51
|
Younis I, Boris-Lawrie K, Green PL. Human T-cell leukemia virus open reading frame II encodes a posttranscriptional repressor that is recruited at the level of transcription. J Virol 2007; 80:181-91. [PMID: 16352542 PMCID: PMC1317543 DOI: 10.1128/jvi.80.1.181-191.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human T-cell leukemia virus (HTLV) infection is a chronic, lifelong infection that is associated with the development of leukemia and neurological disease after a long latency period, and the mechanism by which the virus is able to evade host immune surveillance is elusive. Besides the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory (open reading frame I [ORF I] and ORF II) proteins. Tax activates viral and cellular transcription and promotes T-cell growth and malignant transformation. Rex acts posttranscriptionally to facilitate cytoplasmic expression of incompletely spliced viral mRNAs. Recently, we reported that the accessory gene products of HTLV-1 and HTLV-2 ORF II (p30II and p28II, respectively) are able to restrict viral replication. These proteins act as negative regulators of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Here, we show that p28II is recruited to the viral promoter in a Tax-dependent manner. After recruitment to the promoter, p28II or p30II then travels with the transcription elongation machinery until its target mRNA is synthesized. Experiments artificially directing these proteins to the promoter indicate that p28II, unlike HTLV-1 p30II, displays no transcriptional activity. Furthermore, the tethering of p28II directly to tax/rex mRNA resulted in repression of Tax function, which could be attributed to the ability of p28II to block TAP/p15-mediated enhancement of Tax expression. p28II-mediated reduction of viral replication in infected cells may permit survival of the cells by allowing escape from immune recognition, which is consistent with the critical role of HTLV accessory proteins in viral persistence in vivo.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | |
Collapse
|
52
|
Baydoun H, Duc-Dodon M, Lebrun S, Gazzolo L, Bex F. Regulation of the human T-cell leukemia virus gene expression depends on the localization of regulatory proteins Tax, Rex and p30II in specific nuclear subdomains. Gene 2007; 386:191-201. [PMID: 17071021 DOI: 10.1016/j.gene.2006.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/31/2006] [Accepted: 09/07/2006] [Indexed: 12/11/2022]
Abstract
The human T-cell leukemia virus HTLV-1 encodes regulatory proteins, Tax, Rex and p30(II), which are involved in the control of viral gene expression at the transcriptional and post-transcriptional levels. Tax localizes in unique nuclear bodies that contain components of the transcription and splicing complexes. In this work, we studied the relative intracellular localizations of Tax, Rex and p30(II). Run-on transcription assays and immunocytochemistry at light and electron microscopy levels indicated that the Tax nuclear bodies included both de novo transcribed RNA and the RNA polymerase II form that is phosphorylated on its carboxy-terminal domain whereas contacts with chromatin were observed at the periphery of these nuclear bodies. Rex first accumulated in nucleolar foci and then spread across the whole nucleus to display a diffuse and punctuate nucleoplasmic distribution. This distribution of Rex was observed in HTLV-1 transformed lymphocytes and in COS cells expressing the HTLV-1 provirus. Rex colocalized with the cellular export factor CRM-1 in the nucleolar foci as well as in the nucleoplasmic foci that did not overlap with Tax nuclear bodies but were found at the boundaries of the Tax bodies. In addition, we demonstrate that p30(II) interacts with Rex and colocalizes with the Rex/CRM-1 complexes in the nucleoli leading to their clearance from the nucleoplasm. Our results suggest that transcripts originating from Tax-induced activation of gene expression at the boundaries of the Tax bodies are transported out of the nucleus by nucleoplasmic Rex/CRM-1 complexes that are first assembled in nucleolar foci. In addition, p30(II) might exert its negative effect on viral RNA transport by preventing the release of the Rex/CRM-1 complexes from sequestration in nucleolar foci. These data support the idea that the transcriptional and post-transcriptional regulation of HTLV-1 gene expression depends on the concentration of select regulatory complexes at specific area of the nucleus.
Collapse
Affiliation(s)
- Hicham Baydoun
- Institute for Microbiological Research J-M Wiame and Laboratory of Microbiology, University of Brussels, Belgium
| | | | | | | | | |
Collapse
|
53
|
Michael B, Nair AM, Datta A, Hiraragi H, Ratner L, Lairmore MD. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30II-mediated repression of LTR transcriptional activity. Virology 2006; 354:225-39. [PMID: 16890266 PMCID: PMC3044896 DOI: 10.1016/j.virol.2006.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/22/2006] [Accepted: 07/05/2006] [Indexed: 01/28/2023]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30II, a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30II motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30II, a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30II to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30II-dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30(II)-mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30II-mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30(II)-mediated LTR repression. Collectively, our data indicate that HTLV-1 p30II modulates viral gene expression in a cooperative manner with p300-mediated acetylation.
Collapse
Affiliation(s)
- Bindhu Michael
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amrithraj M. Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Antara Datta
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hajime Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael D. Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author. Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA. Fax: +1 614 292 6473., (M.D. Lairmore)
| |
Collapse
|
54
|
Datta A, Sinha-Datta U, Dhillon NK, Buch S, Nicot C. The HTLV-I p30 Interferes with TLR4 Signaling and Modulates the Release of Pro- and Anti-inflammatory Cytokines from Human Macrophages. J Biol Chem 2006; 281:23414-24. [PMID: 16785240 DOI: 10.1074/jbc.m600684200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas adaptive immunity has been extensively studied, very little is known about the innate immunity of the host to HTLV-I infection. HTLV-I-infected ATL patients have pronounced immunodeficiency associated with frequent opportunistic infections, and in these patients, concurrent infections with bacteria and/or parasites are known to increase risks of progression to ATL. The Toll-like receptor-4 (TLR4) activation in response to bacterial infection is essential for dendritic cell maturation and links the innate and adaptive immune responses. Recent reports indicate that TLR4 is targeted by viruses such as RSV, HCV, and MMTV. Here we report that HTLV-I has also evolved a protein that interferes with TLR4 signaling; p30 interacts with and inhibits the DNA binding and transcription activity of PU.1 resulting in the down-regulation of the TLR4 expression from the cell surface. Expression of p30 hampers the release of pro-inflammatory cytokines MCP-1, TNF-alpha, and IL-8 and stimulates release of anti-inflammatory IL-10 following stimulation of TLR4 in human macrophage. Finally, we found that p30 increases phosphorylation and inactivation of GSK3-beta a key step for IL-10 production. Our study suggests a novel function of p30, which may instigate immune tolerance by reducing activation of adaptive immunity in ATL patients.
Collapse
Affiliation(s)
- Abhik Datta
- Department of Microbiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
55
|
Hiraragi H, Kim SJ, Phipps AJ, Silic-Benussi M, Ciminale V, Ratner L, Green PL, Lairmore MD. Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13(II) is required for viral infectivity in vivo. J Virol 2006; 80:3469-76. [PMID: 16537614 PMCID: PMC1440407 DOI: 10.1128/jvi.80.7.3469-3476.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia, encodes unique regulatory and accessory proteins in the pX region of the provirus, including the open reading frame II product p13(II). p13(II) localizes to mitochondria, binds farnesyl pyrophosphate synthetase, an enzyme involved in posttranslational farnesylation of Ras, and alters Ras-dependent cell signaling and control of apoptosis. The role of p13(II) in virus infection in vivo remains undetermined. Herein, we analyzed the functional significance of p13(II) in HTLV-1 infection. We compared the infectivity of a human B-cell line that harbors an infectious molecular clone of HTLV-1 with a selective mutation that prevents the translation of p13(II) (729.ACH.p13) to the infectivity of a wild-type HTLV-1-expressing cell line (729.ACH). 729.ACH and 729.ACH.p13 producer lines had comparable infectivities for cultured rabbit peripheral blood mononuclear cells (PBMC), and the fidelity of the start codon mutation in ACH.p13 was maintained after PBMC passage. In contrast, zero of six rabbits inoculated with 729.ACH.p13 cells failed to establish viral infection, whereas six of six rabbits inoculated with wild-type HTLV-1-expressing cells (729.ACH) were infected as measured by antibody responses, proviral load, and HTLV-1 p19 matrix antigen production from ex vivo-cultured PBMC. Our data are the first to indicate that the HTLV-1 mitochondrion-localizing protein p13(II) has an essential biological role during the early phase of virus infection in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Codon, Initiator
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Products, gag/blood
- Genome, Viral
- Geranyltranstransferase/physiology
- HTLV-I Infections/virology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukocytes, Mononuclear/virology
- Mitochondria/enzymology
- Mutation
- Polymerase Chain Reaction
- Proviruses/genetics
- Proviruses/isolation & purification
- Rabbits
- Retroviridae Proteins, Oncogenic/blood
- Viral Load
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Hajime Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Chevalier SA, Meertens L, Pise-Masison C, Calattini S, Park H, Alhaj AA, Zhou M, Gessain A, Kashanchi F, Brady JN, Mahieux R. The tax protein from the primate T-cell lymphotropic virus type 3 is expressed in vivo and is functionally related to HTLV-1 Tax rather than HTLV-2 Tax. Oncogene 2006; 25:4470-82. [PMID: 16532031 DOI: 10.1038/sj.onc.1209472] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human T-cell leukemia virus and simian T-cell leukemia virus (STLV) form the primate T-cell lymphotropic viruses group. Human T-cell leukemia virus type 1 and type 2 (HTLV-1 and HTLV-2) encode the Tax viral transactivator (Tax1 and Tax2, respectively). Tax1 possesses an oncogenic potential and is responsible for cell transformation both in vivo and in vitro. We and others have recently discovered the existence of human T-cell lymphotropic virus type 3. However, there is currently no evidence for the presence of a Tax protein in HTLV-3-infected individuals. We show that the serum of an HTLV-3 asymptomatic carrier and the sera of two STLV-3-infected monkeys contain specific anti-Tax3 antibodies. We also show that tax3 mRNA is present in the PBMCs obtained from an STLV-3-infected monkey, demonstrating that Tax3 is expressed in vivo. We further demonstrate that Tax3 intracellular localization is very similar to that of Tax1 and that Tax3 binds to both CBP and p300 coactivators. Using purified Tax3, we show that the protein increases transcription from a 4TxRE G-free cassette plasmid in an in vitro transcription assay. In all cell types tested, including transiently transfected lymphocytes, Tax3 activates its own promoter STLV-3 long terminal repeat (LTR), which contains only two Tax Responsive Elements (TREs), and activates also HTLV-1 and HTLV-2 LTRs. In addition, Tax3 also activates the NF-kappaB pathway. We also show that Tax3 possesses a PDZ-binding sequence at its C-terminal end. Our results demonstrate that Tax3 is a transactivator, and that its properties are more similar to that of Tax1, rather than of Tax2. This suggests the possible occurrence of lymphoproliferative disorders among HTLV-3-infected populations.
Collapse
Affiliation(s)
- S A Chevalier
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Younis I, Yamamoto B, Phipps A, Green PL. Human T-cell leukemia virus type 1 expressing nonoverlapping tax and rex genes replicates and immortalizes primary human T lymphocytes but fails to replicate and persist in vivo. J Virol 2006; 79:14473-81. [PMID: 16282446 PMCID: PMC1287553 DOI: 10.1128/jvi.79.23.14473-14481.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus associated primarily with adult T-cell leukemia and neurological disease. HTLV-1 encodes the positive trans-regulatory proteins Tax and Rex, both of which are essential for viral replication. Tax activates transcription initiation from the viral long terminal repeat and modulates the transcription or activity of a number of cellular genes. Rex regulates gene expression posttranscriptionally by facilitating the cytoplasmic expression of incompletely spliced viral mRNAs. Tax and Rex mutants have been identified that have defective activities or impaired biochemical properties associated with their function. To ultimately determine the contribution of specific protein activities on viral replication and cellular transformation of primary T cells, mutants need to be characterized in the context of an infectious molecular clone. Since the tax and rex genes are in partially overlapping reading frames, mutation in one gene frequently disrupts the other, confounding interpretation of mutational analyses in the context of the virus. Here we generated and characterized a unique proviral clone (H1IT) in which the tax and rex genes were separated by expressing Tax from an internal ribosome entry site. We showed that H1IT expresses both functional Tax and Rex. In short- and long-term coculture assays, H1IT was competent to infect and immortalize primary human T cells similar to wild-type HTLV-1. In contrast, H1IT failed to efficiently replicate and persist in inoculated rabbits, thus emphasizing the importance of temporal and quantitative regulation of specific mRNA for viral survival in vivo.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
58
|
Mertz JA, Simper MS, Lozano MM, Payne SM, Dudley JP. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J Virol 2006; 79:14737-47. [PMID: 16282474 PMCID: PMC1287593 DOI: 10.1128/jvi.79.23.14737-14747.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) has been classified as a simple retrovirus with two accessory genes, dut and sag. Cloned MMTV proviruses carrying a trimethoprim (trim) cassette in the envelope gene were defective for Gag protein production and the nuclear export of unspliced gag-pol RNA. Complementation experiments indicated that a trans-acting product was responsible for the Gag defect of such mutants. Analysis of MMTV-infected cells revealed the presence of a novel, doubly spliced RNA that encodes a putative product of 301 amino acids. Overexpression of cDNA from this RNA increased Gag levels from env mutant proviruses or reporter gene expression from unspliced mRNAs and allowed detection of a 33-kDa protein product, which has been named regulator of export of MMTV mRNA, or Rem. The Rem N terminus has motifs similar to the Rev-like export proteins of complex retroviruses, and mutation of the nuclear localization signal (NLS) abolished RNA export and detection within the nucleus. The Rem C terminus has few identifiable features, but removal of this domain increased Rem-mediated export, suggesting an autoregulatory function. A reporter vector developed from the 3' end of the MMTV provirus was Rem responsive and required both the presence of the MMTV env-U3 junction and a functional Crm1 pathway. The identification of a third accessory protein from a doubly spliced transcript suggests that MMTV is the first murine complex retrovirus to be documented. Manipulation of the MMTV genome may provide mouse models for human retroviral diseases, such as AIDS.
Collapse
Affiliation(s)
- Jennifer A Mertz
- The University of Texas at Austin, Section of Molecular Genetics and Microbiology, One University Station, A5000, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
59
|
Arnold J, Yamamoto B, Li M, Phipps AJ, Younis I, Lairmore MD, Green PL. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 2006; 107:3976-82. [PMID: 16424388 PMCID: PMC1895283 DOI: 10.1182/blood-2005-11-4551] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Natural antisense viral transcripts have been recognized in retroviruses, including human T-cell leukemia virus type 1 (HTLV-1), HIV-1, and feline immunodeficiency virus (FIV), and have been postulated to encode proteins important for the infection cycle and/or pathogenesis of the virus. The antisense strand of the HTLV-1 genome encodes HBZ, a novel nuclear basic region leucine zipper (b-ZIP) protein that in overexpression assays down-regulates Tax oncoprotein-induced viral transcription. Herein, we investigated the contribution of HBZ to HTLV-1-mediated immortalization of primary T lymphocytes in vitro and HTLV-1 infection in a rabbit animal model. HTLV-1 HBZ mutant viruses were generated and evaluated for viral gene expression, protein production, and immortalization capacity. Biologic properties of HBZ mutant viruses in vitro were indistinguishable from wild-type HTLV-1, providing the first direct evidence that HBZ is dispensable for viral replication and cellular immortalization. Rabbits inoculated with irradiated cells expressing HTLV-1 HBZ mutant viruses became persistently infected. However, these rabbits displayed a decreased antibody response to viral gene products and reduced proviral copies in peripheral blood mononuclear cells (PBMCs) as compared with wild-type HTLV-1-infected animals. Our findings indicated that HBZ was not required for in vitro cellular immortalization, but enhanced infectivity and persistence in inoculated rabbits. This study demonstrates that retroviruses use negative-strand-encoded proteins in the establishment of chronic viral infections.
Collapse
Affiliation(s)
- Joshua Arnold
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
61
|
Nicot C, Harrod RL, Ciminale V, Franchini G. Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene 2005; 24:6026-34. [PMID: 16155609 DOI: 10.1038/sj.onc.1208977] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human T-cell leukemia/lymphoma virus (HTLV) genome, in addition to the structural Gag and Env proteins and retroviral enzymes, carries a region at its 3' end originally designated pX. To date, we know that this region encodes two essential transcriptional and post-transcriptional positive regulators of viral expression, the Tax and Rex proteins, respectively (reviewed elsewhere in this issue). Here, we will review current knowledge of the functions of three additional proteins encoded in the pX region, p12I, p13II, and p30II.
Collapse
Affiliation(s)
- Christophe Nicot
- Department of Microbiology, University of Kansas Medical Center, Molecular Genetics, and Immunology, 3025 Wahl Hall West, 3901 Rainbow Boulevard, Kansas City, KS 66160-7420, USA
| | | | | | | |
Collapse
|
62
|
Awasthi S, Sharma A, Wong K, Zhang J, Matlock EF, Rogers L, Motloch P, Takemoto S, Taguchi H, Cole MD, Lüscher B, Dittrich O, Tagami H, Nakatani Y, McGee M, Girard AM, Gaughan L, Robson CN, Monnat RJ, Harrod R. A human T-cell lymphotropic virus type 1 enhancer of Myc transforming potential stabilizes Myc-TIP60 transcriptional interactions. Mol Cell Biol 2005; 25:6178-98. [PMID: 15988028 PMCID: PMC1168837 DOI: 10.1128/mcb.25.14.6178-6198.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) infects and transforms CD4+ lymphocytes and causes adult T-cell leukemia/lymphoma (ATLL), an aggressive lymphoproliferative disease that is often fatal. Here, we demonstrate that the HTLV-1 pX splice-variant p30II markedly enhances the transforming potential of Myc and transcriptionally activates the human cyclin D2 promoter, dependent upon its conserved Myc-responsive E-box enhancer elements, which are associated with increased S-phase entry and multinucleation. Enhancement of c-Myc transforming activity by HTLV-1 p30II is dependent upon the transcriptional coactivators, transforming transcriptional activator protein/p434 and TIP60, and it requires TIP60 histone acetyltransferase (HAT) activity and correlates with the stabilization of HTLV-1 p30II/Myc-TIP60 chromatin-remodeling complexes. The p30II oncoprotein colocalizes and coimmunoprecipitates with Myc-TIP60 complexes in cultured HTLV-1-infected ATLL patient lymphocytes. Amino acid residues 99 to 154 within HTLV-1 p30II interact with the TIP60 HAT, and p30II transcriptionally activates numerous cellular genes in a TIP60-dependent or TIP60-independent manner, as determined by microarray gene expression analyses. Importantly, these results suggest that p30II functions as a novel retroviral modulator of Myc-TIP60-transforming interactions that may contribute to adult T-cell leukemogenesis.
Collapse
Affiliation(s)
- Soumya Awasthi
- Laboratory of Molecular Virology, Department of Biological Sciences, Southern Methodist University, 334-DLS, 6501 Airline Drive, Dallas, TX 75275-0376.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hiraragi H, Michael B, Nair A, Silic-Benussi M, Ciminale V, Lairmore M. Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13II sensitizes Jurkat T cells to Ras-mediated apoptosis. J Virol 2005; 79:9449-57. [PMID: 16014908 PMCID: PMC1181595 DOI: 10.1128/jvi.79.15.9449-9457.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia. In addition to typical retroviral structural and enzymatic gene products, HTLV-1 encodes unique regulatory and accessory proteins, including a singly spliced pX open reading frame II (ORF II) product, p13(II). We have demonstrated that proviral clones of HTLV-1 which are mutated in pX ORF II fail to obtain typical proviral loads and antibody responses in a rabbit animal model. p13(II) localizes to mitochondria and reduces cell growth and tumorigenicity in mice, but its function in human lymphocytes remains undetermined. For this study, we analyzed the functional properties of Jurkat T cells expressing p13(II), using both transient and stable expression vectors. Our data indicate that p13(II)-expressing Jurkat T cells are sensitive to caspase-dependent, ceramide- and FasL-induced apoptosis. p13(II)-expressing Jurkat T cells also exhibited reduced proliferation when cultured at a high density. Furthermore, preincubation of the p13(II)-expressing cells with a farnesyl transferase inhibitor, which blocks the posttranslational modification of Ras, markedly reduced FasL-induced apoptosis, indicating the participation of the Ras pathway in p13(II)'s influence on lymphocyte survival. Our data are the first to demonstrate that p13(II) alters Ras-mediated apoptosis in T lymphocytes, and they reveal a potential mechanism by which HTLV-1 alters lymphocyte proliferation.
Collapse
Affiliation(s)
- Hajime Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
64
|
D’Agostino DM, Silic-Benussi M, Hiraragi H, Lairmore MD, Ciminale V. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. Cell Death Differ 2005; 12 Suppl 1:905-15. [PMID: 15761473 PMCID: PMC3057663 DOI: 10.1038/sj.cdd.4401576] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
p13(II) of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13(II) alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K(+). These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca(2+) uptake/retention capacity. At the cellular level, p13(II) has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13(II)-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13(II) function.
Collapse
Affiliation(s)
- DM D’Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Padova 35128, Italy
| | - M Silic-Benussi
- Department of Oncology and Surgical Sciences, University of Padova, Padova 35128, Italy
| | - H Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH 43210, USA
| | - MD Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, College of Veterinary Medicine, Columbus, OH 43210, USA
- Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - V Ciminale
- Department of Oncology and Surgical Sciences, University of Padova, Padova 35128, Italy
| |
Collapse
|
65
|
Abstract
It has been 25 years since the discovery of human T-cell leukemia virus type I (HTLV-I) and its role in adult T-cell leukemia. Here, in brief, we review the current state of our understanding of HTLV-I epidemiology, viral biology, pathogenesis, and treatment. We discuss how HTLV-I may transform cells through destabilization of cellular genomic integrity and induction of cellular tolerance for chromosomal errors.
Collapse
Affiliation(s)
- Masao Matsuoka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
66
|
D'Agostino DM, Bernardi P, Chieco-Bianchi L, Ciminale V. Mitochondria as Functional Targets of Proteins Coded by Human Tumor Viruses. Adv Cancer Res 2005; 94:87-142. [PMID: 16096000 DOI: 10.1016/s0065-230x(05)94003-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular analyses of tumor virus-host cell interactions have provided key insights into the genes and pathways involved in neoplastic transformation. Recent studies have revealed that the human tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type 1 (HTLV-1) express proteins that are targeted to mitochondria. The list of these viral proteins includes BCL-2 homologues (BHRF1 of EBV; KSBCL-2 of KSHV), an inhibitor of apoptosis (IAP) resembling Survivin (KSHV K7), proteins that alter mitochondrial ion permeability and/or membrane potential (HBV HBx, HPV E[wedge]14, HCV p7, and HTLV-1 p13(II)), and K15 of KSHV, a protein with undefined function. Consistent with the central role of mitochondria in energy production, cell death, calcium homeostasis, and redox balance, experimental evidence indicates that these proteins have profound effects on host cell physiology. In particular, the viral BCL-2 homologues BHRF1 and KSBCL-2 inhibit apoptosis triggered by a variety of stimuli. HBx, p7, E1[wedge]4, and p13(II) exert powerful effects on mitochondria either directly due to their channel-forming activity or indirectly through interactions with endogenous channels. Further investigation of these proteins and their interactions with mitochondria will provide important insights into the mechanisms of viral replication and tumorigenesis and could aid in the discovery of new targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Donna M D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Padova 35128, Italy
| | | | | | | |
Collapse
|
67
|
Green PL. HTLV-1 p30II: selective repressor of gene expression. Retrovirology 2004; 1:40. [PMID: 15563375 PMCID: PMC543446 DOI: 10.1186/1742-4690-1-40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 11/24/2004] [Indexed: 11/11/2022] Open
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) is a complex retrovirus that causes adult T-cell leukemia/lymphoma (ATL) and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 pX ORF II encodes two proteins, p13II and p30II whose roles are beginning to be defined in the virus life cycle. Previous studies indicate the importance of these viral proteins in the ability of the virus to maintain viral loads and persist in an animal model of HTLV-1 infection. Intriguing new studies indicate that p30II is a multifunctional regulator that differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein (CBP)/p300 and specifically binds and represses tax/rex mRNA nuclear export. A new study characterized the role of p30II in regulation of cellular gene expression using comprehensive human gene arrays. Interestingly, p30II is an overall repressor of cellular gene expression, while selectively favoring the expression of regulatory gene pathways important to T lymphocytes. These new findings suggest that HTLV-1, which is associated with lymphoproliferative diseases, uses p30II to selectively repress cellular and viral gene expression to favor the survival of cellular targets ultimately resulting in leukemogenesis.
Collapse
Affiliation(s)
- Patrick L Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
68
|
Michael B, Nair AM, Hiraragi H, Shen L, Feuer G, Boris-Lawrie K, Lairmore MD. Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes. Retrovirology 2004; 1:39. [PMID: 15560845 PMCID: PMC538277 DOI: 10.1186/1742-4690-1-39] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 11/23/2004] [Indexed: 11/13/2022] Open
Abstract
Background Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. Results Herein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. Conclusions We are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.
Collapse
Affiliation(s)
- Bindhu Michael
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Safety Assessment, Merck &Co., Inc. WP45-224, West Point PA 19486, USA
| | - Amrithraj M Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Safety Assessment, Merck &Co., Inc. WP45-224, West Point PA 19486, USA
| | - Hajime Hiraragi
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lei Shen
- Department of Statistics, College of Mathematical and Physical Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|