51
|
Kaposi sarcoma-associated herpes virus (KSHV) G protein-coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: a potential positive feedback loop for sustained ORF50 gene expression. Virology 2009; 392:34-51. [PMID: 19640558 DOI: 10.1016/j.virol.2009.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/15/2009] [Accepted: 07/03/2009] [Indexed: 11/23/2022]
Abstract
KSHV vGPCR, a lytic cycle associated protein, induces several signaling pathways leading to the activation of various transcription factors and consequently the expression of cellular and viral genes. Though the role of vGPCR in KSHV tumorigenicity has been well studied, its function related to the viral life cycle is poorly understood. Reduction in vGPCR by RNA interference also resulted in the reduction in KSHV lytic switch ORF50 gene and protein expression. Induction of vGPCR by doxycycline in BC3.14 cells also resulted in more KSHV production. When this was explored, induction of the ORF50 promoter by vGPCR expression was observed. Further examination of the molecular mechanisms by which vGPCR regulates the ORF50 promoter, using various ORF50 promoter constructs, revealed that induction of ORF50 promoter by vGPCR did not involve AP1 but was dependent on Sp1 and Sp3 transcription factors. vGPCR signaling led to an increase in Sp1 and Sp3 DNA binding activity and a decrease in histone deacetylase (HDAC) activity. These activities were pertussis toxin independent, did not involve Rho and Rac-GTPases and involved the heterotrimeric G protein subunits Galpha12 and Galphaq. Studies using pharmacologic inhibitors and dominant-negative proteins identified phospholipase C, the novel protein kinase C (novel PKC) family and protein kinase D (PKD) as part of the signaling initiated by vGPCR leading to ORF50 promoter activation. Taken together, this study suggests a role for vGPCR in the sustained expression of ORF50 which could lead to a continued activation of lytic cycle genes and ultimately to successful viral progeny formation.
Collapse
|
52
|
Interaction of HCMV UL84 with C/EBPalpha transcription factor binding sites within oriLyt is essential for lytic DNA replication. Virology 2009; 392:16-23. [PMID: 19631360 DOI: 10.1016/j.virol.2009.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/15/2009] [Accepted: 06/19/2009] [Indexed: 11/23/2022]
Abstract
Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the cis-acting oriLyt region and requires six core replication proteins along with UL84 and IE2. Although UL84 is thought to be the replication initiator protein, little is known about its interaction with oriLyt. We have now performed chromatin immunoprecipitation assays (ChIP) using antibodies specific to UL84, IE2, UL44, CCAAT/enhancer binding protein (C/EBPalpha) and PCR primers that span the entire oriLyt region to reveal an evaluation of specific protein binding across oriLyt. UL84 interacted with several regions of oriLyt that contain C/EBPalpha transcription factor binding sites. Mutation of either of one of C/EBPalpha (92,526 or 92,535) sites inactivated oriLyt and resulted in the loss of binding of UL84. These data reveal the regions of interaction within oriLyt for several key replication proteins and show that the interaction between UL84 and C/EBPalpha sites within oriLyt is essential for lytic DNA replication.
Collapse
|
53
|
Meyer F, Jones C. The cellular transcription factor, CCAAT enhancer-binding protein alpha (C/EBP-alpha), has the potential to activate the bovine herpesvirus 1 immediate-early transcription unit 1 promoter. J Neurovirol 2009; 15:123-30. [PMID: 19115128 DOI: 10.1080/13550280802534771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Following acute infection, bovine herpesvirus-1 (BHV-1) establishes a lifelong latent infection in sensory neurons of trigeminal ganglia. BHV-1 periodically reactivates from latency and is shed as infectious virus. The latency-related (LR) gene is abundantly expressed in trigeminal ganglia of infected calves, and proteins encoded by the LR gene are necessary for reactivation from latency. We previously demonstrated that a novel LR protein interacts with a host transcription factor, CCAAT enhancer-binding protein alpha (C/EBPalpha). C/EBPalpha increases plaque-forming efficiency when cotransfected with BHV-1 DNA and its expression is induced in neurons during reactivation from latency (Meyer et al, 2007, J Virol 81: 59-67). The ability of C/EBPalpha to bind DNA is necessary for stimulating productive infection, suggesting C/EBPalpha stimulates viral transcription. We tested whether C/EBPalpha could trans-activate the BHV-1 immediate early transcription unit 1 (IEtu1) promoter because the IEtu1 promoter activates expression of two viral genes (bICP0 and bICP4) that stimulate producitve infection. In the current study, We demonstrate that C/EBPalpha and the BHV-1 trans-inducing factor (bTIF) synergistically trans-activate IEtu1 promoter activity. However, bICP0 and C/EBPalpha did not synergistically trans-activate IEtu1 promoter activity. Deletion of IEtu1 promoter sequences demonstrated that C/EBPalpha by itself could trans-activate a truncated IEtu1 promoter, suggesting sequences in the distal region of the IEtu1 promoter negatively regulate C/EBPalpha activtiy. These studies suggest that C/EBPalpha stimulates productive infection and reactivation from latency, in part, by cooperating with bTIF to activate IEtu1 promoter activity.
Collapse
Affiliation(s)
- Florencia Meyer
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, USA
| | | |
Collapse
|
54
|
Dexamethasone treatment of calves latently infected with bovine herpesvirus 1 leads to activation of the bICP0 early promoter, in part by the cellular transcription factor C/EBP-alpha. J Virol 2009; 83:8800-9. [PMID: 19553330 DOI: 10.1128/jvi.01009-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensory neurons within trigeminal ganglia (TG) are the primary site for bovine herpesvirus 1 (BHV-1) latency. During latency, viral gene expression is restricted to the latency-related (LR) gene and the open reading frame ORF-E. We previously constructed an LR mutant virus that expresses LR RNA but not any of the known LR proteins. In contrast to calves latently infected with wild-type (wt) BHV-1 or the LR rescued virus, the LR mutant virus does not reactivate from latency following dexamethasone (DEX) treatment. In this study, we demonstrated that bICP0, but not bICP4, transcripts were consistently detected in TG of calves infected with the LR mutant or LR rescued virus following DEX treatment. Calves latently infected with the LR rescued virus but not the LR mutant virus expressed late transcripts, which correlated with shedding of infectious virus following DEX treatment. The bICP4 and bICP0 genes share a common immediate-early promoter, suggesting that this promoter was not consistently activated during DEX-induced reactivation from latency. The bICP0 gene also contains a novel early promoter that was activated by DEX in mouse neuroblastoma cells. Expression of a cellular transcription factor, C/EBP-alpha, was stimulated by DEX, and C/EBP-alpha expression was necessary for DEX induction of bICP0 early promoter activity. C/EBP-alpha directly interacted with bICP0 early promoter sequences that were necessary for trans activation by C/EBP-alpha. In summary, DEX treatment of latently infected calves induced cellular factors that stimulated bICP0 early promoter activity. Activation of bICP0 early promoter activity does not necessarily lead to late gene expression and virus shedding.
Collapse
|
55
|
Kaposi's sarcoma-associated herpesvirus RTA promotes degradation of the Hey1 repressor protein through the ubiquitin proteasome pathway. J Virol 2009; 83:6727-38. [PMID: 19369342 DOI: 10.1128/jvi.00351-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) protein regulates the latent-lytic switch by transactivating a variety of KSHV lytic and cellular promoters. RTA is a novel E3 ubiquitin ligase that targets a number of transcriptional repressor proteins for degradation by the ubiquitin proteasome pathway. Herein, we show that RTA interacts with the cellular transcriptional repressor protein Hey1. We demonstrate that Hey1 is a target for RTA-mediated ubiquitination and is subsequently degraded by the proteasome. Moreover, a Cys-plus-His-rich region within RTA is important for RTA-mediated degradation of Hey1. We confirm that Hey1 represses the RTA promoter and, furthermore, show that Hey1 binds to the RTA promoter. An interaction was observed between Hey1 and the corepressor mSin3A, and this interaction was abolished in the presence of RTA. Additionally, mSin3A associated with the RTA promoter in nonreactivated, but not reactivated, BCBL1 cells. Small interfering RNA knockdown of Hey1 in HEK 293T cells latently infected with the recombinant virus rKSHV.219 led to increased levels of RTA expression upon reactivation but was insufficient to induce complete lytic reactivation. These results suggest that other additional transcriptional repressors are also important in maintenance of KSHV latency. Taken together, our results suggest that Hey1 has a contributory role in the maintenance of KSHV latency and that disruption of the Hey1 repressosome by RTA-targeted degradation may be one step in the mechanism to regulate lytic reactivation.
Collapse
|
56
|
Chen J, Ye F, Xie J, Kuhne K, Gao SJ. Genome-wide identification of binding sites for Kaposi's sarcoma-associated herpesvirus lytic switch protein, RTA. Virology 2009; 386:290-302. [PMID: 19233445 PMCID: PMC2663009 DOI: 10.1016/j.virol.2009.01.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/27/2008] [Accepted: 01/22/2009] [Indexed: 12/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) encoded by ORF50 is a lytic switch protein for viral reactivation from latency. The expression of RTA activates the expression of downstream viral genes, and is necessary for triggering the full viral lytic program. Using chromatin immunoprecipitation assay coupled with a KSHV whole-genome tiling microarray (ChIP-on-chip) approach, we identified a set of 19 RTA binding sites in the KSHV genome in a KSHV-infected cell line BCBL-1. These binding sites are located in the regions of promoters, introns, or exons of KSHV genes including ORF8, ORFK4.1, ORFK5, PAN, ORF16, ORF29, ORF45, ORF50, ORFK8, ORFK10.1, ORF59, ORFK12, ORF71/72, ORFK14/ORF74, and ORFK15, the two origins of lytic replication OriLyt-L and OriLyt-R, and the microRNA cluster. We confirmed these RTA binding sites by ChIP and quantitative real-time PCR. We further mapped the RTA binding site in the first intron of the ORFK15 gene, and determined that it is RTA-responsive. The ORFK15 RTA binding sequence TTCCAGGAA TTCCTGGAA consists of a palindromic structure of two tandem repeats, of which each itself is also an imperfect inverted repeat. Reporter assay and electrophoretic mobility shift assay confirmed the binding of the RTA protein to this sequence in vitro. Sequence alignment with other RTA binding sites identified the RTA consensus binding motif as TTCCAGGAT(N)(0-16)TTCCTGGGA. Interestingly, most of the identified RTA binding sites contain only half or part of this RTA binding motif. These results suggest the complexity of RTA binding in vivo, and the involvement of other cellular or viral transcription factors during RTA transactivation of target genes.
Collapse
Affiliation(s)
- Jiguo Chen
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Fengchun Ye
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jianping Xie
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Kurt Kuhne
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Shou-Jiang Gao
- Tumor Virology Program, Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Tumor Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, China
| |
Collapse
|
57
|
Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus replication. Semin Cancer Biol 2009; 19:153-7. [PMID: 19429478 DOI: 10.1016/j.semcancer.2009.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/12/2009] [Indexed: 12/21/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma and B-lymphocyte disorders, primary effusion lymphoma (PEL) and Multicentric Castleman's Disease (MCD). KSHV usually exists in a latent form in which the viral genome is circularized into an extrachormosomal episome. However, induction of lytic replication by environmental stimuli or chemical agents is important for the spread of KSHV. The switch between latency and lytic replication is regulated by epigenetic factors. Hypomethylation of the promoter of replication and transcription activator (RTA), which is essential for the lytic switch, leads to KSHV reactivation. Histone acetylation induces KSHV replication by influencing protein-protein-associations and transcription factor binding. Histone modifications also determine chromatin structure and nucleosome positioning, which are important for KSHV DNA replication during latency. The association of KSHV proteins with chromatin remodeling complexes promotes the open chromatin structure needed for transcription factor binding and DNA replication. Additionally, post-translational modification of KSHV proteins is important for the regulation of RTA activity and KSHV replication. KSHV may also cause epigenetic modification of the host genome, contributing to promoter hypermethylation of tumor suppressor genes in KSHV-associated neoplasias.
Collapse
|
58
|
Role of defective Oct-2 and OCA-B expression in immunoglobulin production and Kaposi's sarcoma-associated herpesvirus lytic reactivation in primary effusion lymphoma. J Virol 2009; 83:4308-15. [PMID: 19224997 DOI: 10.1128/jvi.02196-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a distinct type of B-cell non-Hodgkin lymphoma characterized by the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8). Despite having a genotype and gene expression signature of highly differentiated B cells, PEL does not usually express surface or cytoplasmic immunoglobulin (Ig). We show the lack of Oct-2 and OCA-B transcription factors to be responsible, at least in part, for this defect in Ig production. Like Ig genes, ORF50, the key regulator of the switch from latency to lytic reactivation, contains an octamer motif within its promoter. We therefore examined the impact of Oct-2 and OCA-B on ORF50 activation. The binding of Oct-1 to the ORF50 promoter has been shown to significantly enhance ORF50 transactivation. We found that Oct-2, on the other hand, inhibited ORF50 expression and consequently lytic reactivation by competing with Oct-1 for the octamer motif in the ORF50 promoter. Our data suggest that Oct-2 downregulation in infected cells would be favorable to KSHV in allowing for efficient viral reactivation.
Collapse
|
59
|
Wen HJ, Minhas V, Wood C. Identification and characterization of a new Kaposi's sarcoma-associated herpesvirus replication and transcription activator (RTA)-responsive element involved in RTA-mediated transactivation. J Gen Virol 2009; 90:944-953. [PMID: 19223488 DOI: 10.1099/vir.2008.006817-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is well established as a key transcriptional activator that regulates the KSHV life cycle from latency to lytic replication. It is expressed immediately after infection and activates a number of viral genes leading to virus replication. The RTA-responsive element (RRE) in the RTA target gene promoters is critical for RTA to mediate this transactivation. A number of non-conserved RREs have been identified in various RTA-responsive promoters, and AT-rich sequences have been proposed to serve as RTA targets, but no consensus RRE sequence has been identified so far. Two non-conserved RREs (RRE1 and RRE2) containing AT-rich sequences have been identified previously in the promoter of one of the KSHV lytic genes, ORF57, which can be strongly activated by RTA. Based on homology with the consensus sequence of the Epstein-Barr virus Rta RRE, this study identified a third RTA-responsive element (RRE3) in the ORF57 promoter. This RRE comprised a GC-rich sequence that could bind RTA both in vitro and in vivo, and plays a role in RTA-mediated transactivation of the ORF57 promoter. The presence of two of the three RREs in close proximity to each other was required for optimal RTA-mediated transactivation of the ORF57 promoter, even though the presence of only one RRE is needed for RTA binding. These results suggest that the ability of RTA to mediate transcriptional activation is distinct from its ability to bind to its target elements.
Collapse
Affiliation(s)
- Hui-Ju Wen
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Veenu Minhas
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
60
|
Trivedi AK, Pal P, Behre G, Singh SM. Multiple ways of C/EBPalpha inhibition in myeloid leukaemia. Eur J Cancer 2008; 44:1516-23. [PMID: 18515086 DOI: 10.1016/j.ejca.2008.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 11/29/2022]
Abstract
Transcription factors play a crucial role in myeloid differentiation and lineage determination. Tumour suppressor protein C/EBPalpha is a key regulator of granulocytic differentiation whose functional inactivation has become a pathophysiological signature of myeloid leukaemia. In this review we describe various mechanisms such as antagonistic protein-protein interaction, mutation and posttranslational modifications of C/EBPalpha which lead to its transcriptional inhibition and render C/EBPalpha inactive in its functions.
Collapse
Affiliation(s)
- A K Trivedi
- Drug Target Discovery and Development Division, Central Drug Research Institute (CDRI), Lucknow 226001, India.
| | | | | | | |
Collapse
|
61
|
Liu Y, Cao Y, Liang D, Gao Y, Xia T, Robertson ES, Lan K. Kaposi's sarcoma-associated herpesvirus RTA activates the processivity factor ORF59 through interaction with RBP-Jkappa and a cis-acting RTA responsive element. Virology 2008; 380:264-75. [PMID: 18786687 DOI: 10.1016/j.virol.2008.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 01/02/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) displays two life modes, latency and lytic reactivation in the infected host cells which are equally important for virus mediated pathogenesis. During latency only a small number of genes are expressed. Under specific conditions, KSHV can undergo lytic replication with the production of viral progeny. One immediate-early gene RTA, encoded by open reading frame 50 of KSHV, has been shown to play a critical role in switching the viral latency to lytic reactivation. Over-expression of RTA from a heterologous promoter is sufficient for driving KSHV lytic replication which results in production of viral progeny. In the present study, we show that RTA can activate the expression of the ORF59 which encodes the processivity factor essential for DNA replication during lytic reactivation. We also show that RTA regulates ORF59 promoter through interaction with RBP-Jkappa as well as a cis-acting RTA responsive element within the promoter. In the context of KSHV infected cells, the upregulation of ORF59 is a direct response to RTA expression. Taken together, our findings provide new evidence to explain the mechanism by which RTA can regulate its downstream gene ORF59, further increasing our understanding of the biology of KSHV lytic replication.
Collapse
Affiliation(s)
- Yunhua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
62
|
Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors. Nat Med 2008; 14:1118-22. [PMID: 18776891 DOI: 10.1038/nm.1864] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/10/2008] [Indexed: 12/13/2022]
Abstract
We investigated the possibility of using a pharmacologic agent to modulate viral gene expression to target radiotherapy to tumor tissue. In a mouse xenograft model, we had previously shown targeting of [(125)I]2'-fluoro-2'-deoxy-beta-D-5-iodouracil-arabinofuranoside ([(125)I]FIAU) to tumors engineered to express the Epstein-Barr virus thymidine kinase (EBV-TK). Here we extend those results to targeting of a therapeutic radiopharmaceutical [(131)I]FIAU to slow or stop tumor growth or to achieve tumor regression. These outcomes were achieved in xenografts with tumors that constitutively expressed the EBV-TK. With naturally infected EBV tumor cell lines (Burkitt's lymphoma and gastric carcinoma), activation of viral gene expression by pretreatment with bortezomib was required. Marked changes in tumor growth could also be achieved in naturally infected Kaposi's sarcoma herpesvirus tumors after pretreatment with bortezomib. Bortezomib-induced enzyme-targeted radiation therapy illustrates the possibility of pharmacologically modulating tumor gene expression to result in targeted radiotherapy.
Collapse
|
63
|
Identification of direct transcriptional targets of the Kaposi's sarcoma-associated herpesvirus Rta lytic switch protein by conditional nuclear localization. J Virol 2008; 82:10709-23. [PMID: 18715905 DOI: 10.1128/jvi.01012-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lytic reactivation from latency is critical for the pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that the 691-amino-acid (aa) KSHV Rta transcriptional transactivator is necessary and sufficient to reactivate the virus from latency. Viral lytic cycle genes, including those expressing additional transactivators and putative oncogenes, are induced in a cascade fashion following Rta expression. In this study, we sought to define Rta's direct targets during reactivation by generating a conditionally nuclear variant of Rta. Wild-type Rta protein is constitutively localized to cell nuclei and contains two putative nuclear localization signals (NLSs). Only one NLS (NLS2; aa 516 to 530) was required for the nuclear localization of Rta, and it relocalized enhanced green fluorescent protein exclusively to cell nuclei. The results of analyses of Rta NLS mutants demonstrated that proper nuclear localization of Rta was required for transactivation and the stimulation of viral reactivation. RTA with NLS1 and NLS2 deleted was fused to the hormone-binding domain of the murine estrogen receptor to generate an Rta variant whose nuclear localization and ability to transactivate and induce reactivation were tightly controlled posttranslationally by the synthetic hormone tamoxifen. We used this strategy in KSHV-infected cells treated with protein synthesis inhibitors to identify direct transcriptional targets of Rta. Rta activated only eight KSHV genes in the absence of de novo protein synthesis. These direct transcriptional targets of Rta were transactivated to different levels and included the genes nut-1/PAN, ORF57/Mta, ORF56/Primase, K2/viral interleukin-6 (vIL-6), ORF37/SOX, K14/vOX, K9/vIRF1, and ORF52. Our data suggest that the induction of most of the KSHV lytic cycle genes requires additional protein expression after the expression of Rta.
Collapse
|
64
|
Harrison SM, Whitehouse A. Kaposi's sarcoma-associated herpesvirus (KSHV) Rta and cellular HMGB1 proteins synergistically transactivate the KSHV ORF50 promoter. FEBS Lett 2008; 582:3080-4. [PMID: 18692049 DOI: 10.1016/j.febslet.2008.07.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/07/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus 'replication transcriptional activator' (Rta) plays a critical role in the switch from latency to lytic replication. Rta upregulates several lytic KSHV genes, including its own, through multiple mechanisms. We demonstrate that cellular HMGB1 binds and synergistically upregulates the ORF50 promoter in conjunction with Rta. No direct interaction between Rta and HMGB1 was observed, however a ternary complex is formed in the presence of Oct1. Furthermore, deletion of an Oct-1 binding site within the ORF50 promoter ablates the HMGB1-mediated synergistic response. These results suggest Rta autostimulation may be mediated by a transient complex involving Oct1 and HMGB1.
Collapse
Affiliation(s)
- Sally M Harrison
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
65
|
A review of the biology of bovine herpesvirus type 1 (BHV-1), its role as a cofactor in the bovine respiratory disease complex and development of improved vaccines. Anim Health Res Rev 2008; 8:187-205. [PMID: 18218160 DOI: 10.1017/s146625230700134x] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection of cattle by bovine herpesvirus type 1 (BHV-1) can lead to upper respiratory tract disorders, conjunctivitis, genital disorders and immune suppression. BHV-1-induced immune suppression initiates bovine respiratory disease complex (BRDC), which costs the US cattle industry approximately 3 billion dollars annually. BHV-1 encodes at least three proteins that can inhibit specific arms of the immune system: (i) bICP0 inhibits interferon-dependent transcription, (ii) the UL41.5 protein inhibits CD8+ T-cell recognition of infected cells by preventing trafficking of viral peptides to the surface of the cells and (iii) glycoprotein G is a chemokine-binding protein that prevents homing of lymphocytes to sights of infection. Following acute infection of calves, BHV-1 can also infect and induce high levels of apoptosis of CD4+ T-cells. Consequently, the ability of BHV-1 to impair the immune response can lead to BRDC. Following acute infection, BHV-1 establishes latency in sensory neurons of trigeminal ganglia (TG) and germinal centers of pharyngeal tonsil. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Two viral genes, the latency related gene and ORF-E are abundantly expressed during latency, suggesting that they regulate the latency-reactivation cycle. The ability of BHV-1 to enter permissive cells, infect sensory neurons and promote virus spread from sensory neurons to mucosal surfaces following reactivation from latency is also regulated by several viral glycoproteins. The focus of this review is to summarize the biology of BHV-1 and how this relates to BRDC.
Collapse
|
66
|
Jiang Y, Xu D, Zhao Y, Zhang L. Mutual inhibition between Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus lytic replication initiators in dually-infected primary effusion lymphoma. PLoS One 2008; 3:e1569. [PMID: 18253508 PMCID: PMC2215330 DOI: 10.1371/journal.pone.0001569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/11/2008] [Indexed: 01/15/2023] Open
Abstract
Background Both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are members of the human gamma herpesvirus family: each is associated with various human cancers. The majority of AIDS-associated primary effusion lymphoma (PEL) are co-infected with both KSHV and EBV. Dually-infected PELs selectively switch from latency to lytic replication of either KSHV or EBV in response to chemical stimuli. KSHV replication and transcription activator (K-RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication, while EBV BZLF1 gene product (EBV-Z) is a critical initiator for induction of EBV lytic replication. Methodology/Principal Findings We show K-RTA and EBV-Z are co-localized and physically interact with each other in dually-infected PELs. K-RTA inhibits the EBV lytic replication by nullifying EBV-Z-mediated EBV lytic gene activation. EBV-Z inhibits KSHV lytic gene expression by blocking K-RTA-mediated transactivations. The physical interaction between K-RTA and EBV-Z are required for the mutual inhibition of the two molecules. The leucine heptapeptide repeat (LR) region in K-RTA and leucine zipper region in EBV-Z are involved in the physical interactions of the two molecules. Finally, initiation of KSHV lytic gene expression is correlated with the reduction of EBV lytic gene expression in the same PEL cells. Conclusions/Significance In this report, how the two viruses interact with each other in dually infected PELs is addressed. Our data may provide a possible mechanism for maintaining viral latency and for selective lytic replication in dually infected PELs, i.e., through mutual inhibition of two critical lytic replication initiators. Our data about putative interactions between EBV and KSHV would be applicable to the majority of AIDS-associated PELs and may be relevant to the pathogenesis of PELs.
Collapse
Affiliation(s)
- Yanjun Jiang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Dongsheng Xu
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yong Zhao
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- *E-mail:
| |
Collapse
|
67
|
Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in spliceosome-mediated RNA splicing. J Virol 2008; 82:2792-801. [PMID: 18184716 DOI: 10.1128/jvi.01856-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8beta cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8beta and production of K8alpha (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8beta pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts.
Collapse
|
68
|
Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 2007; 371:139-54. [PMID: 17964626 DOI: 10.1016/j.virol.2007.09.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/17/2007] [Accepted: 09/27/2007] [Indexed: 12/22/2022]
Abstract
Lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) promotes the progression of Kaposi's sarcoma (KS), a dominant malignancy in patients with AIDS. While 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced KSHV reactivation from latency is mediated by the protein kinase C delta and MEK/ERK mitogen-activated protein kinase (MAPK) pathways, we have recently shown that the MEK/ERK, JNK and p38 MAPK pathways modulate KSHV lytic replication during productive primary infection of human umbilical vein endothelial cells [Pan, H., Xie, J., Ye, F., Gao, S.J., 2006. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80 (11), 5371-5382]. Here, we report that, besides the MEK/ERK pathway, the JNK and p38 MAPK pathways also mediate TPA-induced KSHV reactivation from latency. The MEK/ERK, JNK and p38 MAPK pathways were constitutively activated in latent KSHV-infected BCBL-1 cells. TPA treatment enhanced the levels of activated ERK and p38 but not those of activated JNK. Inhibitors of all three MAPK pathways reduced TPA-induced production of KSHV infectious virions in BCBL-1 cells in a dose-dependent fashion. The inhibitors blocked KSHV lytic replication at the early stage(s) of reactivation, and reduced the expression of viral lytic genes including RTA, a key immediate-early transactivator of viral lytic replication. Activation of MAPK pathways was necessary and sufficient for activating the promoter of RTA. Furthermore, we showed that the activation of RTA promoter by MAPK pathways was mediated by their downstream target AP-1. Together, these findings suggest that MAPK pathways might have general roles in regulating the life cycle of KSHV by mediating both viral infection and switch from viral latency to lytic replication.
Collapse
Affiliation(s)
- Jianping Xie
- Tumor Virology Program, Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
69
|
Masa SR, Lando R, Sarid R. Transcriptional regulation of the open reading frame 35 encoded by Kaposi's sarcoma-associated herpesvirus. Virology 2007; 371:14-31. [PMID: 17963810 DOI: 10.1016/j.virol.2007.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 11/26/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirinae and is causally associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The KSHV genome encodes over 85 genes; the function of some is entirely unknown. We have characterized the transcriptional regulation of a conserved and uncharacterized Gammaherpesvirinae open reading frame, orf35, which lies in a cluster of several overlapping genes, orf34 to orf38. We identified the transcription start site and analyzed upstream sequences. We found that expression of the KSHV lytic replication and transcription activator (RTA) strongly increased the orf35 promoter activity through a 46-nucleotide region which includes a conserved AP-1 binding site. Electrophoretic mobility shift assay demonstrated direct binding of cJUN and cFOS to the predicted AP-1 binding site. Finally, using a mutated promoter lacking the AP-1 site and dominant-negative cFOS, we established that the RTA-mediated orf35 transactivation is AP-1-dependent.
Collapse
Affiliation(s)
- Shiri-Rivka Masa
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 52900, Israel
| | | | | |
Collapse
|
70
|
Palmeri D, Spadavecchia S, Carroll KD, Lukac DM. Promoter- and cell-specific transcriptional transactivation by the Kaposi's sarcoma-associated herpesvirus ORF57/Mta protein. J Virol 2007; 81:13299-314. [PMID: 17913801 PMCID: PMC2168867 DOI: 10.1128/jvi.00732-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) Mta protein, encoded by open reading frame 57, is a transactivator of gene expression that is essential for productive viral replication. Previous studies have suggested both transcriptional and posttranscriptional roles for Mta, but little is known regarding Mta's transcriptional function. In this study, we demonstrate that Mta cooperates with the KSHV lytic switch protein, Rta, to reactivate KSHV from latency, but Mta has little effect on reactivation when expressed alone. We demonstrate that the Mta and Rta proteins are expressed with similar but distinct kinetics during KSHV reactivation. In single-cell analyses, Mta expression coincides tightly with progression to full viral reactivation. We demonstrate with promoter reporter assays that while Rta activates transcription in all cell lines tested, Mta's ability to transactivate promoters, either alone or synergistically with Rta, is cell and promoter specific. In particular, Mta robustly transactivates the nut-1/PAN promoter independently of Rta in 293 and Akata-31 cells. Using nuclear run-on assays, we demonstrate that Mta stimulates transcriptional initiation in 293 cells. Rta and Mta physically interact in infected cell extracts, and this interaction requires the intact leucine repeat and central region of Rta in vitro. We demonstrate that Mta also binds to the nut-1/PAN promoter DNA in vitro and in infected cells. An Mta mutant with a lesion in a putative A/T hook domain is altered in DNA binding and debilitated in transactivation. We propose that one molecular mechanism of Mta-mediated transactivation is a direct effect on transcription by direct and indirect promoter association.
Collapse
Affiliation(s)
- Diana Palmeri
- Department of Microbiology and Molecular Genetics and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey/New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
71
|
Rossetto C, Gao Y, Yamboliev I, Papousková I, Pari G. Transcriptional repression of K-Rta by Kaposi's sarcoma-associated herpesvirus K-bZIP is not required for oriLyt-dependent DNA replication. Virology 2007; 369:340-50. [PMID: 17889220 PMCID: PMC2134788 DOI: 10.1016/j.virol.2007.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/15/2007] [Accepted: 08/17/2007] [Indexed: 01/16/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus origin-dependent DNA replication requires the core replication proteins plus K-Rta and K-bZIP. To determine which K-bZIP protein domains contribute to oriLyt-dependent DNA replication and facilitate suppression of K-Rta-mediated transcriptional activation, we generated a series of deletion constructs and site-directed mutations within the K-bZIP ORF. Mutation of key leucine residues within the putative leucine zipper (LZ) motif eliminated the ability of the protein to homodimerize and complement oriLyt-dependent DNA replication. Deletion of the basic amino acid region (BR) or LZ domain did not affect the ability of K-bZIP to bind to K-Rta indicating that either region contributes to heterodimerization with K-Rta. However, deletions or mutations introduced into both the LZ and BR resulted in elimination of the suppressive activity of K-bZIP even in the presence of a K-bZIP-K-Rta interaction. Interestingly, mutants that lacked the ability to suppress K-Rta transactivation were still capable of complementing oriLyt-dependent DNA replication, indicating that this activity does not contribute to the DNA synthesis-related activity of K-bZIP.
Collapse
Affiliation(s)
| | | | | | | | - Gregory Pari
- *Corresponding Author: University of Nevada-Reno, Department of Microbiology, Howard Bldg. 210, Reno, NV 89557,
| |
Collapse
|
72
|
Papugani A, Coleman T, Jones C, Zhang L. The interaction between KSHV RTA and cellular RBP-Jkappa and their subsequent DNA binding are not sufficient for activation of RBP-Jkappa. Virus Res 2007; 131:1-7. [PMID: 17850910 PMCID: PMC2225583 DOI: 10.1016/j.virusres.2007.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. RTA activates promoters by several mechanisms. RTA can bind to sequences in viral promoters and activate transcription. In addition, RTA interacts with the cellular recombination signal sequence-binding protein-J kappa (RBP-Jkappa), a transcriptional repressor, converts the repressor into an activator and activates viral promoters via RBP-Jkappa. Because RBP-Jkappa is required for RTA to activate lytic replication, it is important to understand how RTA cooperates with RBP-Jkappa protein to activate KSHV lytic replication program. Previously, we identified an RTA mutant, RTA-K152E, which has a defect in its direct DNA-binding activity. In this report, the effect of the mutant RTA on KSHV activation via RBP-Jkappa protein is examined. We demonstrate that RTA-K152E interacts with RBP-Jkappa physically and the mutant RTA and RBP-Jkappa complex binds to target DNA properly in vivo and in vitro. However, the complex of RTA-K152E and RBP-Jkappa does not activate transcription. Furthermore, the RTA mutant (RTA-K12E) inhibits cellular Notch-mediated RBP-Jkappa activation. These data collectively suggest that the complex between KSHV RTA and cellular RBP-Jkappa and the subsequent DNA binding by the complex are not sufficient for the activation of RBP-Jkappa protein. Other factor(s) whether additional cofactor(s) in the complex or the intrinsic conformation of RTA, are predicted to be required for the activation of RBP-Jkappa protein by RTA.
Collapse
Affiliation(s)
- Anil Papugani
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Tricia Coleman
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588
| | - Clinton Jones
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588
- Department of Veterinary Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Luwen Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68588
- * Corresponding author: E141 Beadle Center, Nebraska Center for Virology, University of Nebraska, 1901 Vine St., Lincoln, NE 68588. USA. Phone: 01-402-472-5905; Fax: 01-402-472-8722; E-mail:
| |
Collapse
|
73
|
Chandriani S, Ganem D. Host transcript accumulation during lytic KSHV infection reveals several classes of host responses. PLoS One 2007; 2:e811. [PMID: 17726541 PMCID: PMC1950738 DOI: 10.1371/journal.pone.0000811] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/30/2007] [Indexed: 11/19/2022] Open
Abstract
Lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with an extensive shutoff of host gene expression, mediated chiefly by accelerated mRNA turnover due to expression of the viral SOX protein. We have previously identified a small number of host mRNAs that can escape SOX-mediated degradation. Here we present a detailed, transcriptome-wide analysis of host shutoff, with careful microarray normalization to allow rigorous determination of the magnitude and extent of transcript loss. We find that the extent of transcript reduction represents a continuum of susceptibilities of transcripts to virus-mediated shutoff. Our results affirm that the levels of over 75% of host transcripts are substantially reduced during lytic infection, but also show that another ∼20% of cellular mRNAs declines only slightly (less than 2-fold) during the course of infection. Approximately 2% of examined cellular genes are strongly upregulated during lytic infection, most likely due to transcriptional induction of mRNAs that display intrinsic SOX-resistance.
Collapse
Affiliation(s)
- Sanjay Chandriani
- Howard Hughes Medical Institute, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California, United States of America
| | - Don Ganem
- Howard Hughes Medical Institute, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Yu F, Feng J, Harada JN, Chanda SK, Kenney SC, Sun R. B cell terminal differentiation factor XBP-1 induces reactivation of Kaposi's sarcoma-associated herpesvirus. FEBS Lett 2007; 581:3485-8. [PMID: 17617410 DOI: 10.1016/j.febslet.2007.06.056] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/15/2007] [Accepted: 06/22/2007] [Indexed: 11/20/2022]
Abstract
The herpesvirus life cycle has two distinct phases: latency and lytic replication. The viral immediate early protein replication and transcription activator (RTA) plays a central role in mediating the balance between these two phases. Here, we demonstrate that a B cell terminal differentiation factor X-box binding protein 1 (XBP-1) can effectively initiates Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation by activating the RTA promoter, which results in the induction of other viral lytic transcripts. We also showed splicing of the XBP-1 mRNA which specifically occurs during B cell differentiation is critical in triggering KSHV reactivation. This work demonstrates the integration of KSHV reactivation mechanisms with host cell differentiation.
Collapse
Affiliation(s)
- Fuqu Yu
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, CHS23-120, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
75
|
Carroll KD, Khadim F, Spadavecchia S, Palmeri D, Lukac DM. Direct interactions of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta protein with the cellular protein octamer-1 and DNA are critical for specifying transactivation of a delayed-early promoter and stimulating viral reactivation. J Virol 2007; 81:8451-67. [PMID: 17537858 PMCID: PMC1951345 DOI: 10.1128/jvi.00265-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) delayed-early K-bZIP promoter contains an ORF50/Rta binding site whose sequence is conserved with the ORF57 promoter. Mutation of the site in the full-length K-bZIP promoter reduced Rta-mediated transactivation by greater than 80%. The K-bZIP element contains an octamer (Oct) binding site that overlaps the Rta site and is well conserved with Oct elements found in the immediate-early promoters of herpes simplex virus type 1(HSV-1). The cellular protein Oct-1, but not Oct-2, binds to the K-bZIP element in a sequence-specific fashion in vitro and in vivo and stimulates Rta binding to the promoter DNA. The coexpression of Oct-1 enhances Rta-mediated transactivation of the wild type but not the mutant K-bZIP promoter, and Oct-1 and Rta proteins bind to each other directly in vitro. Mutations of Rta within an amino acid sequence conserved with HSV-1 virion protein 16 eliminate Rta's interactions with Oct-1 and K-bZIP promoter DNA but not RBP-Jk. The binding of Rta to both Oct-1 and DNA contributes to the transactivation of the K-bZIP promoter and viral reactivation, and Rta mutants deficient for both interactions are completely debilitated. Our data suggest that the Rta/Oct-1 interaction is essential for optimal KSHV reactivation. Transfections of mouse embryo fibroblasts and an endothelial cell line suggest cell-specific differences in the requirement for Oct-1 or RBP-Jk in Rta-mediated transactivation of the K-bZIP promoter. We propose a model in which Rta transactivation of the promoter is specified by the combination of DNA binding and interactions with several cellular DNA binding proteins including Oct-1.
Collapse
Affiliation(s)
- Kyla Driscoll Carroll
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey/New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
76
|
Yang Z, Wood C. The transcriptional repressor K-RBP modulates RTA-mediated transactivation and lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6294-306. [PMID: 17409159 PMCID: PMC1900108 DOI: 10.1128/jvi.02648-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The replication and transcription activator (RTA) protein of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV)/human herpesvirus 8 functions as the key regulator to induce KSHV lytic replication from latency through activation of the lytic cascade of KSHV. Elucidation of the host factors involved in RTA-mediated transcriptional activation is pivotal for understanding the transition between viral latency and lytic replication. KSHV-RTA binding protein (K-RBP) was previously isolated as a cellular RTA binding protein of unknown function. Sequence analysis showed that K-RBP contains a Kruppel-associated box (KRAB) at the N terminus and 12 adjacent zinc finger motifs. In similarity to other KRAB-containing zinc finger proteins, K-RBP is a transcriptional repressor. Mutational analysis revealed that the KRAB domain is responsible for the transcriptional suppression activity of this protein and that the repression is histone deacetylase independent. K-RBP was found to repress RTA-mediated transactivation and interact with TIF1beta (transcription intermediary factor 1beta), a common corepressor of KRAB-containing protein, to synergize with K-RBP in repression. Overexpression and knockdown experiment results suggest that K-RBP is a suppressor of RTA-mediated KSHV reactivation. Our findings suggest that the KRAB-containing zinc finger protein K-RBP can suppress RTA-mediated transactivation and KSHV lytic replication and that KSHV utilizes this protein as a regulator to maintain a balance between latency and lytic replication.
Collapse
Affiliation(s)
- Zhilong Yang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, E249 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
77
|
Bu W, Carroll KD, Palmeri D, Lukac DM. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50/Rta lytic switch protein functions as a tetramer. J Virol 2007; 81:5788-806. [PMID: 17392367 PMCID: PMC1900300 DOI: 10.1128/jvi.00140-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus open reading frame 50 (ORF50) protein (called Rta), is necessary and sufficient for reactivation of the virus from latency. We previously demonstrated that a truncated mutant of ORF50 lacking its C-terminal transcriptional activation domain, called ORF50DeltaSTAD, formed mixed multimers with wild-type (WT) ORF50 and functioned as a dominant negative inhibitor of reactivation. For this report, we investigated the requirements for multimerization of ORF50/Rta in transactivation and viral reactivation. We analyzed multimerization of WT, mutant, and chimeric ORF50 proteins, using Blue Native polyacrylamide gel electrophoresis and size exclusion chromatography. WT and mutant ORF50 proteins form tetramers and higher-order multimers, but not monomers, in solution. The proline-rich, N-terminal leucine heptapeptide repeat (LR) of ORF50 (amino acids [aa] 244 to 275) is necessary but not sufficient for oligomer formation and functions in concert with the central portion of ORF50/Rta (aa 245 to 414). The dominant negative mutant ORF50DeltaSTAD requires the LR to form mixed multimers with WT ORF50 and inhibit its function. In the context of the WT ORF50/Rta protein, mutagenesis of the LR, or replacement of the LR by heterologous multimerization domains from the GCN4 or p53 proteins, demonstrates that tetramers of Rta are sufficient for transactivation and viral reactivation. Mutants of Rta that are unable to form tetramers but retain the ability to form higher-order multimers are reduced in function or are nonfunctional. We concluded that the proline content, but not the leucine content, of the LR is critical for determining the oligomeric state of Rta.
Collapse
Affiliation(s)
- Wei Bu
- University of Medicine and Dentistry of New Jersey/New Jersey Medical School, Department of Microbiology and Molecular Genetics and Graduate School of Biomedical Sciences, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
78
|
Liu J, Martin H, Shamay M, Woodard C, Tang QQ, Hayward SD. Kaposi's sarcoma-associated herpesvirus LANA protein downregulates nuclear glycogen synthase kinase 3 activity and consequently blocks differentiation. J Virol 2007; 81:4722-31. [PMID: 17314169 PMCID: PMC1900136 DOI: 10.1128/jvi.02548-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) protein interacts with glycogen synthase kinase 3 (GSK-3) and relocalizes GSK-3 in a manner that leads to stabilization of beta-catenin and upregulation of beta-catenin-responsive cell genes. The LANA-GSK-3 interaction was further examined to determine whether there were additional downstream consequences. In the present study, the nuclear GSK-3 bound to LANA in transfected cells and in BCBL1 primary effusion lymphoma cells was found to be enriched for the inactive serine 9-phosphorylated form of GSK-3. The mechanism of inactivation of nuclear GSK-3 involved LANA recruitment of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the ribosomal S6 kinase 1 (RSK1). ERK1/2 and RSK1 coprecipitated with LANA, and LANA was a substrate for ERK1 in vitro. A model is proposed for the overall inactivation of nuclear GSK-3 that incorporates the previously described GSK-3 phosphorylation of LANA itself. Functional inactivation of nuclear GSK-3 was demonstrated by the ability of LANA to limit phosphorylation of the known GSK-3 substrates C/EBPbeta and C/EBPalpha. The effect of LANA-mediated ablation of C/EBP phosphorylation on differentiation was modeled in the well-characterized 3T3L1 adipogenesis system. LANA-expressing 3T3L1 cells were impaired in their ability to undergo differentiation and adipogenesis. C/EBPbeta induction followed the same time course as that seen in vector-transduced cells, but there was delayed and reduced induction of C/EBPbeta transcriptional targets in LANA-expressing cells. We conclude that LANA inactivates nuclear GSK-3 and modifies the function of proteins that are GSK-3 substrates. In the case of C/EBPs, this translates into LANA-mediated inhibition of differentiation.
Collapse
Affiliation(s)
- Jianyong Liu
- Johns Hopkins University School of Medicine, Bunting-Blaustein Building CRB308, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
79
|
Meyer F, Perez S, Geiser V, Sintek M, Inman M, Jones C. A protein encoded by the bovine herpesvirus 1 latency-related gene interacts with specific cellular regulatory proteins, including CCAAT enhancer binding protein alpha. J Virol 2007; 81:59-67. [PMID: 16987965 PMCID: PMC1797275 DOI: 10.1128/jvi.01171-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/12/2006] [Indexed: 01/28/2023] Open
Abstract
Following acute infection, bovine herpesvirus 1 establishes latency in sensory neurons of trigeminal ganglia (TG). Reactivation from latency occurs periodically, resulting in the shedding of infectious virus. The latency-related (LR) RNA is abundantly expressed in TG of latently infected calves, and the expression of LR proteins is necessary for dexamethasone-induced reactivation from latency. Previously published studies also identified an alternatively spliced LR transcript which is abundantly expressed in TG at 7 days after infection and has the potential to encode a novel LR fusion protein. Seven days after infection is when extensive viral gene expression is extinguished in TG and latency is established, suggesting that LR gene products influence the establishment of latency. In this study, we used a bacterial two-hybrid assay to identify cellular proteins that interact with the novel LR fusion protein. The LR fusion protein interacts with two proteins that can induce apoptosis (Bid and Cdc42) and with CCAAT enhancer binding protein alpha (C/EBP-alpha). Additional studies confirmed that the LR fusion protein interacts with human or insect C/EBP-alpha. C/EBP-alpha protein expression is induced in TG neurons of infected calves and after dexamethasone-induced reactivation from latency. Wild-type C/EBP-alpha, but not a DNA binding mutant of C/EBP-alpha, enhances plaque formation in bovine cells. We hypothesize that interactions between the LR fusion protein and C/EBP-alpha promote the establishment of latency.
Collapse
Affiliation(s)
- Florencia Meyer
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | | | | | | | | | | |
Collapse
|
80
|
Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM. Targeted disruption of Kaposi's sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 2006; 81:1062-71. [PMID: 17108026 PMCID: PMC1797518 DOI: 10.1128/jvi.01558-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 regulates viral gene expression at the posttranscriptional level during viral lytic infection. To study its function in the context of the viral genome, we disrupted KSHV ORF57 in the KSHV genome by transposon-based mutagenesis. The insertion of the transposon into the ORF57 exon 2 region also interrupted the 3' untranslated region of KSHV ORF56, which overlaps with the ORF57 coding region. The disrupted viral genome, Bac36-Delta57, did not express ORF57, ORF59, K8alpha, K8.1, or a higher level of polyadenylated nuclear RNA after butyrate induction and could not be induced to produce infectious viruses in the presence of valproic acid, a histone deacetylase inhibitor and a novel KSHV lytic cycle inducer. The ectopic expression of ORF57 partially complemented the replication deficiency of the disrupted KSHV genome and the expression of the lytic gene ORF59. The induced production of infectious virus particles from the disrupted KSHV genome was also substantially restored by the simultaneous expression of both ORF57 and ORF56; complementation by ORF57 alone only partially restored the production of virus, and expression of ORF56 alone showed no effect. Altogether, our data indicate that in the context of the viral genome, KSHV ORF57 is essential for ORF59, K8alpha, and K8.1 expression and infectious virus production.
Collapse
Affiliation(s)
- Vladimir Majerciak
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI/NIH, 10 Center Dr., Rm. 10 S255, MSC-1868, Bethesda, MD 20892-1868, USA
| | | | | | | | | |
Collapse
|
81
|
Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 2006; 312:71-100. [PMID: 17089794 DOI: 10.1007/978-3-540-34344-8_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.
Collapse
Affiliation(s)
- M R Staudt
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Bldg, CB 7290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
82
|
Abstract
The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.
Collapse
Affiliation(s)
- H Deng
- Center for Infection and Immunity, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, PR China
| | | | | |
Collapse
|
83
|
Carroll KD, Bu W, Palmeri D, Spadavecchia S, Lynch SJ, Marras SAE, Tyagi S, Lukac DM. Kaposi's Sarcoma-associated herpesvirus lytic switch protein stimulates DNA binding of RBP-Jk/CSL to activate the Notch pathway. J Virol 2006; 80:9697-709. [PMID: 16973574 PMCID: PMC1617261 DOI: 10.1128/jvi.00746-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) lytic switch protein, Rta, is a ligand-independent inducer of the Notch signal transduction pathway, and KSHV cannot reactivate from latency in cells null for the Notch target protein RBP-Jk. Here we show that Rta promotes DNA binding of RBP-Jk, a mechanism that is fundamentally different from that established for the RBP-Jk-activating proteins, Notch intracellular domain (NICD) and Epstein-Barr virus EBNA2. Although constitutively active RBP-Jk and NICD do not transactivate KSHV promoters independently, cotransfection of an Rta mutant lacking its transactivation domain robustly restores transcriptional activation. Cooperation requires intact DNA binding sites for Rta and RBP-Jk and trimeric complex formation between the three molecules in vitro. In infected cells, RBP-Jk is virtually undetectable on a series of viral and cellular promoters during KSHV latency but is significantly enriched following Rta expression during viral reactivation. Accordingly, Rta, but not EBNA2 and NICD, reactivates the complete viral lytic cycle.
Collapse
Affiliation(s)
- Kyla Driscoll Carroll
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Arumugaswami V, Wu TT, Martinez-Guzman D, Jia Q, Deng H, Reyes N, Sun R. ORF18 is a transfactor that is essential for late gene transcription of a gammaherpesvirus. J Virol 2006; 80:9730-40. [PMID: 16973577 PMCID: PMC1617240 DOI: 10.1128/jvi.00246-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/11/2006] [Indexed: 11/20/2022] Open
Abstract
Lytic replication of the tumor-associated human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus has important implications in pathogenesis and tumorigenesis. Herpesvirus lytic genes have been temporally classified as exhibiting immediate-early (IE), early, and late expression kinetics. Though the regulation of IE and early gene expression has been studied extensively, very little is known regarding the regulation of late gene expression. Late genes, which primarily encode virion structural proteins, require viral DNA replication for their expression. We have identified a murine gammaherpesvirus 68 (MHV-68) early lytic gene, ORF18, essential for viral replication. ORF18 is conserved in both beta- and gammaherpesviruses. By generating an MHV-68 ORF18-null virus, we characterized the stage of the virus lytic cascade that requires the function of ORF18. Gene expression profiling and quantitation of viral DNA synthesis of the ORF18-null virus revealed that the expression of early genes and viral DNA replication were not affected; however, the transcription of late genes was abolished. Hence, we have identified a gammaherpesvirus-encoded factor essential for the expression of late genes independently of viral DNA synthesis.
Collapse
Affiliation(s)
- Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 23-120 Center for Health Sciences, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Lu F, Day L, Gao SJ, Lieberman PM. Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. J Virol 2006; 80:5273-82. [PMID: 16699007 PMCID: PMC1472144 DOI: 10.1128/jvi.02541-05] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/15/2006] [Indexed: 11/20/2022] Open
Abstract
Reactivation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle can be initiated by transcription activation of the ORF50 immediate early gene (Rta). We show that ORF50 transcription is actively repressed by the KSHV latency-associated nuclear antigen (LANA) during latency. Depletion of LANA by small interfering RNA derepressed ORF50 transcription in the latently infected BCBL1 pleural effusion lymphoma-derived cell line. In contrast, overexpression of LANA suppressed ORF50 mRNA levels in BCBL1 cells. ORF50 transcription was significantly elevated during primary infection with recombinant virus lacking LANA, further indicating that LANA plays a role in lytic gene silencing during the establishment of latency. Chromatin immunoprecipitation assays indicated that LANA interacts with the ORF50 promoter region in latently infected cells. Histone deacetylase inhibitors, including sodium butyrate (NaB) and trichostatin A, caused the rapid dissociation of LANA from the ORF50 promoter. NaB treatment of latently infected BCBL1 cells disrupted a stable interaction between LANA and the cellular proteins Sp1 and histone H2B. We also found immunological and radiochemical evidence that LANA is subject to lysine acetylation after NaB treatment. These findings support the role of LANA as a transcriptional repressor of lytic reactivation and provide evidence that lysine acetylation regulates LANA interactions with chromatin, Sp1, and ORF50 promoter DNA.
Collapse
Affiliation(s)
- Fang Lu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
86
|
Bowser BS, Morris S, Song MJ, Sun R, Damania B. Characterization of Kaposi's sarcoma-associated herpesvirus (KSHV) K1 promoter activation by Rta. Virology 2006; 348:309-27. [PMID: 16546233 DOI: 10.1016/j.virol.2006.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/07/2005] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
The K1 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 46-kDa transmembrane glycoprotein that possesses transforming properties, initiates signaling pathways in B cells, and prevents apoptosis. Here, we demonstrate a mechanism for activation of the K1 promoter by the Rta transactivator. Electrophoretic mobility shift assay (EMSA) analysis of the K1 promoter demonstrated that purified Rta protein bound to the K1 promoter at three locations, independent of other DNA-binding factors. Transcriptional assays revealed that only two of these Rta DNA-binding sites are functionally significant, and that they could impart Rta responsiveness to a heterologous E4 TATA box promoter. In addition, TATA-binding protein (TBP) bound to a TATA box element located 25 bp upstream of the K1 transcription start site and was also shown to associate with Rta by coimmunoprecipitation analysis. Rta transactivation may therefore be mediated in part through recruitment of TBP to target promoters.
Collapse
Affiliation(s)
- Brian S Bowser
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
87
|
Huang J, Liao G, Chen H, Wu FY, Hutt-Fletcher L, Hayward GS, Hayward SD. Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial cells. J Virol 2006; 80:1098-109. [PMID: 16414987 PMCID: PMC1346937 DOI: 10.1128/jvi.80.3.1098-1109.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The contribution of C/EBP proteins to Epstein-Barr virus (EBV) lytic gene expression and replication in epithelial cells was examined. Nasopharyngeal carcinoma cell lines constitutively expressed C/EBPbeta and had limited C/EBPalpha expression, while the AGS gastric cancer cell line expressed significant levels of both C/EBPalpha and C/EBPbeta. Induction of the lytic cycle in EBV-positive AGS/BX1 cells with phorbol ester and sodium butyrate treatment led to a transient stimulation of C/EBPbeta expression and a prolonged increase in C/EBPalpha expression. In AGS/BX1 cells, endogenous C/EBPalpha and C/EBPbeta proteins were detected associated with the ZTA and oriLyt promoters but not the RTA promoter. Electrophoretic mobility shift assays confirmed binding of C/EBP proteins to multiple sites in the ZTA and oriLyt promoters. The response of these promoters in reporter assays to transfected C/EBPalpha and C/EBPbeta proteins was consistent with the promoter binding assays and emphasized the relative importance of C/EBPs for activation of the ZTA promoter. Mutation of the oriLyt promoter proximal C/EBP site had little effect on ZTA activation of the promoter in a reporter assay. However, this mutation impaired oriLyt DNA replication, suggesting a separate replication-specific contribution for C/EBP proteins. Finally, the overall importance of C/EBP proteins for lytic gene expression was demonstrated using CHOP10 to antagonize C/EBP DNA binding activity. Introduction of CHOP10 significantly impaired induction of the ZTA, RTA, and BMRF1 proteins in chemically treated AGS/BX1 cells. Thus, C/EBPbeta and C/EBPalpha expression are associated with lytic induction in AGS cells, and expression of C/EBP proteins in epithelial cells may contribute to the tendency of these cells to exhibit constitutive low-level ZTA promoter activity.
Collapse
Affiliation(s)
- Jian Huang
- Johns Hopkins School of Medicine, Bunting-Blaustein Building CRB308, 1650 Orleans Street, Baltimore, MD 21231-1000, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Yamanegi K, Tang S, Zheng ZM. Kaposi's sarcoma-associated herpesvirus K8beta is derived from a spliced intermediate of K8 pre-mRNA and antagonizes K8alpha (K-bZIP) to induce p21 and p53 and blocks K8alpha-CDK2 interaction. J Virol 2006; 79:14207-21. [PMID: 16254356 PMCID: PMC1280184 DOI: 10.1128/jvi.79.22.14207-14221.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a lymphotropic DNA tumor virus that induces Kaposi's sarcoma and AIDS-related primary effusion lymphoma. KSHV open reading frame 50 and K8 genes in early viral lytic infection express, respectively, a tricistronic and a bicistronic pre-mRNA, which undergo alternative splicing to create two major spliced mRNA isoforms, alpha and beta, by inclusion (beta) or exclusion (alpha) of an intron at nucleotides 75563 to 75645. This intron contains some suboptimal features, which cause the intron 5' splice site (ss) to interact weakly with U1 snRNA and the 3' ss to bind a U2 auxiliary factor, U2AF, with low affinity. Optimization of this intron in K8 (K8 intron 2) promoted the interaction of the 5' ss with U1 and the 3' ss with U2AF, resulting in a substantial increase in intron splicing. Splicing of K8 intron 2 has also been shown to be stimulated by the splicing of a downstream intron. This was confirmed by the insertion of a human beta-globin intron into the K8beta exon 3-exon 4 splice junction, which promoted splicing of K8beta intron 2 and conversion of the K8beta mRNA to the K8alpha mRNA that encodes a K-bZIP protein. Intron 2 contains a premature termination codon, yet the K8beta mRNA is insensitive to nonsense-mediated mRNA decay, suggesting that the truncated K8beta protein may have a biological function. Indeed, although the truncated K8beta protein is missing only a C-terminal leucine zipper domain from the K-bZIP, its expression antagonizes the ability of the K-bZIP to induce p53 and p21 and blocks K-bZIP-CDK2 interaction through interfering K8alpha mRNA production.
Collapse
Affiliation(s)
- Koji Yamanegi
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1868, USA
| | | | | |
Collapse
|
89
|
Wakenshaw L, Walters MS, Whitehouse A. The Herpesvirus saimiri replication and transcription activator acts synergistically with CCAAT enhancer binding protein alpha to activate the DNA polymerase promoter. J Virol 2005; 79:13548-60. [PMID: 16227275 PMCID: PMC1262591 DOI: 10.1128/jvi.79.21.13548-13560.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The open reading frame (ORF) 50 gene product, also known as the replication and transcription activator (Rta), is an immediate-early gene which is well conserved among all gamma-2 herpesviruses and plays a pivotal role in regulating the latent-lytic switch. Herpesvirus saimiri (HVS) ORF 50a functions as a sequence-specific transactivator capable of activating delayed-early (DE) gene expression via binding directly to an ORF 50 response element (RE) within the respective promoter. Analysis of the ORF 50 REs have identified two distinct types within HVS gene promoters. The first comprises a consensus sequence motif, CCN(9)GG, the second an AT-rich sequence. Here we demonstrate that ORF 50a is capable of transactivating the DE ORF 9 promoter which encodes the DNA polymerase. Deletion analysis of the ORF 9 promoter mapped the ORF 50 RE to a 95-bp region situated 126 bp upstream of the initiation codon. Gel retardation analysis further mapped the RE to a 28-bp fragment, which was able to confer ORF 50 responsiveness on an enhancerless simian virus 40 minimal promoter. Furthermore, sequence analysis identified multiple CCAAT enhancer binding protein alpha (C/EBPalpha) binding sites within the ORF 9 promoter and specifically two within the close vicinity of the AT-rich ORF 50 RE. Analysis demonstrated that the HVS ORF 50a and C/EBPalpha proteins associate with the ORF 9 promoter in vivo, interact directly, and synergistically activate the ORF 9 promoter by binding to adjacent binding motifs. Overall, these data suggest a cooperative interaction between HVS ORF 50a and C/EBPalpha proteins to activate the DNA polymerase promoter during early stages of the lytic replication cycle.
Collapse
Affiliation(s)
- Louise Wakenshaw
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
90
|
Lu F, Day L, Lieberman PM. Kaposi's sarcoma-associated herpesvirus virion-induced transcription activation of the ORF50 immediate-early promoter. J Virol 2005; 79:13180-5. [PMID: 16189019 PMCID: PMC1235868 DOI: 10.1128/jvi.79.20.13180-13185.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lytic cycle reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) can be initiated by transcription activation of the ORF50 immediate-early (IE) gene promoter (ORF50p). We provide evidence that KSHV virions stimulate transcription of ORF50p. Virion activation was resistant to UV inactivation and cycloheximide treatment. The virion-responsive element was mapped to core promoter region -150 to + 1 relative to the ORF50 initiation codon. Electrophoretic mobility shift assays and chromatin immunoprecipitation suggest that KSHV virions indirectly alter the protein composition and chromatin modifications at ORF50p. These data suggest that KSHV virions possess an IE trans-inducing function similar to that observed in alpha- and betaherpesviruses.
Collapse
Affiliation(s)
- Fang Lu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
91
|
Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC. Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 2005; 79:8493-505. [PMID: 15956592 PMCID: PMC1143749 DOI: 10.1128/jvi.79.13.8493-8505.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) maintains a latent infection in primary effusion lymphoma cells but can be induced to enter full lytic replication by exposure to a variety of chemical inducing agents or by expression of the KSHV-encoded replication and transcription activator (RTA) protein. During latency, only a few viral genes are expressed, and these include the three genes of the so-called latency transcript (LT) cluster: v-FLIP (open reading frame 71 [ORF71]), v-cyclin (ORF72), and latency-associated nuclear antigen (ORF73). During latency, all three open reading frames are transcribed from a common promoter as part of a multicistronic mRNA. Subsequent alternative mRNA splicing and internal ribosome entry allows for the expression of each protein. Here, we show that transcription of LT cassette mRNA can be induced by RTA through the activation of a second promoter (LT(i)) immediately downstream of the constitutively active promoter (LT(c)). We identified a minimal cis-regulatory region, which overlaps with the promoter for the bicistronic K14/v-GPCR delayed early gene that is transcribed in the opposite direction. In addition to a TATA box at -30 relative to the LT(i) mRNA start sites, we identified three separate RTA response elements that are also utilized by the K14/v-GPCR promoter. Interestingly, LT(i) is unresponsive to sodium butyrate, a potent inducer of lytic replication. This suggests there is a previously unrecognized class of RTA-responsive promoters that respond to direct, but not indirect, induction of RTA. These studies highlight the fact that induction method can influence the precise program of viral gene expression during early events in reactivation and also suggest a mechanism by which RTA contributes to establishment of latency during de novo infections.
Collapse
Affiliation(s)
- Satoko Matsumura
- Department of Microbiology and NYU Cancer Institute, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
92
|
Wang J, Zhang J, Zhang L, Harrington W, West JT, Wood C. Modulation of human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol 2005; 79:2420-31. [PMID: 15681443 PMCID: PMC546578 DOI: 10.1128/jvi.79.4.2420-2431.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8)/Kaposi's sarcoma-associated herpesvirus infection goes through lytic and latent phases that are regulated by viral gene products, but very little is known about the involvement of host proteins. The replication and transcription activator (RTA) is a viral protein sufficient to initiate lytic replication by activating downstream genes, including the viral early gene open reading frame 57 (ORF 57), which codes for a posttranscriptional activator. In this study, we demonstrate that cellular interferon regulatory factor 7 (IRF-7) negatively regulates this process by competing with RTA for binding to the RTA response element in the ORF 57 promoter to down-regulate RTA-induced gene expression. We also show that alpha interferon represses RTA-mediated transactivation and that repression involves IRF-7. Our study indicates that upon HHV-8 infection, the host responds by suppression of lytic gene expression through binding of IRF-7 to the lytic viral gene promoter. These findings suggest that HHV-8 has developed a novel mechanism to induce but then subvert the innate antiviral response, specifically the interferon-signaling pathway, to regulate RTA activity and ultimately the viral latent/lytic replicative cycle.
Collapse
Affiliation(s)
- Jinzhong Wang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska--Lincoln, 1901 Vine St., Lincoln, NE 68588-0666, USA
| | | | | | | | | | | |
Collapse
|
93
|
Chang PJ, Shedd D, Miller G. Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol 2005; 79:8750-63. [PMID: 15994769 PMCID: PMC1168723 DOI: 10.1128/jvi.79.14.8750-8763.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A transcriptional activator encoded in open reading frame 50 (ORF50) of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome initiates the viral lytic cycle. Here we classify four lytic cycle genes on the basis of several characteristics of the ORF50 response elements (ORF50 REs) in their promoters: nucleotide sequence homology, the capacity to bind ORF50 protein in vitro, the ability to bind the cellular protein RBP-Jkappa in vitro, and the capacity to confer activation by DNA binding-deficient mutants of ORF50 protein. ORF50 expressed in human cells binds the promoters of PAN and K12 but does not bind ORF57 or vMIP-1 promoters. Conversely, the RBP-Jkappa protein binds ORF57 and vMIP-1 but not PAN or K12 promoters. DNA binding-deficient mutants of ORF50 protein differentiate these two subclasses of promoters in reporter assays; the PAN and K12 promoters cannot be activated, while the ORF57 and vMIP-1 promoters are responsive. Although DNA binding-deficient mutants of ORF50 protein are defective in activating direct targets, they are nonetheless capable of activating the lytic cascade of KSHV. Significantly, DNA binding-deficient ORF50 mutants are competent to autostimulate expression of endogenous ORF50 and to autoactivate ORF50 promoter reporters. The experiments show that ORF50 protein activates downstream targets by at least two distinct mechanisms: one involves direct binding of ORF50 REs in promoter DNA; the other mechanism employs interactions with the RBP-Jkappa cellular protein bound to promoter DNA in the region of the ORF50 RE. The DNA binding-deficient mutants allow classification of ORF50-responsive genes and will facilitate study of the several distinct mechanisms of activation of KSHV lytic cycle genes that are under the control of ORF50 protein.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
94
|
Bechtel JT, Winant RC, Ganem D. Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 2005; 79:4952-64. [PMID: 15795281 PMCID: PMC1069574 DOI: 10.1128/jvi.79.8.4952-4964.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of cultured cells with Kaposi's sarcoma associated herpesvirus (KSHV) typically establishes a latent infection, in which only a few viral genes are expressed. Recently, it has been reported that a subset of lytic genes are transiently expressed very early after viral entry but that this burst of abortive lytic gene expression is terminated with the supervention of latency (H. H. Krishnan, P. P. Naranatt, M. S. Smith, L. Zeng, C. Bloomer, and B. Chandran, J. Virol. 78:3601-3620, 2004). To identify molecules imported into cells by KSHV that might influence this gene expression program, we have examined the protein composition of the KSHV particle. Immunoblotting of virus particles demonstrated that RTA, the lytic switch protein, and RAP, a viral protein that is a transcriptional and cell cycle modulator, were both incorporated into virus particles. In a second approach, polypeptides isolated from purified virions were identified by mass-spectrometric analysis of their constituent tryptic peptides. With this approach we were able to identify 18 major virion proteins, including structural, regulatory, and signaling proteins of both viral and cellular origin.
Collapse
Affiliation(s)
- Jill T Bechtel
- Department of Microbiology and G. W. Hooper Foundation, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0552, USA.
| | | | | |
Collapse
|
95
|
Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, Pari GS. A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 2005; 79:3479-87. [PMID: 15731242 PMCID: PMC1075731 DOI: 10.1128/jvi.79.6.3479-3487.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus type 8 [HHV8]) latently infects a number of cell types. Reactivation of latent virus can occur by treatment with the phorbol ester tetradecanoyl phorbol acetate (TPA) or with the transfection of plasmids expressing the lytic switch activator protein K-Rta, the gene product of ORF50. K-Rta expression is sufficient for the activation of the entire lytic cycle and the transactivation of viral genes necessary for DNA replication. In addition, recent evidence has suggested that K-Rta may participate directly in the initiation of lytic DNA synthesis. We have now generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a large deletion within the ORF50 locus. This BAC, BAC36Delta50, failed to produce infectious virus upon treatment with TPA and was defective for DNA synthesis. Expression of K-Rta in trans in BAC36Delta50-containing cells was able to abolish both defects. Real-time PCR revealed that K-bZIP, ORF40/41, and K8.1 were not expressed when BAC36Delta50-containing cells were induced with TPA. However, the mRNA levels of ORF57 were over fivefold higher in TPA-treated BAC36Delta50-containing cells than those observed in similarly treated wild-type BAC-containing cells. In addition, immunohistochemical analysis showed that while the latency-associated nuclear antigen (LANA) was expressed in the mutant BAC-containing cells, ORF59 and K8.1 expression was not detected in TPA-induced BAC36Delta50-containing cells. These results showed that K-Rta is essential for lytic viral reactivation and transactivation of viral genes contributing to DNA replication.
Collapse
Affiliation(s)
- Yiyang Xu
- Department of Microbiology, School of Medicine, Howard Bldg., University of Nevada-Reno, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
96
|
Lan K, Kuppers DA, Robertson ES. Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway. J Virol 2005; 79:3468-78. [PMID: 15731241 PMCID: PMC1075732 DOI: 10.1128/jvi.79.6.3468-3478.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the major biological cofactor contributing to development of Kaposi's sarcoma. KSHV establishes a latent infection in human B cells expressing the latency-associated nuclear antigen (LANA), a critical factor in the regulation of viral latency. LANA controls KSHV latent infection through repression of RTA, an activator of many lytic promoters. RTA activates the expression of several lytic viral genes by interacting with recombination signal sequence-binding protein Jkappa (RBP-Jkappa), a transcriptional repressor and the target of the Notch signaling pathway. The recognition that a number of KSHV lytic gene promoters, including RTA, contain RBP-Jkappa binding sites raised the possibility that RBP-Jkappa-mediated repression may be central to the establishment of latency. Here, we tested this hypothesis by examining the regulation of RTA by LANA through binding to RBP-Jkappa. This study demonstrates that LANA physically associates with RBP-Jkappa in vitro and in KSHV-infected cells, with the complex formed capable of binding to RBP-Jkappa cognate sequences. RBP-Jkappa binding sites within the RTA promoter have been found to be critical for LANA-mediated repression. Our study describes a novel mechanism through which LANA maintains KSHV latency by targeting a major downstream effector of the Notch signaling pathway.
Collapse
Affiliation(s)
- Ke Lan
- Department of Microbiology and the Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
97
|
Ye J, Shedd D, Miller G. An Sp1 response element in the Kaposi's sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate. J Virol 2005; 79:1397-408. [PMID: 15650166 PMCID: PMC544116 DOI: 10.1128/jvi.79.3.1397-1408.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) can be driven into the lytic cycle in vitro by phorbol esters and sodium butyrate. This report begins to analyze the process by which butyrate activates the promoter of KSHV open reading frame 50 (ORF50), the key viral regulator of the KSHV latency to lytic cycle switch. A short fragment of the promoter, 134 nucleotides upstream of the translational start of ORF50, retained basal uninduced activity and conferred maximal responsiveness to sodium butyrate. The butyrate response element was mapped to a consensus Sp1-binding site. By means of electrophoretic mobility shift assays, both Sp1 and Sp3 were shown to form complexes in vitro with the ORF50 promoter at the Sp1 site. Butyrate induced the formation of a group of novel complexes, including several Sp3-containing complexes, one Sp1-containing complex, and several other complexes that were not identified with antibodies to Sp1 or Sp3. Formation of all butyrate-induced DNA-protein complexes was mediated by the consensus Sp1 site. In insect and mammalian cell lines, Sp1 significantly activated the ORF50 promoter linked to luciferase. Chromatin immunoprecipitation experiments in a PEL cell line showed that butyrate induced Sp1, CBP, and p300 binding to the ORF50 promoter in vivo in an on-off manner. The results suggest that induction of the KSHV lytic cycle by butyrate is mediated through interactions at the Sp1/Sp3 site located 103 to 112 nucleotides upstream of the translational initiation of ORF50 presumably by enhancing the binding of Sp1 to this site.
Collapse
Affiliation(s)
- Jianjiang Ye
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
98
|
Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, Chuang E, Zeichner SL. Dissection of the Kaposi's sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol 2004; 78:13637-52. [PMID: 15564474 PMCID: PMC533899 DOI: 10.1128/jvi.78.24.13637-13652.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of primary effusion lymphoma cells latently infected by Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus-8 [HHV-8]) with agents such as 12-O-tetradecanoylphorbol-13-acetate (TPA) induces a lytic viral replication cycle, with an ordered gene expression program. Initial studies of the KSHV expression program following TPA induction using viral microarrays yielded useful information concerning the viral expression program, but precise kinetic assignments for some genes remained unclear. Classically, late herpesvirus genes require viral DNA replication for maximal expression. We used cidofovir (CDV), a nucleotide-analogue KSHV DNA polymerase inhibitor, to dissect KSHV expression into two components: genes expressed without viral DNA replication and those requiring it. The expression of known immediate-early or early genes (e.g., open reading frames [ORFs] 50, K8 bZIP, and 57) serving lytic regulatory roles was relatively unaffected by the presence of CDV, while known late capsid and tegument structural genes (e.g., ORFs 25, 26, 64, and 67) were CDV sensitive. Latency-associated transcript ORF 73 was unaffected by the presence of TPA or CDV, suggesting that it was constitutively expressed. Expression of several viral cellular gene homologs, including K2 (vIL-6), ORF 72 (vCyclin), ORF 74 (vGPCR), and K9 (vIRF-1), was unaffected by the presence of CDV, while that of others, such as K4.1 (vMIP-III), K11.1 (vIRF-2), and K10.5 (LANA2, vIRF-3), was inhibited. The results distinguish KSHV genes whose full expression required viral DNA replication from those that did not require it, providing additional insights into KSHV replication and pathogenesis strategies and helping to show which viral cell homologs are expressed at particular times during the lytic process.
Collapse
Affiliation(s)
- Michael Lu
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 10S255 MSC1868, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson RC, Carey M, Sun R. The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol 2004; 78:12940-50. [PMID: 15542646 PMCID: PMC524970 DOI: 10.1128/jvi.78.23.12940-12950.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Replication and transcription activator (RTA), an immediate-early gene product of gamma-2 herpesviruses including Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gamma herpesvirus 68 (MHV-68), plays a critical role in controlling the viral life cycle. RTA acts as a strong transcription activator for several downstream genes of KSHV and MHV-68 through direct DNA binding, as well as via indirect mechanisms. HMGB1 (also called HMG-1) protein is a highly conserved nonhistone chromatin protein with the ability to bind and bend DNA. HMGB1 protein promoted RTA binding to different RTA target sites in vitro, with greater enhancement to low-affinity sites than to high-affinity sites. Box A or box B and homologues of HMGB1 also enhanced RTA binding to DNA. Transient transfection of HMGB1 stimulated RTA transactivation of RTA-responsive promoters from KSHV and MHV-68. Furthermore, MHV-68 viral gene expression, as well as viral replication, was significantly reduced in HMGB1-deficient cells than in the wild type. This abated viral gene expression was partially restored by HMGB1 transfection into HMGB1(-/-) cells. These results suggest an important function of the DNA architectural protein, HMGB1, in RTA-mediated gene expression, as well as viral replication in gamma-2 herpesviruses.
Collapse
Affiliation(s)
- Moon Jung Song
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chang PJ, Miller G. Autoregulation of DNA binding and protein stability of Kaposi's sarcoma-associated herpesvirus ORF50 protein. J Virol 2004; 78:10657-73. [PMID: 15367633 PMCID: PMC516418 DOI: 10.1128/jvi.78.19.10657-10673.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A transcriptional activator encoded in open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates the viral lytic cycle. ORF50 protein activates downstream KSHV target genes by at least two mechanisms: direct recognition of response elements in promoter DNA and interaction with cellular proteins bound to promoter DNA. We have identified a multifunctional regulatory region, present in amino acids (aa) 520 to 535 of ORF50 protein, that controls DNA binding and protein stability. Deletion of aa 521 to 534 or mutation of a basic motif (KKRK) in this regulatory region dramatically enhances DNA binding by ORF50 protein, as shown by electrophoretic mobility shift, DNA affinity chromatography, and chromatin immunoprecipitation assays. Deletion of the regulatory region and mutations in the KKRK motif also lead to abundant expression of an electrophoretic mobility variant, ORF50B, which appears to be a form of ORF50 protein that is decreased in posttranslational modification. Enhanced DNA binding and enhanced expression of ORF50B are independent phenomena. The regulatory region likely inhibits DNA binding through interactions with the DNA binding domain in aa 1 to 390 and destabilizes ORF50B through interactions with a domain located in aa 590 to 650. Mutants in the KKRK motif that are enhanced in DNA binding are nonetheless impaired in activating direct targets, such as polyadenylated nuclear RNA, and indirect targets, such as ORF50 itself. The identification of an autoregulatory region emphasizes that the many functions of ORF50 protein must be subject to exquisite control to achieve optimal KSHV lytic-cycle gene expression.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|