51
|
Roeth JF, Williams M, Kasper MR, Filzen TM, Collins KL. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. ACTA ACUST UNITED AC 2004; 167:903-13. [PMID: 15569716 PMCID: PMC2172469 DOI: 10.1083/jcb.200407031] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV.
Collapse
Affiliation(s)
- Jeremiah F Roeth
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
52
|
Pizzato N, Derrien M, Lenfant F. The short cytoplasmic tail of HLA-G determines its resistance to HIV-1 Nef-mediated cell surface downregulation. Hum Immunol 2004; 65:1389-96. [PMID: 15556689 DOI: 10.1016/j.humimm.2004.07.239] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/12/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
During infection with the human immunodeficiency virus type 1 (HIV-1), selective downregulation of major histocompatibility complex (MHC) class I molecules by Nef protein allows infected cells to be protected from natural killer (NK) cell lysis and to escape the HIV-specific cytotoxic T-lymphocyte response. The nonclassical MHC class I molecule human leukocyte antigen (HLA)-G is mainly expressed in placental tissues and in thymic epithelial cells. Using chimeric molecules and flow cytometry, we show that in contrast with HLA-A2, the non classical MHC class I molecule HLA-G is resistant to Nef-induced cell surface downregulation solely because of the length of its intracytoplasmic domain. Moreover, confocal microscopy analysis indicates that Nef does not delocalize HLA-G molecules from the cell surface, whereas HLA-G molecules extended with the cytoplasmic tail of HLA-A2 accumulate intracellularly with Nef. Together, these data demonstrate that the short cytoplasmic tail of HLA-G confers resistance to Nef-induced downregulation and intracellular accumulation. This resistance may have functional consequences during the course of HIV infection.
Collapse
Affiliation(s)
- Nathalie Pizzato
- Centre de Physiopathologie Toulouse-Purpan, INSERM U563, Hôpital Purpan, Toulouse, France
| | | | | |
Collapse
|
53
|
Santos SG, Powis SJ, Arosa FA. Misfolding of major histocompatibility complex class I molecules in activated T cells allows cis-interactions with receptors and signaling molecules and is associated with tyrosine phosphorylation. J Biol Chem 2004; 279:53062-70. [PMID: 15471856 DOI: 10.1074/jbc.m408794200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Knowledge of the origin and biochemical status of beta(2)-microglobulin-free or misfolded major histocompatibility complex (MHC)-I molecules is essential for understanding their pleiotropic properties. Here we show that in normal human T cells, misfolding of MHC-I molecules is turned on upon activation and cell division and is proportional to the level of proliferation. Immunoprecipitation showed that a number of proteins are associated with MHC-I heavy chains at the surface of activated T cells, including the CD8alphabeta receptor and the chaperone tandem calreticulin/ERp57, associations that rely upon the existence of a pool of HC-10-reactive molecules. Biochemical analysis showed that misfolded MHC-I molecules present at the cell surface are fully glycosylated mature molecules. Importantly, misfolded MHC-I molecules are tyrosine phosphorylated and are associated with kinase activity. In vitro kinase assays followed by reprecipitation indicated that tyrosine phosphorylation of the class I heavy chain is probably mediated by a Src tyrosine kinase because Lck was found associated with HC-10 immunocomplexes. Finally, we show that inhibition of tyrosine phosphorylation by using the Src-family tyrosine kinase inhibitor PP2 resulted in enhanced release of MHC-I heavy chains from the cell surface of activated T cells and a slight down-regulation of cell surface W6/32-reactive molecules. This study provides new insights into the biology of MHC-I molecules and suggests that tyrosine phosphorylation may be involved in the regulation of MHC-I misfolding and expression.
Collapse
Affiliation(s)
- Susana G Santos
- Division of Human Genetics and Genetic Disorders, Institute for Molecular and Cell Biology, Ruua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
54
|
Affiliation(s)
- Philip J R Goulder
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, UK.
| | | |
Collapse
|
55
|
Naslavsky N, Boehm M, Backlund PS, Caplan S. Rabenosyn-5 and EHD1 interact and sequentially regulate protein recycling to the plasma membrane. Mol Biol Cell 2004; 15:2410-22. [PMID: 15020713 PMCID: PMC404033 DOI: 10.1091/mbc.e03-10-0733] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
EHD1 has been implicated in the recycling of internalized proteins to the plasma membrane. However, the mechanism by which EHD1 mediates recycling and its relationship to Rab-family-controlled events has yet to be established. To investigate further the mode of EHD1 action, we sought to identify novel interacting partners. GST-EHD1 was used as bait to isolate a approximately 120-kDa species from bovine and murine brain cytosol, which was identified by mass spectrometry as the divalent Rab4/Rab5 effector Rabenosyn-5. We mapped the sites of interaction to the EH domain of EHD1, and the first two of five NPF motifs of Rabenosyn-5. Immunofluorescence microscopy studies revealed that EHD1 and Rabenosyn-5 partially colocalize to vesicular and tubular structures in vivo. To address the functional roles of EHD1 and Rabenosyn-5, we first demonstrated that RNA interference (RNAi) dramatically reduced the level of expression of each protein, either individually or in combination. Depletion of either EHD1 or Rabenosyn-5 delayed the recycling of transferrin and major histocompatibility complex class I to the plasma membrane. However, whereas depletion of EHD1 caused the accumulation of internalized cargo in a compact juxtanuclear compartment, Rabenosyn-5-RNAi caused its retention within a dispersed peripheral compartment. Simultaneous RNAi depletion of both proteins resulted in a similar phenotype to that observed with Rabenosyn-5-RNAi alone, suggesting that Rabenosyn-5 acts before EHD1 in the regulation of endocytic recycling. Our studies suggest that Rabenosyn-5 and EHD1 act sequentially in the transport of proteins from early endosomes to the endosomal recycling compartment and back to the plasma membrane.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
56
|
Alexander M, Bor YC, Ravichandran KS, Hammarskjöld ML, Rekosh D. Human immunodeficiency virus type 1 Nef associates with lipid rafts to downmodulate cell surface CD4 and class I major histocompatibility complex expression and to increase viral infectivity. J Virol 2004; 78:1685-96. [PMID: 14747534 PMCID: PMC369412 DOI: 10.1128/jvi.78.4.1685-1696.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are membrane microdomains that are functionally distinct from other membrane regions. We have shown that 10% of human immunodeficiency virus type 1 (HIV-1) Nef expressed in SupT1 cells is present in lipid rafts and that this represents virtually all of the membrane-associated Nef. To determine whether raft targeting, rather than simply membrane localization, has functional significance, we created a Nef fusion protein (LAT-Nef) containing the N-terminal 35 amino acids from LAT, a protein that is exclusively localized to rafts. Greater than 90% of the LAT-Nef protein was found in the raft fraction. In contrast, a mutated form, lacking two cysteine palmitoylation sites, showed less than 5% raft localization. Both proteins were equally expressed and targeted nearly exclusively to membranes. The LAT-Nef protein was more efficient than its nonraft mutant counterpart at downmodulating both cell surface CD4 and class I major histocompatibility complex (MHC) expression, as well as in enhancing first-round infectivity and being incorporated into virus particles. This demonstrates that targeting of Nef to lipid rafts is mechanistically important for all of these functions. Compared to wild-type Nef, LAT-Nef downmodulated class I MHC nearly as effectively as the wild-type Nef protein, but was only about 60% as effective for CD4 downmodulation and 30% as effective for infectivity enhancement. Since the LAT-Nef protein was found entirely in rafts while the wild-type Nef protein was distributed 10% in rafts and 90% in the soluble fraction, our results suggest that class I MHC downmodulation by Nef may be performed exclusively by raft-bound Nef. In contrast, CD4 downmodulation and infectivity enhancement may require a non-membrane-bound Nef component as well as the membrane-bound form.
Collapse
Affiliation(s)
- Melissa Alexander
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Carter Immunology Center, and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
57
|
Petersen JL, Morris CR, Solheim JC. Virus evasion of MHC class I molecule presentation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4473-8. [PMID: 14568919 DOI: 10.4049/jimmunol.171.9.4473] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jason L Petersen
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198-6805, USA
| | | | | |
Collapse
|
58
|
Larsen JE, Massol RH, Nieland TJF, Kirchhausen T. HIV Nef-mediated major histocompatibility complex class I down-modulation is independent of Arf6 activity. Mol Biol Cell 2003; 15:323-31. [PMID: 14617802 PMCID: PMC307550 DOI: 10.1091/mbc.e03-08-0578] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
HIV Nef has a number of important biological effects, including the down-modulation of several immunological important molecules (CD4, major histocompatibility complex [MHC] class I). Down-modulation of CD4 seems to be via clathrin-dependent endocytosis, whereas down-modulation of MHC class I remains unexplained. Several mutant proteins, including mutations in the small GTPase Arf6, have been used to probe membrane traffic pathways. One such mutant has recently been used to propose that Nef acts through Arf6 to activate the endocytosis of MHC class I. Here, we show that MHC class I down-modulation is unaffected by other Arf6 mutants that provide more specific perturbations in the GDP-GTP cycling of Arf6. Inhibition of phosphatidylinositol-3-phosphate kinase, an upstream activator of Arf6, also had no effect on the internalization step, but its activity is required to direct MHC class I to the trans-Golgi network. We conclude that the apparent Arf6 dependency of Nef-mediated MHC class I down-modulation is due to nonspecific perturbations in membrane traffic.
Collapse
Affiliation(s)
- Jakob E Larsen
- Department of Cell Biology and The Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
59
|
Abstract
Presumably because of the selective pressure exerted by the immune system, many viruses have evolved proteins that interfere with antigen presentation by major histocompatibility complex (MHC) class I molecules. These viruses utilize a whole variety of ingenious strategies to inhibit the MHC class I pathway. Viral proteins have been characterized that exploit bottlenecks in the MHC class I pathway, such as peptide translocation by the transporter associated with antigen processing. Alternatively, viral proteins can cause the degradation or mislocalization of MHC class I molecules. This is often achieved by the subversion of the host cell's own protein degradation and trafficking pathways. As a consequence elucidation of how these viral proteins act to subvert host cell function will continue to give important insights not only into virus-host interactions but also the function and mechanism of cellular pathways.
Collapse
Affiliation(s)
- Eric W Hewitt
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
60
|
Swigut T, Greenberg M, Skowronski J. Cooperative interactions of simian immunodeficiency virus Nef, AP-2, and CD3-zeta mediate the selective induction of T-cell receptor-CD3 endocytosis. J Virol 2003; 77:8116-26. [PMID: 12829850 PMCID: PMC161955 DOI: 10.1128/jvi.77.14.8116-8126.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef proteins of human immunodeficiency virus and simian immunodeficiency virus (SIV) bind the AP-1 and AP-2 clathrin adaptors to downmodulate the expression of CD4 and CD28 by recruiting them to sites of AP-2 clathrin-dependent endocytosis. Additionally, SIV Nef directly binds the CD3-zeta subunit of the CD3 complex and downmodulates the T-cell receptor (TCR)-CD3 complex. We report here that SIV mac239 Nef induces the endocytosis of TCR-CD3 in Jurkat T cells. SIV Nef also induces the endocytosis of a chimeric CD8-CD3-zeta protein containing only the CD3-zeta cytoplasmic domain (8-zeta), in the absence of other CD3 subunits. Thus, the interaction of SIV Nef with CD3-zeta likely mediates the induction of TCR-CD3 endocytosis. In cells expressing SIV Nef and 8-zeta, both proteins colocalize with AP-2, indicating that Nef induces 8-zeta internalization via this pathway. Surprisingly, deletion of constitutively strong AP-2 binding determinants (CAIDs) in SIV Nef had little effect on its ability to induce TCR-CD3, or 8-zeta endocytosis, even though these determinants are required for the induction of CD4 and CD28 endocytosis via this pathway. Fluorescent microscopic analyses revealed that while neither the mutant SIV Nef protein nor 8-zeta colocalized with AP-2 when expressed independently, both proteins colocalized with AP-2 when coexpressed. In vitro binding studies using recombinant SIV Nef proteins lacking CAIDs and recombinant CD3-zeta cytoplasmic domain demonstrated that SIV Nef and CD3-zeta cooperate to bind AP-2 via a novel interaction. The fact that Nef uses distinct AP-2 interaction surfaces to recruit specific membrane receptors demonstrates how Nef independently selects distinct types of target receptors and recruits them to AP-2 for endocytosis.
Collapse
Affiliation(s)
- Tomek Swigut
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
61
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) Nef is a key pathogenic factor necessary for the development of AIDS. One important function of Nef is to reduce cell surface levels of major histocompatibility complex class I (MHC-I) molecules, thereby protecting HIV-infected cells from recognition by cytotoxic T lymphocytes. The mechanism of MHC-I downmodulation by Nef has not been clearly elucidated, and its reported effect on MHC-I steady-state levels ranges widely, from 2-fold in HeLa cells to 200-fold in HIV-infected primary T cells. Here, we directly compared downmodulation of HLA-A2 in HIV-infected HeLa cells to that in T cells. We found that similar amounts of Nef protein resulted in a much more dramatic downmodulation of HLA-A2 in T cells than in HeLa cells. A comparison of Nef's effects on HLA-A2 endocytosis, recycling, and transport rates indicated that the most prominent effect of Nef on HLA-A2 in T cells was to inhibit transport to the cell surface. The phosphatidylinositol 3-kinase inhibitor, LY294002, previously reported to inhibit Nef-mediated MHC-I downmodulation in astrocytic cells, did not directly affect Nef's ability to block transport of MHC-I to the cell surface in T cells.
Collapse
Affiliation(s)
- Matthew R Kasper
- Department of Microbiology and Immunology, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
62
|
Peterlin BM, Trono D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat Rev Immunol 2003; 3:97-107. [PMID: 12563294 DOI: 10.1038/nri998] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses that induce chronic infections can evade immune responses. HIV is a prototype of this class of pathogen. Not only does it mutate rapidly and make its surface components difficult to access by neutralizing antibodies, but it also creates cellular hideouts, establishes proviral latency, removes cell-surface receptors and destroys immune effectors to escape eradication. A better understanding of these strategies might lead to new approaches in the fight against AIDS.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco, California 94143-0703, USA.
| | | |
Collapse
|
63
|
Naslavsky N, Weigert R, Donaldson JG. Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol Biol Cell 2003; 14:417-31. [PMID: 12589044 PMCID: PMC149982 DOI: 10.1091/mbc.02-04-0053] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The trafficking of two plasma membrane (PM) proteins that lack clathrin internalization sequences, major histocompatibility complex class I (MHCI), and interleukin 2 receptor alpha subunit (Tac) was compared with that of PM proteins internalized via clathrin. MHCI and Tac were internalized into endosomes that were distinct from those containing clathrin cargo. At later times, a fraction of these internalized membranes were observed in Arf6-associated, tubular recycling endosomes whereas another fraction acquired early endosomal autoantigen 1 (EEA1) before fusion with the "classical" early endosomes containing the clathrin-dependent cargo, LDL. After convergence, cargo molecules from both pathways eventually arrived, in a Rab7-dependent manner, at late endosomes and were degraded. Expression of a constitutively active mutant of Arf6, Q67L, caused MHCI and Tac to accumulate in enlarged PIP(2)-enriched vacuoles, devoid of EEA1 and inhibited their fusion with clathrin cargo-containing endosomes and hence blocked degradation. By contrast, trafficking and degradation of clathrin-cargo was not affected. A similar block in transport of MHCI and Tac was reversibly induced by a PI3-kinase inhibitor, implying that inactivation of Arf6 and acquisition of PI3P are required for convergence of endosomes arising from these two pathways.
Collapse
Affiliation(s)
- Naava Naslavsky
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
64
|
Bénichou S, Benmerah A. [The HIV nef and the Kaposi-sarcoma-associated virus K3/K5 proteins: "parasites"of the endocytosis pathway]. Med Sci (Paris) 2003; 19:100-6. [PMID: 12836198 DOI: 10.1051/medsci/2003191100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The modulation of plasma membrane proteins involved in the communication with the immune system is a general mechanism developed by viruses to escape the immune response. Most of the studied examples have focused on viral proteins that missort cellular proteins during their biosynthesis. However, an increasing number of examples show that the down-modulation can also be achieved after membrane delivery by targeting into the endocytic pathway. For both human immunodeficiency virus (HIV) and Kaposi sarcoma-associated herpesvirus (KSHV), the proteins required for this process are identified, Nef and K3/K5 respectively. The extensive studies in this field have shown that the mechanisms by which these proteins "parasite" the endocytic pathway are completely different. Nef directly interacts with components of the cellular machinery involved in the vesicular transport between the endocytic compartments, mainly the clathrin adaptor complexes (AP), inducing the misrouting of numerous cellular proteins, including CD4, MHC-I, LIGHT, DC-SIGN, CD28 and MHC-II to the endosomal degradation compartment or the trans Golgi-network. The K3 and K5 proteins from KSHV act by inducing the ubiquitylation of the target proteins, such as CMH-I and B7.2, triggering their internalization and subsequent degradation by the highly conserved Tsg101/vps23 ubiquitin-dependent endosomal pathway. While these findings show that the strategies used by viruses to target cellular proteins to the endocytic pathway are extremely diverse, additional investigations are needed for the complete understanding of the specific roles of Nef and K3/K5 in the physiopathology of HIV and KSHV infections, respectively. In addition, these viral factors represent valuable tools to study the pathway they are perturbing.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, Surface/metabolism
- Cysteine Endopeptidases/metabolism
- Endocytosis
- Gammaherpesvirinae/genetics
- Gammaherpesvirinae/physiology
- Gene Products, nef/chemistry
- Gene Products, nef/physiology
- Genes, nef
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/chemistry
- Immediate-Early Proteins/physiology
- Macromolecular Substances
- Mice
- Multienzyme Complexes/metabolism
- Proteasome Endopeptidase Complex
- Protein Processing, Post-Translational
- Protein Transport/physiology
- Sarcoma, Kaposi/immunology
- Sarcoma, Kaposi/virology
- Structure-Activity Relationship
- Ubiquitin/metabolism
- Viral Proteins/chemistry
- Viral Proteins/physiology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Serge Bénichou
- Département de Maladies Infectieuses, Inserm U.567, Cnrs UMR 8104, Institut Cochin, Bâtiment Gustave Roussy, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | |
Collapse
|
65
|
Yamada T, Kaji N, Odawara T, Chiba J, Iwamoto A, Kitamura Y. Proline 78 is crucial for human immunodeficiency virus type 1 Nef to down-regulate class I human leukocyte antigen. J Virol 2003; 77:1589-94. [PMID: 12502873 PMCID: PMC140770 DOI: 10.1128/jvi.77.2.1589-1594.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 Nef down-regulates human leukocyte antigen class I (HLA-I) in T lymphocytes, and the down-regulation involves the Nef proline-rich domain (PRD) containing four prolines at positions 69, 72, 75, and 78. We used a Sendai virus vector with nef and examined regulation by Nef of HLA-I and CD4 in suspension cultures of cells such as T lymphocytes. Analyses of a series of PRD substitution mutants indicated that, because the substitution of Pro78 with Ala abolished down-regulation of HLA-I but not of CD4, Pro78 is important for HLA-I down-regulation in T lymphocytes.
Collapse
Affiliation(s)
- Takeshi Yamada
- Division of Infectious Diseases, Advanced Clinical Research Center, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 2002; 111:853-66. [PMID: 12526811 DOI: 10.1016/s0092-8674(02)01162-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 Nef-mediated downregulation of cell surface MHC-I molecules to the trans-Golgi network (TGN) enables HIV-1 to escape immune surveillance. However, the cellular pathway used by Nef to downregulate MHC-I is unknown. Here, we show that Nef and PACS-1 combine to usurp the ARF6 endocytic pathway by a PI3K-dependent process and downregulate cell surface MHC-I to the TGN. This mechanism requires the hierarchical actions of three Nef motifs-the acidic cluster 62EEEE(65), the SH3 domain binding site 72PXXP(75), and M(20)-in controlling PACS-1-dependent sorting to the TGN, ARF6 activation, and sequestering internalized MHC-I to the TGN, respectively. These data provide new insights into the cellular basis of HIV-1 immunoevasion.
Collapse
|
67
|
Williams M, Roeth JF, Kasper MR, Fleis RI, Przybycin CG, Collins KL. Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 2002; 76:12173-84. [PMID: 12414957 PMCID: PMC136906 DOI: 10.1128/jvi.76.23.12173-12184.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 08/19/2002] [Indexed: 11/20/2022] Open
Abstract
Nef, an essential pathogenic determinant for human immunodeficiency virus type 1, has multiple functions that include disruption of major histocompatibility complex class I molecules (MHC-I) and CD4 and CD28 cell surface expression. The effects of Nef on MHC-I have been shown to protect infected cells from cytotoxic T-lymphocyte recognition by downmodulation of a subset of MHC-I (HLA-A and -B). The remaining HLA-C and -E molecules prevent recognition by natural killer (NK) cells, which would otherwise lyse cells expressing small amounts of MHC-I. Specific amino acid residues in the MHC-I cytoplasmic tail confer sensitivity to Nef, but their function is unknown. Here we show that purified Nef binds directly to the HLA-A2 cytoplasmic tail in vitro and that Nef forms complexes with MHC-I that can be isolated from human cells. The interaction between Nef and MHC-I appears to be weak, indicating that it may be transient or stabilized by other factors. Supporting the fact that these molecules interact in vivo, we found that Nef colocalizes with HLA-A2 molecules in a perinuclear distribution inside cells. In addition, we demonstrated that Nef fails to bind the HLA-E tail and also fails to bind HLA-A2 tails with deletions of amino acids necessary for MHC-I downmodulation. These data provide an explanation for differential downmodulation of MHC-I allotypes by Nef. In addition, they provide the first direct evidence indicating that Nef functions as an adaptor molecule able to link MHC-I to cellular trafficking proteins.
Collapse
Affiliation(s)
- Maya Williams
- Graduate Program in Cellular and Molecular Biology, University of Michigan. University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
68
|
Kutsch O, Vey T, Kerkau T, Hünig T, Schimpl A. HIV type 1 abrogates TAP-mediated transport of antigenic peptides presented by MHC class I. Transporter associated with antigen presentation. AIDS Res Hum Retroviruses 2002; 18:1319-25. [PMID: 12487820 DOI: 10.1089/088922202320886361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Downregulation of MHC class I expression following human immunodeficiency virus 1 (HIV-1) infection is thought to play an important role in viral escape from immune recognition by cytotoxic T-lymphocytes (CTLs). Since exogenous addition of HIV-1-derived peptides restores susceptibility of HIV-1-infected cells to CTL-mediated lysis, we tested whether endogenous peptide loading is impaired in these cells. Our results show that in HIV-1-infected cells the ability of the transporter associated with antigen presentation (TAP) to translocate antigenic peptides from the cytosol to the lumen of the ER for presentation on MHC class I molecules is abolished. These data suggest that interference with the supply of antigenic peptides to the MHC class I pathway provides an additional mechanism by which HIV-1 evades the CTL-mediated immune response.
Collapse
Affiliation(s)
- O Kutsch
- Institute of Immunobiology and Virology, The Julius-Maximilians University, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
69
|
Abstract
In vitro studies have revealed that human immunodeficiency virus-1 (HIV-1) Nef functionally interacts with amino acid residues in the cytoplasmic tail of major histocompatibility complex class I (MHC-I) molecules, reducing their expression on the cell surface and protecting them from cytotoxic T lymphocyte (CTL) lysis. To obtain a better understanding of Nef's effects in vivo, it would be helpful to have a mouse model system. However, it is not known whether Nef will affect murine MHC-I proteins. We find that Nef downmodulates human MHC-I HLA-A2 more efficiently than murine MHC-I molecules in HeLa cells and that Nef does not function efficiently in murine endothelial cells. Studies with chimeric molecules indicate that the MHC-I cytoplasmic tail is primarily responsible for species-specific differences. However, there are also effects attributable to the extracellular domain.
Collapse
Affiliation(s)
- Rebekah Fleis
- Department of Medicine, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
70
|
Affiliation(s)
- C M Steffens
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
71
|
Abstract
Primate lentiviruses encode a small protein designated Nef that has been shown to be a major determinant of virus pathogenicity. Nef regulates multiple host factors in order to optimize the cellular environment for virus replication. The mechanisms by which this small protein modulates distinct host cell properties provide intriguing insight into the intricate interaction between virus and host.
Collapse
Affiliation(s)
- Vivek K Arora
- Department of Internal Medicine, Division of Infectious Diseases Y9.206, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | | | | |
Collapse
|
72
|
Sol-Foulon N, Moris A, Nobile C, Boccaccio C, Engering A, Abastado JP, Heard JM, van Kooyk Y, Schwartz O. HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 2002; 16:145-55. [PMID: 11825573 DOI: 10.1016/s1074-7613(02)00260-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DC-SIGN, a dendritic cell (DC)-specific lectin, mediates clustering of DCs with T lymphocytes, a crucial event in the initiation of immune responses. DC-SIGN also binds HIV envelope glycoproteins, allowing efficient virus capture by DCs. We show here that DC-SIGN surface levels are upregulated in HIV-1-infected DCs. This process is caused by the viral protein Nef, which acts by inhibiting DC-SIGN endocytosis. Upregulation of DC-SIGN at the cell surface dramatically increases clustering of DCs with T lymphocytes and HIV-1 transmission. These results provide new insights into how HIV-1 spreads from DCs to T lymphocytes and manipulates immune responses. They help explain how Nef may act as a virulence factor in vivo.
Collapse
Affiliation(s)
- Nathalie Sol-Foulon
- Unité Rétrovirus et Transfert Génétique, URA CNRS 1930, Institut Pasteur, 28 rue du Docteur Roux, 75724 Cedex 15, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Andrieu M, Chassin D, Desoutter JF, Bouchaert I, Baillet M, Hanau D, Guillet JG, Hosmalin A. Downregulation of major histocompatibility class I on human dendritic cells by HIV Nef impairs antigen presentation to HIV-specific CD8+ T lymphocytes. AIDS Res Hum Retroviruses 2001; 17:1365-70. [PMID: 11602047 DOI: 10.1089/08892220152596623] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The HIV early regulatory Nef protein downregulates surface expression of major histocompatibility class I (MHC I) molecules on various immortalized cell lines and on T lymphocytes. MHC I-restricted presentation induces CD8+ T cell responses, which have a major role in limiting HIV infection. Induction of primary immune responses requires dendritic cells, which are major candidates as the first cells that can internalize the virus and present it to T cells in mucosal contamination. To test the effect of Nef on MHC I-restricted antigen presentation by dendritic cells, we used recombinant vaccinia viruses. Flow cytometric analysis of double labeling for a vaccinia protein and MHC I showed that HIV-1 Lai Nef indeed downregulated MHC I surface expression on dendritic cells. MHC I-restricted presentation to a Nef-specific CD8+ cell clone from an infected patient was decreased in an interferon gamma ELISpot assay. Presentation of a reverse transcriptase epitopic peptide on sorted Nef-infected cells was decreased in a peptide concentration-dependent way, confirming the role of MHC I downregulation in the impairment of the CD8+ cell-specific response. Therefore, Nef downregulates MHC I surface expression on human dendritic cells, impairing presentation to HIV-specific CD8+ cells. This action of Nef probably induces a deleterious delay in the early CD8+ responses during the first days of infection and at the onset of new viral mutants.
Collapse
Affiliation(s)
- M Andrieu
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, INSERM U445, 27 rue du Fbg St-Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Swann SA, Williams M, Story CM, Bobbitt KR, Fleis R, Collins KL. HIV-1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3-kinase-dependent pathway. Virology 2001; 282:267-77. [PMID: 11289809 DOI: 10.1006/viro.2000.0816] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV causes a chronic infection by evading immune eradication. A key element of HIV immune escape is the HIV-1 Nef protein. Nef causes a reduction in the level of cell surface major histocompatibility complex class I (MHC-I) protein expression, thus protecting HIV-infected cells from anti-HIV cytotoxic T lymphocyte (CTL) recognition and killing. Nef also reduces cell surface levels of the HIV receptor, CD4, by accelerating endocytosis. We show here that endocytosis is not required for Nef-mediated downmodulation of MHC-I molecules. The main effect of Nef is to block transport of MHC-I molecules to the cell surface, leading to accumulation in intracellular organelles. Furthermore, the effect of Nef on MHC-I molecules (but not on CD4) requires phosphoinositide 3-kinase (PI 3-kinase) activity. We propose that Nef diverts MHC-1 proteins into a PI 3-kinase-dependent transport pathway that prevents expression on the cell surface.
Collapse
Affiliation(s)
- S A Swann
- Departments of Medicine and Microbiology and Immunology, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
SIV and HIV Nef proteins disrupt T-cell receptor machinery by down-modulating cell surface expression of CD4 and expression or signaling of CD3-TCR. Nef also down-modulates class I major histocompatibility complex (MHC) surface expression. We show that SIV and HIV-1 Nefs down-modulate CD28, a major co-stimulatory receptor that mediates effective T-cell activation, by accelerating CD28 endocytosis. The effects of Nef on CD28, CD4, CD3 and class I MHC expression are all genetically separable, indicating that all are selected independently. In cells expressing a Nef-green fluorescent protein (GFP) fusion, CD28 co-localizes with the AP-2 clathrin adaptor and Nef-GFP. Mutations that disrupt Nef interaction with AP-2 disrupt CD28 down-regulation. Furthermore, HIV and SIV Nefs use overlapping but distinct target sites in the membrane-proximal region of the CD28 cytoplasmic domain. Thus, Nef probably induces CD28 endocytosis via the AP-2 pathway, and this involves a ternary complex containing Nef, AP-2 and CD28. The likely consequence of the concerted down-regulation of CD28, CD4 and/or CD3 by Nef is disruption of antigen-specific signaling machineries in infected T cells following a productive antigen recognition event.
Collapse
Affiliation(s)
| | | | - Jacek Skowronski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
Corresponding author e-mail:
| |
Collapse
|
76
|
Janvier K, Craig H, Le Gall S, Benarous R, Guatelli J, Schwartz O, Benichou S. Nef-induced CD4 downregulation: a diacidic sequence in human immunodeficiency virus type 1 Nef does not function as a protein sorting motif through direct binding to beta-COP. J Virol 2001; 75:3971-6. [PMID: 11264386 PMCID: PMC114888 DOI: 10.1128/jvi.75.8.3971-3976.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2000] [Accepted: 01/26/2001] [Indexed: 11/20/2022] Open
Abstract
The Nef protein from the human immunodeficiency virus (HIV) induces CD4 cell surface downregulation by interfering with the endocytic machinery. It has been recently proposed that binding of HIV type 1 Nef to the beta subunit of COPI coatomers participated in the Nef-induced CD4 downregulation through recognition of a novel diacidic motif found in the C-terminal disordered loop of Nef (V. Piguet, F. Gu, M. Foti, N. Demaurex, J. Gruenberg, J. L. Carpentier, and D. Trono, Cell 97:63-73, 1999). We have mutated the glutamate residues which formed this motif in order to document this observation. Surprisingly, mutation of the diacidic sequence of Nef did not significantly affect its ability (i) to interact with beta-COP, (ii) to downregulate CD4 cell surface expression, and (iii) to address an integral resident membrane protein containing Nef as the cytoplasmic domain to the endocytic pathway. Our results indicate that these acidic residues are not involved in the connection of Nef with the endocytic machinery through binding to beta-COP. Additional studies are thus required to characterize the residues of Nef involved in the binding to beta-COP and to evaluate the contribution of this interaction to the Nef-induced perturbations of membrane trafficking.
Collapse
Affiliation(s)
- K Janvier
- Institut Cochin de Génétique Moléculaire, INSERM U529, Université Paris V, Paris, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Walk SF, Alexander M, Maier B, Hammarskjold ML, Rekosh DM, Ravichandran KS. Design and use of an inducibly activated human immunodeficiency virus type 1 Nef to study immune modulation. J Virol 2001; 75:834-43. [PMID: 11134296 PMCID: PMC113979 DOI: 10.1128/jvi.75.2.834-843.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to enhance the infectivity of virus particles, downmodulate cell surface proteins, and associate with many intracellular proteins that are thought to facilitate HIV infection. One of the challenges in defining the molecular events regulated by Nef has been obtaining good expression of Nef protein in T cells. This has been attributed to effects of Nef on cell proliferation and apoptosis. We have designed a Nef protein that is readily expressed in T-cell lines and whose function is inducibly activated. It is composed of a fusion between full-length Nef and the estrogen receptor hormone-binding domain (Nef-ER). The Nef-ER is kept in an inactive state due to steric hindrance, and addition of the membrane-permeable drug 4-hydroxytamoxifen (4-HT), which binds to the ER domain, leads to inducible activation of Nef-ER within cells. We demonstrate that Nef-ER inducibly associates with the 62-kDa Ser/Thr kinase and is localized to specific membrane microdomains (lipid rafts) only after activation. Using this inducible Nef, we also compared the specific requirements for CD4 and HLA-A2 downmodulation in a SupT1 T-cell line. Half-maximal downmodulation of cell surface CD4 required very little active Nef-ER and occurred as early as 4 h after addition of 4-HT. In contrast, 50% downmodulation of HLA-A2 by Nef required 16 to 24 h and about 50- to 100-fold-greater concentrations of 4-HT. These data suggest that HLA-A2 downmodulation may require certain threshold levels of active Nef. The differential timing of CD4 and HLA-A2 downmodulation may have implications for HIV pathogenesis and immune evasion.
Collapse
Affiliation(s)
- S F Walk
- Carter Immunology Center, Myles H. Thaler Center for AIDS and Human Retrovirus Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
78
|
MESH Headings
- CD4 Antigens/physiology
- CD4-Positive T-Lymphocytes/virology
- Cell Adhesion Molecules
- Cell Membrane/physiology
- Dendritic Cells/virology
- Down-Regulation
- Gene Expression Regulation, Viral
- Gene Products, env/physiology
- Gene Products, nef/chemistry
- Gene Products, nef/physiology
- HIV Infections/pathology
- HIV-1/genetics
- HIV-1/physiology
- HLA Antigens/genetics
- Humans
- Lectins/physiology
- Lectins, C-Type
- Membrane Fusion
- Models, Biological
- Models, Molecular
- Protein Conformation
- Receptors, CCR5/physiology
- Receptors, CXCR4/physiology
- Receptors, Cell Surface/physiology
- Receptors, HIV/physiology
- Virus Assembly
- Virus Replication
- Virus Shedding
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- R W Doms
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|