51
|
Abstract
As intracellular parasites, viruses rely on many host cell functions to ensure their replication. The early induction of programmed cell death (PCD) in infected cells constitutes an effective antiviral host mechanism to restrict viral spread within an organism. As a countermeasure, viruses have evolved numerous strategies to interfere with the induction or execution of PCD. Slowly replicating viruses such as the cytomegaloviruses (CMVs) are particularly dependent on sustained cell viability. To preserve viability, the CMVs encode several viral cell death inhibitors that target different key regulators of the extrinsic and intrinsic apoptosis pathways. The best-characterized CMV-encoded inhibitors are the viral inhibitor of caspase-8-induced apoptosis (vICA), viral mitochondrial inhibitor of apoptosis (vMIA), and viral inhibitor of Bak oligomerization (vIBO). Moreover, a viral inhibitor of RIP-mediated signaling (vIRS) that blocks programmed necrosis has been identified in the genome of murine CMV (MCMV), indicating that this cell death mode is a particularly important part of the antiviral host response. This review provides an overview of the known cell death suppressors encoded by CMVs and their mechanisms of action.
Collapse
|
52
|
Characterization of conserved region 2-deficient mutants of the cytomegalovirus egress protein pM53. J Virol 2012; 86:12512-24. [PMID: 22993161 DOI: 10.1128/jvi.00471-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dominant-negative (DN) mutants are powerful tools for studying essential protein-protein interactions. A systematic genetic screen of the essential murine cytomegalovirus (MCMV) protein pM53 identified the accumulation of inhibitory mutations within conserved region 2 (CR2) and CR4. The strong inhibitory potential of these CR4 mutants is characterized by a particular phenotype. The DN effect of the small insertion mutations in CR2 was too weak to analyze (M. Popa, Z. Ruzsics, M. Lötzerich, L. Dölken, C. Buser, P. Walther, and U. H. Koszinowski, J. Virol. 84:9035-9046, 2010); therefore, the present study describes the construction of M53 alleles lacking CR2 (either completely or partially) and subsequent examination of the DN effect on MCMV replication upon conditional expression. Overexpression of CR2-deficient pM53 inhibited virus production by about 10,000-fold. This was due to interference with capsid export from the nucleus and viral genome cleavage/packaging. In addition, the fate of the nuclear envelopment complex in the presence of DN pM53 overexpression was analyzed. The CR2 mutants were able to bind to pM50, albeit to a lesser extent than the wild-type protein, and relocalized the wild-type nuclear envelope complex in infected cells. Unlike the CR4 DN, the CR2 DN mutants did not affect the stability of pM50.
Collapse
|
53
|
Handke W, Krause E, Brune W. Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus. Med Microbiol Immunol 2012; 201:475-86. [PMID: 22965170 DOI: 10.1007/s00430-012-0264-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022]
Abstract
Cytomegaloviruses (CMVs) are large double-stranded DNA viruses that replicate slowly and cause life-long persisting infections in their hosts. To achieve this, the CMVs had to evolve numerous countermeasures against innate and adaptive immune responses. Induction of programmed cell death is one important host defense mechanism against intracellular pathogens such as viruses. For a multicellular organism, it is advantageous to let infected cells die in order to thwart viral replication and dissemination. For a virus, by contrast, it is better to inhibit cell death and keep infected cells alive until the viral replication cycle has been completed. As a matter of fact, the CMVs encode a number of proteins devoted to interfering with different forms of programmed cell death: apoptosis and necroptosis. In this review, we summarize the known functions of the four best characterized cell death inhibitors of murine cytomegalovirus (MCMV), which are encoded by open reading frames, M36, m38.5, m41.1, and M45. The viral proteins interact with key molecules within different cell death pathways, namely caspase-8, Bax, Bak, and RIP1/RIP3. In addition, we discuss which events during MCMV infection might trigger apoptosis or necrosis and how MCMV's countermeasures compare to those of other herpesviruses. Since both, MCMV and its natural host, are amenable to genetic manipulation, the mouse model for CMV infection provides a particularly suitable system to study mechanisms of cell death induction and inhibition.
Collapse
Affiliation(s)
- Wiebke Handke
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistr. 52, 20251 Hamburg, Germany
| | | | | |
Collapse
|
54
|
Bierle CJ, Schleiss MR, Geballe AP. Antagonism of the protein kinase R pathway by the guinea pig cytomegalovirus US22-family gene gp145. Virology 2012; 433:157-66. [PMID: 22917493 DOI: 10.1016/j.virol.2012.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/11/2012] [Accepted: 08/01/2012] [Indexed: 01/17/2023]
Abstract
Viral double-stranded RNA (dsRNA) activates protein kinase R (PKR), which phosphorylates eIF2α and inhibits translation. In response, viruses have evolved various strategies to evade the antiviral impact of PKR. We investigated whether guinea pig cytomegalovirus (GPCMV), a useful model of congenital CMV infection, encodes a gene that interferes with the PKR pathway. Using a proteomic screen, we identified several GPCMV dsRNA-binding proteins, among which only gp145 rescued replication of a vaccinia virus mutant that lacks E3L. gp145 also reversed the inhibitory effects of PKR on expression of a cotransfected reporter gene. Mapping studies demonstrated that the gp145 dsRNA-binding domain has homology to the PKR antagonists of other CMVs. However, dsRNA-binding by gp145 is not sufficient for it to block PKR. gp145 differs from the PKR antagonists of murine CMV in that it functions alone and from those encoded by human CMV in functioning in cells from both primates and rodents.
Collapse
Affiliation(s)
- Craig J Bierle
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98115, United States.
| | | | | |
Collapse
|
55
|
Bosse JB, Bauerfeind R, Popilka L, Marcinowski L, Taeglich M, Jung C, Striebinger H, von Einem J, Gaul U, Walther P, Koszinowski UH, Ruzsics Z. A beta-herpesvirus with fluorescent capsids to study transport in living cells. PLoS One 2012; 7:e40585. [PMID: 22792376 PMCID: PMC3394720 DOI: 10.1371/journal.pone.0040585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fluorescent tagging of viral particles by genetic means enables the study of virus dynamics in living cells. However, the study of beta-herpesvirus entry and morphogenesis by this method is currently limited. This is due to the lack of replication competent, capsid-tagged fluorescent viruses. Here, we report on viable recombinant MCMVs carrying ectopic insertions of the small capsid protein (SCP) fused to fluorescent proteins (FPs). The FPs were inserted into an internal position which allowed the production of viable, fluorescently labeled cytomegaloviruses, which replicated with wild type kinetics in cell culture. Fluorescent particles were readily detectable by several methods. Moreover, in a spread assay, labeled capsids accumulated around the nucleus of the newly infected cells without any detectable viral gene expression suggesting normal entry and particle trafficking. These recombinants were used to record particle dynamics by live-cell microscopy during MCMV egress with high spatial as well as temporal resolution. From the resulting tracks we obtained not only mean track velocities but also their mean square displacements and diffusion coefficients. With this key information, we were able to describe particle behavior at high detail and discriminate between particle tracks exhibiting directed movement and tracks in which particles exhibited free or anomalous diffusion.
Collapse
Affiliation(s)
- Jens B. Bosse
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Rudolf Bauerfeind
- Department of Cell Biology, Hannover Medical School, Hannover, Germany
| | - Leonhard Popilka
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Martina Taeglich
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Hannah Striebinger
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Jens von Einem
- Institute of Virology, University Medical Center Ulm, Ulm, Germany
| | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Paul Walther
- Central Unit for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
56
|
Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 2012; 11:290-7. [PMID: 22423968 DOI: 10.1016/j.chom.2012.01.016] [Citation(s) in RCA: 660] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/08/2011] [Accepted: 01/25/2012] [Indexed: 11/26/2022]
Abstract
Programmed necrosis, like apoptosis, eliminates pathogen-infected cells as a component of host defense. Receptor-interacting protein kinase (RIP) 3 (also called RIPK3) mediates RIP homotypic interaction motif (RHIM)-dependent programmed necrosis induced by murine cytomegalovirus (MCMV) infection or death receptor activation and suppressed by the MCMV-encoded viral inhibitor of RIP activation (vIRA). We find that interferon-independent expression of DNA-dependent activator of interferon regulatory factors (DAI, also known as ZBP1 or DLM-1) sensitizes cells to virus-induced necrosis and that DAI knockdown or knockout cells are resistant to this death pathway. Importantly, as with RIP3(-/-) mice, vIRA mutant MCMV pathogenesis is restored in DAI(-/-) mice, consistent with a DAI-RIP3 complex being the natural target of vIRA. Thus, DAI interacts with RIP3 to mediate virus-induced necrosis analogous to the RIP1-RIP3 complex controlling death receptor-induced necroptosis. These studies unveil a role for DAI as the RIP3 partner mediating virus-induced necrosis.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
57
|
Al-Ali A, Timoshenko O, Martin BA, Sweet C. Role of mutations identified in ORFs M27, M36, m139, m141, and m143 in the temperature-sensitive phenotype of murine cytomegalovirus mutanttsm5. J Med Virol 2012; 84:912-22. [DOI: 10.1002/jmv.23273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Abstract
The host antiviral protein kinase R (PKR) has rapidly evolved during primate evolution, likely in response to challenges posed by many different viral antagonists, such as the TRS1 gene of cytomegaloviruses (CMVs). In turn, viral antagonists have adapted to changes in PKR. As a result of this "arms race," modern TRS1 alleles in CMVs may function differently in cells derived from alternative species. We have previously shown that human CMV TRS1 (HuTRS1) blocks the PKR pathway and rescues replication of a vaccinia virus mutant lacking its major PKR antagonist in human cells. We now demonstrate that HuTRS1 does not have these activities in Old World monkey cells. Conversely, the rhesus cytomegalovirus homologue of HuTRS1 (RhTRS1) fulfills these functions in African green monkey cells, but not rhesus or human cells. Both TRS1 proteins bind to double-stranded RNA and, in the cell types in which they can rescue VVΔE3L replication, they also bind to PKR and prevent phosphorylation of the α-subunit of eukaryotic initiation factor 2. However, while HuTRS1 binds to inactive human PKR and prevents its autophosphorylation, RhTRS1 binds to phosphorylated African green monkey PKR. These studies reveal that evolutionary adaptations in this critical host defense protein have altered its binding interface in a way that has resulted in a qualitatively altered mechanism of PKR antagonism by viral TRS1 alleles from different CMVs. These results suggest that PKR antagonism is likely one of the factors that contributes to species specificity of cytomegalovirus replication.
Collapse
|
59
|
Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination. PLoS Pathog 2011; 7:e1002366. [PMID: 22114552 PMCID: PMC3219709 DOI: 10.1371/journal.ppat.1002366] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC- and non-EC-derived virus originating from infected Tie2-cre(+) heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre(+) transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-derived virus from infected Tie2-cre(+) recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination.
Collapse
|
60
|
Yatim N, Albert M. Dying to Replicate: The Orchestration of the Viral Life Cycle, Cell Death Pathways, and Immunity. Immunity 2011; 35:478-90. [DOI: 10.1016/j.immuni.2011.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022]
|
61
|
Abstract
The gene M94 of murine cytomegalovirus (MCMV) as well as its homologues UL16 in alphaherpesviruses is involved in viral morphogenesis. For a better understanding of its role in the viral life cycle, a library of random M94 mutants was generated by modified transposon-based linker scanning mutagenesis. A comprehensive set of M94 mutants was reinserted into the MCMV genome and tested for their capacity to complement the M94 null mutant. Thereby, 34 loss-of-function mutants of M94 were identified, which were tested in a second screen for their capacity to inhibit virus replication. This analysis identified two N-terminal insertion mutants of M94 with a dominant negative effect. We compared phenotypes induced by the conditional expression of these dominant negative M94 alleles with the null phenotype of the M94 deletion. The viral gene expression cascade and the nuclear morphogenesis steps were not affected in either setting. In both cases, however, secondary envelopment did not proceed in the absence of functional M94, and capsids subsequently accumulated in the center of the cytoplasmic assembly complex. In addition, deletion of M94 resulted in a block of cell-to-cell spread. Moreover, the dominant negative mutant of M94 demonstrated a defect in interacting with M99, the UL11 homologue of MCMV.
Collapse
|
62
|
Lacaze P, Forster T, Ross A, Kerr LE, Salvo-Chirnside E, Lisnic VJ, López-Campos GH, García-Ramírez JJ, Messerle M, Trgovcich J, Angulo A, Ghazal P. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes. J Virol 2011; 85:6065-76. [PMID: 21471238 PMCID: PMC3126304 DOI: 10.1128/jvi.02341-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/28/2011] [Indexed: 12/20/2022] Open
Abstract
The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.
Collapse
Affiliation(s)
- Paul Lacaze
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Thorsten Forster
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Alan Ross
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Lorraine E. Kerr
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Eliane Salvo-Chirnside
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka University, Croatia
| | | | - José J. García-Ramírez
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla—La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Joanne Trgovcich
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| |
Collapse
|
63
|
The role of cell types in cytomegalovirus infection in vivo. Eur J Cell Biol 2011; 91:70-7. [PMID: 21492952 DOI: 10.1016/j.ejcb.2011.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/09/2011] [Accepted: 02/14/2011] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the major viral cause of morbidity in immune compromised patients and of pre- and perinatal pathology in newborns. The clinical manifestations are highly variable and the principles which govern these differences cannot be understood without detailed knowledge on tissue specific aspects of HCMV infection. For decades the role of individual cell types during cytomegalovirus infection and disease has been discussed. The pathogenesis of mouse cytomegalovirus (MCMV) mirrors the human infection in many aspects. Although only MCMV infection is studied extensively at the level of organs, the relative contribution of specific cell types to viral pathogenesis in vivo has remained enigmatic. Here we discuss new approaches based on the cre/loxP-system to label nascent virus progeny or to lift a replication block. The salient aspect of this technique is the change of viral genome properties selectively in cells that express cre during infection in vivo. This allowed us to study the role of endothelial cells and hepatocytes for virus dissemination and will permit detailed studies on innate and adaptive immune responses to CMV.
Collapse
|
64
|
Zhang D, Iyer LM, Aravind L. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res 2011; 39:4532-52. [PMID: 21306995 PMCID: PMC3113570 DOI: 10.1093/nar/gkr036] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse group of proteins including Smi1/Knr4, PGs2, FBXO3, SKIP16, Syd, herpesviral US22, IRS1 and TRS1, and their bacterial homologs. Using contextual analysis we present evidence that the bacterial members of this superfamily are potential immunity proteins for a variety of toxin systems that also include the recently characterized contact-dependent inhibition (CDI) systems of proteobacteria. By analyzing the toxin proteins encoded in the neighborhood of the SUKH superfamily we predict that they possess domains belonging to diverse nuclease and nucleic acid deaminase families. These include at least eight distinct types of DNases belonging to HNH/EndoVII- and restriction endonuclease-fold, and RNases of the EndoU-like and colicin E3-like cytotoxic RNases-folds. The N-terminal domains of these toxins indicate that they are extruded by several distinct secretory mechanisms such as the two-partner system (shared with the CDI systems) in proteobacteria, ESAT-6/WXG-like ATP-dependent secretory systems in Gram-positive bacteria and the conventional Sec-dependent system in several bacterial lineages. The hedgehog-intein domain might also release a subset of toxic nuclease domains through auto-proteolytic action. Unlike classical colicin-like nuclease toxins, the overwhelming majority of toxin systems with the SUKH superfamily is chromosomally encoded and appears to have diversified through a recombination process combining different C-terminal nuclease domains to N-terminal secretion-related domains. Across the bacterial superkingdom these systems might participate in discriminating `self’ or kin from `non-self’ or non-kin strains. Using structural analysis we demonstrate that the SUKH domain possesses a versatile scaffold that can be used to bind a wide range of protein partners. In eukaryotes it appears to have been recruited as an adaptor to regulate modification of proteins by ubiquitination or polyglutamylation. Similarly, another widespread immunity protein from these toxin systems, namely the suppressor of fused (SuFu) superfamily has been recruited for comparable roles in eukaryotes. In animal DNA viruses, such as herpesviruses, poxviruses, iridoviruses and adenoviruses, the ability of the SUKH domain to bind diverse targets has been deployed to counter diverse anti-viral responses by interacting with specific host proteins.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
65
|
Ibig-Rehm Y, Götte M, Gabriel D, Woodhall D, Shea A, Brown NE, Compton T, Feire AL. High-content screening to distinguish between attachment and post-attachment steps of human cytomegalovirus entry into fibroblasts and epithelial cells. Antiviral Res 2011; 89:246-56. [PMID: 21277329 DOI: 10.1016/j.antiviral.2011.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/13/2011] [Accepted: 01/21/2011] [Indexed: 11/17/2022]
Abstract
Human cytomegalovirus (HCMV) enters cells through a complex pathway involving the interaction of multiple viral glycoproteins and cellular receptors. While HCMV clinical isolates enter a wide range of cell types, entry has historically been studied using a laboratory strain of virus that can only infect fibroblasts. Herein, we have constructed a HCMV reporter strain that contains GFP fused to the abundant tegument protein pp65 to allow for the direct visualization of virus attachment and entry. Furthermore, the UL131 gene of this strain was restored to clinical isolate sequence to expand our studies of entry into physiologically relevant epithelial cell types. Using the HCMV-GFP reporter virus, we developed an image-based assay and screened a library containing 65,000 compounds for the inhibition of virus entry into fibroblasts. In addition to assessing the effect on virus entry, automated image analysis provided information on compound toxicity and whether the compounds acted as attachment or post-attachment inhibitors. To identify therapeutically viable inhibitors capable of blocking entry in multiple cell types, the inhibitors were screened further for their ability to inhibit virus entry into epithelial cells. Compounds were identified that were able to inhibit virus entry into both cell types at either attachment or post-attachment steps.
Collapse
Affiliation(s)
- Yvonne Ibig-Rehm
- Lead Finding Platform, Novartis Institutes for Biomedical Research, Novartis Campus, Basle, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Identification and sequencing of a novel rodent gammaherpesvirus that establishes acute and latent infection in laboratory mice. J Virol 2011; 85:2642-56. [PMID: 21209105 DOI: 10.1128/jvi.01661-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Gammaherpesviruses encode numerous immunomodulatory molecules that contribute to their ability to evade the host immune response and establish persistent, lifelong infections. As the human gammaherpesviruses are strictly species specific, small animal models of gammaherpesvirus infection, such as murine gammaherpesvirus 68 (γHV68) infection, are important for studying the roles of gammaherpesvirus immune evasion genes in in vivo infection and pathogenesis. We report here the genome sequence and characterization of a novel rodent gammaherpesvirus, designated rodent herpesvirus Peru (RHVP), that shares conserved genes and genome organization with γHV68 and the primate gammaherpesviruses but is phylogenetically distinct from γHV68. RHVP establishes acute and latent infection in laboratory mice. Additionally, RHVP contains multiple open reading frames (ORFs) not present in γHV68 that have sequence similarity to primate gammaherpesvirus immunomodulatory genes or cellular genes. These include ORFs with similarity to major histocompatibility complex class I (MHC-I), C-type lectins, and the mouse mammary tumor virus and herpesvirus saimiri superantigens. As these ORFs may function as immunomodulatory or virulence factors, RHVP presents new opportunities for the study of mechanisms of immune evasion by gammaherpesviruses.
Collapse
|
67
|
Herpesvirus BACs: past, present, and future. J Biomed Biotechnol 2010; 2011:124595. [PMID: 21048927 PMCID: PMC2965428 DOI: 10.1155/2011/124595] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.
Collapse
|
68
|
Inhibition of programmed cell death by cytomegaloviruses. Virus Res 2010; 157:144-50. [PMID: 20969904 DOI: 10.1016/j.virusres.2010.10.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022]
Abstract
The elimination of infected cells by programmed cell death (PCD) is one of the most ancestral defense mechanisms against infectious agents. This mechanism should be most effective against intracellular parasites, such as viruses, which depend on the host cell for their replication. However, even large and slowly replicating viruses like the cytomegaloviruses (CMVs) can prevail and persist in face of cellular suicide programs and other innate defense mechanisms. During evolution, these viruses have developed an impressive set of countermeasures against premature demise of the host cell. In the last decade, several genes encoding suppressors of apoptosis and necrosis have been identified in the genomes of human and murine CMV (HCMV and MCMV). Curiously, most of the gene products are not homologous to cellular antiapoptotic proteins, suggesting that the CMVs did not capture the genes from the host cell genome. This review summarizes our current understanding of how the CMVs suppress PCD and which signaling pathways they target.
Collapse
|
69
|
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11:700-14. [PMID: 20823910 DOI: 10.1038/nrm2970] [Citation(s) in RCA: 1815] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For a long time, apoptosis was considered the sole form of programmed cell death during development, homeostasis and disease, whereas necrosis was regarded as an unregulated and uncontrollable process. Evidence now reveals that necrosis can also occur in a regulated manner. The initiation of programmed necrosis, 'necroptosis', by death receptors (such as tumour necrosis factor receptor 1) requires the kinase activity of receptor-interacting protein 1 (RIP1; also known as RIPK1) and RIP3 (also known as RIPK3), and its execution involves the active disintegration of mitochondrial, lysosomal and plasma membranes. Necroptosis participates in the pathogenesis of diseases, including ischaemic injury, neurodegeneration and viral infection, thereby representing an attractive target for the avoidance of unwarranted cell death.
Collapse
Affiliation(s)
- Peter Vandenabeele
- Department for Molecular Biomedical Research, VIB, Ghent University, Belgium.
| | | | | | | |
Collapse
|
70
|
Murine cytomegalovirus perturbs endosomal trafficking of major histocompatibility complex class I molecules in the early phase of infection. J Virol 2010; 84:11101-12. [PMID: 20719942 DOI: 10.1128/jvi.00988-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Murine cytomegalovirus (MCMV) functions interfere with protein trafficking in the secretory pathway. In this report we used Δm138-MCMV, a recombinant virus with a deleted viral Fc receptor, to demonstrate that MCMV also perturbs endosomal trafficking in the early phase of infection. This perturbation had a striking impact on cell surface-resident major histocompatibility complex class I (MHC-I) molecules due to the complementary effect of MCMV immunoevasins, which block their egress from the secretory pathway. In infected cells, constitutively endocytosed cell surface-resident MHC-I molecules were arrested and retained in early endosomal antigen 1 (EEA1)-positive and lysobisphosphatidic acid (LBPA)-negative perinuclear endosomes together with clathrin-dependent cargo (transferrin receptor, Lamp1, and epidermal growth factor receptor). Their progression from these endosomes into recycling and degradative routes was inhibited. This arrest was associated with a reduction of the intracellular content of Rab7 and Rab11, small GTPases that are essential for the maturation of recycling and endolysosomal domains of early endosomes. The reduced recycling of MHC-I in Δm138-MCMV-infected cells was accompanied by their accelerated loss from the cell surface. The MCMV function that affects cell surface-resident MHC-I was activated in later stages of the early phase of viral replication, after the expression of known immunoevasins. MCMV without the three immunoevasins (the m04, m06, and m152 proteins) encoded a function that affects endosomal trafficking. This function, however, was not sufficient to reduce the cell surface expression of MHC-I in the absence of the transport block in the secretory pathway.
Collapse
|
71
|
Dominant negative mutants of the murine cytomegalovirus M53 gene block nuclear egress and inhibit capsid maturation. J Virol 2010; 84:9035-46. [PMID: 20610730 DOI: 10.1128/jvi.00681-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The alphaherpesvirus proteins UL31 and UL34 and their homologues in other herpesvirus subfamilies cooperate at the nuclear membrane in the export of nascent herpesvirus capsids. We studied the respective betaherpesvirus proteins M53 and M50 in mouse cytomegalovirus (MCMV). Recently, we established a random approach to identify dominant negative (DN) mutants of essential viral genes and isolated DN mutants of M50 (B. Rupp, Z. Ruzsics, C. Buser, B. Adler, P. Walther and U. H. Koszinowski, J. Virol 81:5508-5517). Here, we report the identification and phenotypic characterization of DN alleles of its partner, M53. While mutations in the middle of the M53 open reading frame (ORF) resulted in DN mutants inhibiting MCMV replication by approximately 100-fold, mutations at the C terminus resulted in up to 1,000,000-fold inhibition of virus production. C-terminal DN mutants affected nuclear distribution and steady-state levels of the nuclear egress complex and completely blocked export of viral capsids. In addition, they induced a marked maturation defect of viral capsids, resulting in the accumulation of nuclear capsids with aberrant morphology. This was associated with a two-thirds reduction in the total amount of unit length genomes, indicating an accessory role for M53 in DNA packaging.
Collapse
|
72
|
Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010; 7:302-313. [PMID: 20413098 DOI: 10.1016/j.chom.2010.03.006] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 03/12/2010] [Indexed: 12/15/2022]
Abstract
Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
73
|
Podlech J, Pintea R, Kropp KA, Fink A, Lemmermann NAW, Erlach KC, Isern E, Angulo A, Ghazal P, Reddehase MJ. Enhancerless cytomegalovirus is capable of establishing a low-level maintenance infection in severely immunodeficient host tissues but fails in exponential growth. J Virol 2010; 84:6254-61. [PMID: 20375164 PMCID: PMC2876661 DOI: 10.1128/jvi.00419-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022] Open
Abstract
Major immediate-early transcriptional enhancers are genetic control elements that act, through docking with host transcription factors, as a decisive regulatory unit for efficient initiation of the productive virus cycle. Animal models are required for studying the function of enhancers paradigmatically in host organs. Here, we have sought to quantitatively assess the establishment, maintenance, and level of in vivo growth of enhancerless mutants of murine cytomegalovirus in comparison with those of an enhancer-bearing counterpart in models of the immunocompromised or immunologically immature host. Evidence is presented showing that enhancerless viruses are capable of forming restricted foci of infection but fail to grow exponentially.
Collapse
Affiliation(s)
- Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rares Pintea
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kai A. Kropp
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Annette Fink
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Niels A. W. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Katja C. Erlach
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Elena Isern
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ana Angulo
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Peter Ghazal
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Institut d′Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain, Division of Pathway Medicine and Centre for Infectious Diseases, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
74
|
Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 2010; 3:re4. [PMID: 20354226 DOI: 10.1126/scisignal.3115re4] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic molecule with a crucial role in cellular stress and inflammation during infection, tissue damage, and cancer. TNF signaling can lead to three distinct outcomes, each of which is initiated by different signaling complexes: the gene induction or survival mode, the apoptosis mode, and the necrosis mode. The kinases receptor-interacting protein 1 (RIP1) and RIP3 are key signaling molecules in necrosis and are regulated by caspases and ubiquitination. Moreover, TNF stimulation induces the formation of a necrosome in which RIP3 is activated and interacts with enzymes that control glycolytic flux and glutaminolysis. The necrosome induces mitochondrial complex I-mediated production of reactive oxygen species (ROS) and cytotoxicity, which suggest a functional link between increased bioenergetics and necrosis. In addition, other effector mechanisms also contribute to TNF-induced necrosis, such as recruitment of NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate) oxidases and subsequent ROS production at the membrane-associated TNF receptor complex I; calcium mobilization; activation of phospholipase A(2), lipoxygenases, and acid sphingomyelinases; and lysosomal destabilization. However, the link between RIP1 and RIP3 and these subcellular events remains to be established. The regulation of RIP1 and RIP3 and their downstream signaling cascades opens new therapeutic avenues for treatment of pathologies associated with cell loss, such as ischemia-reperfusion damage and neurodegeneration, and ways to stimulate alternative immunogenic cell death pathways in cancer.
Collapse
Affiliation(s)
- Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, 9052 Zwijnaarde, Belgium.
| | | | | | | |
Collapse
|
75
|
The human cytomegalovirus UL36 gene controls caspase-dependent and -independent cell death programs activated by infection of monocytes differentiating to macrophages. J Virol 2010; 84:5108-23. [PMID: 20219915 DOI: 10.1128/jvi.01345-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cellular protease caspase-8 activates extrinsic apoptosis and also functions to promote monocyte-to-macrophage differentiation. Differentiation-induced alterations to antiviral caspase-8-dependent cell death pathways are unclear. Here, we show THP-1 monocyte-to-macrophage differentiation alters the specific cell death pathways activated in response to human cytomegalovirus (HCMV) infection. Employing viruses with mutations in UL36, the gene that encodes the viral inhibitor of caspase-8 activation (vICA), our data indicate that both caspase-dependent and -independent death pathways are activated in response to infection. Activation of caspase-dependent and -independent cell death responses restricted growth of vICA-deficient viruses, and vICA/pUL36 inhibited either response. Thus, these studies also reveal that the UL36 gene controls a caspase-independent cell death pathway. The impact of caspases on control of antiviral responses differed at early and late stages of macrophage differentiation. Early in differentiation, vICA-deficient virus-induced cell death was dependent on caspases and inhibited by the pan-caspase inhibitor z-VAD(OMe)-fluoromethyl ketone. In contrast, virus-induced death at late times of differentiation was caspase independent. Additional unlabeled and fluorescent inhibitors indicated that caspase-8 promoted death from within infected cells at early but not late stages of differentiation. These data highlight the multifunctional role of vICA/pUL36 as HCMV encounters various antiviral responses during macrophage differentiation.
Collapse
|
76
|
Murine cytomegalovirus US22 protein pM140 protects its binding partner, pM141, from proteasome-dependent but ubiquitin-independent degradation. J Virol 2009; 84:2164-8. [PMID: 19955315 DOI: 10.1128/jvi.01739-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stable assembly of murine cytomegalovirus (MCMV) virions in differentiated macrophages is dependent upon the expression of US22 family gene M140. The M140 protein (pM140) exists in complex with products of neighboring US22 genes. Here we report that pM140 protects its binding partner, pM141, from ubiquitin-independent proteasomal degradation. Protection is conferred by a stabilization domain mapping to amino acids 306 to 380 within pM140, and this domain is functionally independent from the region that confers binding of pM140 to pM141. The M140 protein thus contains multiple domains that collectively confer a structure necessary to function in virion assembly in macrophages.
Collapse
|
77
|
Mühlbach H, Mohr CA, Ruzsics Z, Koszinowski UH. Dominant-negative proteins in herpesviruses - from assigning gene function to intracellular immunization. Viruses 2009; 1:420-40. [PMID: 21994555 PMCID: PMC3185506 DOI: 10.3390/v1030420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/17/2022] Open
Abstract
Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.
Collapse
Affiliation(s)
| | | | - Zsolt Ruzsics
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| | - Ulrich H. Koszinowski
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| |
Collapse
|
78
|
Dauber B, Wolff T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses 2009; 1:523-44. [PMID: 21994559 PMCID: PMC3185532 DOI: 10.3390/v1030523] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022] Open
Abstract
The interferon-induced double-stranded (ds)RNA-dependent protein kinase (PKR) limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5′-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.
Collapse
Affiliation(s)
- Bianca Dauber
- Department of Medical Microbiology & Immunology, University of Alberta, 632 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| | - Thorsten Wolff
- P15, Robert Koch-Institute/Nordufer 20, 13353 Berlin, Germany
- Authors to whom correspondence should be addressed; E-Mails: (B.D.); (T.W.)
| |
Collapse
|
79
|
Cam M, Handke W, Picard-Maureau M, Brune W. Cytomegaloviruses inhibit Bak- and Bax-mediated apoptosis with two separate viral proteins. Cell Death Differ 2009; 17:655-65. [PMID: 19816509 DOI: 10.1038/cdd.2009.147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apoptosis of infected cells can limit virus replication and serves as an innate defense mechanism against viral infections. Consequently, viruses delay apoptosis by expressing antiapoptotic proteins, many of which structurally resemble the cellular antiapoptotic protein Bcl-2. Like Bcl-2, the viral analogs inhibit apoptosis by preventing activation and/or oligomerization of the proapoptotic mitochondrial proteins Bax and Bak. Here we show that cytomegaloviruses (CMVs) have adopted a different strategy. They encode two separate mitochondrial proteins that lack obvious sequence similarities to Bcl-2-family proteins and specifically counteract either Bax or Bak. We identified a small mitochondrion-localized protein encoded by the murine CMV open reading frame (ORF) m41.1, which functions as a viral inhibitor of Bak oligomerization (vIBO). It blocks Bak-mediated cytochrome c release and Bak-dependent induction of apoptosis. It protects cells from cell death-inducing stimuli together with the previously identified Bax-specific inhibitor viral mitochondria-localized inhibitor of apoptosis (vMIA) (encoded by ORF m38.5). Similar vIBO proteins are encoded by CMVs of rats, and possibly by other CMVs as well. These results suggest a non-redundant function of Bax and Bak during viral infection, and a benefit for CMVs derived from the ability to inhibit Bak and Bax separately with two viral proteins.
Collapse
Affiliation(s)
- M Cam
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
80
|
Human cytomegalovirus UL28 and UL29 open reading frames encode a spliced mRNA and stimulate accumulation of immediate-early RNAs. J Virol 2009; 83:10187-97. [PMID: 19625400 DOI: 10.1128/jvi.00396-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have identified a spliced transcript that contains sequences from the HCMV UL29 and UL28 open reading frames. It contains amino-terminal UL29 sequences followed by UL28 sequences, and it includes a poly(A) signal derived from the 3'-untranslated region following the UL26 open reading frame. UL29/28 RNA is expressed with early kinetics, and a virus containing a FLAG epitope inserted at the amino terminus of UL29 expressed a tagged approximately 79-kDa protein, pUL29/28, that was detected at 6 h postinfection. The virus also expressed a less-abundant tagged 41-kDa protein, which corresponds in size to a protein that could be produced by translation of an unspliced UL29/28 transcript. Consistent with this prediction, both unspliced and spliced UL29/28 transcript was present in RNA isolated from polysomes. FLAG-tagged protein from the UL29/28 locus accumulated within nuclear viral replication centers during the early phase of infection. Late after infection it was present in the cytoplasm as well, and the protein was present and resistant to proteinase treatment in partially purified preparations of viral particles. Disruption of the UL29/28 locus by mutation resulted in a 10-fold decrease in the levels of DNA replication along with a similar reduction in virus yield. Quantitative reverse transcription-PCR analysis revealed an approximately 2-fold decrease in immediate-early gene expression at 4 to 10 h postinfection compared to the wild-type virus, and transient expression of pUL29/28 activated the major immediate-early promoter. Our results argue that the UL29/28 locus contributes to activation of immediate-early gene expression.
Collapse
|
81
|
Mans J, Zhi L, Revilleza MJR, Smith L, Redwood A, Natarajan K, Margulies DH. Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 2009; 43:264-79. [PMID: 19011767 DOI: 10.1007/s12026-008-8081-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mouse cytomegalovirus (CMV), a beta-herpesvirus, exploits its large (~230 kb) double-stranded DNA genome for both essential and non-essential functions. Among the non-essential functions are those that offer the virus a selective advantage in eluding both the innate and adaptive immune responses of the host. Several non-essential genes of MCMV are thought to encode MHC-I-like genes and to function as immunoevasins. To understand further the evolution and function of these viral MHC-I (MHC-Iv) molecules, X-ray structures of several of them have been determined, not only confirming the overall MHC-I-like structure, but also elucidating features unique to this family. Future efforts promise to clarify the nature of the molecular ligands of these molecules, their evolution in the context of the adapting immune response of the murine host, and by analogy the evolution of the host response to human CMV as well.
Collapse
Affiliation(s)
- Janet Mans
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10; Room 11N311, 10 Center Drive, Bethesda, MD 20892-1892, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Murine cytomegalovirus capsid assembly is dependent on US22 family gene M140 in infected macrophages. J Virol 2009; 83:7449-56. [PMID: 19458005 DOI: 10.1128/jvi.00325-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages are an important target cell for infection with cytomegalovirus (CMV). A number of viral genes that either are expressed specifically in this cell type or function to optimize CMV replication in this host cell have now been identified. Among these is the murine CMV (MCMV) US22 gene family member M140, a nonessential early gene whose deletion (RVDelta140) leads to significant impairment in virus replication in differentiated macrophages. We have now determined that the defect in replication is at the stage of viral DNA encapsidation. Although the rate of RVDelta140 genome replication and extent of DNA cleavage were comparable to those for revertant virus, deletion of M140 resulted in a significant reduction in the number of viral capsids in the nucleus, and the viral DNA remained sensitive to DNase treatment. These data are indicative of incomplete virion assembly. Steady-state levels of both the major capsid protein (M86) and tegument protein M25 were reduced in the absence of the M140 protein (pM140). This effect may be related to the localization of pM140 to an aggresome-like, microtubule organizing center-associated structure that is known to target misfolded and overexpressed proteins for degradation. It appears, therefore, that pM140 indirectly influences MCMV capsid formation in differentiated macrophages by regulating the stability of viral structural proteins.
Collapse
|
83
|
Timoshenko O, Al-Ali A, Martin BAB, Sweet C. Identification of mutations in a temperature-sensitive mutant (tsm5) of murine cytomegalovirus using complementary genome sequencing. J Med Virol 2009; 81:511-8. [PMID: 19152394 PMCID: PMC7166533 DOI: 10.1002/jmv.21419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Identification of mutations in mutants derived chemically is a difficult and relatively random process. NimbleGen Comparative Genome Sequencing (CGS) was assessed as an inexpensive, rapid method of identifying mutations in the temperature‐sensitive mutant tsm5 of the K181 (Birmingham) variant of murine cytomegalovirus (MCMV). This genome resequencing approach requires an established genome sequence as a reference. Comparison of tsm5 and the K181 (Birmingham) variant with the published K181 (Perth) MCMV genomic sequence revealed a total of 10 synonymous and 15 non‐synonymous SNPs in tsm5 and 14 of the latter were confirmed by sequencing. Thus, while CGS cannot be relied upon to identify correctly all mutations it was helpful for identifying a large number of mutations for further investigation that could contribute to the ts phenotype of tsm5. J. Med. Virol. 81:511–518, 2009. © 2009 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Olga Timoshenko
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
84
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
85
|
Abstract
Antigen presenting cells (APCs) are recognized as key initiators of adaptive immunity, particularly to pathogens, by eliciting a rapid and potent immune attack on infected cells. Amongst APCs, dendritic cells (DCs) are specially equipped to initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. To achieve this, they are equipped with highly efficient mechanisms that allow them to detect pathogens, to capture, process and present antigens, and to activate and guide the differentiation of T cells into effector and memory cells. DCs can no longer be considered as a homogeneous cell type performing a single function, but are heterogeneous both in phenotype, function and dependence on inflammatory stimuli for their formation and responsiveness. Recent studies of DC subtypes have highlighted the contrasting roles of different professional APCs in activating divergent arms of the immune response towards pathogens. In this review, we discuss the progress that has been made in dissecting the attributes of different DC subsets that migrate into, or reside permanently, within lymphoid tissues and their putative roles in the induction of the anti-viral immune response.
Collapse
Affiliation(s)
- Gabrielle Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | |
Collapse
|
86
|
Specific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143. J Virol 2008; 83:1260-70. [PMID: 19019949 DOI: 10.1128/jvi.01558-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2alpha, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2alpha phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2alpha kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (gamma34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.
Collapse
|
87
|
Schleiss MR, McGregor A, Choi KY, Date SV, Cui X, McVoy MA. Analysis of the nucleotide sequence of the guinea pig cytomegalovirus (GPCMV) genome. Virol J 2008; 5:139. [PMID: 19014498 PMCID: PMC2614972 DOI: 10.1186/1743-422x-5-139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 11/12/2008] [Indexed: 11/10/2022] Open
Abstract
In this report we describe the genomic sequence of guinea pig cytomegalovirus (GPCMV) assembled from a tissue culture-derived bacterial artificial chromosome clone, plasmid clones of viral restriction fragments, and direct PCR sequencing of viral DNA. The GPCMV genome is 232,678 bp, excluding the terminal repeats, and has a GC content of 55%. A total of 105 open reading frames (ORFs) of > 100 amino acids with sequence and/or positional homology to other CMV ORFs were annotated. Positional and sequence homologs of human cytomegalovirus open reading frames UL23 through UL122 were identified. Homology with other cytomegaloviruses was most prominent in the central ~60% of the genome, with divergence of sequence and lack of conserved homologs at the respective genomic termini. Of interest, the GPCMV genome was found in many cases to bear stronger phylogenetic similarity to primate CMVs than to rodent CMVs. The sequence of GPCMV should facilitate vaccine and pathogenesis studies in this model of congenital CMV infection.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
Bacterial artificial chromosomes (BACs) are DNA molecules assembled in vitro from defined constituents and are stably maintained as one large DNA fragment in Escherichia coli. Artificial chromosomes are useful for genome sequencing programs, for transduction of DNA segments into eukaryotic cells, and for functional characterization of genomic regions and entire viral genomes such as cytomegalovirus (CMV) genomes. CMV genomes in BACs are ready for the advanced tools of E. coli genetics. Homologous and site-specific recombination, or transposon-based approaches allow for the engineering of virtually any kind of genetic change.
Collapse
Affiliation(s)
- Z Ruzsics
- Max von Pettenkofer Institute, Dept. of Virology, Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | |
Collapse
|
89
|
Abstract
Caspase-dependent apoptosis has an important role in controlling viruses, and as a result, viruses often encode proteins that target this pathway. Caspase-dependent apoptosis can be activated from within the infected cell as an intrinsic response to replication-associated stresses or through death-inducing signals produced extrinsically by immune cells. Cytomegaloviruses (CMVs) encode a mitochondria-localized inhibitor of apoptosis, vMIA, and a viral inhibitor of caspase activation, vICA, the functional homologs of Bcl-2 related and c-FLIP proteins, respectively. Evidence from viral mutants deleting either vMIA or vICA suggests that each is necessary and sufficient to promote survival of infected cells undergoing caspase-dependent apoptosis. Additional proteins, including pUL38, IE1(491a), and IE2(579aa), can prevent apoptosis induced by various stimuli, while viruses with deletions of UL38, M45, or m41 undergo apoptosis. The viral RNA, beta2.7, binds mitochondrial respiratory complex I, maintains ATP production late in infection, and prevents death induced by a mitochondrial poison. Thus, CMV alters cell intrinsic defenses employing apoptosis, and multiple viral gene products together control death-inducing stimuli to promote survival.
Collapse
Affiliation(s)
- A L McCormick
- Department of Microbiology & Immunology, Emory Vaccine Center, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
90
|
Abstract
The human cytomegalovirus (HCMV) can infect a remarkably broad cell range within its host, including parenchymal cells and connective tissue cells of virtually any organ and various hematopoietic cell types. Epithelial cells, endothelial cells, fibroblasts and smooth muscle cells are the predominant targets for virus replication. The pathogenesis of acute HCMV infections is greatly influenced by this broad target cell range. Infection of epithelial cells presumably contributes to inter-host transmission. Infection of endothelial cells and hematopoietic cells facilitates systemic spread within the host. Infection of ubiquitous cell types such as fibroblasts and smooth muscle cells provides the platform for efficient proliferation of the virus. The tropism for endothelial cells, macrophages and dendritic cells varies greatly among different HCMV strains, mostly dependent on alterations within the UL128-131 gene locus. In line with the classification of the respective proteins as structural components of the viral envelope, interstrain differences concerning the infectivity in endothelial cells and macrophages are regulated on the level of viral entry.
Collapse
|
91
|
Arnoult D, Skaletskaya A, Estaquier J, Dufour C, Goldmacher VS. The murine cytomegalovirus cell death suppressor m38.5 binds Bax and blocks Bax-mediated mitochondrial outer membrane permeabilization. Apoptosis 2008; 13:1100-10. [DOI: 10.1007/s10495-008-0245-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
92
|
Sacher T, Jordan S, Mohr CA, Vidy A, Weyn AMG, Ruszics Z, Koszinowski UH. Conditional gene expression systems to study herpesvirus biology in vivo. Med Microbiol Immunol 2008; 197:269-276. [PMID: 18324415 DOI: 10.1007/s00430-008-0086-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV), a prototypic beta-herpesvirus, is an important human pathogen causing protean clinical manifestations in immature and immunocompromised patients. Mechanisms of infection can be studied in a mouse model. Mouse cytomegalovirus (MCMV) resembles in pathogenesis its human counterpart in many ways. Although MCMV infection is studied extensively on the level of organs, the contribution of specific cell types to viral replication in vivo is still elusive. Here we describe our approach based on the the Cre/loxP-system to investigate MCMV infection at the level of cell types in vivo. Using bacterial artificial chromosome (BAC)-technology, we created an MCMV virus containing an enhanced green fluorescent protein (egfp) reporter-gene which is not expressed due to a 'Stop' cassette flanked by two loxP-sites between promoter and coding sequence. Infection of cre-transgenic mice with this reporter virus results in the deletion of the 'Stop' cassette and expression of EGFP in a cell type-specific manner. Using this conditional gene expression system we are able to quantify viral productivity in specific cell types and to determine their contribution to viral dissemination in vivo. Furthermore, the deletion of viral genes can be used to screen for cell type-specificity of viral gene functions. Hence, conditional MCMV mutants allow the study of herpesvirus biology on the level of cell types in vivo.
Collapse
Affiliation(s)
- Torsten Sacher
- Max von Pettenkofer-Institute, Ludwig Maximilians-University, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Wirtz N, Schader SI, Holtappels R, Simon CO, Lemmermann NAW, Reddehase MJ, Podlech J. Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med Microbiol Immunol 2008; 197:151-158. [PMID: 18365251 DOI: 10.1007/s00430-008-0095-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Indexed: 11/29/2022]
Abstract
Therapy of cytomegalovirus (CMV) infection in recipients of hematopoietic stem cell transplantation (HSCT) by immune serum transfer did not fulfill the high clinical expectations, although immune sera or immunoglobulin-enriched preparations pooled from many CMV-immune donors are likely to contain virus neutralizing antibodies covering a broad range of virus variants. Likewise, the highest risk of CMV disease in HSCT recipients results from the reactivation of the latently infected recipient's own virus despite pre-transplantation humoral immunity. These findings suggest the conclusion that antiviral antibodies are inefficient in controlling CMV. Rather than B cells and antibodies, T cells, in particular CD8 T cells, are thought to play a major role in resolving established organ infection. In theory, antibodies, though being capable of neutralizing free virions, could fail to prevent cell-bound virus dissemination from the portal of entry to distant target tissues and also could fail in preventing cell-to-cell spread within tissue. Here we have used murine model systems, including B cell deficient C57BL/6 micro(- ) micro(-) (microMT) mutants, to revisit the role of antiviral antibodies in the control of CMV infection and to reevaluate the prospects of an antibody-based immunotherapy from a basic science point of view.
Collapse
Affiliation(s)
- Nikolaus Wirtz
- Institute for Virology, Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
94
|
Holtappels R, Böhm V, Podlech J, Reddehase MJ. CD8 T-cell-based immunotherapy of cytomegalovirus infection: "proof of concept" provided by the murine model. Med Microbiol Immunol 2008; 197:125-134. [PMID: 18343947 DOI: 10.1007/s00430-008-0093-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Indexed: 02/06/2023]
Abstract
Adoptive transfer of antiviral effector or memory CD8 T cells is a therapeutic option for preventing acute cytomegalovirus (CMV) disease after primary or recurrent infection in immunocompromised recipients of hematopoietic stem cell transplantation (HSCT) aimed at curing hematopoietic malignancies. Preclinical research in murine models has demonstrated the power of CD8 T-cell-based preemptive immunotherapy and has encouraged clinical trials that gave promising results. The clinical evidence, however, is based primarily on statistical analyses indicating a reduced incidence of CMV-associated complications. Here, we will briefly review the data obtained from the murine model showing that CD8 T cells derived from CMV-immune donors and administered either as peptide-selected cytolytic T lymphocyte lines or after ex vivo purification by T-cell-receptor-specific cell sorting can indeed prevent CMV-mediated histopathology and multiple organ failure.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
95
|
Jurak I, Schumacher U, Simic H, Voigt S, Brune W. Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 2008; 82:4812-22. [PMID: 18321965 PMCID: PMC2346748 DOI: 10.1128/jvi.02570-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/27/2008] [Indexed: 11/20/2022] Open
Abstract
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Igor Jurak
- Division of Viral Infections, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
96
|
Erlach KC, Böhm V, Knabe M, Deegen P, Reddehase MJ, Podlech J. Activation of hepatic natural killer cells and control of liver-adapted lymphoma in the murine model of cytomegalovirus infection. Med Microbiol Immunol 2008; 197:167-78. [PMID: 18309517 DOI: 10.1007/s00430-008-0084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a promising therapeutic option against hematopoietic malignancies. Infection with cytomegalovirus (CMV) and tumor relapse are complications that limit the success of HSCT. In theory, CMV infection can facilitate tumor relapse and growth by inhibiting "graft take" and reconstitution of the immune system or by inducing the secretion of tumor cell growth-promoting cytokines. Conversely, one can also envisage an anti-tumoral effect of CMV by cytopathic/oncolytic infection of tumor cells, by inducing the secretion of death ligands for tumor cell apoptosis, and by the activation of systemic innate and adaptive immunity. Here we will briefly review the current knowledge about tumor control in a murine model of CMV infection and liver-adapted B cell lymphoma, with a focus on a putative implication of CD49(+)NKG2D(+) hepatic natural killer cells.
Collapse
Affiliation(s)
- Katja C Erlach
- Institute for Virology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
97
|
Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc Natl Acad Sci U S A 2008; 105:3094-9. [PMID: 18287053 DOI: 10.1073/pnas.0800168105] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
TNFalpha is an important cytokine in antimicrobial immunity and inflammation. The receptor-interacting protein RIP1 is an essential component of the TNF receptor 1 signaling pathway that mediates the activation of NF-kappaB, MAPKs, and programmed cell death. It also transduces signals derived from Toll-like receptors and intracellular sensors of DNA damage and double-stranded RNA. Here, we show that the murine CMV M45 protein binds to RIP1 and inhibits TNFalpha-induced activation of NF-kappaB, p38 MAPK, and caspase-independent cell death. M45 also inhibited NF-kappaB activation upon stimulation of Toll-like receptor 3 and ubiquitination of RIP1, which is required for NF-kappaB activation. Hence, M45 functions as a viral inhibitor of RIP1-mediated signaling. The results presented here reveal a mechanism of viral immune subversion and demonstrate how a viral protein can simultaneously block proinflammatory and innate immune signaling pathways by interacting with a central mediator molecule.
Collapse
|
98
|
Mohr CA, Cîcîn-Saîn L, Wagner M, Sacher T, Schnee M, Ruzsics Z, Koszinowski UH. Engineering of cytomegalovirus genomes for recombinant live herpesvirus vaccines. Int J Med Microbiol 2008; 298:115-25. [PMID: 17702650 DOI: 10.1016/j.ijmm.2007.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The advances of sequence knowledge and genetic engineering hold a great promise for a rational approach to vaccine development. Herpesviruses are important pathogens of all vertebrates. They cause acute and chronic infections and persist in their hosts for life. In man there are eight herpesviruses known and most of them can be linked to diseases. To date only one licensed vaccine against a human herpesvirus exists and there is no proven successful concept on rational design for herpesvirus vaccines available. Here, we use new reverse genetic systems, based on the 230-kb mouse cytomegalovirus genome to explore new methods of vaccine delivery and of virus attenuation. With regard to virus delivery, we show that the bacterial transfer of the infectious DNA in vivo is theoretically possible but not yet a practical option. With regard to a rational approach of virus attenuation, we consider a selective deletion of viral genes that modulate the immune response of the host.
Collapse
Affiliation(s)
- Christian A Mohr
- Max von Pettenkofer-Institut, Pettenkoferstrasse 9a, D-80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
99
|
Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J Virol 2007; 82:2056-64. [PMID: 18094168 DOI: 10.1128/jvi.01803-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (DeltaM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in DeltaM36-infected macrophages and rescued the growth of the mutant. In vivo, DeltaM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADD(DN)) in an MCMV recombinant. FADD(DN) was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADD(DN) rescued DeltaM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.
Collapse
|
100
|
Beutler B, Eidenschenk C, Crozat K, Imler JL, Takeuchi O, Hoffmann JA, Akira S. Genetic analysis of resistance to viral infection. Nat Rev Immunol 2007; 7:753-66. [PMID: 17893693 DOI: 10.1038/nri2174] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As machines that reprogramme eukaryotic cells to suit their own purposes, viruses present a difficult problem for multicellular hosts, and indeed, have become one of the central pre-occupations of the immune system. Unable to permanently outpace individual viruses in an evolutionary footrace, higher eukaryotes have evolved broadly active mechanisms with which to sense viruses and suppress their proliferation. These mechanisms have recently been elucidated by a combination of forward and reverse genetic methods. Some of these mechanisms are clearly ancient, whereas others are relatively new. All are remarkably adept at discriminating self from non-self, and allow the host to cope with what might seem an impossible predicament.
Collapse
Affiliation(s)
- Bruce Beutler
- Department of Genetics, The Scripps Research Institute, IMM-3-1, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|