51
|
Dominant negative inhibition of human immunodeficiency virus particle production by the nonmyristoylated form of gag. J Virol 2008; 82:4384-99. [PMID: 18305041 DOI: 10.1128/jvi.01953-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myristoylation of human immunodeficiency virus (HIV) Gag protein is essential for membrane targeting of Gag and production of viral particles. We show here that coexpression of wild-type and nonmyristoylated forms of HIV Gag resulted in severe inhibition of viral particle production, indicating that the nonmyristoylated counterpart had a dominant negative effect on particle release. When coexpressed, the nonmyristoylated Gag partially incorporated into membrane and lipid raft fractions, likely through coassembly with the wild-type Gag. The membrane and raft associations of the wild-type Gag appeared unaffected, and yet particle production was severely impaired. When viral particles produced from the coexpressing cells were analyzed, the wild-type Gag was more abundant than the nonmyristoylated Gag. Confocal microscopy showed that both forms of Gag were diffusely distributed in the cytoplasm of coexpressing cells but that a portion of the wild-type Gag population was accumulated in EEA1- and CD63-positive endosomes. The intracellular accumulation of Gag was more frequently observed at late time points. The Gag accumulation was also observed on the cell surface protrusion. Electron microscopy of the coexpressing cells revealed budding arrest phenotypes, including the occurrence of interconnected virions on the plasma membrane, and intracellular budding. We also show that the inhibition of particle production and the Gag accumulation to endosomes were suppressed when the nucleocapsid (NC) domain was deleted from the nonmyristoylated Gag, although the NC-deleted Gag was still capable of coassembly. Overall, our data indicate that coassembly with the nonmyristoylated Gag impairs HIV particle release, a phenomenon that may involve NC-mediated Gag-Gag interaction.
Collapse
|
52
|
Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol 2007; 82:2405-17. [PMID: 18094158 DOI: 10.1128/jvi.01614-07] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P(2) depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P(2) depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P(2)-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P(2). To examine a putative Gag interaction with PI(4,5)P(2), we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P(2). Using this assay, we observed that PI(4,5)P(2) significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P(2) for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P(2) binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P(2)-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P(2) on the membrane and that the MA basic domain mediates this interaction.
Collapse
|
53
|
Scholz I, Still A, Dhenub TC, Coday K, Webb M, Barklis E. Analysis of human immunodeficiency virus matrix domain replacements. Virology 2007; 371:322-35. [PMID: 17996264 DOI: 10.1016/j.virol.2007.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/21/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
The matrix (MA) domain of the HIV-1 structural precursor Gag (PrGag) protein targets PrGag proteins to membrane assembly sites, and facilitates incorporation of envelope proteins into virions. To evaluate the specific requirements for the MA membrane-binding domain (MBD) in HIV-1 assembly and replication, we examined viruses in which MA was replaced by alternative MBDs. Results demonstrated that the pleckstrin homology domains of AKT protein kinase and phospholipase C delta1 efficiently directed the assembly and release of virus-like particles (VLPs) from cells expressing chimeric proteins. VLP assembly and release also were mediated in a phorbol ester-dependent fashion by the cysteine-rich binding domain of phosphokinase Cgamma. Although alternative MBDs promoted VLP assembly and release, the viruses were not infectious. Notably, PrGag processing was reduced, while cleavage of GagPol precursors resulted in the accumulation of Pol-derived intermediates within virions. Our results indicate that the HIV-1 assembly machinery is flexible with regard to its means of membrane association, but that alternative MBDs can interfere with the elaboration of infectious virus cores.
Collapse
Affiliation(s)
- Isabel Scholz
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
The retroviral Gag polyprotein directs virus particle assembly, resulting in the release of virions from the plasma membranes of infected cells. The earliest steps in assembly, those immediately following Gag synthesis, are very poorly understood. For Rous sarcoma virus (RSV), Gag proteins are synthesized in the cytoplasm and then undergo transient nuclear trafficking before returning to the cytoplasm for transport to the plasma membrane. Thus, RSV provides a useful model to study the initial steps in assembly because the early and later stages are spatially separated by the nuclear envelope. We previously described mutants of RSV Gag that are defective in nuclear export, thereby isolating these "trapped" Gag proteins at an early assembly step. Using the nuclear export mutants, we asked whether Gag protein-protein interactions occur within the nucleus. Complementation experiments revealed that the wild-type Gag protein could partially rescue export-defective Gag mutants into virus-like particles (VLPs). Additionally, the export mutants had a trans-dominant negative effect on wild-type Gag, interfering with its release into VLPs. Confocal imaging of wild-type and mutant Gag proteins bearing different fluorescent tags suggested that complementation between Gag proteins occurred in the nucleus. Additional evidence for nuclear Gag-Gag interactions was obtained using fluorescence resonance energy transfer, and we found that the formation of intranuclear Gag complexes was dependent on the NC domain. Bimolecular fluorescence complementation allowed the direct visualization of intranuclear Gag-Gag dimers. Together, these experimental results strongly suggest that RSV Gag proteins are capable of interacting within the nucleus.
Collapse
|
55
|
Jäger S, Gottwein E, Kräusslich HG. Ubiquitination of human immunodeficiency virus type 1 Gag is highly dependent on Gag membrane association. J Virol 2007; 81:9193-201. [PMID: 17609272 PMCID: PMC1951426 DOI: 10.1128/jvi.00044-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin is important for the release of human immunodeficiency virus 1 (HIV-1) and several other retroviruses. All major domains of the HIV-1 Gag protein are monoubiquitinated, but the modifying machinery and the function of HIV-1 Gag ubiquitination remain unclear. Here, we show that the induction of a late budding arrest by mutation of the HIV-1 PTAP motif or by specific inhibition of selected ESCRT components leads to an increase of Gag-ubiquitin conjugates in cells, which coincides with an accumulation of detergent-insoluble, multimerized Gag at the plasma membrane. Membrane flotation experiments revealed that ubiquitinated Gag is highly enriched in membrane-bound fractions. Based on these findings, we propose that a blocking of virus release results in increased Gag ubiquitination as a consequence of its prolonged membrane association. Consistent with this, ubiquitination of a membrane-binding-defective (G2A)Gag mutant was dramatically reduced and the ubiquitination levels of truncated Gag proteins correlated with their abilities to bind to membranes. We therefore propose that membrane association and multimerization of HIV-1 Gag proteins, rather than a specific motif within Gag, trigger recognition by the cellular ubiquitination machinery.
Collapse
Affiliation(s)
- Stefanie Jäger
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
56
|
Chang YF, Wang SM, Huang KJ, Wang CT. Mutations in capsid major homology region affect assembly and membrane affinity of HIV-1 Gag. J Mol Biol 2007; 370:585-97. [PMID: 17532005 DOI: 10.1016/j.jmb.2007.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/22/2022]
Abstract
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.
Collapse
Affiliation(s)
- Yu-Fen Chang
- Institute of Public Health, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | |
Collapse
|
57
|
Ono A, Waheed AA, Freed EO. Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology 2007; 360:27-35. [PMID: 17095032 PMCID: PMC1945131 DOI: 10.1016/j.virol.2006.10.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/14/2006] [Accepted: 10/05/2006] [Indexed: 12/30/2022]
Abstract
Recent studies have suggested that the plasma membrane contains cholesterol-enriched microdomains known as lipid rafts. HIV-1 Gag binds raft-rich regions of the plasma membrane, and cholesterol depletion impairs HIV-1 particle production. In this study, we sought to define the block imposed by cholesterol depletion. We observed that membrane binding and higher-order multimerization of Gag were markedly reduced upon cholesterol depletion. Fusing to Gag a highly efficient, heterologous membrane-binding sequence reversed the defects in Gag-membrane binding and multimerization caused by cholesterol depletion, indicating that the impact of reducing the membrane cholesterol content on Gag-membrane binding and multimerization can be circumvented by increasing the affinity of Gag for membrane. Virus release efficiency of this Gag derivative was minimally affected by cholesterol depletion. Altogether, these results are consistent with the hypothesis that cholesterol-enriched membrane microdomains promote HIV-1 particle production by facilitating both Gag-membrane binding and Gag multimerization.
Collapse
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
58
|
Dalton AK, Ako-Adjei D, Murray PS, Murray D, Vogt VM. Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain. J Virol 2007; 81:6434-45. [PMID: 17392361 PMCID: PMC1900125 DOI: 10.1128/jvi.02757-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of most retroviruses occurs at the plasma membrane. Membrane association is directed by MA, the N-terminal domain of the Gag structural protein. For human immunodeficiency virus type 1 (HIV-1), this association is mediated in part by a myristate fatty acid modification. Conflicting evidence has been presented on the relative importance of myristoylation, of ionic interactions between protein and membrane, and of Gag multimerization in membrane association in vivo. We addressed these questions biochemically by determining the affinity of purified myristoylated HIV-1 MA for liposomes of defined composition, both for monomeric and for dimeric forms of the protein. Myristoylation increases the barely detectable intrinsic affinity of the apo-protein for liposomes by only 10-fold, and the resulting affinity is still weak, similar to that of the naturally nonmyristoylated MA of Rous sarcoma virus. Membrane binding of HIV-1 MA is absolutely dependent on the presence of negatively charged lipid and is abrogated at high ionic strength. Forced dimerization of MA increases its membrane affinity by several orders of magnitude. When green fluorescent protein fusions of monomeric or dimeric MA are expressed in cells, the dimeric but not the monomeric protein becomes strongly membrane associated. Computational modeling supports these results and suggests a molecular mechanism for the modest effect of myristoylation on binding, wherein the membrane provides a hydrophobic environment for the myristate that is energetically similar to that provided by the protein. Overall, the results imply that the driving force for membrane association stems largely from ionic interactions between multimerized Gag and negatively charged phospholipids.
Collapse
Affiliation(s)
- Amanda K Dalton
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
59
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
60
|
Bukrinskaya A. HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 2007; 124:1-11. [PMID: 17210199 DOI: 10.1016/j.virusres.2006.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 01/17/2023]
Abstract
Significant progress has been achieved in the last few years concerning the human immunodeficiency virus (HIV-1) life cycle, mostly in the fields of cellular receptors for the virus, virus assembly and budding of virus particles from the cell surface. Meanwhile, some aspects, such as postentry events, virus maturation and the regulatory role of individual viral proteins remain poorly defined. This review summarizes some recent findings concerning the role of Gag Pr55 and its proteolytic processing in the HIV-1 life cycle with particular emphasis on the functions of matrix protein p17 (MA), the protein which plays a key role in regulation of the early and late steps of viral morphogenesis. Based on our recent observations, the possibility is discussed that two subsets of MA exist, one cleaved from the Gag precursor in the host cell (cMA), and the other cleaved in the virions (vMA). It is suggested that two MA fractions possess diverse functions and are involved in different stages of virus morphogenesis as key regulators of the viral life cycle.
Collapse
Affiliation(s)
- Alissa Bukrinskaya
- D.I.Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Moscow 123098, RF, Russia.
| |
Collapse
|
61
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
62
|
Saad JS, Loeliger E, Luncsford P, Liriano M, Tai J, Kim A, Miller J, Joshi A, Freed EO, Summers MF. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J Mol Biol 2006; 366:574-85. [PMID: 17188710 PMCID: PMC1853300 DOI: 10.1016/j.jmb.2006.11.068] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 11/18/2022]
Abstract
During the late phase of human immunodeficiency virus type-1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to lipid raft regions of specific cellular membranes, where they assemble and bud to form new virus particles. Gag binds preferentially to the plasma membrane (PM) of most hematopoietic cell types, a process mediated by interactions between the cellular PM marker phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P(2)) and Gag's N-terminally myristoylated matrix (MA) domain. We recently demonstrated that PI(4,5)P(2) binds to a conserved cleft on MA and promotes myristate exposure, suggesting a role as both a direct membrane anchor and myristyl switch trigger. Here we show that PI(4,5)P(2) is also capable of binding to MA proteins containing point mutations that inhibit membrane binding in vitro, and in vivo, including V7R, L8A and L8I. However, these mutants do not exhibit PI(4,5)P(2) or concentration-dependent myristate exposure. NMR studies of V7R and L8A MA reveal minor structural changes that appear to be responsible for stabilizing the myristate-sequestered (myr(s)) species and inhibiting exposure. Unexpectedly, the myristyl group of a revertant mutant with normal PM targeting properties (V7R,L21K) is also tightly sequestered and insensitive to PI(4,5)P(2) binding. This mutant binds PI(4,5)P(2) with twofold higher affinity compared with the native protein, suggesting a potential compensatory mechanism for membrane binding.
Collapse
Affiliation(s)
- Jamil S. Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Erin Loeliger
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Paz Luncsford
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Mellisa Liriano
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Janet Tai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Andrew Kim
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Jaime Miller
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
| | - Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA
- * Corresponding author: Phone: (410)-455-2527; FAX: (410)-455-1174;
| |
Collapse
|
63
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly requires the converging of thousands of structural proteins on cellular membranes to form a tightly packed immature virion. The Gag polyprotein contains all of the determinants important for viral assembly and must move around in the cell in order to form particles. This work has focused on Gag mobility in order to provide more insights into the dynamics of particle assembly. Key to these studies was the use of several fluorescently labeled Gag derivatives. We used fluorescence recovery after photobleaching as well as photoactivation to determine Gag mobility. Upon expression, Gag can be localized diffusely in the cytoplasm, associated with the plasma membrane, or in virus-like particles (VLPs). Here we show that Gag VLPs are primarily localized in the plasma membrane and do not colocalize with CD63. We have shown using full-length Gag as well as truncation mutants fused to green fluorescent protein that Gag is highly mobile in live cells when it is not assembled into VLPs. Results also showed that this mobility is highly dependent upon cholesterol. When cholesterol is depleted from cells expressing Gag, mobility is significantly decreased. Once cholesterol was replenished, Gag mobility returned to wild-type levels. Taken together, results from these mobility studies suggest that Gag is highly mobile and that as the assembly process proceeds, mobility decreases. These studies also suggest that Gag assembly must occur in cholesterol-rich domains in the plasma membrane.
Collapse
Affiliation(s)
- Candace Y Gomez
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611,USA
| | | |
Collapse
|
64
|
Joshi A, Nagashima K, Freed EO. Mutation of dileucine-like motifs in the human immunodeficiency virus type 1 capsid disrupts virus assembly, gag-gag interactions, gag-membrane binding, and virion maturation. J Virol 2006; 80:7939-51. [PMID: 16873251 PMCID: PMC1563813 DOI: 10.1128/jvi.00355-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag precursor protein Pr55(Gag) drives the assembly and release of virus-like particles in the infected cell. The capsid (CA) domain of Gag plays an important role in these processes by promoting Gag-Gag interactions during assembly. The C-terminal domain (CTD) of CA contains two dileucine-like motifs (L189/L190 and I201/L202) implicated in regulating the localization of Gag to multivesicular bodies (MVBs). These dileucine-like motifs are located in the vicinity of the CTD dimer interface, a region of CA critical for Gag-Gag interactions during virus assembly and CA-CA interactions during core formation. To study the importance of the CA dileucine-like motifs in various aspects of HIV-1 replication, we introduced a series of mutations into these motifs in the context of a full-length, infectious HIV-1 molecular clone. CA mutants LL189,190AA and IL201,202AA were both severely impaired in virus particle production because of a variety of defects in the binding of Gag to membrane, Gag multimerization, and CA folding. In contrast to the model suggesting that the CA dileucine-like motifs regulate MVB targeting, the IL201,202AA mutation did not alter Gag localization to the MVB in either HeLa cells or macrophages. Revertants of single-amino-acid substitution mutants were obtained that no longer contained dileucine-like motifs but were nevertheless fully replication competent. The varied phenotypes of the mutants reported here provide novel insights into the interplay among Gag multimerization, membrane binding, virus assembly, CA dimerization, particle maturation, and virion infectivity.
Collapse
Affiliation(s)
- Anjali Joshi
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Bldg. 535/Rm. 108, Sultan Street, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
65
|
Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 2006; 103:11364-9. [PMID: 16840558 PMCID: PMC1544092 DOI: 10.1073/pnas.0602818103] [Citation(s) in RCA: 451] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the late phase of HIV type 1 (HIV-1) replication, newly synthesized retroviral Gag proteins are targeted to the plasma membrane of most hematopoietic cell types, where they colocalize at lipid rafts and assemble into immature virions. Membrane binding is mediated by the matrix (MA) domain of Gag, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Although exposure is known to promote membrane binding, the mechanism by which Gag is targeted to specific membranes has yet to be established. Recent studies have shown that phosphatidylinositol (PI) 4,5-bisphosphate [PI(4,5)P(2)], a factor that regulates localization of cellular proteins to the plasma membrane, also regulates Gag localization and assembly. Here we show that PI(4,5)P(2) binds directly to HIV-1 MA, inducing a conformational change that triggers myristate exposure. Related phosphatidylinositides PI, PI(3)P, PI(4)P, PI(5)P, and PI(3,5)P(2) do not bind MA with significant affinity or trigger myristate exposure. Structural studies reveal that PI(4,5)P(2) adopts an "extended lipid" conformation, in which the inositol head group and 2'-fatty acid chain bind to a hydrophobic cleft, and the 1'-fatty acid and exposed myristyl group bracket a conserved basic surface patch previously implicated in membrane binding. Our findings indicate that PI(4,5)P(2) acts as both a trigger of the myristyl switch and a membrane anchor and suggest a potential mechanism for targeting Gag to membrane rafts.
Collapse
Affiliation(s)
- Jamil S. Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jaime Miller
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Janet Tai
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Andrew Kim
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Ruba H. Ghanam
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Michael F. Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
66
|
Chu HH, Chang YF, Wang CT. Mutations in the alpha-helix directly C-terminal to the major homology region of human immunodeficiency virus type 1 capsid protein disrupt Gag multimerization and markedly impair virus particle production. J Biomed Sci 2006; 13:645-56. [PMID: 16770689 DOI: 10.1007/s11373-006-9094-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 05/20/2006] [Indexed: 10/24/2022] Open
Abstract
The X-ray crystallographic structure of HIV-1 capsid protein suggests that the dimer interface of the dimerization domain is mainly formed from a putative alpha-helix structure of 14 amino acids (Gag residues 311-324) and lies directly C-terminal to the capsid major homology region. We found that a deletion mutation in the alpha-helix drastically reduces virus particle production. Alanine-scanning mutagenetic analysis indicated that substitution mutations at residues Q311, V313, K314, W316, and M317 all impair virus particle production markedly. Membrane flotation assays suggested that some mutations in the dimer interface have slight effects on the efficient binding of Gag to membranes. Indirect immunofluorescence studies revealed that mutants defective in virus production exhibit a subcellular distribution pattern similar to that of wild-type. However, velocity sedimentation analysis showed that mutations significantly impairing virus particle production were also detrimental to Gag multimerization, suggesting that the impaired virus production may be due to a defect in Gag multimerization. These results support the proposal that residues in the capsid dimer interface play a crucial role in promoting Gag multimerization, possibly by facilitating stable Gag-Gag interactions.
Collapse
Affiliation(s)
- Hung-Hao Chu
- Department of Medical Research and Education, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, 11217, Taiwan
| | | | | |
Collapse
|
67
|
Leung J, Yueh A, Appah FSK, Yuan B, de los Santos K, Goff SP. Interaction of Moloney murine leukemia virus matrix protein with IQGAP. EMBO J 2006; 25:2155-66. [PMID: 16628219 PMCID: PMC1462987 DOI: 10.1038/sj.emboj.7601097] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 03/27/2006] [Indexed: 11/08/2022] Open
Abstract
The matrix protein (MA) of the Moloney murine leukemia virus (M-MuLV) was found to interact with IQGAP1, a prominent regulator of the cytoskeleton. Mutational studies defined residues of MA critical for the interaction, and tests of viruses carrying MA mutations revealed a near-perfect correlation between binding and virus replication. The replication-defective mutants showed defects in both early and late stages of the life cycle. Four viable second-site revertant viruses were isolated from three different replication-defective parental mutants, and in all cases the interaction with IQGAP1 was restored by the suppressor mutations. The interaction of MA and IQGAP1 was readily detected in vitro and in vivo. Virus replication was potently inhibited by a C-terminal fragment of IQGAP1, and impaired by RNAi knockdown of IQGAP1 and 2. We suggest that the IQGAPs link the virus to the cytoskeleton for trafficking both into and out of the cell.
Collapse
Affiliation(s)
- Juliana Leung
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrew Yueh
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Frank S K Appah
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bing Yuan
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kenia de los Santos
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen P Goff
- Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
68
|
Ryzhova EV, Vos RM, Albright AV, Harrist AV, Harvey T, González-Scarano F. Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol 2006; 80:2694-704. [PMID: 16501079 PMCID: PMC1395445 DOI: 10.1128/jvi.80.6.2694-2704.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) replication in the major natural target cells, CD4+ T lymphocytes and macrophages, is parallel in many aspects of the virus life cycle. However, it differs as to viral assembly and budding, which take place on plasma membranes in T cells and on endosomal membranes in macrophages. It has been postulated that cell type-specific host factors may aid in directing viral assembly to distinct destinations. In this study we defined annexin 2 (Anx2) as a novel HIV Gag binding partner in macrophages. Anx2-Gag binding was confined to productively infected macrophages and was not detected in quiescently infected monocyte-derived macrophages (MDM) in which an HIV replication block was mapped to the late stages of the viral life cycle (A. V. Albright, R. M. Vos, and F. Gonzalez-Scarano, Virology 325:328-339, 2004). We demonstrate that the Anx2-Gag interaction likely occurs at the limiting membranes of late endosomes/multivesicular bodies and that Anx2 depletion is associated with a significant decline in the infectivity of released virions; this coincided with incomplete Gag processing and inefficient incorporation of CD63. Cumulatively, our data suggest that Anx2 is essential for the proper assembly of HIV in MDM.
Collapse
Affiliation(s)
- Elena V Ryzhova
- Department of Neurology and Microbiology, University of Pennsylvania, 3 W. Gates, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | | | | | | | |
Collapse
|
69
|
Barrera F, Hurtado-Gómez E, Lidón-Moya M, Neira J. Binding of the C-terminal domain of the HIV-1 capsid protein to lipid membranes: a biophysical characterization. Biochem J 2006; 394:345-53. [PMID: 16259620 PMCID: PMC1386033 DOI: 10.1042/bj20051487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The capsid protein, CA, of HIV-1 forms a capsid that surrounds the viral genome. However, recent studies have shown that an important proportion of the CA molecule does not form part of this capsid, and its location and function are still unknown. In the present work we show, by using fluorescence, differential scanning calorimetry and Fourier-transform infrared spectroscopy, that the C-terminal region of CA, CA-C, is able to bind lipid vesicles in vitro in a peripheral fashion. CA-C had a greater affinity for negatively charged lipids (phosphatidic acid and phosphatidylserine) than for zwitterionic lipids [PC/Cho/SM (equimolar mixture of phosphatidylcholine, cholesterol and sphingomyelin) and phosphatidylcholine]. The interaction of CA-C with lipid membranes was supported by theoretical studies, which predicted that different regions, occurring close in the three-dimensional CA-C structure, were responsible for the binding. These results show the flexibility of CA-C to undergo conformational rearrangements in the presence of different binding partners. We hypothesize that the CA molecules that do not form part of the mature capsid might be involved in lipid-binding interactions in the inner leaflet of the virion envelope.
Collapse
Affiliation(s)
- Francisco N. Barrera
- *Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
- To whom correspondence should be addressed (email and )
| | - Estefanía Hurtado-Gómez
- *Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - María C. Lidón-Moya
- *Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
| | - José L. Neira
- *Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain
- †Biocomputation and Complex Systems Physics Institute, 50009 Zaragoza, Spain
- To whom correspondence should be addressed (email and )
| |
Collapse
|
70
|
Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. ACTA ACUST UNITED AC 2006; 245:171-244. [PMID: 16125548 PMCID: PMC7112339 DOI: 10.1016/s0074-7696(05)45006-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure and function of cells are critically dependent on membranes, which not only separate the interior of the cell from its environment but also define the internal compartments. It is therefore not surprising that the major steps of the life cycle of viruses of animals and plants also depend on cellular membranes. Indeed, interactions of viral proteins with host cell membranes are important for viruses to enter into host cells, replicate their genome, and produce progeny particles. To replicate its genome, a virus first needs to cross the plasma membrane. Some viruses can also modify intracellular membranes of host cells to create a compartment in which genome replication will take place. Finally, some viruses acquire an envelope, which is derived either from the plasma membrane or an internal membrane of the host cell. This paper reviews recent findings on the interactions of viral proteins with host cell membranes during the viral life cycle.
Collapse
Affiliation(s)
- Rodrigo A Villanueva
- CNRS-UPR2511, Institut de Biologie de Lille, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | |
Collapse
|
71
|
Young KR, Ross TM. Elicitation of immunity to HIV type 1 Gag is determined by Gag structure. AIDS Res Hum Retroviruses 2006; 22:99-108. [PMID: 16438652 DOI: 10.1089/aid.2006.22.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gag gene of the human immunodeficiency virus type 1 (HIV-1) encodes for viral proteins that self-assemble into viral particles. The primary Gag gene products (capsid, matrix, and nucleocapsid) elicit humoral and cellular immune responses during natural infection, and these proteins are included in many preclinical and clinical HIV/AIDS vaccines. However, the structure (particulate or soluble) of these proteins may influence the immunity elicited during vaccination. In this study, mice were inoculated with four different HIV-1 Gag vaccines to compare the elicitation of immune responses by the same Gag immunogen presented to the immune system in different forms. The immunity elicited by particles produced in vivo by DNA plasmid (pGag) was compared to these same proteins retained intracellularly (pGag(DMyr)). In addition, the elicitation of anti- Gag immunity by Gag(p55) virus-like particles (VLPs) or soluble, nonparticulate Gag(p55) proteins was compared. Enhanced cellular responses, but almost no anti-Gag antibodies, were elicited with intracellularly retained Gag proteins. In contrast, DNA vaccines expressing VLPs elicited both anti-Gag antibodies and cellular responses. Mice vaccinated with purified Gag(p55) VLPs elicited robust humoral and cellular immune responses, which were significantly higher than the immunity elicited by soluble, nonparticulate Gag(p55) protein. Overall, purified particles of Gag effectively elicited the broadest and highest titers of anti-Gag immunity. The structural form of Gag influences the elicited immune responses and should be considered in the design of HIV/AIDS vaccines.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
72
|
Ono A, Waheed AA, Joshi A, Freed EO. Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay. J Virol 2005; 79:14131-40. [PMID: 16254348 PMCID: PMC1280195 DOI: 10.1128/jvi.79.22.14131-14140.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 08/30/2005] [Indexed: 12/30/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle production, a process driven by the Gag polyprotein precursor, occurs on the plasma membrane in most cell types. The plasma membrane contains cholesterol-enriched microdomains termed lipid rafts, which can be isolated as detergent-resistant membrane (DRM). Previously, we and others demonstrated that HIV-1 Gag is associated with DRM and that disruption of Gag-raft interactions impairs HIV-1 particle production. However, the determinants of Gag-raft association remain undefined. In this study, we developed a novel epitope-based Gag multimerization assay to examine whether Gag assembly is essential for its association with lipid rafts. We observed that membrane-associated, full-length Gag is poorly detected by immunoprecipitation relative to non-membrane-bound Gag. This poor detection is due to assembly-driven masking of Gag epitopes, as denaturation greatly improves immunoprecipitation. Gag mutants lacking the Gag-Gag interaction domain located in the N terminus of the nucleocapsid (NC) were efficiently immunoprecipitated without denaturation, indicating that the epitope masking is caused by higher-order Gag multimerization. We used this assay to examine the relationship between Gag assembly and Gag binding to total cellular membrane and DRM. Importantly, a multimerization-defective NC mutant displayed wild-type levels of membrane binding and DRM association, indicating that NC-mediated Gag multimerization is dispensable for association of Gag with membrane or DRM. We also demonstrate that different properties of sucrose and iodixanol membrane flotation gradients may explain some discrepancies regarding Gag-raft interactions. This report offers new insights into the association of HIV-1 Gag with membrane and with lipid rafts.
Collapse
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland, USA.
| | | | | | | |
Collapse
|
73
|
Zhou Y, Zhang H, Siliciano JD, Siliciano RF. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol 2005; 79:2199-210. [PMID: 15681422 PMCID: PMC546571 DOI: 10.1128/jvi.79.4.2199-2210.2005] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In untreated human immunodeficiency virus type 1 (HIV-1) infection, most viral genomes in resting CD4(+) T cells are not integrated into host chromosomes. This unintegrated virus provides an inducible latent reservoir because cellular activation permits integration, virus gene expression, and virus production. It remains controversial whether HIV-1 is stable in this preintegration state. Here, we monitored the fate of HIV-1 in resting CD4(+) cells by using a green fluorescent protein (GFP) reporter virus carrying an X4 envelope. After virus entry into resting CD4(+) T cells, both rescuable virus gene expression, visualized with GFP, and rescuable virion production, assessed by p24 release, decayed with a half-life of 2 days. In these cells, reverse transcription goes to completion over 2 to 3 days, and 50% of the viruses that have entered undergo functional decay before reverse transcription is complete. We distinguished two distinct but closely related factors contributing to loss of rescuable virus. First, some host cells undergo virus-induced apoptosis upon viral entry, thereby reducing the amount of rescuable virus. Second, decay processes directly affecting the virus both before and after the completion of reverse transcription contribute to the loss of rescuable virus. The functional half-life of full-length, integration-competent reverse transcripts is only 1 day. We propose that rapid intracellular decay processes compete with early steps in viral replication in infected CD4(+) T cells. Decay processes dominate in resting CD4(+) T cells as a result of the slow kinetics of reverse transcription and blocks at subsequent steps. Therefore, the reservoir of unintegrated HIV-1 in recently infected resting CD4(+) T cells is highly labile.
Collapse
Affiliation(s)
- Yan Zhou
- Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
74
|
Dalton AK, Murray PS, Murray D, Vogt VM. Biochemical characterization of rous sarcoma virus MA protein interaction with membranes. J Virol 2005; 79:6227-38. [PMID: 15858007 PMCID: PMC1091718 DOI: 10.1128/jvi.79.10.6227-6238.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MA domain of retroviral Gag proteins mediates association with the host cell membrane during assembly. The biochemical nature of this interaction is not well understood. We have used an in vitro flotation assay to directly measure Rous sarcoma virus (RSV) MA-membrane interaction in the absence of host cell factors. The association of purified MA and MA-containing proteins with liposomes of defined composition was electrostatic in nature and depended upon the presence of a biologically relevant concentration of negatively charged lipids. A mutant MA protein known to be unable to promote Gag membrane association and budding in vivo failed to bind to liposomes. These results were supported by computational modeling. The intrinsic affinity of RSV MA for negatively charged membranes appears insufficient to promote efficient plasma membrane binding during assembly. However, an artificially dimerized form of MA bound to liposomes by at least an order of magnitude more tightly than monomeric MA. This result suggests that the clustering of MA domains, via Gag-Gag interactions during virus assembly, drives membrane association in vivo.
Collapse
Affiliation(s)
- Amanda K Dalton
- Department of Molecular Biology and Genetics, Cornell University, 360 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
75
|
Lingappa JR, Newman MA, Klein KC, Dooher JE. Comparing capsid assembly of primate lentiviruses and hepatitis B virus using cell-free systems. Virology 2005; 333:114-23. [PMID: 15708597 DOI: 10.1016/j.virol.2004.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/11/2004] [Accepted: 12/20/2004] [Indexed: 01/02/2023]
Abstract
Many viruses that assemble their capsids in the eukaryotic cytoplasm require a threshold concentration of capsid protein to achieve capsid assembly. Strategies for achieving this include maintaining high levels of capsid protein synthesis and targeting to specific sites to raise the effective concentration of capsid polypeptides. To understand how different viruses achieve the threshold capsid protein concentration required for assembly, we used cell-free systems to compare capsid assembly of hepatitis B virus (HBV) and three primate lentiviruses. Capsid formation of these diverse viruses in a common eukaryotic extract was dependent on capsid protein concentration. HBV capsid assembly was also dependent on the presence of intact membrane surfaces. Surprisingly, not all of the primate lentiviral capsid proteins examined required myristoylation and intact membranes for assembly, even though all contain a myristoylation signal. These findings reveal significant diversity in how different capsid proteins assemble in the same cellular extract.
Collapse
Affiliation(s)
- Jaisri R Lingappa
- Department of Pathobiology, University of Washington, Box 357238, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
76
|
Wong SBJ, Siliciano RF. Contribution of virus-like particles to the immunogenicity of human immunodeficiency virus type 1 Gag-derived vaccines in mice. J Virol 2005; 79:1701-12. [PMID: 15650195 PMCID: PMC544117 DOI: 10.1128/jvi.79.3.1701-1712.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag protein is a major target antigen for cytotoxic-T-lymphocyte-based vaccine strategies because of its high level of conservation. The murine model has been used extensively to evaluate potential HIV-1 vaccines. However, the biology of HIV-1 Gag is somewhat different in human and murine tissues. The ability of HIV-1 Gag to form virus-like particles (VLPs) in human cells is severely curtailed in murine cells. Hence, it is not known whether immunizing mice with expression vectors encoding HIV-1 Gag provides an accurate assessment of the immunogenicity of these candidate vaccines in primates. In this report, we made use of a chimeric Moloney murine leukemia virus (MMLV)-HIV-1 Gag in which the p17 matrix domain of HIV-1 was replaced with the p15 matrix and p12 domains from MMLV. Murine cells expressing this construct released significant amounts of VLPs. The construct preserved H-2d-restricted antigenic determinants in the remaining portion of HIV-1 Gag, allowing immunogenicity studies to be performed with mice. We demonstrated that immunizing mice with plasmid DNA or adenoviral vectors encoding this chimeric Gag did not significantly increase the HIV-1 Gag-specific cellular or humoral immune response when compared to immunization with a myristoylation-incompetent version of the construct. Thus, the release of VLPs formed in vivo may not play a major role in the immunogenicity of vectors expressing HIV-1 Gag constructs.
Collapse
Affiliation(s)
- S B Justin Wong
- Program in Cellular and Moleculat Medicine, Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Broadway Research Building Suite 879, 733 North Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
77
|
Rayne F, Kajava AV, Lalanne J, Mamoun RZ. In vivo homodimerisation of HTLV-1 Gag and MA gives clues to the retroviral capsid and TM envelope protein arrangement. J Mol Biol 2004; 343:903-16. [PMID: 15476809 DOI: 10.1016/j.jmb.2004.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
During retroviral particle formation, the capsid precursors (Gag) associate with the cell membrane via their matrix (MA) domain to form viral assembling particles. After budding, Gag and its proteolytically matured MA, form a shell in the released immature and mature particles, respectively. Although the arrangement of Gag domains in vitro and their radial organisation in retroviral particles have been extensively studied, little is known concerning Gag inter-subunit interactions in authentic retroviruses. We report that human T-cell leukemia virus type 1 Gag homodimerises in the cell via a disulphide bonding at cysteine 61 in the MA domain. Most Gags are homodimeric after budding and MAs are also dimeric in mature authentic virions. Molecular modelling of the MA domain indicates that non-covalent interactions at the MA dimer interface may also be important for Gag (and MA) dimerisation. In addition, all amino acids previously reported to be involved in MA-transmembrane (TM) interactions are located on the MA face opposite to the dimer interface. The model reveals that homodimerisation is compatible with a hexameric network of Gag and MA dimers that look like the hexameric networks observed for other retroviruses. These data, together with previous studies, lead us to propose a supra-molecular arrangement model in which the transmembrane glycoproteins of the virion envelope are anchored in a hexameric cage hole formed by the MA.
Collapse
Affiliation(s)
- Fabienne Rayne
- INSERM U443, Equipe Rétrovirus et Transfert génique, 146, rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
78
|
Melamed D, Mark-Danieli M, Kenan-Eichler M, Kraus O, Castiel A, Laham N, Pupko T, Glaser F, Ben-Tal N, Bacharach E. The conserved carboxy terminus of the capsid domain of human immunodeficiency virus type 1 gag protein is important for virion assembly and release. J Virol 2004; 78:9675-88. [PMID: 15331700 PMCID: PMC514996 DOI: 10.1128/jvi.78.18.9675-9688.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The retroviral Gag precursor plays an important role in the assembly of virion particles. The capsid (CA) protein of the Gag molecule makes a major contribution to this process. In the crystal structure of the free CA protein of the human immunodeficiency virus type 1 (HIV-1), 11 residues of the C terminus were found to be unstructured, and to date no information exists on the structure of these residues in the context of the Gag precursor molecule. We performed phylogenetic analysis and demonstrated a high degree of conservation of these 11 amino acids. Deletion of this cluster or introduction of various point mutations into these residues resulted in significant impairment of particle infectivity. In this cluster, two putative structural regions were identified, residues that form a hinge region (353-VGGP-356) and those that contribute to an alpha-helix (357-GHKARVL-363). Overall, mutations in these regions resulted in inhibition of virion production, but mutations in the hinge region demonstrated the most significant reduction. Although all the Gag mutants appeared to have normal Gag-Gag and Gag-RNA interactions, the hinge mutants were characterized by abnormal formation of cytoplasmic Gag complexes. Gag proteins with mutations in the hinge region demonstrated normal membrane association but aberrant rod-like membrane structures. More detailed analysis of these structures in one of the mutants demonstrated abnormal trapped Gag assemblies. These data suggest that the conserved CA C terminus is important for HIV-1 virion assembly and release and define a putative target for drug design geared to inhibit the HIV-1 assembly process.
Collapse
Affiliation(s)
- Daniel Melamed
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Multivesicular bodies contain membrane vesicles which either undergo lysosomal digestion or are released in the extracellular environment as exosomes. Evidence is accumulating that supports a physiological role for exosomes in, for example, antigen presentation or removal of transferrin receptor during reticulocyte development. Here, inspired by observations on exosomal release from reticulocytes, we discuss the potential involvement of the so-called ESCRT mechanism in the entrapment of both lysosomal and exosomal cargo within the intralumenal vesicles of multivesicular bodies. We propose that this mechanism operates at different sites in the endocytic itinerary in different cells, thereby providing a tool for directional sorting. We also explore the possibility that the efficiency of sorting of molecules into exosomes increases when the recycling kinetics of molecules decreases, exosomal sorting being favored by intermolecular interactions occurring within lipid domains, or with protein webs, that slow lateral mobility. These considerations are mirrored in the context of current knowledge on the mechanism of protein sorting for degradation in lysosomes, and the hijacking of such mechanisms by some retroviruses for particle budding.
Collapse
Affiliation(s)
- Aude de Gassart
- UMR CNRS 5539, Université Montpellier II, cc107, 34095 Montpellier, France
| | | | | | | |
Collapse
|
80
|
Perez-Caballero D, Hatziioannou T, Martin-Serrano J, Bieniasz PD. Human immunodeficiency virus type 1 matrix inhibits and confers cooperativity on gag precursor-membrane interactions. J Virol 2004; 78:9560-3. [PMID: 15308748 PMCID: PMC506924 DOI: 10.1128/jvi.78.17.9560-9563.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag multimerization and membrane binding are required for particle formation. However, it is unclear what constitutes a minimal plasma membrane-specific targeting signal and what role the matrix (MA) globular head and other Gag domains play in membrane targeting. Here, we use membrane flotation and microscopic analysis of Gag deletion mutants to demonstrate that the HIV-1 MA globular head inhibits a plasma membrane-specific targeting signal contained within the six amino-terminal MA residues. MA-mediated inhibition is relieved by concentration-dependent Gag multimerization and imparts a high degree of cooperativity on Gag-membrane association. This cooperativity may confer temporal and spatial regulation on HIV-1 assembly.
Collapse
Affiliation(s)
- David Perez-Caballero
- Aaron Diamond AIDS Research Center and the Rockefeller University, New York, New York 10016, USA
| | | | | | | |
Collapse
|
81
|
Svarovskaia ES, Xu H, Mbisa JL, Barr R, Gorelick RJ, Ono A, Freed EO, Hu WS, Pathak VK. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 2004; 279:35822-8. [PMID: 15210704 DOI: 10.1074/jbc.m405761200] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is a host cytidine deaminase that is packaged into virions and confers resistance to retroviral infection. APOBEC3G deaminates deoxycytidines in minus strand DNA to deoxyuridines, resulting in G to A hypermutation and viral inactivation. Human immunodeficiency virus type 1 (HIV-1) virion infectivity factor counteracts the antiviral activity of APOBEC3G by inducing its proteosomal degradation and preventing virion incorporation. To elucidate the mechanism of viral suppression by APOBEC3G, we developed a sensitive cytidine deamination assay and analyzed APOBEC3G virion incorporation in a series of HIV-1 deletion mutants. Virus-like particles derived from constructs in which pol, env, and most of gag were deleted still contained high levels of cytidine deaminase activity; in addition, coimmunoprecipitation of APOBEC3G and HIV-1 Gag in the presence and absence of RNase A indicated that the two proteins do not interact directly but form an RNase-sensitive complex. Viral particles lacking HIV-1 genomic RNA which were generated from the gag-pol expression constructs pC-Help and pSYNGP packaged APOBEC3G at 30-40% of the wild-type level, indicating that interactions with viral RNA are not necessary for incorporation. In addition, viral particles produced from an nucleocapsid zinc finger mutant contained approximately 1% of the viral genomic RNA but approximately 30% of the cytidine deaminase activity. The reduction in APOBEC3G incorporation was equivalent to the reduction in the total RNA present in the nucleocapsid mutant virions. These results indicate that interactions with viral proteins or viral genomic RNA are not essential for APOBEC3G incorporation and suggest that APOBEC3G interactions with viral and nonviral RNAs that are packaged into viral particles are sufficient for APOBEC3G virion incorporation.
Collapse
Affiliation(s)
- Evguenia S Svarovskaia
- HIV Drug Resistance Program and AIDS Vaccine Program, Science Applications International Corporation-Frederick, Inc., NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM. Nef binds p6* in GagPol during replication of human immunodeficiency virus type 1. J Virol 2004; 78:5311-23. [PMID: 15137387 PMCID: PMC400368 DOI: 10.1128/jvi.78.10.5311-5323.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical Nef protein (NefF12) from human immunodeficiency virus type 1 strain F12 (HIV-1(F12)) interferes with virion production and infectivity via a mysterious mechanism. The correlation of these effects with the unusual perinuclear subcellular localization of NefF12 suggested that the wild-type Nef protein could bind to assembly intermediates in late stages of viral replication. To test this hypothesis, Nef from HIV-1(NL4-3) was fused to an endoplasmic reticulum (ER) retention signal (NefKKXX). This mutant NefKKXX protein recapitulated fully the effects of NefF12 on on Gag processing and virion production, either alone or as a CD8 fusion protein. Importantly, the mutant NefKKXX protein also localized to the intermediate compartment, between the ER and the trans-Golgi network. Furthermore, Nef bound the GagPol polyprotein in vitro and in vivo. This binding mapped to the C-terminal flexible loop in Nef and the transframe p6* protein in GagPol. The significance of this interaction was demonstrated by a genetic assay in which the release of a mutant HIV-1 provirus lacking the PTAP motif in the late domain that no longer binds Tsg101 was rescued by a Nef.Tsg101 chimera. Importantly, this rescue as well as incorporation of Nef into HIV-1 virions correlated with the ability of Nef to interact with GagPol. Our data demonstrate that the retention of Nef in the intermediate compartment interferes with viral replication and suggest a new role for Nef in the production of HIV-1.
Collapse
Affiliation(s)
- Luciana J Costa
- Department of Medicine, University of California-San Francisco, UCSF-Mt. Zion Cancer Center, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
The assembly of HIV is relatively poorly investigated when compared with the process of virus entry. Yet a detailed understanding of the mechanism of assembly is fundamental to our knowledge of the complete life cycle of this virus and also has the potential to inform the development of new antiviral strategies. The repeated multiple interaction of the basic structural unit, Gag, might first appear to be little more than concentration dependent self-assembly but the precise mechanisms emerging for HIV are far from simple. Gag interacts not only with itself but also with host cell lipids and proteins in an ordered and stepwise manner. It binds both the genomic RNA and the virus envelope protein and must do this at an appropriate time and place within the infected cell. The assembled virus particle must successfully release from the cell surface and, whilst being robust enough for transmission between hosts, must nonetheless be primed for rapid disassembly when infection occurs. Our current understanding of these processes and the domains of Gag involved at each stage is the subject of this review.
Collapse
Affiliation(s)
- Catherine S Adamson
- School of Animal and Microbial Sciences, The University of Reading, Reading RG6 6AJ, UK.
| | | |
Collapse
|
84
|
Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci U S A 2004; 101:517-22. [PMID: 14699046 PMCID: PMC327179 DOI: 10.1073/pnas.0305665101] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Indexed: 12/13/2022] Open
Abstract
The myristoylated matrix protein (myr-MA) of HIV functions as a regulator of intracellular localization, targeting the Gag precursor polyprotein to lipid rafts in the plasma membrane during virus assembly and dissociating from the membrane during infectivity for nuclear targeting of the preintegration complex. Membrane release is triggered by proteolytic cleavage of Gag, and it has, until now, been believed that proteolysis induces a conformational change in myr-MA that sequesters the myristyl group. NMR studies reported here reveal that myr-MA adopts myr-exposed [myr(e)] and -sequestered [myr(s)] states, as anticipated. Unexpectedly, the tertiary structures of the protein in both states are very similar, with the sequestered myristyl group occupying a cavity that requires only minor conformational adjustments for insertion. In addition, myristate exposure is coupled with trimerization, with the myristyl group sequestered in the monomer and exposed in the trimer (K(assoc) = 2.5 +/- 0.6 x 10(8) M(-2)). The equilibrium constant is shifted approximately 20-fold toward the trimeric, myristate-exposed species in a Gag-like construct that includes the capsid domain, indicating that exposure is enhanced by Gag subdomains that promote self-association. Our findings indicate that the HIV-1 myristyl switch is regulated not by mechanically induced conformational changes, as observed for other myristyl switches, but instead by entropic modulation of a preexisting equilibrium.
Collapse
Affiliation(s)
- Chun Tang
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250-5398, USA
| | | | | | | | | | | |
Collapse
|
85
|
Feng X, Heyden NV, Ratner L. Alpha interferon inhibits human T-cell leukemia virus type 1 assembly by preventing Gag interaction with rafts. J Virol 2003; 77:13389-95. [PMID: 14645593 PMCID: PMC296084 DOI: 10.1128/jvi.77.24.13389-13395.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 09/03/2003] [Indexed: 11/20/2022] Open
Abstract
Alpha-2a interferon (IFN-alpha2a) has beneficial clinical effects on human T-cell leukemia virus type 1 (HTLV-1) infection, but its antiviral mechanism of action is unknown. Antiviral effects of IFN-alpha2a were studied in 293T cells expressing HTLV-1 proviral DNA and in HTLV-1-infected cells (HOS/PL, MT2, and HUT102). In 293T cells, an 50% inhibitory concentration of 10 U of IFN-alpha2a/ml was determined by p19 antigen ELISA. Analysis of IFN-treated cells demonstrated no defect in viral protein synthesis but did show a decrease in the level of released virus, as determined by immunoblot assays. Electron microscopy studies of IFN-treated cells revealed neither a defect in the site of virus budding nor tethering of virus particles at the plasma membrane, thus arguing against an effect on virus release. Cell fractionation studies and confocal microscopy showed no effect of IFN on Gag association with membranes. However, the level of Gag association with lipid rafts was decreased, suggesting a role of IFN in inhibiting HTLV-1 assembly.
Collapse
Affiliation(s)
- Xuan Feng
- Departments of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
86
|
Abstract
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA.
| | | |
Collapse
|
87
|
von Schwedler UK, Stray KM, Garrus JE, Sundquist WI. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 2003; 77:5439-50. [PMID: 12692245 PMCID: PMC153941 DOI: 10.1128/jvi.77.9.5439-5450.2003] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus type 1 initially assembles and buds as an immature particle that is organized by the viral Gag polyprotein. Gag is then proteolyzed to produce the smaller capsid protein CA, which forms the central conical capsid that surrounds the RNA genome in the mature, infectious virus. To define CA surfaces that function at different stages of the viral life cycle, a total of 48 different alanine-scanning surface mutations in CA were tested for their effects on Gag protein expression, processing, particle production and morphology, capsid assembly, and infectivity. The 27 detrimental mutations fall into three classes: 13 mutations significantly diminished or altered particle production, 9 mutations failed to assemble normal capsids, and 5 mutations supported normal viral assembly but were nevertheless reduced more than 20-fold in infectivity. The locations of the assembly-defective mutations implicate three different CA surfaces in immature particle assembly: one surface encompasses helices 4 to 6 in the CA N-terminal domain (NTD), a second surrounds the crystallographically defined CA dimer interface in the C-terminal domain (CTD), and a third surrounds the loop preceding helix 8 at the base of the CTD. Mature capsid formation required a distinct surface encompassing helices 1 to 3 in the NTD, in good agreement with a recent structural model for the viral capsid. Finally, the identification of replication-defective mutants with normal viral assembly phenotypes indicates that CA also performs important nonstructural functions at early stages of the viral life cycle.
Collapse
|
88
|
Liang C, Hu J, Whitney JB, Kleiman L, Wainberg MA. A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the gag protein of human immunodeficiency virus type 1. J Virol 2003; 77:1772-83. [PMID: 12525611 PMCID: PMC140948 DOI: 10.1128/jvi.77.3.1772-1783.2003] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Crystal structures of human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) reveal that the last 11 C-terminal amino acids are disordered. This disordered region contains a glycine-rich sequence 353-GVGGP-357 (numbering refers to the initiation methionine of Gag) that is highly conserved within the Gag proteins of HIV-1, HIV-2, and simian immunodeficiency virus, which suggests the importance of this sequence in virus replication. In the present study, we demonstrate that changing any individual residue within this short region in the context of the full-length HIV-1 genome virtually abolishes production of extracellular virus particles, in either the presence or absence of viral protease activity. This severe defect in virus particle production results from impaired Gag multimerization, as well as from decreased Gag association with the cellular membranes, as demonstrated by the results of gradient sedimentation and membrane flotation centrifugation assays. These findings are further supported by the diffuse distribution pattern of the mutant Gag within the cytoplasm, as opposed to the punctate distribution of the wild-type Gag on the plasma membrane. On the basis of these results, we propose that the disordered feature of amino acid stretch 353-GVGGP-357 in the CA crystal forms may have allowed Gag to adopt multiple conformations and that such structural flexibility is needed by Gag in order to construct geometrically complex particles.
Collapse
Affiliation(s)
- Chen Liang
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | | | | | | | | |
Collapse
|
89
|
Abstract
A coupled transcription-translation (TNT) reticulocyte lysate system was used to examine posttranslational alterations in HIV-1 Gag upon addition of Jurkat T cell membranes. Incubation of the Gag precursor protein, Pr55gag, with membranes resulted in a time-dependent alteration in Gag resulting in partial resistance to trypsin treatment. Treatment of membranes and TNT extract with apyrase or pretreatment of membranes with trypsin prevented this posttranslational alteration of Gag. In contrast, this activity was not disrupted by pretreatment of membranes with Triton X-100 at 4 degrees C, under conditions which do not solubilize raft-associated proteins. Flotation studies revealed that acquisition of trypsin-resistance was accompanied by Gag binding to membranes. The myristylation signal and nucleocapsid domain were found to mediate Gag binding to membranes. The posttranslational alteration of Gag accompanying membrane interaction may represent a conformational change, oligomerization, and/or association with or envelopment by membranes. These findings provide new clues to the stepwise process of HIV-1 assembly.
Collapse
Affiliation(s)
- Liuzhan Yang
- Department of Medicine, Pathology, and Molecular Mirobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
90
|
Le Blanc I, Blot V, Bouchaert I, Salamero J, Goud B, Rosenberg AR, Dokhélar MC. Intracellular distribution of human T-cell leukemia virus type 1 Gag proteins is independent of interaction with intracellular membranes. J Virol 2002; 76:905-11. [PMID: 11752179 PMCID: PMC136804 DOI: 10.1128/jvi.76.2.905-911.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrovirus Gag proteins are synthesized on free ribosomes, and are sufficient to govern the assembly and release of virus particles. Like type C retroviruses, human T-cell leukemia virus type 1 (HTLV-1) assembles and buds at the plasma membrane. After immunofluorescence staining, HTLV-1 Gag proteins appear as punctuated intracellular clusters, which suggests that they are associated either with intracellular membranes or with the plasma membrane. However, colocalization experiments using a panel of markers demonstrated that Gag proteins were not associated with the membranes involved in the secretory or endocytosis pathway. Small amounts of Gag proteins were detected at the plasma membrane and colocalized with the envelope glycoproteins. Moreover, Gag proteins were excluded from streptolysin-O permeabilized cells and in this respect behaved like cytoplasmic proteins. This suggests that the trafficking of HTLV-1 Gag proteins through the cytoplasm of the host cell is independent of any cell membrane system.
Collapse
Affiliation(s)
- Isabelle Le Blanc
- INSERM U332, Service de Cytofluorométrie, ICGM. CNRS UMR 144, Institut Curie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
91
|
Ono A, Freed EO. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci U S A 2001; 98:13925-30. [PMID: 11717449 PMCID: PMC61143 DOI: 10.1073/pnas.241320298] [Citation(s) in RCA: 524] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 particle production occurs in a series of steps promoted by the viral Gag protein. Although it is well established that assembly and release take place at the plasma membrane, the nature of membrane assembly sites remains poorly understood. We show here that Gag specifically associates with cholesterol-enriched microdomains ("rafts") at the plasma membrane. Kinetic studies demonstrate that raft association follows membrane binding, and the analysis of Gag mutants reveals that, whereas the N terminus of Gag mediates raft binding, this association is greatly enhanced by Gag-Gag interaction domains. We observe that depletion of cellular cholesterol markedly and specifically reduces HIV-1 particle production. Furthermore, treatment of virus-producing cells or virus particles with raft-disrupting agents significantly impairs virus infectivity. These results identify the association of Gag with plasma membrane rafts as an important step in HIV-1 replication. These findings may lead to novel strategies for suppressing HIV-1 replication in vivo.
Collapse
Affiliation(s)
- A Ono
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 307, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| | | |
Collapse
|
92
|
Lindwasser OW, Resh MD. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J Virol 2001; 75:7913-24. [PMID: 11483736 PMCID: PMC115035 DOI: 10.1128/jvi.75.17.7913-7924.2001] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gag polyprotein of human immunodeficiency virus type 1 (HIV-1) organizes the assembly of nascent virions at the plasma membrane of infected cells. Here we demonstrate that a population of Gag is present in distinct raft-like membrane microdomains that we have termed "barges." Barges have a higher density than standard rafts, most likely due to the presence of oligomeric Gag-Gag assembly complexes. The regions of the Gag protein responsible for barge targeting were mapped by examining the flotation behavior of wild-type and mutant proteins on Optiprep density gradients. N-myristoylation of Gag was necessary for association with barges. Removal of the NC and p6 domains shifted much of the Gag from barges into typical raft fractions. These data are consistent with a model in which multimerization of myristoylated Gag proteins drives association of Gag oligomers into raft-like barges. The functional significance of barge association was revealed by several lines of evidence. First, Gag isolated from virus-like particles was almost entirely localized in barges. Moreover, a comparison of wild-type Gag with Fyn(10)Gag, a chimeric protein containing the N-terminal sequence of Fyn, revealed that Fyn(10)Gag exhibited increased affinity for barges and a two- to fourfold increase in particle production. These results imply that association of Gag with raft-like barge membrane microdomains plays an important role in the HIV-1 assembly process.
Collapse
Affiliation(s)
- O W Lindwasser
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, and Graduate Program in Cell Biology and Genetics, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
93
|
Eastman SW, Linial ML. Identification of a conserved residue of foamy virus Gag required for intracellular capsid assembly. J Virol 2001; 75:6857-64. [PMID: 11435565 PMCID: PMC114413 DOI: 10.1128/jvi.75.15.6857-6864.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to all retroviruses but similar to the hepatitis B virus, foamy viruses (FV) require expression of the envelope protein for budding of intracellular capsids from the cell, suggesting a specific interaction between the Gag and Env proteins. Capsid assembly occurs in the cytoplasm of infected cells in a manner similar to that for the B- and D-type viruses; however, in contrast to these retroviruses, FV Gag lacks an N-terminal myristylation signal and capsids are not targeted to the plasma membrane (PM). We have found that mutation of an absolutely conserved arginine (Arg) residue at position 50 to alanine (R50A) of the simian foamy virus SFV cpz(hu) inhibits proper capsid assembly and abolishes viral budding even in the presence of the envelope (Env) glycoproteins. Particle assembly and extracellular release of virus can be restored to this mutant with the addition of an N-terminal Src myristylation signal (Myr-R50A), presumably by providing an alternate site for assembly to occur at the PM. In addition, the strict requirement of Env expression for capsid budding can be bypassed by addition of a PM-targeting signal to Gag. These results suggest that intracellular capsid assembly may be mediated by a signal akin to the cytoplasmic targeting and retention signal CTRS found in Mason-Pfizer monkey virus and that FV Gag has the inherent ability to assemble capsids at multiple sites like conventional retroviruses. The necessity of Env expression for particle egress is most probably due to the lack of a membrane-targeting signal within FV Gag to direct capsids to the PM for release and indicates that Gag-Env interactions are essential to drive particle budding.
Collapse
Affiliation(s)
- S W Eastman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
94
|
Tritel M, Resh MD. The late stage of human immunodeficiency virus type 1 assembly is an energy-dependent process. J Virol 2001; 75:5473-81. [PMID: 11356954 PMCID: PMC114259 DOI: 10.1128/jvi.75.12.5473-5481.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several recent studies have indicated the involvement of host cell factors in human immunodeficiency virus type 1 (HIV-1) assembly. To ascertain whether ATP-dependent factors play a role in this process, we quantified virus-like particle (VLP) production by ATP-depleted cells. Pharmacological ATP depletion abrogated VLP production without affecting cell viability or inducing degradation of HIV-1 Gag protein. This effect occurred even when the ATP-depleting agents were added 1 h into the assembly process, and it was reversed by removal of these agents. ATP depletion did not affect Gag membrane binding or multimerization. Density gradient analysis indicated that HIV-1 assembly intermediates were stalled late in the assembly process. This conclusion was further supported by electron microscopy analysis, which revealed a preponderance of plasma membrane-associated stalk-like structures in the ATP-depleted cells. Since no HIV-1 proteins bind or hydrolyze ATP, these findings indicate that an ATP-requiring cellular factor is an obligatory participant late in the HIV-1 assembly process.
Collapse
Affiliation(s)
- M Tritel
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, and Graduate Program in Cell Biology and Genetics, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
95
|
Rayne F, Bouamr F, Lalanne J, Mamoun RZ. The NH2-terminal domain of the human T-cell leukemia virus type 1 capsid protein is involved in particle formation. J Virol 2001; 75:5277-87. [PMID: 11333909 PMCID: PMC114933 DOI: 10.1128/jvi.75.11.5277-5287.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) capsid proteins (CA) display similar structures formed by two independently folded N-terminal (NTD) and C-terminal (CTD) domains. To characterize the functions harbored by the HTLV-1 CA domains in particle formation, 12 sites scattered throughout the protein were mutated. The effects of the mutations on Gag membrane binding, proteolytic processing, and virus-like particle secretion were analyzed. It appears that the NTD is the major partner of indirect or direct Gag-Gag interactions. In particular, most of the NTD mutations impaired virion morphogenesis, and no mutation located in the NTD could be fully rescued by coexpression of wild-type Gag. In contrast, the CTD seems not to be involved in Gag-Gag interactions. Nevertheless, an unknown function required for particle formation is located in the CTD. Thus, despite an overall structural similarity between the HIV-1 and HTLV-1 CA proteins, their NTDs and CTDs exhibit different functions.
Collapse
Affiliation(s)
- F Rayne
- INSERM U443, Equipe Rétrovirus et Transfert Génique, Université Victor Segalen Bordeaux 2, F-33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
96
|
Morikawa Y, Kinoshita A, Goto T, Tomoda H, Sano K. Membrane relocation but not tight binding of human immunodeficiency virus type 1 Gag particles myristoylated in Escherichia coli. Virology 2001; 283:343-52. [PMID: 11336559 DOI: 10.1006/viro.2001.0886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of human immunodeficiency virus Gag protein and the N-terminal matrix (MA) domain in Escherichia coli yielded spherical structures in the cytoplasm. When human N-myristoyltransferase was coexpressed, both Gag and MA were fully myristoylated and spherical structures were relocated in close proximity to the cytoplasmic membrane. However, neither myristoylated Gag nor MA exhibited tight binding to E. coli membrane, suggesting that myristoylation in E. coli did not confer membrane affinity on Gag despite the relocation. Our data also suggest that the morphogenetic pathway of Gag particles in prokaryotic cells differs from that in eukaryotic cells despite biochemical similarities of in the form of Gag expressed.
Collapse
Affiliation(s)
- Y Morikawa
- The Kitasato Institute, Shirokane 5-9-1, Minato-ku, Tokyo 108-8642, Japan.
| | | | | | | | | |
Collapse
|
97
|
Amarasinghe GK, De Guzman RN, Turner RB, Chancellor KJ, Wu ZR, Summers MF. NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol 2000; 301:491-511. [PMID: 10926523 DOI: 10.1006/jmbi.2000.3979] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA genome of the human immunodeficiency virus type-1 (HIV-1) contains a approximately 120 nucleotide Psi-packaging signal that is recognized by the nucleocapsid (NC) domain of the Gag polyprotein during virus assembly. The Psi-site contains four stem-loops (SL1-SL4) that possess overlapping and possibly redundant functions. The present studies demonstrate that the 19 residue SL2 stem-loop binds NC with affinity (K(d)=110(+/-50) nM) similar to that observed for NC binding to SL3 (K(d)=170(+/-65) nM) and tighter than expected on the basis of earlier work, suggesting that NC-SL2 interactions probably play a direct role in the specific recognition and packaging of the full-length, unspliced genome. The structure of the NC-SL2 complex was determined by heteronuclear NMR methods using (15)N,(13)C-isotopically labeled NC protein and SL2 RNA. The N and C-terminal "zinc knuckles" (Cys-X(2)-Cys-X(4)-His-X(4)-Cys; X=variable amino acid) of HIV-1 NC bind to exposed guanosine bases G9 and G11, respectively, of the G8-G9-U10-G11 tetraloop, and residues Lys3-Lys11 of the N-terminal tail forms a 3(10) helix that packs against the proximal zinc knuckle and interacts with the RNA stem. These structural features are similar to those observed previously in the NMR structure of NC bound to SL3. Other features of the complex are substantially different. In particular, the N-terminal zinc knuckle interacts with an A-U-A base triple platform in the minor groove of the SL2 RNA stem, but binds to the major groove of SL3. In addition, the relative orientations of the N and C-terminal zinc knuckles differ in the NC-SL2 and NC-SL3 complexes, and the side-chain of Phe6 makes minor groove hydrophobic contacts with G11 in the NC-SL2 complex but does not interact with RNA in the NC-SL3 complex. Finally, the N-terminal helix of NC interacts with the phosphodiester backbone of the SL2 RNA stem mainly via electrostatic interactions, but does not bind in the major groove or make specific H-bonding contacts as observed in the NC-SL3 structure. These findings demonstrate that NC binds in an adaptive manner to SL2 and SL3 via different subsets of inter and intra-molecular interactions, and support a genome recognition/packaging mechanism that involves interactions of two or more NC domains of assembling HIV-1 Gag molecules with multiple Psi-site stem-loop packaging elements during the early stages of retrovirus assembly.
Collapse
Affiliation(s)
- G K Amarasinghe
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|