51
|
Wiman KG. Restoration of wild-type p53 function in human tumors: strategies for efficient cancer therapy. Adv Cancer Res 2009; 97:321-38. [PMID: 17419952 DOI: 10.1016/s0065-230x(06)97014-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The p53 tumor suppressor gene is mutated in around 50% of all human tumors. Most mutations inactivate p53's specific DNA binding, resulting in failure to activate transcription of p53 target genes. As a consequence, mutant p53 is unable to trigger a p53-dependent biological response, that is cell cycle arrest and apoptosis. Many tumors express high levels of nonfunctional mutant p53. Several strategies for restoration of wild-type p53 function in tumors have been designed. Wild-type p53 reconstitution by adenovirus-mediated gene transfer has shown antitumor efficacy in clinical trials. Screening of chemical libraries has allowed identification of small molecules that reactivate mutant p53 and trigger mutant p53-dependent apoptosis. These novel strategies raise hopes for more efficient cancer therapy.
Collapse
Affiliation(s)
- Klas G Wiman
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
52
|
Jiménez JA, Li X, Zhang YP, Bae KH, Mohammadi Y, Pandya P, Kao C, Gardner TA. Antitumor activity of Ad-IU2, a prostate-specific replication-competent adenovirus encoding the apoptosis inducer, TRAIL. Cancer Gene Ther 2009; 17:180-91. [PMID: 19798123 PMCID: PMC2821463 DOI: 10.1038/cgt.2009.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the preclinical utility and antitumor efficacy of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) delivered by Ad-IU2, a prostate-specific replication-competent adenovirus (PSRCA), against androgen-independent prostate cancer. Through transcriptional control of adenoviral early genes E1a, E1b and E4, as well as TRAIL by two bidirectional prostate-specific enhancing sequences (PSES), expression of TRAIL as well adenoviral replication was limited to prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA)-positive cells. Ad-IU2 induced 5-fold greater apoptosis selectively in PSA/PSMA-positive CWR22rv and C4-2 cells than an oncolytic adenoviral control. Furthermore, prolonged infection with Ad-IU2 reversed TRAIL resistance in LNCaP cells. Ad-IU2 exhibited superior killing efficiency in PSA/PSMA-positive prostate cancer cells at doses 5- to 8-fold lower than required by a PSRCA to produce a similar effect. This cytotoxic effect was not observed in non-prostatic cells, however. As an enhancement of its therapeutic efficacy, Ad-IU2 exerted a TRAIL-mediated bystander effect through direct cell-to-cell contact and soluble factors such as apoptotic bodies. In vivo, Ad-IU2 markedly suppressed the growth of subcutaneous androgen-independent CWR22rv xenografts compared to a PSRCA at six weeks post-treatment (3.1- vs. 17.1-fold growth of tumor). This study demonstrates the potential clinical utility of a PSRCA armed with an apoptosis-inducing ligand.
Collapse
Affiliation(s)
- J A Jiménez
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Fecker LF, Schmude M, Jost S, Hossini AM, Picó AH, Wang X, Schwarz C, Fechner H, Eberle J. Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Exp Dermatol 2009; 19:e56-66. [DOI: 10.1111/j.1600-0625.2009.00977.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Buganim Y, Rotter V. p53: Balancing tumour suppression and implications for the clinic. Eur J Cancer 2009; 45 Suppl 1:217-34. [DOI: 10.1016/s0959-8049(09)70037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
55
|
Sandberg L, Papareddy P, Silver J, Bergh A, Mei YF. Replication-competent Ad11p vector (RCAd11p) efficiently transduces and replicates in hormone-refractory metastatic prostate cancer cells. Hum Gene Ther 2009; 20:361-73. [PMID: 19199789 DOI: 10.1089/hum.2007.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Selective replication-competent adenovirus serotype 5 vectors have been used for prostate cancer therapy. Unfortunately, gene transfer is inefficient because hormone-refractory metastatic prostate cancer cells have minimal coxsackievirus-adenovirus receptor expression. Vectors based on species B adenoviruses are attractive tools for use in human gene therapy because the viruses have low seroprevalence and they have efficient transduction capacity. Most species B adenoviruses use ubiquitously expressed complement-regulatory CD46 protein as a cellular receptor. Here we report the transduction efficacy and oncolytic capacity of a replication-competent Ad11p (RCAd11p) vector in human prostate cancer cells. Green fluorescent protein was efficiently expressed in a dose-dependent manner in PC-3 and DU 145 cells derived from metastasis of prostate cancer to bone and brain, respectively. However, transduction was less effective in LNCaP cells derived from prostate cancer metastasis to lymph nodes. The oncolytic capacity of the RCAd11p vector was 100 times higher in PC-3 cells than in the two other cell lines. The oncolysis was independent of the level of expression of p53 in the cells or on the absence of E1B55k expression in the vector. In vivo experiments revealed significant growth inhibition of PC-3 tumors in the xenograft mouse group treated with RCAd11p vector or Ad11pwt in comparison with the untreated control group. Thus, we have demonstrated that RCAd11p vector intrinsically possesses oncolytic properties, which were active in targeting tumor cells. Consequently, the novel RCAd11p vector has great potential for the treatment of incurable metastatic prostate disease.
Collapse
Affiliation(s)
- Linda Sandberg
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | |
Collapse
|
56
|
Affiliation(s)
- Magnus Essand
- Clinical Immunology Division, Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
57
|
E2F promoter-regulated oncolytic adenovirus with p16 gene induces cell apoptosis and exerts antitumor effect on gastric cancer. Dig Dis Sci 2009; 54:1425-31. [PMID: 19034663 DOI: 10.1007/s10620-008-0543-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 09/11/2008] [Indexed: 12/20/2022]
Abstract
Replication-competent adenovirus (RCAd) constitutes an alternative in cancer therapy. For obtaining advanced RCAd generations with high oncolytic capability and a good safety profile, we constructed an E2F promoter-regulated RCAd carrying p16 gene, AdE2F-p16, in which the E1a gene was controlled by the E2F promoter. The experimental data showed that the E2F promoter endowed AdE2F-p16 with high specificity in cancer cells. While rarely replicating in normal cells, AdE2F-p16 could replicate in p16-deficient cancer cells, with 2,937- to 160,000-fold increased replicative capability in different cancer cell lines. AdE2F-p16 expressed p16 within cancer cells and led to potent antitumor efficacy in gastric cancer xenografts in nude mice, with a tumor inhibition rate of 59.14%. Due to the combined effects of cancer cell apoptosis induced by p16 expression and oncolysis by virus replication, the E2F promoter-regulated, p16-armed RCAd provides a promising strategy for cancer gene therapy.
Collapse
|
58
|
Gürlevik E, Woller N, Schache P, Malek NP, Wirth TC, Zender L, Manns MP, Kubicka S, Kühnel F. p53-dependent antiviral RNA-interference facilitates tumor-selective viral replication. Nucleic Acids Res 2009; 37:e84. [PMID: 19443444 PMCID: PMC2709585 DOI: 10.1093/nar/gkp374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA-interference (RNAi) is a potent tool for specific gene silencing. In this study, we developed an adenovirus for conditional replication in p53-dysfunctional tumor cells that uses p53-selective expression of a microRNA-network directed against essential adenoviral genes. Compared to a control virus that expressed a scrambled microRNA-network, antiviral RNAi selectively attenuated viral replication in cells with transcriptionally active p53, but not in p53-dysfunctional tumor cells where both viruses replicated equivalently. Since these results were confirmed by an in vivo comparison of both viruses after infection of p53-knockout and normal mice, we could demonstrate that attenuated replication was indeed a result of p53-selective exhibition of antiviral RNAi. Addressing the therapeutic applicability, we could show that the application of RNAi-controlled virus efficiently lysed p53-dysfunctional tumors in vitro and in vivo but resulted in drastically reduced load of virus-DNA in the liver of treated mice. We have generated a broadly applicable adenovirus for selective destruction of p53-dysfunctional tumors and thereby demonstrate that virus-encoded RNAi-networks represent an efficient and versatile tool to modify viral functions. RNAi-networks can be applied to all transcriptionally regulated DNA-viruses to remodulate viral tropism and thus provide means to generate specifically replicating vectors for clinical applications.
Collapse
Affiliation(s)
- Engin Gürlevik
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Peter Schache
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Nisar P. Malek
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Thomas C. Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Lars Zender
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Stefan Kubicka
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
- *To whom correspondence should be addressed. Tel: +49 511 532 9401; Fax: +49 511 532 2021;
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625 Hannover, Germany and Department of Microbiology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
- *To whom correspondence should be addressed. Tel: +49 511 532 9401; Fax: +49 511 532 2021;
| |
Collapse
|
59
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
60
|
Huang PI, Chang JF, Kirn DH, Liu TC. Targeted genetic and viral therapy for advanced head and neck cancers. Drug Discov Today 2009; 14:570-8. [PMID: 19508919 DOI: 10.1016/j.drudis.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 03/07/2009] [Accepted: 03/11/2009] [Indexed: 11/24/2022]
Abstract
Head and neck cancers usually present with advanced disease and novel therapies are urgently needed. Genetic therapy aims at restoring malfunctioned tumor suppressor gene(s) or introducing proapoptotic genes. Oncolytic virotherapeutics induce multiple cycles of cancer-specific virus replication, followed by oncolysis, virus spreading and infection of adjacent cancer cells. Oncolytic viruses can also be armed to express therapeutic transgene(s). Recent advances in preclinical and clinical studies are revealing the potential of both therapeutic classes for advanced head and neck cancers, including the approval of two products (Gendicine and H101) by a governmental agency. This review summarizes the available clinical data to date and discusses the challenges and future directions.
Collapse
Affiliation(s)
- Pin-I Huang
- Cancer Center, Taipei Veterans General Hospital, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
61
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
62
|
|
63
|
Ma G, Shimada H, Hiroshima K, Tada Y, Suzuki N, Tagawa M. Gene medicine for cancer treatment: commercially available medicine and accumulated clinical data in China. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:115-22. [PMID: 19920899 PMCID: PMC2761194 DOI: 10.2147/dddt.s3535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of p53 function compromises genetic homeostasis, which induces deregulated DNA replication, damages DNA, and subsequently results in increased resistance to anticancer agents. Pharmacological approaches using recombinant adenoviruses (Ad) have been developed to restore the p53 functions. Another approach for gene medicine is to modify Ad replication in a tumor-specific manner, which induces tumor cell death without damaging normal tissues in the vicinity. The Ad-derived gene medicines, Ad expressing the wild-type p53 gene and replication-competent Ad defective of the E1B-55kDa gene, have been tested for their clinical feasibility and became commercially available in China. These agents demonstrated their antitumor activities as a monotherapy and in combination with conventional chemotherapeutic agents. In this article, we summarize the outcomes of clinical trials in China, most of which have been published in domestic Chinese journals, and discuss potential directions of cancer gene therapy with these agents.
Collapse
Affiliation(s)
- Guangyu Ma
- Division of Pathology, Chiba Cancer Center Research Institute, 666-1 Nitona, Chuo-ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Vattemi E, Claudio PP. The feasibility of gene therapy in the treatment of head and neck cancer. HEAD & NECK ONCOLOGY 2009; 1:3. [PMID: 19284676 PMCID: PMC2640478 DOI: 10.1186/1758-3284-1-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/12/2009] [Indexed: 12/04/2022]
Abstract
Standard approach to the treatment of head and neck cancer include surgery, chemotherapy, and radiation. More recently, dramatic increases in our knowledge of the molecular and genetic basis of cancer combined with advances in technology have resulted in novel molecular therapies for this disease. In particular, gene therapy, which involves the transfer of genetic material to cells to produce a therapeutic effect, has become a promising approach. Clinical trials concerning gene therapy strategies in head and neck cancer as well as combination of these strategies with chemotherapy and radiation therapy will be discussed.
Collapse
Affiliation(s)
- Emanuela Vattemi
- Department of Clinical and Experimental Medicine, Section of Medical Oncology, University of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| | | |
Collapse
|
65
|
Opyrchal M, Aderca I, Galanis E. Phase I clinical trial of locoregional administration of the oncolytic adenovirus ONYX-015 in combination with mitomycin-C, doxorubicin, and cisplatin chemotherapy in patients with advanced sarcomas. Methods Mol Biol 2009; 542:705-17. [PMID: 19565928 DOI: 10.1007/978-1-59745-561-9_35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite many advances in cancer therapy, metastatic disease continues to be incurable in the majority of cancer patients. There is an need for more efficient and less toxic treatments in this setting. Oncolytic virotherapy represents a novel promising direction in the treatment of cancer. Based on preclinical and clinical data, combination with standard chemotherapy has the potential to further increase the antitumor activity of oncolytic virotherapy in a synergistic manner. We present the design of a phase I clinical trial combining intratumoral injections of the oncolytic adenovirus ONYX-015 with systemic chemotherapy in patients with advanced sarcomas.
Collapse
|
66
|
Zhang H, Wang H, Zhang J, Qian G, Niu B, Fan X, Lu J, Hoffman AR, Hu JF, Ge S. Enhanced therapeutic efficacy by simultaneously targeting two genetic defects in tumors. Mol Ther 2008; 17:57-64. [PMID: 19018252 DOI: 10.1038/mt.2008.236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Targeting tumor-specific gene abnormalities has become an attractive approach in developing therapeutics to treat cancer. Overexpression of Bcl2 and mutations of p53 represent two of the most common molecular defects in tumors. In the nucleus, p53 induces cell cycle arrest, while it interacts with Bcl2 outside of the nucleus to regulate signal pathways involved in apoptosis. To potentiate antitumor activity, we tested a "double target" approach to antitumor therapy by combining H101, a recombinant oncolytic adenovirus that targets the inactive p53 in tumors, with a small interfering RNA (siBCL2) that targets Bcl2. In cell culture, the combined treatment significantly enhanced apoptosis and cytotoxicity as compared with treatment with either H101 or siBCL2 alone. In animals carrying tumor xenographs, combined H101 and siBCL2 treatment significantly inhibited tumor growth and prolonged survival. At the end of the study, all animals in the combined therapy group survived and two of the five animals showed complete eradication of their tumors. Interestingly, siBCL2 treatment increased H101 viral replication in both treated cells and tumor tissues. Simultaneously targeting two tumor-specific gene abnormalities using an oncolytic adenovirus and siRNA potentiates total antitumor activity.
Collapse
Affiliation(s)
- He Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
E1A, E1B double-restricted replicative adenovirus at low dose greatly augments tumor-specific suicide gene therapy for gallbladder cancer. Cancer Gene Ther 2008; 16:126-36. [PMID: 18818710 DOI: 10.1038/cgt.2008.67] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Combination therapy with replicative oncolytic viruses is a recent topic in innovative cancer therapy, but few studies have examined the efficacy of oncolytic adenovirus plus replication-deficient adenovirus carrying a suicide gene. We aim to evaluate whether an E1A, E1B double-restricted oncolytic adenovirus, AxdAdB-3, can improve the efficacy for gallbladder cancers (GBCs) of the replication-deficient adenovirus-based herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) therapy directed by the carcinoembryonic antigen (CEA) promoter. Cytopathic effects of AxdAdB-3 plus AxCEAprTK (an adenovirus expressing HSVtk directed by CEA promoter) or AxCAHSVtk (an adenovirus expressing HSVtk directed by a nonspecific CAG promoter) with GCV administration were examined in several GBC lines and normal cells. Efficacy in vivo was tested in severe combined immunodeficiency disease mice with GBC xenografts. Addition of AxdAdB-3 (1 multiplicity of infection, MOI) significantly enhanced the cytopathic effects of AxCEAprTK (10 MOI)/GCV on GBC cells. The augmented effect was attributable to the replication of the AxCEAprTK and also to the enhanced CEA promoter activity, which was presumably transactivated by E1A. In normal cells, AxdAdB-3 (20 MOI) plus AxCEAprTK (200 MOI)/GCV was not cytopathic, whereas AxdAdB-3 (1 MOI) plus AxCAHSVtk (10 MOI)/GCV was significantly toxic. Low-dose AxdAdB-3 (2 x 10(7) PFU, plaque-forming unit) plus AxCEAprTK (2 x 10(8) PFU)/GCV significantly suppressed the growth of GBC xenografts as compared with either AxdAdB-3 (2 x 10(7) PFU)/GCV or AxCEAprTK (2 x 10(9) PFU)/GCV alone. E1A, E1B double-restricted replicating adenovirus at low dose significantly augmented the efficacy of CEA promoter-directed HSVtk/GCV therapy without obvious toxicity to normal cells, suggesting a potential use of this combination for treating GBC and other CEA-producing malignancies.
Collapse
|
68
|
Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter. Cancer Gene Ther 2008; 16:73-82. [PMID: 18772902 DOI: 10.1038/cgt.2008.59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme pro-drug suicide gene therapy has been hindered by inefficient viral delivery and gene transduction. To further explore the potential of this approach, we have developed AdIU1, a prostate-restricted replicative adenovirus (PRRA) armed with the herpes simplex virus thymidine kinase (HSV-TK). In our previous Ad-OC-TK/ACV phase I clinical trial, we demonstrated safety and proof of principle with a tissue-specific promoter-based TK/pro-drug therapy using a replication-defective adenovirus for the treatment of prostate cancer metastases. In this study, we aimed to inhibit the growth of androgen-independent (AI), PSA/PSMA-positive prostate cancer cells by AdIU1. In vitro the viability of an AI- PSA/PSMA-expressing prostate cancer cell line, CWR22rv, was significantly inhibited by treatment with AdIU1 plus GCV (10 microg ml(-1)), compared with AdIU1 treatment alone and also cytotoxicity was observed following treatment with AdIU1 plus GCV only in PSA/PSMA-positive CWR22rv and C4-2 cells, but not in the PSA/PSMA-negative cell line, DU-145. In vivo assessment of AdIU1 plus GCV treatment revealed a stronger therapeutic effect against CWR22rv tumors in nude mice than treatment with AdIU1 alone, AdE4PSESE1a alone or in combination with GCV. Our results demonstrate the therapeutic potential of specific-oncolysis and suicide gene therapy for AI-PSA/PSMA-positive prostate cancer gene therapy.
Collapse
|
69
|
Sagawa T, Yamada Y, Takahashi M, Sato Y, Kobune M, Takimoto R, Fukaura J, Iyama S, Sato T, Miyanishi K, Matsunaga T, Takayama T, Kato J, Sasaki K, Hamada H, Niitsu Y. Treatment of hepatocellular carcinoma by AdAFPep/rep, AdAFPep/p53, and 5-fluorouracil in mice. Hepatology 2008; 48:828-40. [PMID: 18756484 DOI: 10.1002/hep.22420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Although conditionally replicable adenovirus (CRAd) has been used in the clinical treatment of hepatocellular carcinoma (HCC), it suffers from the inherent drawback of having relatively low antitumor activity. Here, we have sought to overcome this drawback. First, we combined CRAd (AdAFPep/Rep) driven by alpha-fetoprotein enhancer/promoter (AFPep) with a replication-incompetent adenovirus carrying a p53 transgene that is also driven by AFPep. The synergism of this combination produced a significantly improved tumoricidal effect on the human HCC cell line Hep3B, which has a relatively short doubling time in comparison with other human HCC cell lines, through the transactivation of p53 by early region 1A transcribed by AdAFPep/Rep. This synergistic interaction was augmented by the addition of a subtumoricidal dose (0.5 microg/mL) of 5-fluorouracil (5-FU), which enhanced p53 expression and facilitated the release of virions from tumor cells. When relatively large (10-mm-diameter) Hep3B tumors grown in nude mice were injected with the two viruses in combination, they showed significantly impaired growth in comparison with those treated with each virus separately. The growth suppression effect of the virus combination was enhanced by a low dose (600 microg) of 5-FU. Survival of the tumor-bearing mice treated with these three agents was significantly longer than that of control mice. Moreover, the tumor completely disappeared with the repeated injection of these agents. CONCLUSION This combination strategy holds promise for the treatment of relatively large and rapidly growing HCCs that may be encountered clinically.
Collapse
Affiliation(s)
- Tamotsu Sagawa
- Fourth Department of Internal Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Cardoso FM, Kato SEM, Huang W, Flint SJ, Gonzalez RA. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells. Virology 2008; 378:339-46. [PMID: 18632130 DOI: 10.1016/j.virol.2008.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/03/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.
Collapse
Affiliation(s)
- F M Cardoso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| | | | | | | | | |
Collapse
|
71
|
Fujiwara T, Tanaka N. Telomerase-specific oncolytic virotherapy for human cancer with the hTERT promoter. Uirusu 2008; 58:11-18. [PMID: 19122384 DOI: 10.2222/jsv.58.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Replication-selective tumor-specific viruses present a novel approach for treatment of neoplastic disease. Telomerase activation is considered to be a critical step in carcinogenesis and its activity correlates closely with human telomerase reverse transcriptase (hTERT) expression. We constructed an attenuated adenovirus 5 vector (Telomelysin, OBP-301), in which the hTERT promoter element drives expression of E1 genes. Telomelysin replicated efficiently and induced marked cell killing in a panel of human cancer cell lines, whereas replication as well as cytotoxicity was highly attenuated in normal human cells lacking telomerase activity. We further modified the E3 region of OBP-301 to contain green fluorescent protein (GFP) gene for monitoring viral replication (TelomeScan, OBP-401). When TelomeScan was intratumorally injected into human tumors orthotopically implanted into the rectum in mice, para-aortic lymph node metastasis could be visualized at laparotomy under a three-chip color cooled charged-coupled device camera. This article reviews recent highlights in this rapidly evolving field: cancer therapeutic and cancer diagnostic approaches using the telomerase-specific oncolytic adenoviruses.
Collapse
Affiliation(s)
- Toshiyoshi Fujiwara
- Center for Gene and Cell Therapy, Okayama University Hospital, Department of Surgery, Okayama Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | |
Collapse
|
72
|
Ghoneum M, Badr El-Din NK, Noaman E, Tolentino L. Saccharomyces cerevisiae, the Baker's Yeast, suppresses the growth of Ehrlich carcinoma-bearing mice. Cancer Immunol Immunother 2008; 57:581-92. [PMID: 17891396 PMCID: PMC11030098 DOI: 10.1007/s00262-007-0398-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 08/20/2007] [Indexed: 01/11/2023]
Abstract
This study was undertaken to evaluate the effectiveness and mechanisms of anti-tumor activity of Baker's yeast, Saccharomyces cerevisiae, in immunocompetent mice. Swiss albino mice were inoculated intramuscularly in the right thigh with Ehrlich Ascites Carcinoma (EAC) cells. At day 8, mice bearing Solid Ehrlich Carcinoma tumor (SEC) were intratumorally (IT) injected with killed S. cerevisiae (10 x 10(6) and 20 x 10(6) cells) for 35 days. Histopathology of yeast-treated mice showed extensive tumor degeneration, apoptosis, and ischemic (coagulative) and liquefactive necrosis. These changes are associated with a tumor growth curve that demonstrates a significant antitumor response that peaked at 35 days. Yeast treatment (20 x 10(6) cells) three times a week resulted in a significant decrease in tumor volume (TV) (67.1%, P < 0.01) as compared to PBS-treated mice. The effect was determined to be dependent on dose and frequency. Yeast administered three and two times per week induced significant decrease in TV as early as 9 and 25 days post-treatment, respectively. Administration of yeast significantly enhanced the recruitment of leukocytes, including macrophages, into the tumors and triggered apoptosis in SEC cells as determined by flow cytometry (78.6%, P < 0.01) at 20 x 10(6) cells, as compared to PBS-treated mice (42.6%). In addition, yeast treatment elevated TNF-alpha and IFN-gamma plasma levels and lowered the elevated IL-10 levels. No adverse side effects from the yeast treatment were observed, including feeding/drinking cycle and life activity patterns. Indeed, yeast-treated mice showed significant final body weight gain (+21.5%, P < 0.01) at day 35. These data may have clinical implications for the treatment of solid cancer with yeast, which is known to be safe for human consumption.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Department of Otolaryngology, Charles R. Drew University of Medicine and Science, 1621 E. 120th Street, Los Angeles, CA 90059, USA.
| | | | | | | |
Collapse
|
73
|
Li YM, Song ST, Jiang ZF, Zhang Q, Su CQ, Liao GQ, Qu YM, Xie GQ, Li MY, Ge FJ, Qian QJ. Telomerase-specific oncolytic virotherapy for human hepatocellular carcinoma. World J Gastroenterol 2008; 14:1274-9. [PMID: 18300357 PMCID: PMC2690679 DOI: 10.3748/wjg.14.1274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the therapeutic efficiency of replicative adenovirus CNHK300 targeted in telomerase-positive hepatocellular carcinoma.
METHODS: CNHK300, ONYX-015 (55 kDa protein deleted adenovirus) and wtAd5 (wild type adenovirus 5) were compared, and virus proliferation assay, cell viability assay, Western blot and fluorescence microscopy were used to evaluate the proliferation and cytolysis selectivity of CNHK300.
RESULTS: The replicative multiples in Hep3B and HepGII after 48 h of CNHK300 proliferation were 40 625 and 65 326 fold, respectively, similar to that of wtAd5.. However, CNHK300 exhibited attenuated replicative ability in normal fibroblast cell line BJ. CNHK300 could lyse hepatocellular carcinoma cells at a low multiplicity of infection (MOI), but could not affect growth of normal cells even at a high MOI.
CONCLUSION: CNHK300 is a cancer-selective replication-competent adenovirus which can cause oncolysis of liver cancer cells as well as wtAd5 (wild type adenovirus 5), but had severely attenuated replicative and cytolytic ability in normal cells. This novel strategy of cancer treatment offers a promising treatment platform.
Collapse
|
74
|
Hoffmann D, Meyer B, Wildner O. Improved glioblastoma treatment with Ad5/35 fiber chimeric conditionally replicating adenoviruses. J Gene Med 2008; 9:764-78. [PMID: 17640083 DOI: 10.1002/jgm.1076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adenovirus type 5 (Ad5)-based vectors have been used in clinical trials for glioblastoma treatment, but the capacity of Ad5 to infect human glioma cells was questioned. Seeking to improve the adenovirus transduction, we tested four Ad5-based vectors differing only in their fiber gene on permanent and short-term cultures of glioblastoma cells. A wild-type fiber Ad5 vector (Ad5.Luc) was compared to an RGD integrin-binding motif-containing fiber adenovirus (AdlucRGD) and the two fiber chimeras Ad5/3 and Ad5/35, with vector binding redirected to the Ad3 or Ad35 receptor, respectively. Compared to Ad5, the transduction of the tested short-term glioblastoma cultures with the vector Ad5/35.Luc, AdlucRGD and Ad5/3.Luc was enhanced by approximately 72%, approximately 13% and approximately 2%, respectively. To limit adenovirus spread, we aimed to develop conditionally replicative Ad5/35 vectors by targeting the expression of the essential E1 and E4 genes; in addition, some vectors had the E1Delta24 deletion. We analyzed eleven promoters for their activity in glioblastoma cells and determined the specificity of eight replicative adenovirus vectors in vitro. We evaluated the most promising vectors with E1/E4 under the control of the GFAP/Ki67 or E2F-1/COX-2 promoters, and the native Ad5 or the chimeric Ad5/35 fiber for their antineoplastic activity in a subcutaneous and intracranial glioblastoma xenograft model. Animals treated with the Ad5/35-based vectors showed significantly smaller tumors and longer survival than those treated with the homologous Ad5 vectors; no significant toxicity was observed in the intracranial model. Our data suggest that Ad5/35-based vectors are promising tools for glioblastoma treatment.
Collapse
Affiliation(s)
- Dennis Hoffmann
- Ruhr-University Bochum, Institute of Microbiology and Hygiene, Department of Molecular and Medical Virology, Bldg MA, Rm 6/40, D-44801, Bochum, Germany
| | | | | |
Collapse
|
75
|
Adenovirus E1B55K region is required to enhance cyclin E expression for efficient viral DNA replication. J Virol 2008; 82:3415-27. [PMID: 18234796 DOI: 10.1128/jvi.01708-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenoviruses (Ads) with E1B55K mutations can selectively replicate in and destroy cancer cells. However, the mechanism of Ad-selective replication in tumor cells is not well characterized. We have shown previously that expression of several cell cycle-regulating genes is markedly affected by the Ad E1b gene in WI-38 human lung fibroblast cells (X. Rao, et al., Virology 350:418-428, 2006). In the current study, we show that the Ad E1B55K region is required to enhance cyclin E expression and that the failure to induce cyclin E overexpression due to E1B55K mutations prevents viral DNA from undergoing efficient replication in WI-38 cells, especially when the cells are arrested in the G(0) phase of the cell cycle by serum starvation. In contrast, cyclin E induction is less dependent on the function encoded in the E1B55K region in A549 and other cancer cells that are permissive for replication of E1B55K-mutated viruses, whether the cells are in the S phase or G(0) phase. The small interfering RNA that specifically inhibits cyclin E expression partially decreased viral replication. Our study provides evidence suggesting that E1B55K may be involved in cell cycle regulation that is important for efficient viral DNA replication and that cyclin E overexpression in cancer cells may be associated with the oncolytic replication of E1B55K-mutated viruses.
Collapse
|
76
|
|
77
|
Oncolytic Virotherapy for Prostate Cancer by E1A, E1B Mutant Adenovirus. Urology 2007; 70:1243-8. [DOI: 10.1016/j.urology.2007.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/09/2007] [Accepted: 09/16/2007] [Indexed: 11/22/2022]
|
78
|
Hiraoka K, Kimura T, Logg CR, Kasahara N. Tumor-selective gene expression in a hepatic metastasis model after locoregional delivery of a replication-competent retrovirus vector. Clin Cancer Res 2007; 12:7108-16. [PMID: 17145835 PMCID: PMC8207453 DOI: 10.1158/1078-0432.ccr-06-1452] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Replication-competent retrovirus (RCR) vectors have been shown to achieve highly efficient and tumor-restricted replicative spread and gene transfer in vivo after direct intratumoral injection in a variety of primary cancer models. In this setting, the intrinsic inability of retroviruses to infect postmitotic normal cells, combined with their unique ability to persist through stable integration, allow further transduction of ectopic tumor foci as the infected cancer cells migrate. However, i.v. delivery of RCR vectors has never been tested previously, particularly in an immunocompetent tumor model. EXPERIMENTAL DESIGN We combined optical imaging, flow cytometry, and molecular analysis to monitor RCR vector spread after administration via locoregional infusion in a hepatic metastasis model of colorectal cancer. RESULTS Robust RCR replication was first confirmed in both human WiDr and murine CT26 colorectal cancer cells in vitro, with transduction levels reaching >90% in <12 days after virus inoculation at multiplicities of infection of 0.01 to 0.1. In vivo, infusion of RCR supernatant into the portal circulation resulted in progressive and significant transduction of multifocal intrahepatic CT26 tumors in syngeneic mice, averaging about 30% but with up to 60% transduction in some tumors within 4 weeks. However, immunohistochemistry and quantitative PCR analysis showed no evidence of RCR spread to adjacent normal liver or to any other normal tissues. CONCLUSIONS Our results thus show that locoregional infusion of RCR vectors can be used to deliver therapeutic genes selectively to tumor cells in the liver while sparing normal hepatocytes and without dissemination to extrahepatic normal tissues.
Collapse
Affiliation(s)
- Kei Hiraoka
- Department of Medicine, University of California at Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
79
|
Almazov VP, Kochetkov DV, Chumakov PM. [The use of p53 as a tool for human cancer therapy]. Mol Biol (Mosk) 2007; 41:947-963. [PMID: 18318112 PMCID: PMC2634859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tumor suppressor p53 is the central component of a system maintaining the genetic stability of animal and human somatic cells. Its gene is inactivated in almost all human cancers, allowing a tumor cell to rapidly accumulate additional mutations and progress toward a more malignant phenotype. Yet tumor cells are most sensitive to the suppressor effect of p53 when its function is restored. Hence, restoration of the p53 function is an appealing strategy of anticancer therapy. Various mechanisms inactivate p53 in cancer, including point mutations resulting in synthesis of an inactive mutant protein, deletion of the total gene or its portion, damage to the genes involved in regulating the p53 activity, and defects in p53 target genes. In addition, oncogenic viruses code for the specialized proteins that modify the p53 function to ensure optimal replication of the virus genome. These viral proteins are crucial for virus-induced carcinogenesis, in particular, in 95% of cervical carcinoma cases in women. The approaches to p53 activity restoration depend to a great extent on the defect in p53-dependent signaling. Introduction of exogenous p53 is effective in some case and is usually achieved with adenoviral vectors. The approaches under study are aimed at restoring the activity of mutant p53 or suppressing the viral inhibitors of p53. The review considers various schemes involving p53 in cancer therapy and prevention and discusses their potential efficacy and prospects of their clinical use.
Collapse
Affiliation(s)
- V. P. Almazov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 19991 Russia
| | - D. V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 19991 Russia
| | - P. M. Chumakov
- Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA;
| |
Collapse
|
80
|
Wakayama M, Abei M, Kawashima R, Seo E, Fukuda K, Ugai H, Murata T, Tanaka N, Hyodo I, Hamada H, Yokoyama KK. E1A, E1B double-restricted adenovirus with RGD-fiber modification exhibits enhanced oncolysis for CAR-deficient biliary cancers. Clin Cancer Res 2007; 13:3043-50. [PMID: 17505007 DOI: 10.1158/1078-0432.ccr-06-2103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancers of biliary system represent highly malignant diseases of dismal prognosis. We have previously introduced AxdAdB3, an E1A, E1B double-restricted oncolytic adenovirus, which showed excellent oncolytic efficacy for approximately half of the biliary cancer lines with an enhanced safety to normal cells. The purpose of this study was to evaluate whether RGD-fiber modification (AxdAdB3-F/RGD), which enables integrin-dependent infection, can improve the infectivity and efficacy of AxdAdB3 for biliary cancers. EXPERIMENTAL DESIGN Expressions of adenoviral receptors, coxsackievirus adenovirus receptor (CAR) and integrins (alpha(v)beta(3) and alpha(v)beta(5)), were compared with the level of infectivity of LacZ-expressing replication-defective adenoviruses with wild-type fibers or RGD-modified fibers in a panel of biliary cancer cell lines in vitro. Viral replication and cytotoxicity in vitro of AxdAdB3-F/RGD, a novel E1A, E1B double-restricted replication-selective adenovirus with RGD-modified fibers, were compared with those of its parent virus, AxdAdB3, in various biliary cancer cells and in normal cells. In vivo antitumor effects of these oncolytic viruses were compared in a xenograft tumor model. RESULTS Expression of CAR significantly correlated with the adenovirus infectivity, whereas integrin alpha(v)beta(5) was abundantly expressed in almost all biliary cancer cells. Whereas AxdAdB3 effectively replicated and lysed only the biliary cancer cells with a preserved expression of CAR, AxdAdB3-F/RGD exhibited efficient replication and potent oncolysis in both CAR-positive and CAR-negative biliary cancer cells. AxdAdB3-F/RGD showed attenuated replication and little cytopathy in human normal cells (i.e., hepatocytes, WI-38 cells) as well as AxdAdB3. Furthermore, in nude mice with s.c. xenografts of CAR-deficient human biliary cancer, i.t. AxdAdB3-F/RGD therapy caused a marked inhibition of tumor growth. CONCLUSIONS The RGD-fiber modification strategy enhanced the infectivity, replication, and oncolytic effects of the E1A, E1B double-restricted oncolytic adenovirus for CAR-deficient biliary cancers. In addition, it preserved the merit of excellent safety of the double-restricted virus for normal cells. These results suggest a potential use of this agent for the treatment of biliary cancers.
Collapse
Affiliation(s)
- Mariko Wakayama
- Division of Gastroenterology, University of Tsukuba Graduate School of Comprehensive Human Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Raki M, Hakkarainen T, Bauerschmitz GJ, Särkioja M, Desmond RA, Kanerva A, Hemminki A. Utility of TK/GCV in the context of highly effective oncolysis mediated by a serotype 3 receptor targeted oncolytic adenovirus. Gene Ther 2007; 14:1380-8. [PMID: 17611584 DOI: 10.1038/sj.gt.3302992] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arming oncolytic adenoviruses with therapeutic transgenes and enhancing transduction of tumor cells are useful strategies for eradication of advanced tumor masses. Herpes simplex virus thymidine kinase (TK) together with ganciclovir (GCV) has been promising when coupled with viruses featuring low oncolytic potential, but their utility is unknown in the context of highly effective infectivity-enhanced viruses. We constructed Ad5/3-Delta24-TK-GFP, a serotype 3 receptor-targeted, Rb/p16 pathway-selective oncolytic adenovirus, where a fusion gene encoding TK and green fluorescent protein (GFP) was inserted into 6.7K/gp19K-deleted E3 region. Ad5/3-Delta24-TK-GFP killed ovarian cancer cells effectively, which correlated with GFP expression. Delivery of GCV immediately after infection abrogated viral replication, which might have utility as a safety switch. Due to the bystander effect, killing of some cell lines in vitro was enhanced by GCV regardless of timing. In murine models of metastatic ovarian cancer, Ad5/3-Delta24-TK-GFP improved antitumor efficacy over the respective replication-deficient virus with GCV. However, GCV did not further enhance efficacy of Ad5/3-Delta24-TK-GFP in vivo. Simultaneous detection of tumor load and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis. In summary, TK/GCV may not add antitumor activity in the context of highly potent oncolysis.
Collapse
Affiliation(s)
- M Raki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
82
|
Hoffmann D, Wildner O. Comparison of herpes simplex virus- and conditionally replicative adenovirus-based vectors for glioblastoma treatment. Cancer Gene Ther 2007; 14:627-39. [PMID: 17479104 DOI: 10.1038/sj.cgt.7701055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we compared side-by-side the anti-neoplastic activity of the oncolytic herpes simplex virus-1 (HSV-1) vector G47Delta with that of a conditionally replicative adenoviral vector for the treatment of glioblastoma. We analyzed the transduction efficiency of permanent glioblastoma cell lines and short-term cultures of glioblastoma cells with HSV.Luc and four adenovirus type 5 (Ad5)-based vectors that differed only in their fiber gene (Ad5.Luc, AdlucRGD, and the fiber chimeric vectors Ad5/3.Luc and Ad5/35.Luc). In the tested short-term cultures of glioblastoma cells the vectors Ad5/35.Luc and HSV.Luc had an equal transduction efficiency which was approximately 70% higher than that of Ad5.Luc. In a subcutaneous xenograft glioblastoma model in nude mice we observed a significantly higher local tumor control with the G47Delta vector compared to the conditionally replicative Ad5/35 adenovirus. We confirmed in glioblastoma that the intratumoral expression of measles virus fusogenic membrane glycoproteins (FMG) encoded by replication-defective Ad5/35 or HSV-1 amplicon vectors synergistically enhances chemotherapy with temozolomide. The anti-neoplastic effect was superior when the replication-defective FMG encoding vectors were trans-complemented for replication with the respective oncolytic vector. This approach was necessary due to packaging constraints of adenovirus. At day 100, of 6 treated animals 1 was alive that received the Ad5/35- and 3 that received the HSV-1-based triple therapy. In an intracranial glioblastoma xenograft model we demonstrated the applicability of this strategy. Due to the higher oncolytic efficacy and packaging capacity of the HSV-1 vectors compared to adenovirus, these vectors are promising for the treatment of glioblastoma.
Collapse
Affiliation(s)
- D Hoffmann
- Institute of Microbiology and Hygiene, Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, NRW, Germany
| | | |
Collapse
|
83
|
Figueiredo ML, Kao C, Wu L. Advances in preclinical investigation of prostate cancer gene therapy. Mol Ther 2007; 15:1053-64. [PMID: 17457317 PMCID: PMC2826150 DOI: 10.1038/sj.mt.6300181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Treating recurrent prostate cancer poses a great challenge to clinicians. Research efforts in the last decade have shown that adenoviral vector-based gene therapy is a promising approach that could expand the arsenal against prostate cancer. This maturing field is at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the promising strategies including prostate-targeted gene expression, the use of oncolytic vectors, therapy coupled to reporter gene imaging, and combined treatment modalities. In fact, the early stages of clinical investigation employing combined, multimodal gene therapy focused on loco-regional tumor eradication and showed promising results. Clinicians and scientists should seize the momentum of progress to push forward to improve the therapeutic outcome for the patients.
Collapse
Affiliation(s)
- Marxa L Figueiredo
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Chinghai Kao
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lily Wu
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
84
|
Bossi G, Sacchi A. Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck 2007; 29:272-84. [PMID: 17230559 DOI: 10.1002/hed.20529] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the majority of human cancers, the tumor suppressor activity of p53 is impaired because of mutational events or interactions with other proteins (ie, MDM2). The loss of p53 function is responsible for increased aggressiveness of cancers, while tumor chemoresistance and radioresistance are dependent upon the expression of mutant p53 proteins. METHODS Review of the literature indicates that p53 acts primarily as a transcription factor whose function is subject to a complex and diverse array of covalent post-translational modifications that markedly influence the expression of p53 target genes responsible for cellular responses such as growth arrest, senescence, or apoptosis. The ability of p53 to induce apoptosis in cancer cells is believed essential for cancer therapy. RESULTS Numerous data indicate that p53 dependent apoptosis is a relevant factor in determining the efficacy of anticancer treatments. Thus, the development of new strategies for restoration of p53 function in human tumors is considered an important issue. Two main approaches for restoration of p53 function have been pursued that impact anticancer treatments: (a) de novo expression of wild-type p53 (wt-p53) through gene therapy and (b) identification of small molecules reactivating wt-p53 function. CONCLUSIONS The extensive body of knowledge acquired has identified manipulations of p53 signaling as a relevant issue for successful therapies. In this context, the recognition of p53 status in cancer cells is significant and would help considerably in the selection of an appropriate therapeutic approach. p53 manipulations for cancer therapy have revealed the need for specificity of p53 activation and ability to spare body tissues. Furthermore, the promising results obtained by using molecules competent to reactivate wt-p53 functions in cancer cells provide the basis for the design of new molecules with lower side effects and higher anti-tumor efficiency. The reexpression and reactivation of p53 protein in human cancer cells would increase tumor susceptibility to radiation or chemotherapy enhancing the efficacy of standard therapeutic protocols.
Collapse
Affiliation(s)
- Gianluca Bossi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | |
Collapse
|
85
|
Yagui-Beltrán A, He B, Raz D, Kim J, Jablons DM. Novel therapies targeting signaling pathways in lung cancer. Thorac Surg Clin 2007; 16:379-96, vi. [PMID: 17240825 DOI: 10.1016/j.thorsurg.2006.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite advances in chemotherapy, the prognosis for advanced non-small-cell lung cancer (NSCLC) remains dismal. Increasing understanding of the biological processes responsible for lung carcinogenesis has led to development of new therapeutic strategies targeting this disease at a molecular level. This article examines the molecular events believed to lead to cellular changes in lung cancer, and how knowledge of these is used to develop new agents used individually or in combination with available cytotoxic drugs to improve survival. Finally, it explores how a deeper understanding of the embryonic signaling pathways responsible for airway epithelial repair and tumorogenesis, such as Hedgehog (Hh), Notch, and Wingless (Wnt), can lead to the development of newer and more specific therapies for lung cancer.
Collapse
Affiliation(s)
- Adam Yagui-Beltrán
- Department of Surgery, University of California San Francisco Comprehensive Cancer Center, 2340 Sutter Street, San Francisco, CA 94143-0128, USA
| | | | | | | | | |
Collapse
|
86
|
Guan YS, La Z, Yang L, He Q, Li P. p53 gene in treatment of hepatic carcinoma: status quo. World J Gastroenterol 2007; 13:985-92. [PMID: 17373730 PMCID: PMC4146884 DOI: 10.3748/wjg.v13.i7.985] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/12/2006] [Accepted: 01/16/2007] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the 10 most common cancers worldwide. There is no ideal treatment for HCC yet and many researchers are trying to improve the effects of treatment by changing therapeutic strategies. As the majority of human cancers seem to exhibit either abnormal p53 gene or disrupted p53 gene activation pathways, intervention to restore wild-type p53 (wt-p53) activities is an attractive anti-cancer therapy including HCC. Abnormalities of p53 are also considered a predisposition factor for hepatocarcinogenesis. p53 is frequently mutated in HCC. Most HCCs have defects in the p53-mediated apoptotic pathway although they carry wt-p53. High expression of p53 in vivo may exert therapeutic effects on HCC in two aspects: (1) High expression of exogenous p53 protein induces apoptosis of tumor cells by inhibiting proliferation of cells through several biologic pathways and (2) Exogenous p53 renders HCC more sensitive to some chemotherapeutic agents. Several approaches have been designed for the treatment of HCC via the p53 pathway by restoring the tumor suppression function from inactivation, rescuing the mutated p53 gene from instability, or delivering therapeutic exogenous p53. Products with p53 status as the target have been studied extensively in vitro and in vivo. This review elaborates some therapeutic mechanisms and advances in using recombinant human adenovirus p53 and oncolytic virus products for the treatment of HCC.
Collapse
Affiliation(s)
- Yong-Song Guan
- Department of Radiology and Oncology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
87
|
Abstract
Defects in programmed cell death or apoptosis are major hallmarks of cancer contributing to tumorigenesis, tumor progression, and therapy resistance. In the past decade, many of the pathways leading to apoptosis, as well as the molecular mechanisms blocking the death of tumor cells, have been elucidated. This detailed knowledge of the core apoptosis machinery is now being exploited for translation into novel cancer therapies in order to restore apoptosis induction in tumor cells. Strategies include activation of proapoptotic mediators such as death receptors, tumor protein p53, and second mitochondria-derived activator of caspases (SMAC)/DIABLO as well as inhibition of endogenous apoptosis inhibitors such as IAPs (inhibitor of apoptosis proteins) and BCL-2 (B-cell chronic lymphoid leukemia/lymphoma) proteins. Several approaches employing gene therapy and antisense strategies, recombinant biologics, or classic organic and combinatorial chemistry, have advanced into clinical trials or are already approved. This review looks at recent developments in apoptosis-based cancer therapies and highlights some very promising advances in drug design.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Molecular Medicine, Heinrich-Heine University, Düsseldorf, Germany.
| | | | | |
Collapse
|
88
|
Advani SJ, Mezhir JJ, Roizman B, Weichselbaum RR. ReVOLT: radiation-enhanced viral oncolytic therapy. Int J Radiat Oncol Biol Phys 2006; 66:637-46. [PMID: 17011442 DOI: 10.1016/j.ijrobp.2006.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 11/24/2022]
Abstract
Viral oncolytic therapy has been pursued with renewed interest as the molecular basis of carcinogenesis and viral replication has been elucidated. Genetically engineered, attenuated viruses have been rationally constructed to achieve a therapeutic index in tumor cells compared with surrounding normal tissue. Many of these attenuated mutant viruses have entered clinical trials. Here we review the preclinical literature demonstrating the interaction of oncolytic viruses with ionizing radiation and provides a basis for future clinical trials.
Collapse
Affiliation(s)
- Sunil J Advani
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
89
|
Abstract
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.
Collapse
Affiliation(s)
- Jennifer L Woo
- Molecular Biology Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | | |
Collapse
|
90
|
Harada H, Kizaka-Kondoh S, Hiraoka M. Mechanism of hypoxia-specific cytotoxicity of procaspase-3 fused with a VHL-mediated protein destruction motif of HIF-1α containing Pro564. FEBS Lett 2006; 580:5718-22. [PMID: 17010341 DOI: 10.1016/j.febslet.2006.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 09/09/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
Under normoxic conditions the alpha-subunit of hypoxia-inducible factor (HIF-1alpha) protein is targeted for degradation by the von Hippel-Lindau (VHL) tumor suppressor protein acting as an E3 ubiquitin ligase. Recently, we developed a hypoxia-targeting protein, TOP3, which consisted of procaspase-3 with the VHL-mediated protein destruction motif of HIF-1alpha. This design enables procaspase-3 to be regulated similarly with HIF-1alpha, being degraded under normoxia while stabilized under hypoxia. Furthermore, stabilized TOP3 was cleaved by the hypoxic stress-induced endogenous caspases and thus the procaspase-3 was converted to active caspase-3 specifically under hypoxic conditions. These data demonstrated that the VHL-mediated protein destruction motif of HIF-1alpha endowed procaspase-3 with hypoxia-specific cytotoxicity.
Collapse
Affiliation(s)
- Hiroshi Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
91
|
Wang H, Satoh M, Abe H, Sunamura M, Moriya T, Ishidoya S, Saito S, Hamada H, Arai Y. Oncolytic viral therapy by bladder instillation using an E1A, E1B double-restricted adenovirus in an orthotopic bladder cancer model. Urology 2006; 68:674-81. [PMID: 16979729 DOI: 10.1016/j.urology.2006.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/18/2006] [Accepted: 04/21/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To investigate the therapeutic effect of AxdAdB-3, a double-restricted oncolytic adenovirus harboring a mutant E1A and an E1B-55KD deletion, on human bladder cancer cell lines and the SCID mouse model of orthotopic bladder cancer. METHODS The cytopathic effects of AxdAdB-3 were evaluated in several cell lines (YTS-1, YTS-3, T24, J82, 5637) derived from human bladder or ureteral cancer and in a normal bladder mucosa-derived cell line (HCV29) with AxCAlacZ (control) or AxE1AdB (E1B-55KD-defective adenovirus) or dl922-947 (E1A-mutated adenovirus). The efficacy of bladder instillation therapy with AxdAdB-3 for orthotopic bladder cancer of SCID mice was investigated. The oncolytic effects were monitored by ultrasound examination. RESULTS AxdAdB-3 caused the oncolysis of bladder cancer cell lines in vitro, and it was more cytopathic than AxE1AdB or dl922-947 in the cancer cell lines. AxdAdB-3 was not cytotoxic against HCV29. Direct instillation of AxdAdB-3 into the bladder of the orthotopic model inhibited tumor growth, leading to significantly prolonged survival. CONCLUSIONS Oncolytic viral therapy delivered by instillation of AxdAdB-3 is a promising tool for treating bladder cancer.
Collapse
Affiliation(s)
- Hua Wang
- Division of Urology, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
The pathogenesis of many diseases is most closely connected with aberrantly regulated apoptotic cell death. The past 15 years have witnessed an explosion in the basic knowledge of mechanisms that regulate apoptosis and the mediators that either trigger or inhibit cell death. Consequently, great interest has emerged in devising therapeutic strategies for modulating the key molecules of life-and-death decisions. Numerous novel approaches are currently being followed employing gene therapy and antisense strategies, recombinant biologics or classical organic and combinatorial chemistry in order to target specific apoptotic regulators. Although drug development is still in its infancy, several therapeutics have progressed to clinical testing or have even been approved in record time. This review outlines the recent advances in the field of apoptosis-based therapies and explores some highlights of a very active field of drug development.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
93
|
Royds JA, Hibma M, Dix BR, Hananeia L, Russell IA, Wiles A, Wynford-Thomas D, Braithwaite AW. p53 promotes adenoviral replication and increases late viral gene expression. Oncogene 2006; 25:1509-20. [PMID: 16247442 DOI: 10.1038/sj.onc.1209185] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor protein, p53, plays a critical role in viro-oncology. However, the role of p53 in adenoviral replication is still poorly understood. In this paper, we have explored further the effect of p53 on adenoviral replicative lysis. Using well-characterized cells expressing a functional p53 (A549, K1neo, RKO) and isogenic derivatives that do not (K1scx, RKOp53.13), we show that virus replication, late virus protein expression and both wtAd5 and ONYX-015 virus-induced cell death are impaired in cells deficient in functional p53. Conversely, by transfecting p53 into these and other cells (IIICF/c, HeLa), we increase late virus protein expression and virus yield. We also show, using reporter assays in IIICF/c, HeLa and K1scx cells, that p53 can cooperate with E1a to enhance transcription from the major late promoter of the virus. Late viral protein production is enhanced by exogenous p53. Taken together, our data suggest that functional p53 can promote the adenovirus (Ad) lytic cycle. These results have implications for the use of Ad mutants that are defective in p53 degradation, such as ONYX-015, as agents for the treatment of cancers.
Collapse
Affiliation(s)
- J A Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Affiliation(s)
- K G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, Stockholm SE-171 76, Sweden.
| |
Collapse
|
95
|
Merrill MK, Selznick LA, Gromeier M. Oncolytic viruses for the treatment of malignant glioma. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.3.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
96
|
Gonzalez R, Huang W, Finnen R, Bragg C, Flint SJ. Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 2006; 80:964-74. [PMID: 16378998 PMCID: PMC1346875 DOI: 10.1128/jvi.80.2.964-974.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).
Collapse
Affiliation(s)
- Ramon Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
97
|
van der Most RG, Robinson BWS, Nelson DJ. Gene therapy for malignant mesothelioma: beyond the infant years. Cancer Gene Ther 2006; 13:897-904. [PMID: 16439992 DOI: 10.1038/sj.cgt.7700935] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mesothelioma may be particularly well suited for gene therapy treatment owing to its accessibility, allowing both intrapleural and intratumoral gene delivery. At least four gene therapy trials have been carried out in mesothelioma patients, using different vector systems (adenovirus, vaccinia virus, irradiated tumor cells), and different transgenes (herpes simplex virus thymidine kinase (HSVtk) combined with ganciclovir, IL-2, IFN-beta). Although small in scale, these trials have given an inkling of hope for therapeutic efficacy. However, it is clear that gene therapy protocols need to be optimized further. This paper will review progress made in (i) vector development, (ii) defining optimal transgenes, and (iii) gene delivery. Adenoviruses are the most commonly used vectors for gene therapy, and are continuously being improved. With respect to the nature of the transgenes, five categories can be distinguished: (i) 'suicide' or sensitivity genes (e.g., HSVtk), (ii) cytokines and other immune modulators, (iii) replacements for mutant tumor suppressor genes (e.g., p53), (iv) antiangiogenic proteins and (v) tumor antigens. It seems clear that expression of a single transgene is unlikely to be sufficient to eradicate a tumor, such as mesothelioma, that is diagnosed late in disease progression. Hence, multimodality therapy, including conventional therapy (chemo- and radiotherapy, surgery) with one or more transgenes has a higher chance of success.
Collapse
Affiliation(s)
- R G van der Most
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.
| | | | | |
Collapse
|
98
|
Möritz C, Dobbelstein M. E1A genes of adenovirus type 2 and type 5 are expressed at different levels. Arch Virol 2006; 151:1085-92. [PMID: 16421637 DOI: 10.1007/s00705-005-0702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 11/30/2005] [Indexed: 11/25/2022]
Abstract
Adenoviruses are an extensively studied system for modeling oncogenesis and for experimental cancer therapy. The most commonly analyzed virus types are 2 and 5, and little distinction has been made between them in past studies. Adenoviruses used for therapeutic purposes are frequently hybrids between these types, including the prototype dl1520/Onyx015. We tested the replication of the wild-type viruses WtD (a hybrid of the type 2 E1 region and type 5) and dl309 (type 5) in comparison with the mutants dl1520 (hybrid) and dl338 (type 5), the latter two lacking part of the E1B-55 kDa coding region. We found that the hybrid viruses replicated with considerably lower efficiency than their type 5 counterparts in H1299 cells (dl309:WtD = 3-4, dl338:dl1520 > 10). Moreover, adenovirus type 2 E1A expression from the hybrid viruses was strongly reduced in comparison to adenovirus type 5 E1A, as revealed by immunoblot analysis and RT-PCR, providing a potential explanation for the differences in virus yield. Differential E1A expression levels need to be taken into account for the construction of effective therapeutic viruses and when studying viral transformation.
Collapse
Affiliation(s)
- C Möritz
- Institut für Virologie, Klinikum der Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
99
|
Nagano S, Oshika H, Fujiwara H, Komiya S, Kosai K. An efficient construction of conditionally replicating adenoviruses that target tumor cells with multiple factors. Gene Ther 2006; 12:1385-93. [PMID: 15877049 DOI: 10.1038/sj.gt.3302540] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the enormous potential of conditionally replicating adenoviruses (CRAs), the time-consuming and laborious methods required to construct CRAs have hampered both the development of CRAs that can specifically target tumors with multiple factors (m-CRA) and the efficient analysis of diverse candidate CRAs. Here, we present a novel method for efficiently constructing diverse m-CRAs. Elements involving viral replication, therapeutic genes, and adenoviral backbones were separately introduced into three plasmids of P1, P2, and P3, respectively, which comprised different antibiotic resistant genes, different ori, and a single loxP (H) sequence. Independently constructed plasmids were combined at 100% accuracy by transformation with originally prepared Cre and specific antibiotics in specific Escherichia coli; transfection of the resulting P1+2+3 plasmids into 293 cells efficiently generated m-CRAs. Moreover, the simultaneous generation of diverse m-CRAs was achieved at 100% accuracy by handling diverse types of P1+2 and P3. Alternatively, co-transfection of P1+3 and P2 plasmids into Cre-expressing 293 cells directly generated m-CRA with therapeutic genes. Thus, our three-plasmid system, which allows unrestricted construction and efficient fusion of individual elements, should expedite the process of generating, modifying, and testing diverse m-CRAs for the development of the ideal m-CRA for tumor therapy.
Collapse
Affiliation(s)
- S Nagano
- Division of Gene Therapy and Regenerative Medicine, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | |
Collapse
|
100
|
Abstract
The application of replicating viruses for the treatment of cancers represents a novel therapy that is distinct from traditional treatment modalities. It is apparent that the genetic changes that a virus produces within an infected cell in order to create an environment conducive to viral replication are often similar to the processes involved in cellular transformation. These include uncontrolled cellular proliferation, prevention of apoptosis, and resistance to host organism immune effector mechanisms. Deletions of viral genes involved in these processes have been exploited to produce viral mutants whose replication is selective for transformed cells. The use of tissue-specific transcriptional response or RNA stability elements to control the expression of critical viral genes has also resulted in targeted viruses. Work also is being undertaken to restrict or alter the tropism of viruses by altering their ability to infect certain cell types. Finally, the addition of exogenous genes can be used to increase the virus's lytic potential and/or bystander killing; to further induce the host's immune response against cancer cells; and/or to permit the controlled downregulation of viral replication if necessary. The combination of different tumor-targeting mutations in parallel with the expression of foreign genes has resulted in the evolution of second- and third-generation viruses that continue to become further distinct from their native parental strains. The movement of these viruses into the clinic has begun to demonstrate the potential of this approach in the treatment of cancers.
Collapse
Affiliation(s)
- Stephen H Thorne
- Department of Pediatrics and Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305-5427, USA.
| | | | | |
Collapse
|