51
|
Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio 2013; 4:e00737-13. [PMID: 24129257 PMCID: PMC3812708 DOI: 10.1128/mbio.00737-13] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Coronaviruses are known to infect humans and other animals and cause respiratory and gastrointestinal diseases. Here we report the emergence of porcine epidemic diarrhea virus (PEDV) in the United States and determination of its origin, evolution, and genotypes based on temporal and geographical evidence. Histological lesions in small intestine sections of affected pigs and the complete genomic sequences of three emergent strains of PEDV isolated from outbreaks in Minnesota and Iowa were characterized. Genetic and phylogenetic analyses of the three U.S. strains revealed a close relationship with Chinese PEDV strains and their likely Chinese origin. The U.S. PEDV strains underwent evolutionary divergence, which can be classified into two sublineages. The three emergent U.S. strains are most closely related to a strain isolated in 2012 from Anhui Province in China, which might be the result of multiple recombination events between different genetic lineages or sublineages of PEDV. Molecular clock analysis of the divergent time based on the complete genomic sequences is consistent with the actual time difference, approximately 2 to 3 years, of the PED outbreaks between China (December 2010) and the United States (May 2013). The finding that the emergent U.S. PEDV strains share unique genetic features at the 5'-untranslated region with a bat coronavirus provided further support of the evolutionary origin of PEDV from bats and potential cross-species transmission. The data from this study have important implications for understanding the ongoing PEDV outbreaks in the United States and will guide future efforts to develop effective preventive and control measures against PEDV. IMPORTANCE The sudden emergence of porcine epidemic diarrhea virus (PEDV), a coronavirus, for the first time in the United States causes significant economic and public health concerns. Since its recognition in May 2013, PEDV has rapidly spread across the United States, resulting in high mortality in piglets in more than 17 States now. The ongoing outbreaks of Middle East respiratory syndrome coronavirus in humans from countries in or near the Arabian Peninsula and the historical deadly nature of the 2002 outbreaks of severe acute respiratory syndrome coronavirus create further anxiety over the emergence of PEDV in the United States due to the lack of scientific information about the origin and evolution of this emerging coronavirus. Here we report the detailed genetic characterization, origin, and evolution of emergent PEDV strains in the United States. The results provide much needed information to devise effective preventive and control strategies against PEDV in the United States.
Collapse
|
52
|
Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process. J Virol 2013; 87:11579-90. [PMID: 23966403 DOI: 10.1128/jvi.01836-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5' end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3' end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.
Collapse
|
53
|
Bentley K, Armesto M, Britton P. Infectious Bronchitis Virus as a Vector for the Expression of Heterologous Genes. PLoS One 2013; 8:e67875. [PMID: 23840781 PMCID: PMC3694013 DOI: 10.1371/journal.pone.0067875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 01/31/2023] Open
Abstract
The avian coronavirus infectious bronchitis virus (IBV) is the causative agent of the respiratory disease infectious bronchitis of domestic fowl, and is controlled by routine vaccination. To explore the potential use of IBV as a vaccine vector a reverse genetics system was utilised to generate infectious recombinant IBVs (rIBVs) expressing the reporter genes enhanced green fluorescent protein (eGFP) or humanised Renilla luciferase (hRluc). Infectious rIBVs were obtained following the replacement of Gene 5 or the intergenic region (IR) with eGFP or hRluc, or the replacement of ORFs 3a and 3b with hRluc. The replacement of Gene 5 with an IBV codon-optimised version of the hRluc gene also resulted in successful rescue of infectious rIBV. Reporter gene expression was confirmed by fluorescence microscopy, or luciferase activity assays, for all successfully rescued rIBVs following infection of primary chick kidney (CK) cells. The genetic stability of rIBVs was analysed by serial passage on CK cells. Recombinant IBV stability varied depending on the genome region being replaced, with the reporter genes maintained up to at least passage 8 (P8) following replacement of Gene 5, P7 for replacement of the IR and P5 for replacement of ORFs 3a and 3b. Codon-optimisation of the hRluc gene, when replacing Gene 5, resulted in an increase in genome stability, with hRluc expression stable up to P10 compared to P8 for standard hRluc. Repeated passaging of rIBVs expressing hRluc at an MOI of 0.01 demonstrated an increase in stability, with hRluc expression stable up to at least P12 following the replacement of Gene 5. This study has demonstrated that heterologous genes can be incorporated into, and expressed from a range of IBV genome locations and that replacement of accessory Gene 5 offers a promising target for realising the potential of IBV as a vaccine vector for other avian pathogens.
Collapse
Affiliation(s)
- Kirsten Bentley
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Maria Armesto
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|
54
|
Liu P, Yang D, Carter K, Masud F, Leibowitz JL. Functional analysis of the stem loop S3 and S4 structures in the coronavirus 3'UTR. Virology 2013; 443:40-7. [PMID: 23683838 PMCID: PMC3700632 DOI: 10.1016/j.virol.2013.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
We designed a series of mutations to separately destabilize two helical stems (designated S3 and S4) predicted by a covariation-based model of the coronavirus 3′UTR (Zust et al., 2008). Mouse hepatitis virus genomes containing three or four nucleotide mutations that destabilize either S3 or S4 were viable, whereas genomes carrying these mutations in both S3 and S4 were not viable. A genome carrying these mutations in S3 and S4 plus compensatory mutations restoring base-pairing yielded a virus with wild type phenotype. Larger mutations which completely disrupt S3 or S4 generated various phenotypes. Mutations opening up S3 were lethal. Disruptions of S4 generated both viable and lethal mutants. Genomes carrying the original mutations in S3 or S4 plus compensatory mutations restoring base pairing were viable and had robust growth phenotypes. These results support the Zust model for the coronavirus 3′UTR and suggest that the S3 stem is required for virus viability. Genetic studies of MHV 3′UTR RNA secondary structure support the Zust et al. model. The 3′UTR S3 helical stem is required for virus viability. The 3′UTR S4 helical stem is not required for virus viability.
Collapse
Affiliation(s)
- Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M HSC College of Medicine, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| | | | | | | | | |
Collapse
|
55
|
Mateos-Gomez PA, Morales L, Zuñiga S, Enjuanes L, Sola I. Long-distance RNA-RNA interactions in the coronavirus genome form high-order structures promoting discontinuous RNA synthesis during transcription. J Virol 2013; 87:177-86. [PMID: 23055566 PMCID: PMC3536410 DOI: 10.1128/jvi.01782-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/04/2012] [Indexed: 02/06/2023] Open
Abstract
Coronavirus (CoV) transcription requires a high-frequency recombination process that links newly synthesized minus-strand subgenomic RNA copies to the leader region, which is present only once, at the 5' end of the genome. This discontinuous RNA synthesis step is based on the complementarity between the transcription-regulating sequences (TRSs) at the leader region and those preceding each gene in the nascent minus-strand RNA. Furthermore, the template switch requires the physical proximity of RNA genome domains located between 20,000 and 30,000 nucleotides apart. In this report, it is shown that the efficacy of this recombination step is promoted by novel additional long-distance RNA-RNA interactions between RNA motifs located close to the TRSs controlling the expression of each gene and their complementary sequences mapping close to the 5' end of the genome. These interactions would bring together the motifs involved in the recombination process. This finding indicates that the formation of high-order RNA structures in the CoV genome is necessary to control the expression of at least the viral N gene. The requirement of these long-distance interactions for transcription was shown by the engineering of CoV replicons in which the complementarity between the newly identified sequences was disrupted. Furthermore, disruption of complementarity in mutant viruses led to mutations that restored complementarity, wild-type transcription levels, and viral titers by passage in cell cultures. The relevance of these high-order structures for virus transcription is reinforced by the phylogenetic conservation of the involved RNA motifs in CoVs.
Collapse
Affiliation(s)
- Pedro A Mateos-Gomez
- Department of Molecular and Cell Biology, National Center of Biotechnology, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
56
|
Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses. J Virol 2012; 87:2128-36. [PMID: 23221558 DOI: 10.1128/jvi.02967-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Coronavirus subgenomic mRNA (sgmRNA) synthesis occurs via a process of discontinuous transcription involving transcription regulatory sequences (TRSs) located in the 5' leader sequence (TRS-L) and upstream of each structural and group-specific gene (TRS-B). Several gammacoronaviruses including infectious bronchitis virus (IBV) contain a putative open reading frame (ORF), localized between the M gene and gene 5, which is controversial due to the perceived absence of a TRS. We have studied the transcription of a novel sgmRNA associated with this potential ORF and found it to be transcribed via a previously unidentified noncanonical TRS-B. Using an IBV reverse genetics system, we demonstrated that the template-switching event during intergenic region (IR) sgmRNA synthesis occurs at the 5' end of the noncanonical TRS-B and recombines between nucleotides 5 and 6 of the 8-nucleotide consensus TRS-L. Introduction of a complete TRS-B showed that higher transcription levels are achieved by increasing the number of nucleotide matches between TRS-L and TRS-B. Translation of a protein from the sgmRNA was demonstrated using enhanced green fluorescent protein, suggesting the translation of a fifth, novel, group-specific protein for IBV. This study has resolved an issue concerning the number of ORFs expressed by members of the Gammacoronavirus genus and proposes the existence of a fifth IBV accessory protein. We confirmed previous reports that coronaviruses can produce sgmRNAs from noncanonical TRS-Bs, which may expand their repertoire of proteins. We also demonstrated that noncanonical TRS-Bs may provide a mechanism by which coronaviruses can control protein expression levels by reducing sgmRNA synthesis.
Collapse
|
57
|
Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol 2012; 86:11128-37. [PMID: 22855488 DOI: 10.1128/jvi.01700-12] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SCoV) is an enveloped virus containing a single-stranded, positive-sense RNA genome. Nine mRNAs carrying a set of common 5' and 3' untranslated regions (UTR) are synthesized from the incoming viral genomic RNA in cells infected with SCoV. A nonstructural SCoV nsp1 protein causes a severe translational shutoff by binding to the 40S ribosomal subunits. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNA. However, the mechanism by which SCoV viral proteins are efficiently produced in infected cells in which host protein synthesis is impaired by nsp1 is unknown. In this study, we investigated the role of the viral UTRs in evasion of the nsp1-mediated shutoff. Luciferase activities were significantly suppressed in cells expressing nsp1 together with the mRNA carrying a luciferase gene, while nsp1 failed to suppress luciferase activities of the mRNA flanked by the 5'UTR of SCoV. An RNA-protein binding assay and RNA decay assay revealed that nsp1 bound to stem-loop 1 (SL1) in the 5'UTR of SCoV RNA and that the specific interaction with nsp1 stabilized the mRNA carrying SL1. Furthermore, experiments using an SCoV replicon system showed that the specific interaction enhanced the SCoV replication. The specific interaction of nsp1 with SL1 is an important strategy to facilitate efficient viral gene expression in infected cells, in which nsp1 suppresses host gene expression. Our data indicate a novel mechanism of viral gene expression control by nsp1 and give new insight into understanding the pathogenesis of SARS.
Collapse
|
58
|
Dominguez SR, Sims GE, Wentworth DE, Halpin RA, Robinson CC, Town CD, Holmes KV. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. J Gen Virol 2012; 93:2387-2398. [PMID: 22837419 DOI: 10.1099/vir.0.044628-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1-600, aa 1-200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world.
Collapse
Affiliation(s)
- Samuel R Dominguez
- Department of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA.,Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| | - Gregory E Sims
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - David E Wentworth
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Rebecca A Halpin
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Christine C Robinson
- Department of Pathology and Clinical Medicine, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA
| | - Christopher D Town
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kathryn V Holmes
- Department of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| |
Collapse
|
59
|
Gene N proximal and distal RNA motifs regulate coronavirus nucleocapsid mRNA transcription. J Virol 2011; 85:8968-80. [PMID: 21715479 DOI: 10.1128/jvi.00869-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronavirus subgenomic mRNA (sgmRNA) transcription requires a discontinuous RNA synthesis mechanism driven by the transcription-regulating sequences (TRSs), located at the 3' end of the genomic leader (TRS-L) and also preceding each gene (TRS-B). In transmissible gastroenteritis virus (TGEV), the free energy of TRS-L and cTRS-B (complement of TRS-B) duplex formation is one of the factors regulating the transcription of sgmRNAs. In addition, N gene sgmRNA transcription is controlled by a transcription-regulating motif, including a long-distance RNA-RNA interaction between complementary proximal and distal elements. The extension of complementarity between these two sequences increased N gene transcription. An active domain, a novel essential component of the transcription-regulating motif, has been identified. The active domain primary sequence was necessary for its activity. Relocation of the active domain upstream of the N gene TRS core sequence in the absence of the proximal and distal elements also enhanced sgmRNA N transcription. According to the proposed working model for N gene transcriptional activation, the long-distance RNA-RNA interaction relocates the distant active domain in close proximity with the N gene TRS, which probably increases the frequency of template switching during the synthesis of negative RNA. The transcription-regulating motif has been optimized to a minimal sequence showing a 4-fold activity increase in relation to the native RNA motif. Full-length TGEV infectious viruses were generated with the optimized transcription-regulating motif, which enhanced by 5-fold the transcription of the 3a gene and can be used in expression vectors based in coronavirus genomes.
Collapse
|
60
|
Mouse hepatitis virus stem-loop 4 functions as a spacer element required to drive subgenomic RNA synthesis. J Virol 2011; 85:9199-209. [PMID: 21715502 DOI: 10.1128/jvi.05092-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The 5' 140 nucleotides of the mouse hepatitis virus (MHV) 5' untranslated region (5'UTR) are predicted to contain three secondary structures, stem-loop 1 (SL1), SL2, and SL4. SL1 and SL2 are required for subgenomic RNA synthesis. The current study focuses on SL4, which contains two base-paired regions, SL4a and SL4b. A series of reverse genetic experiments show that SL4a is not required to be base paired. Neither the structure, the sequence, nor the putative 8-amino-acid open reading frame (ORF) in SL4b is required for viral replication. Viruses containing separate deletions of SL4a and SL4b are viable. However, deletion of SL4 is lethal, and genomes carrying this deletion are defective in directing subgenomic RNA synthesis. Deletion of (131)ACA(133) just 3' to SL4 has a profound impact on viral replication. Viruses carrying the (131)ACA(133) deletion were heterogeneous in plaque size. We isolated three viruses with second-site mutations in the 5'UTR which compensated for decreased plaque sizes, delayed growth kinetics, and lower titers associated with the (131)ACA(133) deletion. The second-site mutations are predicted to change either the spacing between SL1 and SL2 or that between SL2 and SL4 or to destabilize the proximal portion of SL4a in our model. A mutant constructed by replacing SL4 with a shorter sequence-unrelated stem-loop was viable. These results suggest that the proposed SL4 in the MHV 5'UTR functions in part as a spacer element that orients SL1, SL2, and the transcriptional regulatory sequence (TRS), and this spacer function may play an important role in directing subgenomic RNA synthesis.
Collapse
|
61
|
Dufour D, Mateos-Gomez PA, Enjuanes L, Gallego J, Sola I. Structure and functional relevance of a transcription-regulating sequence involved in coronavirus discontinuous RNA synthesis. J Virol 2011; 85:4963-73. [PMID: 21389138 PMCID: PMC3126183 DOI: 10.1128/jvi.02317-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/26/2011] [Indexed: 11/20/2022] Open
Abstract
Transmissible gastroenteritis coronavirus (TGEV) genomic RNA transcription generates 5'- and 3'-coterminal subgenomic mRNAs. This process involves a discontinuous step during the synthesis of minus-sense RNA that is modulated by transcription-regulating sequences located at the 3' end of the leader (TRS-L) and also preceding each viral gene (TRS-Bs). TRSs include a highly conserved core sequence (CS) (5'-CUAAAC-3') and variable flanking sequences. It has been previously proposed that TRS-Bs act as attenuation or stop signals during the synthesis of minus-sense RNAs. The nascent minus-stranded RNA would then be transferred by a template switch process to the TRS-L, which acts as the acceptor RNA. To study whether the TRS-L is structured and to determine whether this structure has a functional impact on genomic and subgenomic viral RNA synthesis, we have used a combination of nuclear magnetic resonance (NMR) spectroscopy and UV thermal denaturation approaches together with site-directed mutagenesis and in vivo transcriptional analyses. The results indicated that a 36-nucleotide oligomer encompassing the wild-type TRS-L forms a structured hairpin closed by an apical AACUAAA heptaloop. This loop contains most of the CS and is isolated from a nearby internal loop by a short Watson-Crick base-paired stem. TRS-L mutations altering the structure and the stability of the TRS-L hairpin affected replication and transcription, indicating the requirement of a functional RNA hairpin structure in these processes.
Collapse
Affiliation(s)
- David Dufour
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46012 Valencia, Spain
- Instituto de Investigación Viña Giner, Universidad Católica de Valencia, Quevedo 2, 46001 Valencia, Spain
| | - Pedro A. Mateos-Gomez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Enjuanes
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - José Gallego
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, 46012 Valencia, Spain
- Instituto de Investigación Viña Giner, Universidad Católica de Valencia, Quevedo 2, 46001 Valencia, Spain
| | - Isabel Sola
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
62
|
Ahn DG, Lee W, Choi JK, Kim SJ, Plant EP, Almazán F, Taylor DR, Enjuanes L, Oh JW. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res 2011; 91:1-10. [PMID: 21549154 PMCID: PMC4728714 DOI: 10.1016/j.antiviral.2011.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/09/2011] [Accepted: 04/19/2011] [Indexed: 02/09/2023]
Abstract
The programmed −1 ribosomal frameshifting (−1 PRF) utilized by eukaryotic RNA viruses plays a crucial role for the controlled, limited synthesis of viral RNA replicase polyproteins required for genome replication. The viral RNA replicase polyproteins of severe acute respiratory syndrome coronavirus (SARS-CoV) are encoded by the two overlapping open reading frames 1a and 1b, which are connected by a −1 PRF signal. We evaluated the antiviral effects of antisense peptide nucleic acids (PNAs) targeting a highly conserved RNA sequence on the – PRF signal. The ribosomal frameshifting was inhibited by the PNA, which bound sequence-specifically a pseudoknot structure in the −1 PRF signal, in cell lines as assessed using a dual luciferase-based reporter plasmid containing the −1 PRF signal. Treatment of cells, which were transfected with a SARS-CoV-replicon expressing firefly luciferase, with the PNA fused to a cell-penetrating peptide (CPP) resulted in suppression of the replication of the SARS-CoV replicon, with a 50% inhibitory concentration of 4.4 μM. There was no induction of type I interferon responses by PNA treatment, suggesting that the effect of PNA is not due to innate immune responses. Our results demonstrate that −1 PRF, critical for SARS-CoV viral replication, can be inhibited by CPP-PNA, providing an effective antisense strategy for blocking −1 PRF signals.
Collapse
Affiliation(s)
- Dae-Gyun Ahn
- Department of Biotechnology and Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites. J Virol 2011; 85:5136-49. [PMID: 21411518 DOI: 10.1128/jvi.00195-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The coronavirus (CoV) discontinuous transcription mechanism is driven by long-distance RNA-RNA interactions between transcription-regulating sequences (TRSs) located at the 5' terminal leader (TRS-L) and also preceding each mRNA-coding sequence (TRS-B). The contribution of host cell proteins to CoV transcription needs additional information. Polypyrimidine tract-binding protein (PTB) was reproducibly identified in association with positive-sense RNAs of transmissible gastroenteritis coronavirus (TGEV) TRS-L and TRS-B by affinity chromatography and mass spectrometry. A temporal regulation of PTB cytoplasmic levels was observed during infection, with a significant increase from 7 to 16 h postinfection being inversely associated with a decrease in viral replication and transcription. Silencing the expression of PTB with small interfering RNA in two cell lines (Huh7 and HEK 293T) led to a significant increase of up to 4-fold in mRNA levels and virus titer, indicating a negative effect of PTB on CoV RNA accumulation. During CoV infection, PTB relocalized from the nucleus to novel cytoplasmic structures different from replication-transcription sites in which stress granule markers T-cell intracellular antigen-1 (TIA-1) and TIA-1-related protein (TIAR) colocalized. PTB was detected in these modified stress granules in TGEV-infected swine testis cells but not in stress granules induced by oxidative stress. Furthermore, viral genomic and subgenomic RNAs were detected in association with PTB and TIAR. These cytoplasmic ribonucleoprotein complexes might be involved in posttranscriptional regulation of virus gene expression.
Collapse
|
64
|
Sztuba-Solińska J, Stollar V, Bujarski JJ. Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 2011; 412:245-55. [PMID: 21377709 PMCID: PMC7111999 DOI: 10.1016/j.virol.2011.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/14/2010] [Accepted: 02/04/2011] [Indexed: 12/12/2022]
Abstract
Many (+)-strand RNA viruses use subgenomic (SG) RNAs as messengers for protein expression, or to regulate their viral life cycle. Three different mechanisms have been described for the synthesis of SG RNAs. The first mechanism involves internal initiation on a (−)-strand RNA template and requires an internal SGP promoter. The second mechanism makes a prematurely terminated (−)-strand RNA which is used as template to make the SG RNA. The third mechanism uses discontinuous RNA synthesis while making the (−)-strand RNA templates. Most SG RNAs are translated into structural proteins or proteins related to pathogenesis: however other SG RNAs regulate the transition between translation and replication, function as riboregulators of replication or translation, or support RNA–RNA recombination. In this review we discuss these functions of SG RNAs and how they influence viral replication, translation and recombination.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
65
|
Sola I, Mateos-Gomez PA, Almazan F, Zuñiga S, Enjuanes L. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biol 2011; 8:237-48. [PMID: 21378501 PMCID: PMC3230552 DOI: 10.4161/rna.8.2.14991] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5' and 3' untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins. By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD) it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region. Many cellular proteins interacting with regulatory CoV RNA sequences are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription. In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures.
Collapse
Affiliation(s)
- Isabel Sola
- Department of Molecular and Cell Biology, CNB, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | |
Collapse
|
66
|
Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 2011; 8:270-9. [PMID: 21593585 PMCID: PMC3127101 DOI: 10.4161/rna.8.2.15013] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/18/2022] Open
Abstract
In order to survive and propagate, RNA viruses must achieve a balance between the capacity for adaptation to new environmental conditions or host cells with the need to maintain an intact and replication competent genome. Several virus families in the order Nidovirales, such as the coronaviruses (CoVs) must achieve these objectives with the largest and most complex replicating RNA genomes known, up to 32 kb of positive-sense RNA. The CoVs encode sixteen nonstructural proteins (nsp 1-16) with known or predicted RNA synthesis and modification activities, and it has been proposed that they are also responsible for the evolution of large genomes. The CoVs, including murine hepatitis virus (MHV) and SARS-CoV, encode a 3'-to-5' exoribonuclease activity (ExoN) in nsp14. Genetic inactivation of ExoN activity in engineered SARS-CoV and MHV genomes by alanine substitution at conserved DE-D-D active site residues results in viable mutants that demonstrate 15- to 20-fold increases in mutation rates, up to 18 times greater than those tolerated for fidelity mutants of other RNA viruses. Thus nsp14-ExoN is essential for replication fidelity, and likely serves either as a direct mediator or regulator of a more complex RNA proofreading machine, a process previously unprecedented in RNA virus biology. Elucidation of the mechanisms of nsp14-mediated proofreading will have major implications for our understanding of the evolution of RNA viruses, and also will provide a robust model to investigate the balance between fidelity, diversity and pathogenesis. The discovery of a protein distinct from a viral RdRp that regulates replication fidelity also raises the possibility that RNA genome replication fidelity may be adaptable to differing replication environments and selective pressures, rather than being a fixed determinant.
Collapse
Affiliation(s)
- Mark R Denison
- Department of Pediatrics and Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
67
|
Renovell A, Gago S, Ruiz-Ruiz S, Velázquez K, Navarro L, Moreno P, Vives MC, Guerri J. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation. Virology 2010; 406:360-9. [PMID: 20708769 DOI: 10.1016/j.virol.2010.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/19/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis.
Collapse
Affiliation(s)
- Agueda Renovell
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Coronaviruses possess the largest known RNA genome, a 27- to 32-kb (+)-strand molecule that replicates in the cytoplasm. During virus replication, a 3' coterminal nested set of five to eight subgenomic (sg) mRNAs are made that are also 5' coterminal with the genome, because they carry the genomic leader as the result of discontinuous transcription at intergenic donor signals during (-)-strand synthesis when templates for sgmRNA synthesis are made. An unanswered question is whether the sgmRNAs, which appear rapidly and abundantly, undergo posttranscriptional amplification. Here, using RT-PCR and sequence analyses of head-to-tail-ligated (-) strands, we show that after transfection of an in vitro-generated marked sgmRNA into virus-infected cells, the sgmRNA, like the genome, can function as a template for (-)-strand synthesis. Furthermore, when the transfected sgmRNA contains an internally placed RNA-dependent RNA polymerase template-switching donor signal, discontinuous transcription occurs at this site, and a shorter, 3' terminally nested leader-containing sgmRNA is made, as evidenced by its leader-body junction and by the expression of a GFP gene. Thus, in principle, the longer-nested sgmRNAs in a natural infection, all of which contain potential internal template-switching donor signals, can function to increase the number of the shorter 3'-nested sgmRNAs. One predicted advantage of this behavior for coronavirus survivability is an increased chance of maintaining genome fitness in the 3' one-third of the genome via a homologous recombination between the (now independently abundant) WT sgmRNA and a defective genome.
Collapse
|
69
|
RNA Higher-Order Structures Within the Coronavirus 5′ and 3′ Untranslated Regions and Their Roles in Viral Replication. MOLECULAR BIOLOGY OF THE SARS-CORONAVIRUS 2010. [PMCID: PMC7176159 DOI: 10.1007/978-3-642-03683-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 5′ and 3′ untranslated regions (UTRs) of all coronaviruses contain RNA higher-order structures which play essential roles in viral transcription and replication. In this chapter we present our current knowledge of how those cis-acting elements were defined and their functional roles in viral transcription and replication. Cellular proteins which have been shown binding to those cis-acting elements and potentially support the RNA discontinuous synthesis model are also discussed. A conserved RNA structure model for the 5′ and 3′ UTRs of group 2 coronaviruses is presented with the known cellular protein binding sites.
Collapse
|
70
|
Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J Virol 2009; 84:2169-75. [PMID: 19955314 DOI: 10.1128/jvi.02011-09] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purified nucleocapsid protein (N protein) from transmissible gastroenteritis virus (TGEV) enhanced hammerhead ribozyme self-cleavage and favored nucleic acid annealing, properties that define RNA chaperones, as previously reported. Several TGEV N-protein deletion mutants were expressed in Escherichia coli and purified, and their RNA binding ability and RNA chaperone activity were evaluated. The smallest N-protein domain analyzed with RNA chaperone activity, facilitating DNA and RNA annealing, contained the central unstructured region (amino acids 117 to 268). Interestingly, N protein and its deletion mutants with RNA chaperone activity enhanced template switching in a retrovirus-derived heterologous system, reinforcing the concept that TGEV N protein is an RNA chaperone that could be involved in template switching. This result is in agreement with the observation that in vivo, N protein is not necessary for TGEV replication, but it is required for efficient transcription.
Collapse
|
71
|
Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus. Virus Res 2009; 148:8-16. [PMID: 19951727 PMCID: PMC7114387 DOI: 10.1016/j.virusres.2009.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/15/2009] [Accepted: 11/25/2009] [Indexed: 12/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) expresses its genes via a set of nested subgenomic (sg) mRNAs. Such discontinuous transcription is unique yet poorly understood for arterivirus. The utilization of transcription-regulating sequence (TRS) remains a puzzle, as many TRS-like sequences exist in viral genome, yet only six or seven sg mRNAs were transcribed in arterivirus infected cells. To investigate the transcriptional control of the porcine arterivirus, a recombinant PRRSV infectious cDNA clone pCPV expressing the capsid gene of porcine circovirus 2 (PCV2) between PRRSV ORF1b and ORF2a was developed. The rescued recombinant viruses contained a range of disparate deletions of the inserted PCV2 sequence, yet two stable recombinant viruses containing 41 and 275 nt of foreign sequences were generated upon plaque purification and serial passages. Further analysis of the sg RNA2 profile revealed that an array of novel sg RNA species was generated in cells infected with the recombinant virus. One group was formed by utilizing the inserted PCV2 sequence as TRS; another group was generated from cryptic TRS-like PRRSV sequences located 19, 37 and 97 nt immediately downstream of the PRRSV ORF2 AUG. These results demonstrated that (1) the recombinant virus from direct insertion of foreign sequences was genetically unstable, while two recombinant PRRSVs containing foreign sequence of 41 or 275 nt in length, respectively, became stable upon plaque purification and further serial passages; (2) PRRSV can utilize foreign TRS-like sequence as transcriptional promoter; (3) the insertion of foreign sequence provoked the generation of novel subgenomic RNAs utilizing cryptic TRS-like sequences that remain non-functional in native PRRSV.
Collapse
|
72
|
Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs. J Virol 2008; 83:1532-7. [PMID: 19036814 DOI: 10.1128/jvi.01937-08] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four canine coronavirus type II (CCoV-II) strains were identified in the guts and internal organs of pups which had died of acute gastroenteritis. The CCoV-II strains were strictly related to porcine transmissible gastroenteritis virus (TGEV) in the N-terminal domain of the spike protein, whereas in the other parts of the genome, a higher genetic relatedness to recent CCoV-II isolates was observed. Experimental infection of dogs with a TGEV-like isolate induced mild gastroenteritis without any systemic involvement. By virus neutralization tests, antigenic differences between reference and TGEV-like CCoVs were found. Our data support the potential recombinant origin of the TGEV-like CCoVs.
Collapse
|
73
|
Yu D, Lv J, Sun Z, Zheng H, Lu J, Yuan S. Reverse genetic manipulation of the overlapping coding regions for structural proteins of the type II porcine reproductive and respiratory syndrome virus. Virology 2008; 383:22-31. [PMID: 18977502 PMCID: PMC7172853 DOI: 10.1016/j.virol.2008.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/28/2008] [Accepted: 09/07/2008] [Indexed: 10/24/2022]
Abstract
The overlapping genomic regions coding for structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) poses problems for molecular dissection of the virus replication process. We constructed five mutant full-length cDNA clones with the overlapping regions unwound and 1 to 3 restriction sites inserted between two adjacent ORFs (ORF1/2, ORF4/5, ORF5/6, ORF 6/7 and ORF7/3' UTR), which generated the recombinant viruses. Our findings demonstrated that 1) the overlapping structural protein ORFs can be physically separated, and is dispensable for virus viability; 2) such ORF separations did not interrupt the subgenomic RNA synthesis; 3) the plaque morphology, growth kinetics, and antigenicity of these mutant viruses were virtually indistinguishable from those of the parental virus in cultured cells; and 4) these mutant viruses remained genetic stable in vitro. This study lays a foundation for further molecular dissection of PRRSV replication process, and development of genetically tagged vaccines against PRRS.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Chinese Ministry of Agriculture, Shanghai 200241, China
| | | | | | | | | | | |
Collapse
|
74
|
Complete genome sequence analysis of a predominant infectious bronchitis virus (IBV) strain in China. Virus Genes 2008; 38:56-65. [PMID: 18770015 PMCID: PMC7089031 DOI: 10.1007/s11262-008-0282-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 08/19/2008] [Indexed: 01/06/2023]
Abstract
Infectious bronchitis (IB) is one of the major diseases in poultry flocks all over the world caused by infectious bronchitis virus (IBV). In the study, the complete genome sequence of strain A2 was sequenced and analyzed, which was a predominant IBV strain in China. The results indicated that there were mutations, insertions, and deletions distributed in the whole genome. The A2 virus had the highest identity to S14 and BJ in terms of full genome, whereas had a further distance to Massachusetts strains. Phylogenetic analysis showed that A2 isolate clustered together with most Chinese strains. The results of this study suggest that strain A2 may play an important role in IBV’s evolution and A2-like IBVs are predominant strains in China.
Collapse
|
75
|
Zúñiga S, Sola I, Cruz JLG, Enjuanes L. Role of RNA chaperones in virus replication. Virus Res 2008; 139:253-66. [PMID: 18675859 PMCID: PMC7114511 DOI: 10.1016/j.virusres.2008.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 01/06/2023]
Abstract
RNA molecules are functionally diverse in part due to their extreme structural flexibility that allows rapid regulation by refolding. RNA folding could be a difficult process as often molecules adopt a spatial conformation that is very stable but not biologically functional, named a kinetic trap. RNA chaperones are non-specific RNA binding proteins that help RNA folding by resolving misfolded structures or preventing their formation. There is a large number of viruses whose genome is RNA that allows some evolutionary advantages, such as rapid genome mutation. On the other hand, regions of the viral RNA genomes can adopt different structural conformations, some of them lacking functional relevance and acting as misfolded intermediates. In fact, for an efficient replication, they often require RNA chaperone activities. There is a growing list of RNA chaperones encoded by viruses involved in different steps of the viral cycle. Also, cellular RNA chaperones have been involved in replication of RNA viruses. This review briefly describes RNA chaperone activities and is focused in the roles that viral or cellular nucleic acid chaperones have in RNA virus replication, particularly in those viruses that require discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universitario de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
76
|
Wang JM, Wang LF, Shi ZL. Construction of a non-infectious SARS coronavirus replicon for application in drug screening and analysis of viral protein function. Biochem Biophys Res Commun 2008; 374:138-42. [PMID: 18619943 PMCID: PMC7092913 DOI: 10.1016/j.bbrc.2008.06.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/21/2022]
Abstract
Severe acute respiratory syndrome virus (SARS-CoV) was the causative agent of the SARS outbreaks in 2002–2003. A safer in vitro system is desirable for conducting research on SARS-CoV and to screen for antiviral drugs against the virus. Based on the infectious cDNA clone of rSARS-CoV-ΔE, in which the E gene has been deleted, a safe non-infectious replicon was constructed by replacing the S gene with the enhanced green fluorescent protein (eGFP) gene. Successful replication was achieved as evident from continuous expression of eGFP detected by both fluorescence and Western blot. Treatment with antiviral drugs demonstrated that the replication could be significantly inhibited by 0.4 mg/ml of cysteine proteinase inhibitor E-64D, but not by ribavirin. The same replicons containing further deletion of the coding regions for non-structural proteins (nsp) 1, 2 or 16 confirmed previous observation that nsp16, but not nsp1 or nsp2, was essential for efficient viral replication or transcription.
Collapse
Affiliation(s)
- Jian-Min Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan, Wuhan, Hubei 430071, PR China
| | | | | |
Collapse
|
77
|
Abstract
Coronavirus (CoV) transcription includes a discontinuous mechanism during the synthesis of sub-genome-length minus-strand RNAs leading to a collection of mRNAs in which the 5' terminal leader sequence is fused to contiguous genome sequences. It has been previously shown that transcription-regulating sequences (TRSs) preceding each gene regulate transcription. Base pairing between the leader TRS (TRS-L) and the complement of the body TRS (cTRS-B) in the nascent RNA is a determinant factor during CoV transcription. In fact, in transmissible gastroenteritis CoV, a good correlation has been observed between subgenomic mRNA (sg mRNA) levels and the free energy (DeltaG) of TRS-L and cTRS-B duplex formation. The only exception was sg mRNA N, the most abundant sg mRNA during viral infection in spite of its minimum DeltaG associated with duplex formation. We postulated that additional factors should regulate transcription of sg mRNA N. In this report, we have described a novel transcription regulation mechanism operating in CoV by which a 9-nucleotide (nt) sequence located 449 nt upstream of the N gene TRS core sequence (CS-N) interacts with a complementary sequence just upstream of CS-N, specifically increasing the accumulation of sg mRNA N. Alteration of this complementarity in mutant replicon genomes showed a correlation between the predicted stability of the base pairing between 9-nt sequences and the accumulation of sg mRNA N. This interaction is exclusively conserved in group 1a CoVs, the only CoV subgroup in which the N gene is not the most 3' gene in the viral genome. This is the first time that a long-distance RNA-RNA interaction regulating transcriptional activity specifically enhancing the transcription of one gene has been described to occur in CoVs.
Collapse
|
78
|
Uncoupling RNA virus replication from transcription via the polymerase: functional and evolutionary insights. EMBO J 2007; 26:5120-30. [PMID: 18034156 DOI: 10.1038/sj.emboj.7601931] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/29/2007] [Indexed: 01/11/2023] Open
Abstract
Many eukaryotic positive-strand RNA viruses transcribe subgenomic (sg) mRNAs that are virus-derived messages that template the translation of a subset of viral proteins. Currently, the premature termination (PT) mechanism of sg mRNA transcription, a process thought to operate in a variety of viruses, is best understood in tombusviruses. The viral RNA elements involved in regulating this mechanism have been well characterized in several systems; however, no corresponding protein factors have been identified yet. Here we show that tombusvirus genome replication can be effectively uncoupled from sg mRNA transcription in vivo by C-terminal modifications in its RNA-dependent RNA polymerase (RdRp). Systematic analysis of the PT transcriptional pathway using viral genomes harboring mutant RdRps revealed that the C-terminus functions primarily at an early step in this mechanism by mediating both efficient and accurate production of minus-strand templates for sg mRNA transcription. Our results also suggest a simple evolutionary scheme by which the virus could gain or enhance its transcriptional activity, and define global folding of the viral RNA genome as a previously unappreciated determinant of RdRp evolution.
Collapse
|
79
|
Spencer KA, Dee M, Britton P, Hiscox JA. Role of phosphorylation clusters in the biology of the coronavirus infectious bronchitis virus nucleocapsid protein. Virology 2007; 370:373-81. [PMID: 17931676 PMCID: PMC7103301 DOI: 10.1016/j.virol.2007.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/11/2007] [Accepted: 08/16/2007] [Indexed: 01/15/2023]
Abstract
The coronavirus infectious bronchitis virus (IBV) nucleocapsid (N) protein is an RNA binding protein which is phosphorylated at two conserved clusters. Kinetic analysis of RNA binding indicated that the C-terminal phosphorylation cluster was involved in the recognition of viral RNA from non-viral RNA. The IBV N protein has been found to be essential for the successful recovery of IBV using reverse genetics systems. Rescue experiments indicated that phosphorylated N protein recovered infectious IBV more efficiently when compared to modified N proteins either partially or non-phosphorylated. Our data indicate that the phosphorylated form of the IBV N protein plays a role in virus biology.
Collapse
Affiliation(s)
- Kelly-Anne Spencer
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
80
|
Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. RNA (NEW YORK, N.Y.) 2007; 13:763-80. [PMID: 17353353 PMCID: PMC1852815 DOI: 10.1261/rna.261807] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/29/2007] [Indexed: 05/14/2023]
Abstract
The 5' untranslated region (UTR) of the mouse hepatitis virus (MHV) genome contains cis-acting sequences necessary for transcription and replication. A consensus secondary structural model of the 5' 140 nucleotides of the 5' UTRs of nine coronaviruses (CoVs) derived from all three major CoV groups is presented and characterized by three major stem-loops, SL1, SL2, and SL4. NMR spectroscopy provides structural support for SL1 and SL2 in three group 2 CoVs, including MHV, BCoV, and HCoV-OC43. SL2 is conserved in all CoVs, typically containing a pentaloop (C47-U48-U49-G50-U51 in MHV) stacked on a 5 base-pair stem, with some sequences containing an additional U 3' to U51; SL2 therefore possesses sequence features consistent with a U-turn-like conformation. The imino protons of U48 in the wild-type RNA, and G48 in the U48G SL2 mutant RNA, are significantly protected from exchange with solvent, consistent with a hydrogen bonding interaction critical to the hairpin loop architecture. SL2 is required for MHV replication; MHV genomes containing point substitutions predicted to perturb the SL2 structure (U48C, U48A) were not viable, while those that maintain the structure (U48G and U49A) were viable. The U48C MHV mutant supports both positive- and negative-sense genome-sized RNA synthesis, but fails to direct the synthesis of positive- or negative-sense subgenomic RNAs. These data support the existence of the SL2 in our models, and further suggest a critical role in coronavirus replication.
Collapse
Affiliation(s)
- Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System, College of Medicine, College Station, Texas 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
81
|
Verma S, Lopez LA, Bednar V, Hogue BG. Importance of the penultimate positive charge in mouse hepatitis coronavirus A59 membrane protein. J Virol 2007; 81:5339-48. [PMID: 17329345 PMCID: PMC1900233 DOI: 10.1128/jvi.02427-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The coronavirus membrane (M) protein carboxy tail interacts with the nucleocapsid during virus assembly. Previous studies demonstrated that the two terminal residues are important, and the charged residue (R227) in the penultimate position in the mouse hepatitis coronavirus (MHV) A59 M protein was suggested to participate in intermolecular interactions with negative charges in the nucleocapsid (N) protein. To determine the significance of the positive charge at position 227, we substituted the arginine with lysine (K), aspartic acid (D), glutamic acid (E), or alanine (A) and studied these by reverse genetics in the context of a MHV full-length infectious clone. Viruses with wild-type phenotype were readily recovered with the K or A substitutions. In contrast, negative-charge substitutions were not tolerated as well. In all recovered R227D viruses the negative charge was replaced with heterologous residues resulting from apparent template switching during negative-strand synthesis of subgenomic RNA 7. An additional second-site compensatory V202I substitution was present in some viruses. Recovered R227E viruses had second-site changes within the M protein carboxy tail that were partially compensatory. Significantly, most of the second site changes in the R227E mutant viruses were previously shown to compensate for the removal of negative charges in the N protein. Our results strongly indicate that a positive charge is not absolutely required. It is clear that other regions within the tail must also be involved in helping mediate interactions between the M protein and the nucleocapsid.
Collapse
Affiliation(s)
- Sandhya Verma
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, PO Box 875401, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | |
Collapse
|
82
|
Zúñiga S, Sola I, Moreno JL, Sabella P, Plana-Durán J, Enjuanes L. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 2007; 357:215-27. [PMID: 16979208 PMCID: PMC7111943 DOI: 10.1016/j.virol.2006.07.046] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 07/11/2006] [Accepted: 07/29/2006] [Indexed: 01/19/2023]
Abstract
RNA chaperones are nonspecific nucleic acid binding proteins with long disordered regions that help RNA molecules to adopt its functional conformation. Coronavirus nucleoproteins (N) are nonspecific RNA-binding proteins with long disordered regions. Therefore, we investigated whether transmissible gastroenteritis coronavirus (TGEV) N protein was an RNA chaperone. Purified N protein enhanced hammerhead ribozyme self-cleavage and nucleic acids annealing, which are properties that define RNA chaperones. In contrast, another RNA-binding protein, PTB, did not show these activities. N protein chaperone activity was blocked by specific monoclonal antibodies. Therefore, it was concluded that TGEV N protein is an RNA chaperone. In addition, we have shown that purified severe acute respiratory syndrome (SARS)-CoV N protein also has RNA chaperone activity. In silico predictions of disordered domains showed a similar pattern for all coronavirus N proteins evaluated. Altogether, these data led us to suggest that all coronavirus N proteins might be RNA chaperones.
Collapse
Affiliation(s)
- Sonia Zúñiga
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Lin HX, Xu W, White KA. A multicomponent RNA-based control system regulates subgenomic mRNA transcription in a tombusvirus. J Virol 2006; 81:2429-39. [PMID: 17166897 PMCID: PMC1865963 DOI: 10.1128/jvi.01969-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During infections, positive-strand RNA tombusviruses transcribe two subgenomic (sg) mRNAs that allow for the expression of a subset of their genes. This process is thought to involve an unconventional mechanism involving the premature termination of the virally encoded RNA-dependent RNA polymerase while it is copying the virus genome. The 3' truncated minus strands generated by termination are then used as templates for sg mRNA transcription. In addition to requiring an extensive network of long-distance RNA-RNA interactions (H.-X. Lin and K. A. White, EMBO J. 23:3365-3374, 2004), the transcription of tombusvirus sg mRNAs also involves several additional RNA structures. In vivo analysis of these diverse RNA elements revealed that they function at distinct steps in the process by facilitating the formation or stabilization of the long-distance interactions, modulating minus-strand template production, or promoting the initiation of sg mRNA transcription. All of the RNA elements characterized could be readily incorporated into a premature termination model for sg mRNA transcription. Overall, the analyses revealed a complex system that displays a high level of structural integration and functional coordination. This multicomponent RNA-based control system may serve as a useful paradigm for understanding related transcriptional processes in other positive-sense RNA viruses.
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | |
Collapse
|
84
|
Enjuanes L, Almazán F, Sola I, Zuñiga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 2006; 60:211-30. [PMID: 16712436 DOI: 10.1146/annurev.micro.60.080805.142157] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection by different coronaviruses (CoVs) causes alterations in the transcriptional and translational patterns, cell cycle, cytoskeleton, and apoptosis pathways of the host cells. In addition, CoV infection may cause inflammation, alter immune and stress responses, and modify the coagulation pathways. The balance between the up- and downregulated genes could explain the pathogenesis caused by these viruses. We review specific aspects of CoV-host interactions. CoV genome replication takes place in the cytoplasm in a membrane-protected microenvironment and may control the cell machinery by locating some of their proteins in the host cell nucleus. CoVs initiate translation by cap-dependent and cap-independent mechanisms. CoV transcription involves a discontinuous RNA synthesis (template switching) during the extension of a negative copy of the subgenomic mRNAs. The requirement for base-pairing during transcription has been formally demonstrated in arteriviruses and CoVs. CoV N proteins have RNA chaperone activity that may help initiate template switching. Both viral and cellular proteins are required for replication and transcription, and the role of selected proteins is addressed.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, CNB, CSIC, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
85
|
Perlman S, Holmes KV. Regulation of coronavirus transcription: viral and cellular proteins interacting with transcription-regulating sequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:31-5. [PMID: 17037500 PMCID: PMC7123242 DOI: 10.1007/978-0-387-33012-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
86
|
Perlman S, Holmes KV. Stem-loop 1 in the 5' UTR of the SARS coronavirus can substitute for its counterpart in mouse hepatitis virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:105-8. [PMID: 17037514 PMCID: PMC7123683 DOI: 10.1007/978-0-387-33012-9_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
87
|
Perlman S, Holmes KV. Transcriptional regulation of RNA3 of infectious bronchitis virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:109-12. [PMID: 17037515 PMCID: PMC7123883 DOI: 10.1007/978-0-387-33012-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
88
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
89
|
Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol 2006; 81:20-9. [PMID: 16928755 PMCID: PMC1797243 DOI: 10.1128/jvi.01358-06] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Stanley G Sawicki
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | |
Collapse
|
90
|
Yount B, Roberts RS, Lindesmith L, Baric RS. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome. Proc Natl Acad Sci U S A 2006; 103:12546-51. [PMID: 16891412 PMCID: PMC1531645 DOI: 10.1073/pnas.0605438103] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses.
Collapse
Affiliation(s)
- Boyd Yount
- *Department of Epidemiology, Program in Infectious Diseases, School of Public Health
| | - Rhonda S. Roberts
- *Department of Epidemiology, Program in Infectious Diseases, School of Public Health
| | - Lisa Lindesmith
- *Department of Epidemiology, Program in Infectious Diseases, School of Public Health
| | - Ralph S. Baric
- *Department of Epidemiology, Program in Infectious Diseases, School of Public Health
- Department of Microbiology and Immunology, School of Medicine, and
- Carolina Vaccine Center, University of North Carolina, Chapel Hill, NC 27599
- To whom correspondence should be addressed at:
Department of Epidemiology, School of Public Health, University of North Carolina, 3304 Hooker Research Building, Chapel Hill, NC 27599-7435. E-mail:
| |
Collapse
|
91
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
92
|
Gudima SO, Chang J, Taylor JM. Restoration in vivo of defective hepatitis delta virus RNA genomes. RNA (NEW YORK, N.Y.) 2006; 12:1061-73. [PMID: 16618966 PMCID: PMC1464851 DOI: 10.1261/rna.2328806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The 1679-nt single-stranded RNA genome of hepatitis delta virus (HDV) is circular in conformation. It is able to fold into an unbranched rodlike structure via intramolecular base-pairing. This RNA is replicated by host RNA polymerase II (Pol II). Such transcription is unique, because Pol II is known only for its ability to act on DNA templates. The present study addressed the ability of the HDV RNA replication to tolerate insertions of up to 1000 nt of non-HDV sequence either at an end of the rodlike RNA structure or at a site embedded within the rod. The insertions did not interfere with the ability of primary transcripts to be processed in vivo by ribozyme cleavage and ligation. The insertions greatly reduced the ability of genomes to replicate. However, when total RNA from such transfected cells was used to transfect new recipient cells, replicating HDV RNAs could be detected by Northern analyses. The size of the emerged RNAs was consistent with loss of the inserted sequences. RT-PCR, cloning, and sequencing showed that recovery involved removal of inserted sequences with or without small deletions of adjacent RNA sequences. Such restoration of the RNA genome is consistent with a model requiring intramolecular template-switching (RNA recombination) during RNA-directed transcription, in combination with biological selection for maintenance of the rodlike structure of the template.
Collapse
|
93
|
St-Jean JR, Desforges M, Almazán F, Jacomy H, Enjuanes L, Talbot PJ. Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol 2006; 80:3670-4. [PMID: 16537637 PMCID: PMC1440365 DOI: 10.1128/jvi.80.7.3670-3674.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study describes the assembly of a full-length cDNA clone of human coronavirus (HCoV)-OC43 in a bacterial artificial chromosome (BAC). The BAC containing the full-length infectious cDNA (pBAC-OC43(FL)) was assembled using a two-part strategy. The first step consisted in the introduction of each end of the viral genome into the BAC with accessory sequences allowing proper transcription. The second step consisted in the insertion of the whole HCoV-OC43 cDNA genome into the BAC. To produce recombinant viral particles, pBAC-OC43(FL) was transfected into BHK-21 cells. Recombinant virus displayed the same phenotypic properties as the wild-type virus, including infectious virus titers produced in cell culture and neurovirulence in mice.
Collapse
MESH Headings
- Animals
- Cell Line
- Central Nervous System Viral Diseases/physiopathology
- Central Nervous System Viral Diseases/virology
- Chromosomes, Artificial, Bacterial
- Clone Cells
- Cloning, Molecular
- Coronavirus Infections/physiopathology
- Coronavirus Infections/virology
- Coronavirus OC43, Human/genetics
- Coronavirus OC43, Human/pathogenicity
- Coronavirus OC43, Human/physiology
- Cricetinae
- DNA, Complementary/genetics
- Genome, Viral
- Humans
- Injections, Intraventricular
- Kinetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nerve Tissue/virology
- Recombination, Genetic
- Survival Rate
- Transfection
- Virion
- Virulence
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- Julien R St-Jean
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval H7V 1B7, Québec, Canada
| | | | | | | | | | | |
Collapse
|
94
|
Galán C, Enjuanes L, Almazán F. A point mutation within the replicase gene differentially affects coronavirus genome versus minigenome replication. J Virol 2006; 79:15016-26. [PMID: 16306572 PMCID: PMC1316003 DOI: 10.1128/jvi.79.24.15016-15026.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the construction of the transmissible gastroenteritis virus (TGEV) full-length cDNA clone, a point mutation at position 637 that was present in the defective minigenome DI-C was maintained as a genetic marker. Sequence analysis of the recovered viruses showed a reversion at this position to the original virus sequence. The effect of point mutations at nucleotide 637 was analyzed by reverse genetics using a TGEV full-length cDNA clone and cDNAs from TGEV-derived minigenomes. The replacement of nucleotide 637 of TGEV genome by a T, as in the DI-C sequence, or an A severely affected virus recovery from the cDNA, yielding mutant viruses with low titers and small plaques compared to those of the wild type. In contrast, T or A at position 637 was required for minigenome rescue in trans by the helper virus. No relationship between these observations and RNA secondary-structure predictions was found, indicating that mutations at nucleotide 637 most likely had an effect at the protein level. Nucleotide 637 occupies the second codon position at amino acid 108 of the pp1a polyprotein. This position is predicted to map in the N-terminal polyprotein papain-like proteinase (PLP-1) cleavage site at the p9/p87 junction. Replacement of G-637 by A, which causes a drastic amino acid change (Gly to Asp) at position 108, affected PLP-1-mediated cleavage in vitro. A correlation was found between predicted cleaving and noncleaving mutations and efficient virus rescue from cDNA and minigenome amplification, respectively.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco. Darwin St. 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
95
|
Wu HY, Ozdarendeli A, Brian DA. Bovine coronavirus 5'-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide. J Virol 2006; 80:2183-93. [PMID: 16474126 PMCID: PMC1395388 DOI: 10.1128/jvi.80.5.2183-2193.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/08/2005] [Indexed: 01/17/2023] Open
Abstract
Coronaviruses are positive-strand, RNA-dependent RNA polymerase-utilizing viruses that require a polymerase template switch, characterized as discontinuous transcription, to place a 5'-terminal genomic leader onto subgenomic mRNAs (sgmRNAs). The usually precise switch is thought to occur during the synthesis of negative-strand templates for sgmRNA production and to be directed by heptameric core donor sequences within the genome that match an acceptor core (UCUAAAC in the case of bovine coronavirus) near the 3' end of the 5'-terminal genomic leader. Here it is shown that a 22-nucleotide (nt) donor sequence engineered into a packageable bovine coronavirus defective interfering (DI) RNA and made to match a sequence within the 65-nt virus genomic leader caused a template switch yielding an sgmRNA with only a 33-nt minileader. By changing the donor sequence, acceptor sites between genomic nt 33 and 97 (identical between the DI RNA and the viral genome) could be used to generate sgmRNAs detectable by Northern analysis (approximately 2 to 32 molecules per cell) by 24 h postinfection. Whether the switch was intramolecular only was not determined since a potentially distinguishing acceptor region in the DI RNA rapidly conformed to that in the helper virus genome through a previously described template switch known as leader switching. These results show that crossover acceptor sites for discontinuous transcription (i) need not include the UCUAAAC core and (ii) rest within a surprisingly wide 5'-proximal "hotspot." Overlap of this hotspot with that for leader switching and with elements required for RNA replication suggests that it is part of a larger 5'-proximal multifunctional structure.
Collapse
Affiliation(s)
- Hung-Yi Wu
- Department of Microbiology, University of Tennessee, College of Veterinary Medicine, Knoxville, 37996-0845, USA
| | | | | |
Collapse
|
96
|
Perlman S, Holmes KV. Biochemical aspects of coronavirus replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:13-24. [PMID: 17037498 PMCID: PMC7123974 DOI: 10.1007/978-0-387-33012-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
97
|
Youn S, Collisson EW, Machamer CE. Contribution of trafficking signals in the cytoplasmic tail of the infectious bronchitis virus spike protein to virus infection. J Virol 2005; 79:13209-17. [PMID: 16227244 PMCID: PMC1262608 DOI: 10.1128/jvi.79.21.13209-13217.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Coronavirus spike (S) proteins are responsible for binding and fusion with target cells and thus play an essential role in virus infection. Recently, we identified a dilysine endoplasmic reticulum (ER) retrieval signal and a tyrosine-based endocytosis signal in the cytoplasmic tail of the S protein of infectious bronchitis virus (IBV). Here, an infectious cDNA clone of IBV was used to address the importance of the S protein trafficking signals to virus infection. We constructed infectious cDNA clones lacking the ER retrieval signal, the endocytosis signal, or both. The virus lacking the ER retrieval signal was viable. However, this virus had a growth defect at late times postinfection and produced larger plaques than IBV. Further analysis confirmed that the mutant S protein trafficked though the secretory pathway faster than wild-type S protein. A more dramatic phenotype was obtained when the endocytosis signal was mutated. Recombinant viruses lacking the endocytosis signal (in combination with a mutated dilysine signal or alone) could not be recovered, even though transient syncytia were formed in transfected cells. Our results suggest that the endocytosis signal of IBV S is essential for productive virus infection.
Collapse
Affiliation(s)
- Soonjeon Youn
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | |
Collapse
|
98
|
de Haan CAM, Haijema BJ, Boss D, Heuts FWH, Rottier PJM. Coronaviruses as vectors: stability of foreign gene expression. J Virol 2005; 79:12742-51. [PMID: 16188977 PMCID: PMC1235832 DOI: 10.1128/jvi.79.20.12742-12751.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/01/2005] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are enveloped, positive-stranded RNA viruses considered to be promising vectors for vaccine development, as (i) genes can be deleted, resulting in attenuated viruses; (ii) their tropism can be modified by manipulation of their spike protein; and (iii) heterologous genes can be expressed by simply inserting them with appropriate coronaviral transcription signals into the genome. For any live vector, genetic stability is an essential requirement. However, little is known about the genetic stability of recombinant coronaviruses expressing foreign genes. In this study, the Renilla and the firefly luciferase genes were systematically analyzed for their stability after insertion at various genomic positions in the group 1 coronavirus feline infectious peritonitis virus and in the group 2 coronavirus mouse hepatitis virus. It appeared that the two genes exhibit intrinsic differences, the Renilla gene consistently being maintained more stably than the firefly gene. This difference was not caused by genome size restrictions, by different effects of the encoded proteins, or by different consequences of the synthesis of the additional subgenomic mRNAs. The loss of expression of the firefly luciferase was found to result from various, often large deletions of the gene, probably due to RNA recombination. The extent of this process appeared to depend strongly on the coronaviral genomic background, the luciferase gene being much more stable in the feline than in the mouse coronavirus genome. It also depended significantly on the particular genomic location at which the gene was inserted. The data indicate that foreign sequences are more stably maintained when replacing nonessential coronaviral genes.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|