51
|
Øster B, Bundgaard B, Hupp TR, Höllsberg P. Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway. J Gen Virol 2008; 89:87-96. [PMID: 18089732 DOI: 10.1099/vir.0.83136-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we demonstrate that human herpesvirus 6B (HHV-6B) infection upregulates the tumour suppressor p53 and induces phosphorylation of p53 at Ser392. Interestingly, phosphorylation at the equivalent site has previously been shown to correlate with p53 tumour suppression in murine models. Although the signalling pathways leading to Ser392 phosphorylation are poorly understood, they seem to include casein kinase 2 (CK2), double-stranded RNA-activated protein kinase (PKR), p38 or cyclin-dependent kinase 9 (Cdk9). By using column chromatography and in vitro kinase assays, CK2 and p38, but not PKR or Cdk9, eluted in column fractions that phosphorylated p53 at Ser392. However, treatment of cells with neither the CK2 and Cdk9 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) nor p38 kinase inhibitors reduced HHV-6B-induced Ser392 phosphorylation significantly. Knockdown of the CK2beta subunit or p38alpha by small interfering RNA had no effect on HHV-6B-induced phosphorylation of p53 at Ser392. Thus, HHV-6B induces p53 Ser392 phosphorylation by an atypical pathway independent of CK2 and p38 kinases, whereas mitogen-activated protein (MAP) kinase signalling pathways are involved in viral replication.
Collapse
Affiliation(s)
- B Øster
- The University of Edinburgh, CRUK p53 Signal Transduction Group, Edinburgh, UK.,Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - B Bundgaard
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | - T R Hupp
- The University of Edinburgh, CRUK p53 Signal Transduction Group, Edinburgh, UK
| | - P Höllsberg
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
52
|
Gregory DA, Bachenheimer SL. Characterization of mre11 loss following HSV-1 infection. Virology 2008; 373:124-36. [PMID: 18177684 DOI: 10.1016/j.virol.2007.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/10/2007] [Accepted: 12/03/2007] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus induces the activation of the cellular DNA double strand break response pathway dependent upon initiation of viral DNA replication. The MRN complex, consisting of Mre11, Rad50 and Nbs1, is an essential component of the DNA double strand break response and other reports have documented its presence at sites of viral DNA replication, interaction with ICP8 and its contribution to efficient viral DNA replication. During our characterization of the DSB response following infection of normal human fibroblasts and telomerase-immortalized keratinocytes, we observed the loss of Mre11 protein at late times following infection. The loss was not dependent upon ICP0, the proteasome or lysosomal protease activity. Like activation of the DSB response pathway, Mre11 loss was prevented under conditions which inhibited viral DNA replication. Analysis of a series of mutant viruses with defects in cleavage and packaging (UL6, UL15, UL17, UL25, UL28, UL32) of viral DNA or in the maturational protease (UL26) failed to identify a viral gene product necessary for Mre11 loss. Inactivation of ATM, a key effector kinase in the DNA double strand break response, had no effect on Mre11 loss and only a moderate effect on HSV yield. Finally, treatment of uninfected cells with the topoisomerase I inhibitor camptothecin, to induce generation of free DNA ends, also resulted in Mre11 loss. These results suggest that Mre11 loss following infection is caused by the generation of free DNA ends during or following viral DNA replication.
Collapse
Affiliation(s)
- Devon A Gregory
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | |
Collapse
|
53
|
Kaposi's sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor. J Virol 2007; 82:278-90. [PMID: 17942552 DOI: 10.1128/jvi.01552-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
K-cyclin, encoded by Kaposi's sarcoma-associated herpesvirus, has previously been demonstrated to activate cyclin-dependent kinase 6 (Cdk6) to induce the phosphorylation of various cell cycle regulators. In this study, we identified Cdk9 as a new K-cyclin-associated Cdk and showed that K-cyclin interacted with Cdk9 through its basic domain. We hypothesized that K-cyclin served as a regulatory subunit for the activity of Cdk9. Recent reports show that Cdk9 phosphorylates tumor suppressor p53, and we found that the K-cyclin/Cdk9 interaction greatly enhanced the kinase activity of Cdk9 toward p53. The phosphorylation site(s) of K-cyclin/Cdk9 kinase complexes was mapped in the transactivation domain of p53. We showed that the ectopic expression of K-cyclin led to a sustained increase of p53 phosphorylation on Ser(33) in vivo, and the phosphorylation could be inhibited by a dominant negative Cdk9 mutant, dn-Cdk9. Using p53-positive U2OS and p53-null SaOS2 cells, we demonstrated that K-cyclin-induced growth arrest was associated with the presence of p53. In addition, K-cyclin-induced p53-dependent growth arrest was rescued by the dn-Cdk9- or Cdk9-specific short hairpin RNA in SaOS2 cells. Together, our findings for the first time demonstrated the interaction of K-cyclin and Cdk9 and revealed a new molecular link between K-cyclin and p53.
Collapse
|
54
|
Guerreiro-Cacais AO, Uzunel M, Levitskaya J, Levitsky V. Inhibition of heavy chain and beta2-microglobulin synthesis as a mechanism of major histocompatibility complex class I downregulation during Epstein-Barr virus replication. J Virol 2006; 81:1390-400. [PMID: 17108039 PMCID: PMC1797541 DOI: 10.1128/jvi.01999-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanisms of major histocompatibility complex (MHC) class I downregulation during Epstein-Barr virus (EBV) replication are not well characterized. Here we show that in several cell lines infected with a recombinant EBV strain encoding green fluorescent protein (GFP), the virus lytic cycle coincides with GFP expression, which thus can be used as a marker of virus replication. EBV replication resulted in downregulation of MHC class II and all classical MHC class I alleles independently of viral DNA synthesis or late gene expression. Although assembled MHC class I complexes, the total pool of heavy chains, and beta2-microglobulin (beta2m) were significantly downregulated, free class I heavy chains were stabilized at the surface of cells replicating EBV. Calnexin expression was increased in GFP+ cells, and calnexin and calreticulin accumulated at the cell surface that could contribute to the stabilization of class I heavy chains. Decreased expression levels of another chaperone, ERp57, and TAP2, a transporter associated with antigen processing and presentation, correlated with delayed kinetics of MHC class I maturation. Levels of both class I heavy chain and beta2m mRNA were reduced, and metabolic labeling experiments demonstrated a very low rate of class I heavy chain synthesis in lytically infected cells. MHC class I and MHC class II downregulation was mimicked by pharmacological inhibition of protein synthesis in latently infected cells. Our data suggest that although several mechanisms may contribute to MHC class I downregulation in the course of EBV replication, inhibition of MHC class I synthesis plays the primary role in the process.
Collapse
Affiliation(s)
- Andre Ortlieb Guerreiro-Cacais
- IRIS Center for Strategic Research, Department of Microbiology, Tumor and Cell Biology, Cancer Centrum Karolinska, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
55
|
Chang Y, Lee HH, Chen YT, Lu J, Wu SY, Chen CW, Takada K, Tsai CH. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 2006; 80:7748-55. [PMID: 16840354 PMCID: PMC1563714 DOI: 10.1128/jvi.02608-05] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Early growth response 1 (Egr-1) is a cellular transcription factor involved in diverse biologic functions. Egr-1 has been associated with Epstein-Barr virus (EBV) infection, but it is still unknown whether any EBV protein regulates Egr-1 expression. In this study, we first showed that EBV reactivation is involved in upregulation of Egr-1 and that Egr-1 can be induced by Zta, an EBV lytic transactivator. Zta not only binds to the Egr-1 promoter but also activates the ERK signaling pathway to trigger binding of Elk-1 to the Egr-1 promoter. In addition, knockdown of Egr-1 significantly reduces the spontaneous expression of Zta and Rta in EBV-infected 293 cells, suggesting that a positive-feedback network involving Egr-1 is required for EBV reactivation. This study also implies that Zta has the potential to affect expression of certain genes through Egr-1.
Collapse
Affiliation(s)
- Yao Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Number 1, Section 1 Jen-Ai Road, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Many viruses, with distinct replication strategies, activate DNA-damage response pathways, including the lentivirus human immunodeficiency virus (HIV) and the DNA viruses Epstein-Barr virus (EBV), herpes simplex virus 1, adenovirus and SV40. DNA-damage response pathways involving DNA-dependent protein kinase, ataxia-telengiectasia mutated (ATM) and 'ataxia-telengiectasia and Rad3-related' (ATR) have all been implicated. This review focuses on the effects of HIV and EBV replication on DNA repair pathways. It has been suggested that activation of cellular DNA repair and recombination enzymes is beneficial for viral replication, as illustrated by the ability of suppressors of the ATM and ATR family to inhibit HIV replication. However, activation of DNA-damage response pathways can also promote apoptosis. Viruses can tailor the cellular response by suppressing downstream signalling from DNA-damage sensors, as exemplified by EBV. New small-molecule inhibitors of the DNA-damage response pathways could therefore be of value to treat viral infections.
Collapse
Affiliation(s)
- Alison Sinclair
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Sarah Yarranton
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. Tel: +44 (0)1273 678 194; Fax: +44 1273 678 433;
| | - Celine Schelcher
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK. Tel: +44 (0)1273 678 194; Fax +44 1273 678 433;
| |
Collapse
|
57
|
Hong GK, Gulley ML, Feng WH, Delecluse HJ, Holley-Guthrie E, Kenney SC. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 2006; 79:13993-4003. [PMID: 16254335 PMCID: PMC1280209 DOI: 10.1128/jvi.79.22.13993-14003.2005] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most Epstein-Barr virus (EBV)-positive tumor cells contain one of the latent forms of viral infection. The role of lytic viral gene expression in EBV-associated malignancies is unknown. Here we show that EBV mutants that cannot undergo lytic viral replication are defective in promoting EBV-mediated lymphoproliferative disease (LPD). Early-passage lymphoblastoid cell lines (LCLs) derived from EBV mutants with a deletion of either viral immediate-early gene grew similarly to wild-type (WT) virus LCLs in vitro but were deficient in producing LPD when inoculated into SCID mice. Restoration of lytic EBV gene expression enhanced growth in SCID mice. Acyclovir, which prevents lytic viral replication but not expression of early lytic viral genes, did not inhibit the growth of WT LCLs in SCID mice. Early-passage LCLs derived from the lytic-defective viruses had substantially decreased expression of the cytokine interleukin-6 (IL-6), and restoration of lytic gene expression reversed this defect. Expression of cellular IL-10 and viral IL-10 was also diminished in lytic-defective LCLs. These results suggest that lytic EBV gene expression contributes to EBV-associated lymphoproliferative disease, potentially through induction of paracrine B-cell growth factors.
Collapse
Affiliation(s)
- Gregory K Hong
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
58
|
Hong GK, Kumar P, Wang L, Damania B, Gulley ML, Delecluse HJ, Polverini PJ, Kenney SC. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol 2006; 79:13984-92. [PMID: 16254334 PMCID: PMC1280197 DOI: 10.1128/jvi.79.22.13984-13992.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although Epstein-Barr virus (EBV)-associated malignancies are primarily composed of cells with one of the latent forms of EBV infection, a small subset of tumor cells containing the lytic form of infection is often observed. Whether the rare lytically infected tumor cells contribute to the growth of the latently infected tumor cells is unclear. Here we have investigated whether the lytically infected subset of early-passage lymphoblastoid cell lines (LCLs) could potentially contribute to tumor growth through the production of angiogenesis factors. We demonstrate that supernatants from early-passage LCLs infected with BZLF1-deleted virus (Z-KO LCLs) are highly impaired in promoting endothelial cell tube formation in vitro compared to wild-type (WT) LCL supernatants. Furthermore, expression of the BZLF1 gene product in trans in Z-KO LCLs restored angiogenic capacity. The supernatants of Z-KO LCLs, as well as supernatants from LCLs derived with a BRLF1-deleted virus (R-KO LCLs), contained much less vascular endothelial growth factor (VEGF) in comparison to WT LCLs. BZLF1 gene expression in Z-KO LCLs restored the VEGF level in the supernatant. However, the cellular level of VEGF mRNA was similar in Z-KO, R-KO, and WT LCLs, suggesting that lytic infection may enhance VEGF translation or secretion. Interestingly, a portion of the vasculature in LCL tumors in SCID mice was derived from the human LCLs. These results suggest that lytically infected cells may contribute to the growth of EBV-associated malignancies by enhancing angiogenesis. In addition, as VEGF is a pleiotropic factor with effects other than angiogenesis, lytically induced VEGF secretion may potentially contribute to viral pathogenesis.
Collapse
Affiliation(s)
- Gregory K Hong
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Szkaradkiewicz A, Majewski W, Wal M, Czyzak M, Majewski P, Bierła J, Kuch A. Epstein-Barr virus (EBV) infection and p53 protein expression in gastric carcinoma. Virus Res 2006; 118:115-9. [PMID: 16413625 DOI: 10.1016/j.virusres.2005.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 11/29/2005] [Accepted: 12/04/2005] [Indexed: 12/29/2022]
Abstract
In the presented studies p53 protein expression was evaluated in samples of gastric carcinoma originating from 32 selected adult patients (with documented diagnosis of adenocarcinoma of the stomach and without the presence of Helicobacter pylori infection). Among the patients 14 individuals carried EBV-positive gastric carcinoma (group 1) while the 18 remaining patients carried EBV-negative gastric carcinoma (group 2). EBV infection was detected testing the tissue material for the presence of EBER by RNA in situ hybridization (ISH) and testing sera of the patients for EBV-specific antibodies. Expression of p53 protein was analysed using immunohistochemistry. Presence of p53 protein was noted in 9 (64.3%) cases of EBV-positive gastric cancer (group 1) and in 10 (55.5%) cases of EBV-negative gastric cancer (group 2). No significant differences were detected in the frequencies of p53 protein expression in the two studied groups. The results permit to conclude that abnormalities in p53 in gastric cancer are independent of EBV infection, even if EBV may participate in development of the tumour.
Collapse
|
60
|
Bowling BL, Adamson AL. Functional interactions between the Epstein-Barr virus BZLF1 protein and the promyelocytic leukemia protein. Virus Res 2005; 117:244-53. [PMID: 16307818 DOI: 10.1016/j.virusres.2005.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 12/15/2022]
Abstract
The Epstein-Barr virus immediate-early protein BZLF1 (Z) has been shown to alter the cellular localization of the promyelocytic leukemia (PML) protein. PML has important implications for growth control, apoptosis, anti-viral effects and many more processes. Here we further examined the relationship between PML and the Epstein-Barr virus Z protein. We examined the effect of Z expression on PML protein levels, and the effect of increased PML protein levels on Z-mediated dispersion of PML bodies. We found that increased levels of PML protein, such as through interferon treatment, were able to suppress Z-mediated PML body dispersion. We also studied the consequences of PML dispersion by Z, by examining p21 transactivation, A20 transactivation, and MHC Class I presentation levels in Z-expressing cells. We found that, while Z-mediated dispersion of PML did not affect MHC Class I presentation, it did alter p21 and A20 expression. In addition, we found that increased levels of PML were able to prevent Z protein binding to mitotic chromosomes. Our work implies that the balance of PML and Z levels in cells may affect how each protein functions.
Collapse
Affiliation(s)
- Brandy L Bowling
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | |
Collapse
|
61
|
Adamson AL. Effects of SUMO-1 upon Epstein-Barr virus BZLF1 function and BMRF1 expression. Biochem Biophys Res Commun 2005; 336:22-8. [PMID: 16112644 DOI: 10.1016/j.bbrc.2005.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/04/2005] [Indexed: 11/28/2022]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that has infected at least 90% of the world population. This very successful virus causes infectious mononucleosis and is associated with many different types of cancer. The EBV BZLF1 protein is a transcription factor that has also been shown to interact with many host cell proteins and pathways. BZLF1 (Z) is tagged by the small ubiquitin-related modifier-1 (SUMO-1) protein. Here, we present studies of the functional consequences of SUMO-1 modification of Z. We found that SUMO-1 modification of Z has no apparent effect upon the stability and localization of the Z protein. We did find, however, that SUMO-1 modification decreases the transactivation activity of Z on specific promoters. In addition, when SUMO-1 is supplied to cells when lytic replication is induced, EBV BMRF1 levels greatly increase, suggesting that SUMO-1 enhances EBV lytic replication. Therefore, SUMO-1 modification of proteins appears to have an important role in EBV lytic replication.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
62
|
Adamson AL, Wright N, LaJeunesse DR. Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein. Genetics 2005; 171:1125-35. [PMID: 16079238 PMCID: PMC1456816 DOI: 10.1534/genetics.105.042572] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis and is associated with several forms of cancer, including lymphomas and nasopharyngeal carcinoma. The EBV immediate-early protein BZLF1 functions as a transcriptional activator of EBV early gene expression and is essential for the viral transition between latent and lytic replication. In addition to its role in the EBV life cycle, BZLF1 (Z) also has profound effects upon the host cellular environment, including disruption of cell cycle regulation, signal transduction pathways, and transcription. In an effort to understand the nature of Z interactions with the host cellular environment, we have developed a Drosophila model of early EBV infection, where we have expressed Z in the Drosophila eye. Using this system, we have identified a highly conserved interaction between the Epstein-Barr virus Z protein and shaven, a Drosophila homolog of the human Pax2/5/8 family of genes. Pax5 is a well-characterized human gene involved with B-cell development. The B-cell-specific Pax5 also promotes the transcription of EBV latent genes from the EBV Wp promoter. Our work clearly demonstrates that the Drosophila system is an appropriate and powerful tool for identifying the underlying genetic networks involved in human infectious disease.
Collapse
Affiliation(s)
- Amy L Adamson
- Department of Biology, University of North Carolina, Greensboro, North Carolina, 27402, USA.
| | | | | |
Collapse
|
63
|
Al Mehairi S, Cerasoli E, Sinclair AJ. Investigation of the multimerization region of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) protein K-bZIP: the proposed leucine zipper region encodes a multimerization domain with an unusual structure. J Virol 2005; 79:7905-10. [PMID: 15919946 PMCID: PMC1143620 DOI: 10.1128/jvi.79.12.7905-7910.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The K8 gene of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) shares many functional similarities with the BZLF1 gene of Epstein-Barr virus. The protein products of K8 and BZLF1, K-bZIP (RAP, K8) and Zta (BZLF1, ZEBRA, Z) have both been proposed to be members of the bZIP family of transcription factors, forming multimers via a coiled-coil motif termed a leucine zipper. Substantial evidence supporting this model for Zta is published. Here, we demonstrate that the proposed leucine zipper region of K-bZIP (amino acids 182 to 218) is required for multimer formation but that it does not fold as a coiled coil.
Collapse
Affiliation(s)
- Salama Al Mehairi
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | | | | |
Collapse
|
64
|
Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. BMC Immunol 2005; 6:12. [PMID: 15969767 PMCID: PMC1184076 DOI: 10.1186/1471-2172-6-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 06/21/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this work we present evidence that the p53 tumor suppressor protein and NF-kappaB transcription factors could be related through common descent from a family of ancestral transcription factors regulating cellular proliferation and apoptosis. P53 is a homotetrameric transcription factor known to interact with the ankyrin protein 53BP2 (a fragment of the ASPP2 protein). NF-kappaB is also regulated by ankyrin proteins, the prototype of which is the IkappaB family. The DNA binding sequences of the two transcription factors are similar, sharing 8 out of 10 nucleotides. Interactions between the two proteins, both direct and indirect, have been noted previously and the two proteins play central roles in the control of proliferation and apoptosis. RESULTS Using previously published structure data, we noted a significant degree of structural alignment between p53 and NF-kappaB p65. We also determined that IkappaBalpha and p53 bind in vitro through a specific interaction in part involving the DNA binding region of p53, or a region proximal to it, and the amino terminus of IkappaBalpha independently or cooperatively with the ankyrin 3 domain of IkappaBalpha In cotransfection experiments, kappaBalpha could significantly inhibit the transcriptional activity of p53. Inhibition of p53-mediated transcription was increased by deletion of the ankyrin 2, 4, or 5 domains of IkappaBalpha Co-precipitation experiments using the stably transfected ankyrin 5 deletion mutant of kappaBalpha and endogenous wild-type p53 further support the hypothesis that p53 and IkappaBalpha can physically interact in vivo. CONCLUSION The aggregate results obtained using bacterially produced IkappaBalpha and p53 as well as reticulocyte lysate produced proteins suggest a correlation between in vitro co-precipitation in at least one of the systems and in vivo p53 inhibitory activity. These observations argue for a mechanism involving direct binding of IkappaBalpha to p53 in the inhibition of p53 transcriptional activity, analogous to the inhibition of NF-kappaB by kappaBalpha and p53 by 53BP2/ASPP2. These data furthermore suggest a role for ankyrin proteins in the regulation of p53 activity. Taken together, the NFkappaB and p53 proteins share similarities in structure, DNA binding sites and binding and regulation by ankyrin proteins in support of our hypothesis that the two proteins share common descent from an ancestral transcriptional factor.
Collapse
Affiliation(s)
- David H Dreyfus
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical Research Center, Denver, CO 80262 USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Masayuki Nagasawa
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical Research Center, Denver, CO 80262 USA
- Departments of Pediatrics and Developmental Biology, Postgraduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Erwin W Gelfand
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical Research Center, Denver, CO 80262 USA
| | - Lucy Y Ghoda
- The Webb-Waring Institute for Cancer, Aging, and Antioxidant Research and the Department of Medicine, the University of Colorado at Denver and Health Sciences Center, Denver CO 80262 USA; To whom correspondence should be addressed at The Webb-Waring Institute, UCDHSC, Box C321, 4200 East Ninth Ave., Denver, CO 80262 USA
| |
Collapse
|
65
|
Wang Y, Luo B, Yan LP, Huang BH, Zhao P. Relationship between Epstein-Barr virus-encoded proteins with cell proliferation, apoptosis, and apoptosis-related proteins in gastric carcinoma. World J Gastroenterol 2005; 11:3234-9. [PMID: 15929173 PMCID: PMC4316054 DOI: 10.3748/wjg.v11.i21.3234] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the interrelationship between Epstein-Barr virus (EBV)-encoded proteins and cell proliferation, apoptosis and apoptosis-related proteins in gastric carcinoma, and to explore their role in gastric carcinogenesis.
METHODS: Tissues from 13 cases of EBV-associated gastric carcinoma (EBVaGC) and 45 cases of matched EBV-negative gastric carcinoma (EBVnGC) were collected, and then subjected to analysis for apoptotic index (AI) using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Nuclear cell proliferation-associated antigen ki-67 index (KI), bcl-2, and p53 expression were examined by immunohistochemistry. p53 mutation in exons 5-8 of 13 EBVaGC cases was determined by single-strand conformation polymorphism (SSCP) and DNA sequencing. RT-PCR and Southern hybridization were used to detect the expression of nuclear antigens (EBNAs) 1 and 2, latent membrane protein (LMP) 1, immediately early gene BZLF1 and early genes BARF1 and BHRF1 in 13 EBVaGC cases.
RESULTS: The percentage of AI, KI and p53 overexpression was significantly lower in the EBVaGC group than in the EBVnGC group. However, bcl-2 expression did not show significant difference between the two groups. p53 gene mutations were not found in 13 EBVaGCs. Transcripts of EBNA1 were detected in all 13 EBVaGCs, while both EBNA2 and LMP1 mRNA were not detected. Six of the thirteen cases exhibited BZLF1 transcripts and two exhibited BHRF1 transcripts. BARF1 mRNA was detected in six cases.
CONCLUSION: Lower AI and KI may reflect a low biological activity in EBVaGC. EBV infection is associated with p53 abnormal expression but not bcl-2 protein in EBVaGC. BZLF1, BARF1, and BHRF1 may play important roles in inhibiting cell apoptosis and tumorigenesis of EBVaGC through different pathways.
Collapse
Affiliation(s)
- Yun Wang
- Department of Microbiology, Qingdao University Medical College, Number 38 of Dengzhou Road, Qingdao 266021, Shandong Province, China
| | | | | | | | | |
Collapse
|
66
|
Liao G, Huang J, Fixman ED, Hayward SD. The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J Virol 2005; 79:245-56. [PMID: 15596820 PMCID: PMC538732 DOI: 10.1128/jvi.79.1.245-256.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herpesviruses encode a set of core proteins essential for lytic replication of their genomes. Three of these proteins form a tripartite helix-primase complex that, in the case of Epstein-Barr virus (EBV), consists of the helicase BBLF4, the primase BSLF1, and the linker protein BBLF2/3. BBLF2/3 and its homologs in the other herpesviruses remain relatively poorly characterized. To better understand the contribution to replication made by BBLF2/3, a yeast two-hybrid screen was performed with BBLF2/3 as the bait protein. This screen identified as interactors a number of cell replication-related proteins such as DNA polymerase beta and subunits of DNA polymerase delta along with the EBV-encoded DNase BGLF5. The screen also identified the DNA binding zinc finger protein ZBRK1 and the ZBRK1 corepressor KAP-1 as BBLF2/3 interactors. Interaction between BBLF2/3 and ZBRK1 and KAP-1 was confirmed in coimmunoprecipitation assays. A binding site for ZBRK1 in the EBV oriLyt enhancer was identified by electrophoretic mobility shift assay. ZBRK1, KAP-1, and the ZBRK1 binding protein BRCA1 were shown by indirect immunofluorescence to be present in replication compartments in lytically induced D98-HR1 cells, and additionally, chromatin immunoprecipitation assays determined that these proteins associated with oriLyt DNA. Replication of an oriLyt plasmid and a variant oriLyt (DeltaZBRK1) plasmid was examined in lytically induced D98-HR1 cells. Exogenous ZBRK1, KAP-1, or BRCA1 increased the efficiency of oriLyt replication, while deletion of the ZBRK1 binding site impaired replication. These experiments identify ZBRK1 as another cell protein that, through BBLF2/3, provides a tethering point on oriLyt for the EBV replication complex. The data also suggest that BBLF2/3 may serve as a contact interface for cell proteins involved in replication of EBV oriLyt.
Collapse
Affiliation(s)
- Gangling Liao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | |
Collapse
|
67
|
Ishii HH, Gobe GC, Yoneyama J, Mukaide M, Ebihara Y. Role of p53, apoptosis, and cell proliferation in early stage Epstein-Barr virus positive and negative gastric carcinomas. J Clin Pathol 2005; 57:1306-11. [PMID: 15563673 PMCID: PMC1770511 DOI: 10.1136/jcp.2003.015081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Mechanisms of Epstein-Barr virus (EBV) associated gastric tumour development are incompletely understood. The interrelations between EBV infection, apoptosis, cell proliferation, and the expression of the tumour suppressor gene p53 was investigated in 133 early stage gastric carcinomas. METHODS Tumour tissue was compared with paired non-tumour tissue. EBV encoded small RNAs (EBERs) determined EBV status. The apoptotic index (AI) was determined by morphology and verified biochemically. p53 and Ki-67 expression (cell proliferation) was assessed using immunohistochemistry. RESULTS EBV was detected in 14.3% of the cases. Cell proliferation did not differ significantly between EBV positive and negative cancers. However, within both these groups, the p53 positive and negative subsets differed significantly (EBV positive group: 76.8% and 55.3% were p53 positive or negative cancers, respectively; p<0.05; EBV negative group: 65.2% and 51.7% were p53 positive or negative, respectively; p<0.005). The numbers of p53 expressing EBV positive and negative cases were significantly different (57.9% and 82.5%, respectively; p<0.05). Compared with cell proliferation, apoptosis was significantly lower in EBV positive versus negative cancers (AI of 4.36 and 6.50, respectively; p<0.01). The p53 positive and negative subsets also differed significantly in AI (EBV positive group: AI of 5.13 and 3.30 for p53 positive and negative cancers, respectively; p<0.05: EBV negative group: AI of 6.84 and 4.90 for p53 positive and negative cancers, respectively; p<0.05). CONCLUSIONS These factors probably combine to promote development and progression of early stage gastric carcinomas and, at the same time, ensure the survival of EBV itself.
Collapse
Affiliation(s)
- H H Ishii
- Department of Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | | | | | | | | |
Collapse
|
68
|
Abstract
Both human gamma-herpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) induce neoplasia. Burkitt's and Hodgkin's lymphomas harbor EBV sequences, while KSHV has been associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric castleman's disease (MCD). Each of these gamma-herpesvirus-associated malignancies displays typical characteristics of neoplasia, such as angiogenesis and cell survival. One enzyme commonly overexpressed in breast, prostate, and colon cancers is cyclooxygenase-2 (COX-2). Recently, COX-2 overexpression has been reported in herpesvirus infections in vitro. This review will outline potential mechanisms by which COX-2 may participate in herpesvirus-induced neoplasia.
Collapse
Affiliation(s)
- Bryan D Shelby
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
69
|
Vaghefi H, Neet KE. Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation. Oncogene 2004; 23:8078-87. [PMID: 15361854 DOI: 10.1038/sj.onc.1207953] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor protein p53 is a transcription factor that regulates the response to cellular insults such as DNA damage and growth factor withdrawal. Transcriptional activity of p53 requires post-translational modification by phosphorylation and acetylation. This study used site-specific antibodies to demonstrate that nerve growth factor (NGF) treatment of PC12 cells results in p53 deacetylation at lysine (Lys) 382. Histone deacetylase (HDAC) activity, measured by a direct fluorescent assay, was increased after NGF treatment and peaked before p53 deacetylation. Inhibition of HDAC by trichostatin blocked the deacetylation of p53 and its transcriptional activity toward a reporter gene construct. Comparison of PC12 with PC12 cells containing a temperature-sensitive, dominant-negative construct showed that p53 deacetylation required functional p53. Inhibitors of MAP kinase that block p53 transactivation and inhibitors of TrkA receptor also abolished HDAC activation, indicating that deacetylation of p53 is an NGF-dependent post-translational mechanism of p53 activation. Finally, NGF or serum withdrawal did not lead to p53 deacetylation. A model is proposed in which the acetylation status of Lys 382 of p53 discriminates between cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Houman Vaghefi
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science (formerly Finch University of Health Sciences), The Chicago Medical School, 3333 Green Bay Rd., North Chicago, IL 60064, USA
| | | |
Collapse
|
70
|
Lin Z, Yin Q, Flemington E. Identification of a negative regulatory element in the Epstein-Barr virus Zta transactivation domain that is regulated by the cell cycle control factors c-Myc and E2F1. J Virol 2004; 78:11962-71. [PMID: 15479836 PMCID: PMC523277 DOI: 10.1128/jvi.78.21.11962-11971.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reactivation in Epstein-Barr virus (EBV) is closely associated with a G(0)/G(1) cell cycle arrest which can be induced either by lytic cycle-inducing agents or by the immediate-early gene product Zta. Accumulating evidence shows that in epithelial cells, downregulation of the proto-oncogene, c-myc, plays an important role in lytic cycle-associated cell growth arrest. Here, we provide evidence that c-Myc provides a gatekeeper function to ensure that certain cell cycle inhibitory events have been capitulated prior to full progression into the lytic cycle. Specifically, we show that reconstitution of c-Myc expression during the lytic cycle to levels observed in cycling uninduced cells inhibits the transactivation function of Zta. Nuclear localization studies show that c-Myc does not grossly alter the nuclear localization of Zta or its association with the insoluble nuclear fraction. Enforced expression of another transcription factor that promotes cell cycle progression, E2F1, also inhibits Zta transactivation. Analysis of c-Myc- and E2F1-mediated inhibition of a panel of Zta mutants shows parallel genetics and inhibition maps to a small bipartite sequence located between amino acids 29 and 53 of Zta, containing homology to the proline-rich domain of the tumor suppressor protein p53. Mutation of a conserved tryptophan residue located at amino acid 49 of Zta largely prevents inhibition by both c-Myc and E2F1. These studies identify a negative regulatory element within the Zta activation domain that is regulated by the cell cycle-promoting factors c-Myc and E2F1.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pathology and Molecular and Cellular Biology Graduate Program, Tulane Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
71
|
Zheng G, Yang YC. ZNF76, a Novel Transcriptional Repressor Targeting TATA-binding Protein, Is Modulated by Sumoylation. J Biol Chem 2004; 279:42410-21. [PMID: 15280358 DOI: 10.1074/jbc.m407287200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Direct interaction of positive and negative regulators with the general transcription machinery modulates transcription. The TATA-binding protein (TBP) is one target for transcriptional regulators. In this study, we identified ZNF76 as a novel transcriptional repressor that targets TBP. ZNF76 interacts with TBP through both its N and C termini, and both regions are required for ZNF76 to exert its inhibitory function on p53-mediated transactivation. The inhibitory effect of ZNF76 on p53 activity was demonstrated by reporter assays and endogenous target gene expression. We mapped the TBP-interacting region in the C terminus of ZNF76 to a glutamic acid-rich domain, which acts in a dominant negative manner to enhance p53-mediated transactivation in reporter assays. Mutagenesis study for ZNF76 suggests a correlation between interaction with TBP and effect on p53-mediated transactivation, supporting the conclusion that ZNF76 targets TBP for transcriptional repression. Chromatin immunoprecipitation experiments suggest that ZNF76 prevents TBP from occupying the endogenous p21 promoter. ZNF76 is sumoylated by PIAS1 at lysine 411, which is in the minimal TBP-interacting region. Overexpression of PIAS1 and SUMO-1 abolishes the interaction between ZNF76 and TBP and partially relieves the repressive effect of ZNF76. These results suggest that ZNF76 functions as a transcriptional repressor through its interaction with TBP and that sumoylation modulates its transcriptional repression activity.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Pharmacology and Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
72
|
Boutell C, Everett RD. Herpes simplex virus type 1 infection induces the stabilization of p53 in a USP7- and ATM-independent manner. J Virol 2004; 78:8068-77. [PMID: 15254178 PMCID: PMC446092 DOI: 10.1128/jvi.78.15.8068-8077.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major oncoprotein p53 regulates several cellular antiproliferation pathways that can be triggered in response to a variety of cellular stresses, including viral infection. The stabilization of p53 is a key factor in the ability of cells to initiate an efficient transcriptional response after cellular stress. Here we present data demonstrating that herpes simplex virus type 1 (HSV-1) infection of HFFF-2 cells, a low-passage-number nontransformed human primary cell line, results in the stabilization of p53. This process required viral immediate-early gene expression but occurred independently of the viral regulatory protein ICP0 and viral DNA replication. No specific viral protein could be identified as being solely responsible for the effect, which appears to be a cellular response to developing HSV-1 infections. HSV-1 infection also induced the phosphorylation of p53 at residues Ser15 and Ser20, which have previously been implicated in its stabilization in response to DNA damage. However, an HSV-1 infection of ATM(-/-) cells, which lack a kinase implicated in these phosphorylation events, did not lead to the phosphorylation of p53 at these residues, but nonetheless p53 was stabilized. We also show that the wild-type p53 expressed by osteosarcoma U2OS cells can be stabilized in response to DNA damage induced by UV irradiation, but not in response to HSV-1 infection. These data suggest that multiple cellular mechanisms are initiated to stabilize p53 during an HSV-1 infection. These mechanisms occur independently of ICP0 and its ability to sequester USP7 and may differ from those initiated in response to DNA damage.
Collapse
Affiliation(s)
- Chris Boutell
- Medical Research Council Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom
| | | |
Collapse
|
73
|
Granja AG, Nogal ML, Hurtado C, Salas J, Salas ML, Carrascosa AL, Revilla Y. Modulation of p53 cellular function and cell death by African swine fever virus. J Virol 2004; 78:7165-74. [PMID: 15194793 PMCID: PMC421689 DOI: 10.1128/jvi.78.13.7165-7174.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Modulation of the activity of tumor suppressor p53 is a key event in the replication of many viruses. We have studied the function of p53 in African swine fever virus (ASFV) infection by determining the expression and activity of this transcription factor in infected cells. p53 levels are increased at early times of infection and are maintained throughout the infectious cycle. The protein is transcriptionally active, stabilized by phosphorylation, and localized in the nucleus. p53 induces the expression of p21 and Mdm2. Strikingly, these two proteins are located at the cytoplasmic virus factories. The retention of Mdm2 at the factory may represent a viral mechanism to prevent p53 inactivation by the protein. The expression of apoptotic proteins, such as Bax or active caspase-3, is also increased following ASFV infection, although the increase in caspase-3 does not appear to be, at least exclusively, p53 dependent. Bax probably plays a role in the induction of apoptosis in the infected cells, as suggested by the release of cytochrome c from the mitochondria. The significance of p21 induction and localization is discussed in relation to the shutoff of cellular DNA synthesis that is observed in ASFV-infected cells.
Collapse
Affiliation(s)
- Aitor G Granja
- Centro de Biología Molecular Severo Ochoa, Universidad Autonoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
74
|
Hsu CH, Chang MDT, Tai KY, Yang YT, Wang PS, Chen CJ, Wang YH, Lee SC, Wu CW, Juan LJ. HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. EMBO J 2004; 23:2269-80. [PMID: 15141169 PMCID: PMC419916 DOI: 10.1038/sj.emboj.7600239] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 04/21/2004] [Indexed: 11/09/2022] Open
Abstract
Targeting of cellular histone acetyltransferases (HATs) by viral proteins is important in the development of virus-associated diseases. The immediate-early 2 protein (IE2) of human cytomegalovirus (HCMV) binds to the tumor suppressor, p53, and inactivates its functions by unknown mechanisms. Here, we show that IE2 binds to the HAT domain of the p53 coactivators, p300 and CREB-binding protein (CBP), and blocks their acetyltransferase activity on both histones and p53. The minimal HAT inactivation region on IE2 involves the N-terminal 98 amino acids. The in vivo DNA binding of p53 and local histone acetylation on p53-dependent promoters are all reduced by IE2, but not by mutant IE2 proteins that lack the HAT inhibition region. Furthermore, the p53 acetylation site mutant, K320/373/382R, retains both DNA binding and promoter transactivation activity in vivo and these effects are repressed by IE2 as well. Together with the finding that only wild-type IE2 exerts an antiapoptotic effect, our results suggest that HCMV IE2 downregulates p53-dependent gene activation by inhibiting p300/CBP-mediated local histone acetylation and that IE2 may have oncogenic activity.
Collapse
Affiliation(s)
- Chih-Hung Hsu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Margaret D T Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kang-Yu Tai
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Yu-Ting Yang
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Pei-Shan Wang
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Hsiung Wang
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chung Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Wen Wu
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Jung Juan
- President Laboratory, National Health Research Institutes, Taipei, Taiwan
| |
Collapse
|
75
|
Knight JS, Robertson ES. Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol 2004; 78:1981-91. [PMID: 14747563 PMCID: PMC369513 DOI: 10.1128/jvi.78.4.1981-1991.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is essential for primary B-cell transformation. In this report we show that cyclin A, an activator of S phase progression, bound tightly to EBNA3C. EBNA3C interacted with cyclin A in vitro and associated with cyclin A complexes in EBV-transformed lymphoblastoid cell lines. Importantly, EBNA3C stimulated cyclin A-dependent kinase activity and rescued p27-mediated inhibition of cyclin A/Cdk2 kinase activity by decreasing the molecular association between cyclin A and p27 in cells. Additionally, phosphorylation of the retinoblastoma protein, a major regulator of cell cycle progression, was enhanced both in vitro and in vivo in the presence of EBNA3C. Cyclin A interacted with a region of the carboxy terminus of EBNA3C, shown to be important both for stimulation of cyclin A-dependent kinase activity and for cell cycle progression. This provides the first evidence of an essential EBV latent antigen's directly targeting a cell cycle regulatory protein and suggests a novel mechanism by which EBV deregulates the mammalian cell cycle, which is of critical importance in B-cell transformation.
Collapse
Affiliation(s)
- Jason S Knight
- Department of Microbiology and Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
76
|
Morrison TE, Mauser A, Klingelhutz A, Kenney SC. Epstein-Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J Virol 2004; 78:544-9. [PMID: 14671137 PMCID: PMC303403 DOI: 10.1128/jvi.78.1.544-549.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) is a key mediator of host immune and inflammatory responses and inhibits herpesvirus replication by cytolytic and noncytolytic mechanisms. TNF-alpha effects are primarily mediated through the major TNF-alpha receptor, TNF-R1, which is constitutively expressed in most cell types. Here we show that the Epstein-Barr virus (EBV) immediate-early protein BZLF1 prevents TNF-alpha activation of target genes and TNF-alpha-induced cell death. These effects are mediated by down-regulation of the promoter for TNF-R1. Additionally, we demonstrate that expression of TNF-R1 is downregulated during the EBV lytic replication cycle. Thus, EBV has developed a novel mechanism for evading TNF-alpha antiviral effects during lytic reactivation or primary infection.
Collapse
Affiliation(s)
- Thomas E Morrison
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
77
|
Fu M, Rao M, Wang C, Sakamaki T, Wang J, Di Vizio D, Zhang X, Albanese C, Balk S, Chang C, Fan S, Rosen E, Palvimo JJ, Jänne OA, Muratoglu S, Avantaggiati ML, Pestell RG. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 2003; 23:8563-75. [PMID: 14612401 PMCID: PMC262657 DOI: 10.1128/mcb.23.23.8563-8575.2003] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modification by acetylation occurs at epsilon-amino lysine residues of histones and transcription factors. Unlike phosphorylation, a direct link between transcription factor acetylation and cellular growth or apoptosis has not been established. We show that the nuclear androgen receptor (AR), a DNA-binding transcriptional regulator, is acetylated in vivo. The acetylation of the AR is induced by ligand dihydrotestosterone and by histone deacetylase (HDAC) inhibitors in living cells. Direct AR acetylation augmented p300 binding in vitro. Constructs mimicking neutral polar substitution acetylation (AR(K630Q), AR(K630T)) enhanced p300 binding and reduced N-CoR/HDAC/Smad3 corepressor binding, whereas charged residue substitution (AR(K630R)) reduced p300 binding and enhanced corepressor binding. The AR acetylation mimics promoted cell survival and growth of prostate cancer cells in soft agar and in nude mice and augmented transcription of a subset of growth control target gene promoters. Thus, transcription factor acetylation regulates coactivator/corepressor complex binding, altering expression of specific growth control genes to promote aberrant cellular growth in vivo.
Collapse
Affiliation(s)
- Maofu Fu
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Freie B, Li X, Ciccone SLM, Nawa K, Cooper S, Vogelweid C, Schantz L, Haneline LS, Orazi A, Broxmeyer HE, Lee SH, Clapp DW. Fanconi anemia type C and p53 cooperate in apoptosis and tumorigenesis. Blood 2003; 102:4146-52. [PMID: 12855557 DOI: 10.1182/blood-2003-03-0971] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a recessive genomic instability syndrome characterized by developmental defects, progressive bone marrow failure, and cancer. FA is genetically heterogeneous, however; the proteins encoded by different FA loci interact functionally with each other and with the BRCA1, BRCA2, and ATM gene products. Although patients with FA are highly predisposed to the development of myeloid leukemia and solid tumors, the alterations in biochemical pathways responsible for the progression of tumorigenesis in these patients remain unknown. FA cells are hypersensitive to a range of genotoxic and cellular stresses that activate signaling pathways mediating apoptosis. Here we show that ionizing radiation (IR) induces modestly elevated levels of p53 in cells from FA type C (Fancc) mutant mice and that inactivation of Trp53 rescues tumor necrosis factor alpha-induced apoptosis in myeloid cells from Fancc-/- mice. Further, whereas Fancc-/- mice failed to form hematopoietic or solid malignancies, mice mutant at both Fancc and Trp53 developed tumors more rapidly than mice mutant at Trp53 alone. This shortened latency was associated with the appearance of tumor types that are found in patients with FA but not in mice mutant at Trp53 only. Collectively, these data demonstrate that p53 and Fancc interact functionally to regulate apoptosis and tumorigenesis in Fancc-deficient cells.
Collapse
Affiliation(s)
- Brian Freie
- Cancer Research Institute, 1044 W Walnut St, R4/408, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8alpha). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK
| |
Collapse
|