51
|
Neuroinflammation and brain infections: historical context and current perspectives. ACTA ACUST UNITED AC 2010; 66:152-73. [PMID: 20883721 DOI: 10.1016/j.brainresrev.2010.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 12/25/2022]
Abstract
An overview of current concepts on neuroinflammation and on the dialogue between neurons and non-neuronal cells in three important infections of the central nervous systems (rabies, cerebral malaria, and human African trypanosomiasis or sleeping sickness) is here presented. Large numbers of cases affected by these diseases are currently reported. In the context of an issue dedicated to Camillo Golgi, historical notes on seminal discoveries on these diseases are also presented. Neuroinflammation is currently closely associated with pathogenetic mechanisms of chronic neurodegenerative diseases. Neuroinflammatory signaling in brain infections is instead relatively neglected in the neuroscience community, despite the fact that the above infections provide paradigmatic examples of alterations of the intercellular crosstalk between neurons and non-neuronal cells. In rabies, strategies of immune evasion of the host lead to silencing neuroinflammatory signaling. In the intravascular pathology which characterizes cerebral malaria, leukocytes and Plasmodium do not enter the brain parenchyma. In sleeping sickness, leukocytes and African trypanosomes invade the brain parenchyma at an advanced stage of infection. Both the latter pathologies leave open many questions on the targeting of neuronal functions and on the pathogenetic role of non-neuronal cells, and in particular astrocytes and microglia, in these diseases. All three infections are hallmarked by very severe clinical pictures and relative sparing of neuronal structure. Multidisciplinary approaches and a concerted action of the neuroscience community are needed to shed light on intercellular crosstalk in these dreadful brain diseases. Such effort could also lead to new knowledge on non-neuronal mechanisms which determine neuronal death or survival.
Collapse
|
52
|
Nakamichi K, Takayama-Ito M, Nukuzuma S, Kurane I, Saijo M. Long-term infection of adult mice with murine polyomavirus following stereotaxic inoculation into the brain. Microbiol Immunol 2010; 54:475-82. [PMID: 20646213 DOI: 10.1111/j.1348-0421.2010.00247.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Murine polyomavirus is used in various models of persistent virus infection. This study was undertaken to assess the spatial and temporal patterns of MPyV infection in the brains of immunocompetent (BALB/c) and immunocompromised (KSN nude) mice. MPyV was stereotaxically microinfused into the brain parenchyma, and the kinetics of infection were examined by quantitative PCR. In BALB/c mice, the amount of viral DNA in the brain peaked at 4 days p.i. and then rapidly diminished. In contrast, MPyV DNA levels increased up to 4 days and then gradually decreased over the 30-day observation period in the brain of KSN mice. In both mouse strains, viral DNA was readily detected around the sites of inoculation from 2 to 6 days p.i., and continued to be detected for up to 30 days p.i. In addition, MPyV infection did not lead to a drastic induction of innate immune response in the brains, nor did MPyV-inoculated mice show any signs of disease. These results indicate that MPyV establishes an asymptomatic long-term infection in the mouse brain.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan.
| | | | | | | | | |
Collapse
|
53
|
Zhou Y, Wang S, Ma JW, Lei Z, Zhu HF, Lei P, Yang ZS, Zhang B, Yao XX, Shi C, Sun LF, Wu XW, Ning Q, Shen GX, Huang B. Hepatitis B virus protein X-induced expression of the CXC chemokine IP-10 is mediated through activation of NF-kappaB and increases migration of leukocytes. J Biol Chem 2010; 285:12159-68. [PMID: 20164184 PMCID: PMC2852955 DOI: 10.1074/jbc.m109.067629] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/14/2010] [Indexed: 12/23/2022] Open
Abstract
Interferon-gamma inducible protein 10 (IP-10) involves inflammatory cell recruitment and cellular immune damage during virus infection. Although an increase of the peripheral IP-10 level is known in HBV-infected patients, the molecular basis of HBV infection inducing IP-10 expression has remained elusive. In the present study, we demonstrate that hepatitis B virus protein X (HBx) increases IP-10 expression in a dose-dependent manner. Transfection of the HBx-expressing vector into HepG2 cells results in nuclear translocation of NF-kappaB, which directly binds the promoter of IP-10 at positions from -122 to -113, thus facilitating transcription. The addition of the NF-kappaB inhibitor blocks the effect of HBx on IP-10 induction. In parallel, increase of NF-kappaB subunits p65 and p50 in HepG2 cells also augments IP-10 expression. Furthermore, we show that HBx induces activation of NF-kappaB through the TRAF2/TAK1 signaling pathway, leading to up-regulation of IP-10 expression. As a consequence, up-regulation of IP-10 may mediate the migration of peripheral blood leukocytes in a NF-kappaB-dependent manner. In conclusion, we report a novel molecular mechanism of HBV infection inducing IP-10 expression, which involves viral protein HBx affecting NF-kappaB pathway, leading to transactivation of the IP-10 promoter. Our study provides insight into the migration of leukocytes in response to HBV infection, thus causing immune pathological injury of liver.
Collapse
Affiliation(s)
- Yu Zhou
- From the Departments of Immunology
| | - Shuo Wang
- the Lady Davis Institute, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | - Zhang Lei
- Biochemistry and Molecular Biology, and
| | | | - Ping Lei
- From the Departments of Immunology
| | | | | | | | | | | | | | - Qin Ning
- Infectious Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China and
| | | | - Bo Huang
- Biochemistry and Molecular Biology, and
| |
Collapse
|
54
|
Chiou YL, Lin CY. Der p2 activates airway smooth muscle cells in a TLR2/MyD88-dependent manner to induce an inflammatory response. J Cell Physiol 2009; 220:311-8. [PMID: 19326394 DOI: 10.1002/jcp.21764] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Der p2 is a major allergen from Dermatophagoides pteronyssinus, the main species of house dust mite and a major inducer of asthma, inducing harmful respiratory inflammatory responses by activating cells in the respiratory tract, leading to an unstable status. We hypothesize that Der p2 may induce local inflammatory responses by directly affecting airway smooth muscle (ASM) cells. In this study, we demonstrated that Der p2 raised nuclear factor-kappa B (NF-kappaB) and extracellular signal-regulated kinase (ERK) 1/2 activation and induced a high level of proinflammatory cytokines expression in primary cultured ASM cells. Der p2 activated the MyD88 signaling pathway through toll-like receptor (TLR) 2, not through TLR4. Notably, Der p2 stimulated ASM cells to increase phosphorylation of ERK1/2 and expression of c-Fos, which were also important in the T helper type 2 (Th2) immune response. These results suggest that Der p2 induces asthma through the MyD88 signaling pathway in respiratory tissue.
Collapse
Affiliation(s)
- Ya-Ling Chiou
- Institute of Immunology & Microbiology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | |
Collapse
|
55
|
Hicks DJ, Nuñez A, Healy DM, Brookes SM, Johnson N, Fooks AR. Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 2008; 140:113-26. [PMID: 19111840 DOI: 10.1016/j.jcpa.2008.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 09/08/2008] [Indexed: 12/11/2022]
Abstract
European bat lyssaviruses (EBLVs) types 1 (EBLV-1) and 2 (EBLV-2) cause rabies in terrestrial species, but the pathological changes associated with neuroinvasion have yet to be fully elucidated. Swiss OF-1 mice were inoculated peripherally with strain RV61 (classical rabies virus), RV1423 (EBLV-1) or RV1332 (EBLV-2) to compare the nature and extent of histopathological changes produced. Inoculated animals developed varying degrees of non-suppurative encephalitis, and lyssavirus infection was confirmed by the detection of viral antigen. The lesions produced, which included perivascular cuffs and gliosis, were more severe after RV1423 or RV1332 infection than after RV61 infection. Perivascular cuffs were mainly localized to caudal brain regions, irrespective of the infecting strain; after RV1332 infection, however, they were particularly abundant, being composed of large numbers of inflammatory cells. T cells were the predominant lymphocytic component of the inflammatory infiltrate in both the Virchow-Robin space and the brain parenchyma. Viral antigen, which was widespread throughout the brain, was apparently unrelated to the degree of cuffing. The study suggested that there was increased immune activation after inoculation with strain RV1423 or RV1332, particularly the latter, but that this did not affect the final outcome.
Collapse
Affiliation(s)
- D J Hicks
- Department of Pathology, Veterinary Laboratories Agency (VLA Weybridge), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | | | | | | | | | |
Collapse
|
56
|
Dai X, Sayama K, Tohyama M, Shirakata Y, Yang L, Hirakawa S, Tokumaru S, Hashimoto K. The NF- B, p38 MAPK and STAT1 pathways differentially regulate the dsRNA-mediated innate immune responses of epidermal keratinocytes. Int Immunol 2008; 20:901-9. [DOI: 10.1093/intimm/dxn048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
57
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
58
|
Velandia ML, Pérez-Castro R, Hurtado H, Castellanos JE. Ultrastructural description of rabies virus infection in cultured sensory neurons. Mem Inst Oswaldo Cruz 2007; 102:441-7. [PMID: 17612763 DOI: 10.1590/s0074-02762007005000030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 03/22/2007] [Indexed: 11/21/2022] Open
Abstract
Primary cultures were made from adult mouse spinal ganglia for depicting an ultrastructural description of rabies virus (RABV) infection in adult mouse sensory neuron cultures; they were infected with rabies virus for 24, 36, and 48 h. The monolayers were processed for transmission electron microscopy and immunochemistry studies at the end of each period. As previously reported, sensory neurons showed great susceptibility to infection by RABV; however, in none of the periods evaluated were assembled virions observed in the cytoplasm or seen to be associated with the cytoplasmic membrane. Instead, fibril matrices of aggregated ribonucleoprotein were detected in the cytoplasm. When infected culture lysate were inoculated into normal animals via intra-cerebral route it was observed that these animals developed clinical symptoms characteristic of infection and transmission electron microscopy revealed assembled virions in the cerebral cortex and other areas of the brain. Sensory neurons infected in vitro by RABV produced a large amount of unassembled viral ribonucleoprotein. However, this intracellular material was able to produce infection and virions on being intra-cerebrally inoculated. It can thus be suggested that the lack of intracellular assembly in sensory neurons forms part of an efficient dissemination strategy.
Collapse
Affiliation(s)
- Myriam L Velandia
- Laboratorio de Neurociencias, Instituto Nacional de Salud, Bogotá, Colombia
| | | | | | | |
Collapse
|
59
|
Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I. Roles of NF-kappaB and MAPK signaling pathways in morphological and cytoskeletal responses of microglia to double-stranded RNA. Neurosci Lett 2007; 414:222-7. [PMID: 17284350 DOI: 10.1016/j.neulet.2006.12.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Following virus infection of the central nervous system, microglia become activated and undergo morphological as well as functional transformations, thereby initiating effective antiviral actions. Herein, we have examined the contribution of nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinase (MAPK) signaling pathways to cell shape determination and cytoskeletal organization in microglia upon stimulation with double-stranded RNA (dsRNA), a conserved molecular pattern of virus infection. Under non-proliferative condition, microglial MG6-1 cells displayed a distinctive morphology with spinescent processes and small somata. Following dsRNA stimulation, the process-bearing microglial cells exhibited swift and drastic changes in cell morphology, filamentous actin (F-actin) structure, and intracellular signaling. In the dsRNA-stimulated microglial cells, the activation of c-Jun N-terminal kinase (JNK) pathway was involved in morphological alteration into an ameboid state. We also found that p38 signaling pathway negatively regulates the formation of cytoplasmic vacuoles in microglial cells. Furthermore, the dsRNA-induced accumulation of F-actin was partly mediated by NF-kappaB, JNK, and p38 pathways. These results indicate that NF-kappaB and MAPK signaling pathways mediate morphological and cytoskeletal changes during dsRNA-induced microglial activation.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
60
|
Gu JW, Tian N, Shparago M, Tan W, Bailey AP, Manning RD. Renal NF-κB activation and TNF-α upregulation correlate with salt-sensitive hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1817-24. [PMID: 16840655 DOI: 10.1152/ajpregu.00153.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-κB and upregulation of TNF-α related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 ± 3.7 vs. 109.4 ± 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 ± 2.6 vs. 6.1 ± 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-κB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group ( P = 0.007). ELISA indicated that renal protein levels of TNF-α, but not IL-6, interferon-γ, and CCL28, were significantly higher in the HS than the LS group (2.3 ± 0.8 vs. 0.7 ± 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-α were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-κB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-κB and upregulation of TNF-α are the important renal mechanisms linking proinflammatory response to SS hypertension.
Collapse
Affiliation(s)
- Jian-Wei Gu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Despite increases in our understanding of rabies pathogenesis, it remains an inevitably fatal disease. Lack of awareness, low level of political commitment to rabies control, and failure to recognize and correlate clinical, laboratory, and neuroimaging features contribute to continuing deaths. Clinical symptomatology, once believed to be unique, may be variable, even in patients associated with lyssaviruses of the same genotype. This article discusses virus transport, the role of virus and host response mechanisms in relation to protean clinical manifestations, and mechanisms responsible for relative intactness of consciousness in human rabies. Differential involvement of the anterior horn cell in furious rabies and the peripheral nerve in paralytic rabies is summarized. Escape mechanisms from host defenses explain why a fatal outcome is unavoidable regardless of therapy. Neuroprotective treatment, using a coma-induction regimen, proves not to be beneficial. Survival of patients with excellent recovery relies on early innate and adaptive immunity plus adequate intensive care support.
Collapse
Affiliation(s)
- Thiravat Hemachudha
- Neurology Division, Department of Medicine, Chulalongkorn University Hospital, Rama 4 Road, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
62
|
Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I. Suppressive effect of simvastatin on interferon-beta-induced expression of CC chemokine ligand 5 in microglia. Neurosci Lett 2006; 407:205-10. [PMID: 16978784 DOI: 10.1016/j.neulet.2006.08.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/17/2006] [Accepted: 08/20/2006] [Indexed: 11/15/2022]
Abstract
Despite the pivotal role of microglia in immune system of the brain, a growing body of evidence suggests that the excessive microglial activation provokes neuronal and glial damages, leading to neurodegenerative and neuroinflammatory disorders. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, have recently received much attention for their suppressive effects on inflammation in the central nervous system. In the current study, we have examined the statin-mediated inhibition of microglial function, especially that of chemokine production. Stimulation of microglial cells with interferon-beta (IFN-beta) resulted in the expression of CC chemokine ligand 5 (CCL5), a major chemoattractant of inflammatory cells. Microglial CCL5 response was synergistically potentiated by costimulation with IFN-beta and tumor necrosis factor-alpha (TNF-alpha). The simvastatin treatment significantly diminished the microglial CCL5 expression induced by IFN-beta alone or by IFN-beta/TNF-alpha combination. In the presence of simvastatin, the IFN-beta-induced activation of Janus kinase (Jak)-signal transducer and activator of transcription (STAT) pathway was attenuated, although this compound had little or no effect on the TNF-alpha-evoked activation of nuclear factor kappaB and c-Jun N-terminal kinase pathways. In addition, chemical inhibitor of Jak-STAT signaling significantly diminished the IFN-beta-induced expression of CCL5 in microglia. Taken together, these results suggest that simvastatin suppresses the IFN-beta-induced expression of CCL5 via down-regulation of Jak-STAT signaling pathway.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Laboratory of Neurovirology, Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
63
|
Brzózka K, Finke S, Conzelmann KK. Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 2006; 80:2675-83. [PMID: 16501077 PMCID: PMC1395475 DOI: 10.1128/jvi.80.6.2675-2683.2006] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RV) phosphoprotein P is an interferon (IFN) antagonist counteracting transcriptional activation of type I IFN (K. Brzózka, S. Finke, and K. K. Conzelmann, J. Virol 79:7673-7681, 2005). We here show that RV P in addition is responsible for preventing IFN-alpha/beta- and IFN-gamma-stimulated JAK-STAT signaling in RV-infected cells by the retention of activated STATs in the cytoplasm. Expression of IFN-stimulated response element- and gamma-activated sequence-controlled genes was severely impaired in cells infected with RV SAD L16 or in cells expressing RV P protein from transfected plasmids. In contrast, a recombinant RV expressing small amounts of P had lost the ability to interfere with JAK-STAT signaling. IFN-mediated tyrosine phosphorylation of STAT1 and STAT2 was not impaired in RV P-expressing cells; rather, a defect in STAT recycling was suggested by distinct accumulation of tyrosine-phosphorylated STATs in cell extracts. In the presence of P, activated STAT1 and STAT2 were unable to accumulate in the nucleus. Notably, STAT1 and STAT2 were coprecipitated with RV P only from extracts of cells previously stimulated with IFN-alpha or IFN-gamma, whereas in nonstimulated cells no association of P with STATs was observed. This conditional, IFN activation-dependent binding of tyrosine-phosphorylated STATs by RV P is unique for a viral IFN antagonist. The 10 C-terminal residues of P are required for counteracting JAK-STAT signaling but not for inhibition of transcriptional activation of IFN-beta, thus demonstrating two independent functions of RV P in counteracting the host's IFN response.
Collapse
Affiliation(s)
- Krzysztof Brzózka
- Max von Pettenkofer Institute and Gene Center, Feodor Lynen Str. 25, D-81377 Munich, Germany
| | | | | |
Collapse
|
64
|
Dumitru CA, Dreschers S, Gulbins E. Rhinoviral infections activate p38MAP-kinases via membrane rafts and RhoA. Cell Physiol Biochem 2006; 17:159-66. [PMID: 16543732 DOI: 10.1159/000092077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rhinoviral infections belong to the most frequent human infections characterized by common cold, chronic bronchitis, exacerbations of asthma, otitis media and sinusitis. Here, we define molecular mechanisms that mediate infections of human epithelial cells with human rhinovirus strain 14 (RV14). We demonstrate that RV14 activates p38-MAPKinase (p38-K) in a biphasic time course. Early stimulation of p38-K by RV14 was observed a few minutes after initiation of the infection, while the late increase of p38-K activity occurred 7-12 hrs upon infection. The stimulation of p38-K was mediated by the small G-protein RhoA,which was activated by RV14. Transfection of a genetic construct preventing RhoA activation blocked RV14-induced p38-K activation. Further, integrity of cholesterol and sphingolipid-enriched membrane domains was required for RV14-mediated p38-K activation, which was inhibited by destruction of membrane rafts. The data indicate that RV employs a signaling cascade from membrane rafts via the small G-protein RhoA to p38-K to infect human cells.
Collapse
|
65
|
Young VA, Dillon PJ, Parks GD. Variants of the paramyxovirus Simian virus 5 with accelerated or delayed viral gene expression activate proinflammatory cytokine synthesis. Virology 2006; 350:90-102. [PMID: 16480754 DOI: 10.1016/j.virol.2006.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
Our previous results have shown that the parainfluenza virus SV5 is a poor inducer of proinflammatory cytokines interleukin-8 (IL-8) and macrophage chemoattractant protein 1 (MCP-1). By contrast, an engineered P/V mutant rSV5-P/V-CPI- and a naturally-occurring variant WF-PIV (Wake Forest-Parainfluenza Virus) are both potent activators of IL-8 and MCP-1. In the present study, we addressed the question of why rSV5-WT is such a poor inducer of host cytokine responses relative to the two SV5 variants, and we used the CC chemokine RANTES as a measure of host responses. Time course experiments showed high-level secretion of IL-6 and RANTES following infections of human A549 lung epithelial cells with the P/V-CPI- mutant and WF-PIV. By contrast, SV5-WT induced very low cytokine responses, with the notable exception of moderate induction of RANTES. The mechanism of RANTES induction by the two SV5 variants shared common properties, since RANTES secretion from infected cells had similar kinetics, depended on virus replication, correlated with increased RANTES mRNA levels and promoter activation, and was reduced by inhibitors of the p38 MAPK, ERK, and PI3K pathways. Despite the similar mechanisms of RANTES induction, the two SV5 variants differed dramatically in their growth and gene expression kinetics. By comparison to the P/V mutant rSV5-P/V-CPI- which has accelerated viral gene expression, WF-PIV infection showed a prolonged delay in viral replication, and infected cells did not show high-level viral RNA and protein expression until approximately 12-24 hpi. Sequence analysis revealed that the N, P, V, and M genes from WF-PIV differed by 3, 8, 5, and 10 amino acids compared to rSV5-WT, respectively. Chimeric viruses harboring the WF-PIV P/V or M genes in the context of the other rSV5 genes had growth properties similar to rSV5-WT but had a RANTES-inducing phenotype similar to that of the bone fide WF-PIV virus. Our data indicate a role for both the P/V and the M gene products as determinants of RANTES induction in response to SV5 infection.
Collapse
Affiliation(s)
- Virginia A Young
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, USA
| | | | | |
Collapse
|