Fuentes Pananá EM, Wang F, Zong J, Hayward GS, Tan J, Ling PD. Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 2000; 74:379-89. [PMID: 10590127 PMCID: PMC111549 DOI: 10.1128/jvi.74.1.379-389.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA-LP and EBNA2 proteins are the first to be synthesized during establishment of latent infection in B lymphocytes. EBNA2 is a key transcriptional regulator of both viral and cellular gene expression and is essential for EBV-induced immortalization of B lymphocytes. EBNA-LP is also important for EBV-induced immortalization of B lymphocytes, but far less is known about the functional domains and cellular cofactors that mediate EBNA-LP function. While recent studies suggest that serine phosphorylation of EBNA-LP and coactivation of EBNA2-mediated transactivation are important, more detailed mutational and genetic studies are complicated by the repeat regions that comprise the majority of the EBNA-LP sequence. Therefore, we have used a comparative approach by studying the EBNA-LP homologues from baboon and rhesus macaque lymphocryptoviruses (LCVs) (baboon LCV and rhesus LCV). The predicted baboon and rhesus LCV EBNA-LP amino acid sequences are 61 and 64% identical to the EBV EBNA-LP W1 and W2 exons and 51% identical to the EBV EBNA-LP Y1 and Y2 exons. Five evolutionarily conserved regions can be defined, and four of eight potential serine residues are conserved among all three EBNA-LPs. The major internal repeat sequence also revealed a highly conserved Wp EBNA promoter with strong conservation of upstream activating sequences important for Wp transcriptional regulation. To test whether transcriptional coactivating properties were common to the rhesus LCV EBNA-LP, a rhesus LCV EBNA2 homologue was cloned and expressed. The rhesus LCV EBNA2 transcriptionally transactivates EBNA2-responsive promoters through a CBF1-dependent mechanism. The rhesus LCV EBNA-LP was able to further enhance rhesus LCV or EBV EBNA2 transactivation 5- to 12-fold. Thus, there is strong structural and functional conservation among the simian EBNA-LP homologues. Identification of evolutionarily conserved serine residues and regions in EBNA-LP homologues provides important clues for identifying the cellular cofactors and molecular mechanisms mediating these conserved viral functions.
Collapse
Affiliation(s)
- R Peng
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Sjöblom-Hallén A, Yang W, Jansson A, Rymo L. Silencing of the Epstein-Barr virus latent membrane protein 1 gene by the Max-Mad1-mSin3A modulator of chromatin structure. J Virol 1999; 73:2983-93. [PMID: 10074148 PMCID: PMC104058 DOI: 10.1128/jvi.73.4.2983-2993.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tumor-associated latent membrane protein 1 (LMP1) gene in the Epstein-Barr virus (EBV) genome is activated by EBV-encoded proteins and cellular factors that are part of general signal transduction pathways. As previously demonstrated, the proximal region of the LMP1 promoter regulatory sequence (LRS) contains a negative cis element with a major role in EBNA2-mediated regulation of LMP1 gene expression in B cells. Here, we show that this silencing activity overlaps with a transcriptional enhancer in an LRS sequence that contains an E-box-homologous motif. Mutation of the putative repressor binding site relieved the repression both in a promoter-proximal context and in a complete LRS context, indicating a functional role of the repressor. Gel retardation assays showed that members of the basic helix-loop-helix transcription factor family, including Max, Mad1, USF, E12, and E47, and the corepressor mSin3A bound to the E-box-containing sequence. The enhancer activity correlated with the binding of USF. Moreover, the activity of the LMP1 promoter in reporter constructs was upregulated by overexpression of USF1 and USF2a, and the transactivation was inhibited by the concurrent expression of Max and Mad1. This suggests that Max-Mad1-mediated anchorage of a multiprotein complex including mSin3A and histone deacetylases to the E-box site constitutes the basis for the repression. Removal of acetyl moieties from histones H3 and H4 should result in a chromatin structure that is inaccessible to transcription factors. Accordingly, inhibition of deacetylase activity with trichostatin A induced expression of the endogenous LMP1 gene in EBV-transformed cells.
Collapse
Affiliation(s)
- A Sjöblom-Hallén
- Department of Clinical Chemistry and Transfusion Medicine, Göteborg University, Sahlgrenska University Hospital, SE 413 45 Gothenburg, Sweden.
| | | | | | | |
Collapse
|