51
|
Kandari D, Joshi H, Bhatnagar R. Zur: Zinc-Sensing Transcriptional Regulator in a Diverse Set of Bacterial Species. Pathogens 2021; 10:344. [PMID: 33804265 PMCID: PMC8000910 DOI: 10.3390/pathogens10030344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
Zinc (Zn) is the quintessential d block metal, needed for survival in all living organisms. While Zn is an essential element, its excess is deleterious, therefore, maintenance of its intracellular concentrations is needed for survival. The living organisms, during the course of evolution, developed proteins that can track the limitation or excess of necessary metal ions, thus providing survival benefits under variable environmental conditions. Zinc uptake regulator (Zur) is a regulatory transcriptional factor of the FUR superfamily of proteins, abundant among the bacterial species and known for its intracellular Zn sensing ability. In this study, we highlight the roles played by Zur in maintaining the Zn levels in various bacterial species as well as the fact that in recent years Zur has emerged not only as a Zn homeostatic regulator but also as a protein involved directly or indirectly in virulence of some pathogens. This functional aspect of Zur could be exploited in the ventures for the identification of newer antimicrobial targets. Despite extensive research on Zur, the insights into its overall regulon and its moonlighting functions in various pathogens yet remain to be explored. Here in this review, we aim to summarise the disparate functional aspects of Zur proteins present in various bacterial species.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
- Banaras Hindu University, Banaras 221005, India
| |
Collapse
|
52
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
53
|
Wątły J, Miller A, Kozłowski H, Rowińska-Żyrek M. Peptidomimetics - An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules. J Inorg Biochem 2021; 217:111386. [PMID: 33610030 DOI: 10.1016/j.jinorgbio.2021.111386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and antimicrobial potential are discussed.
Collapse
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland.
| | - Adriana Miller
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wroclaw, Joliot - Curie 14, Wroclaw 50-383, Poland; Department of Health Sciences, University of Opole, Katowicka 68, Opole 45-060, Poland
| | | |
Collapse
|
54
|
Abstract
Zinc is an essential nutrient for the virulence of bacterial pathogens such as Streptococcus pneumoniae. Many Gram-positive bacteria use a two-domain lipoprotein for zinc acquisition, but how this class of metal-recruiting proteins acquire zinc and interact with the uptake machinery has remained poorly defined. Zinc is an essential element in all domains of life. Nonetheless, how prokaryotes achieve selective acquisition of zinc from the extracellular environment remains poorly understood. Here, we elucidate a novel mechanism for zinc-binding in AdcA, a solute-binding protein of Streptococcus pneumoniae. Crystal structure analyses reveal the two-domain organization of the protein and show that only the N-terminal domain (AdcAN) is necessary for zinc import. Zinc binding induces only minor changes in the global protein conformation of AdcA and stabilizes a highly mobile loop within the AdcAN domain. This loop region, which is conserved in zinc-specific solute-binding proteins, facilitates closure of the AdcAN binding site and is crucial for zinc acquisition. Collectively, these findings elucidate the structural and functional basis of selective zinc uptake in prokaryotes.
Collapse
|
55
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
56
|
Identification of Zinc-Dependent Mechanisms Used by Group B Streptococcus To Overcome Calprotectin-Mediated Stress. mBio 2020; 11:mBio.02302-20. [PMID: 33173000 PMCID: PMC7667036 DOI: 10.1128/mbio.02302-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease. Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.
Collapse
|
57
|
Vinué L, Hooper DC. Rsp activates expression of the Cnt system in Staphylococcus aureus. BMC Microbiol 2020; 20:327. [PMID: 33115405 PMCID: PMC7594338 DOI: 10.1186/s12866-020-02013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Background The Cnt system is crucial for the optimal import of essential metals in metal-limiting conditions and contributes to virulence in S. aureus. In a screen for regulators of efflux pumps in a phage-based ultra-high-density transposon library, we identified Rsp as a candidate regulator of the cntE gene. Results A two-fold decrease in expression of all genes of the cnt operon was observed by RT-qPCR in the rsp mutant compared to the parental strain, indicating that Rsp acts as an activator of the cnt operon. To determine whether the Rsp activation depends on iron, we compared mutant and parent cnt expression under varying metal conditions. A 2-fold reduction in cnt gene expression was detected in the rsp mutant in TSB, and a slightly smaller decrease (1.9, 1.7, and 1.5-fold changes for cntK, cmtA, and cntE respectively) was observed after addition of dipyridyl. The greatest decrease was seen with addition of FeSO4 (4.1, 5.3 and 6.3-fold changes for cntK, cmtA and cntE respectively). These findings suggest that Rsp activates the cnt operon in low and high iron conditions. To study the relationship between Rsp and the cnt repressors Fur and Zur, we created single and double mutants. Both fur and zur single mutants had significant increases in cnt gene expression compared to the parental strain, as did the fur rsp double mutant. The zur rsp double mutant also had a significant increase in cntK expression and a trend in increases in cntA and cntE expression just below statistical significance. Thus, the ability of Fur and Zur to repress cnt gene expression are not eliminated by the presence of Rsp. However, there were significantly smaller increases in cnt gene expression in the double mutants compared to single mutants, suggesting that Rsp activation can still occur in the absence of these repressors. To determine if Rsp directly modulates expression of cnt genes, incubation of purified Rsp caused a DNA-specific band shift for the cntK and cntA promoters. Conclusions Rsp activation may act to maintain basal cellular levels of staphylopine to scavenge free metals when needed, in addition to metal dependent regulation by Fur and Zur. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02013-0.
Collapse
Affiliation(s)
- Laura Vinué
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114-2696, USA.
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114-2696, USA
| |
Collapse
|
58
|
Abstract
Staphylococcus aureus is a leading agent of antibiotic-resistant bacterial infections in the world. S. aureus tightly controls metal homeostasis during infection, and disruption of metal uptake systems impairs staphylococcal virulence. We identified small molecules that interfere with metal handling in S. aureus to develop chemical probes to investigate metallobiology in this organism. Compound VU0026921 was identified as a small molecule that kills S. aureus both aerobically and anaerobically. The activity of VU0026921 is modulated by metal supplementation, is enhanced by genetic inactivation of Mn homeostasis genes, and correlates with increased cellular reactive oxygen species. Treatment with VU0026921 causes accumulation of multiple metals within S. aureus cells and concomitant upregulation of genes involved in metal detoxification. This work defines a small-molecule probe for further defining the role of metal toxicity in S. aureus and validates future antibiotic development targeting metal toxicity pathways. Metals are essential nutrients that all living organisms acquire from their environment. While metals are necessary for life, excess metal uptake can be toxic; therefore, intracellular metal levels are tightly regulated in bacterial cells. Staphylococcus aureus, a Gram-positive bacterium, relies on metal uptake and metabolism to colonize vertebrates. Thus, we hypothesized that an expanded understanding of metal homeostasis in S. aureus will lead to the discovery of pathways that can be targeted with future antimicrobials. We sought to identify small molecules that inhibit S. aureus growth in a metal-dependent manner as a strategy to uncover pathways that maintain metal homeostasis. Here, we demonstrate that VU0026921 kills S. aureus through disruption of metal homeostasis. VU0026921 activity was characterized through cell culture assays, transcriptional sequencing, compound structure-activity relationship, reactive oxygen species (ROS) generation assays, metal binding assays, and metal level analyses. VU0026921 disrupts metal homeostasis in S. aureus, increasing intracellular accumulation of metals and leading to toxicity through mismetalation of enzymes, generation of reactive oxygen species, or disruption of other cellular processes. Antioxidants partially protect S. aureus from VU0026921 killing, emphasizing the role of reactive oxygen species in the mechanism of killing, but VU0026921 also kills S. aureus anaerobically, indicating that the observed toxicity is not solely oxygen dependent. VU0026921 disrupts metal homeostasis in multiple Gram-positive bacteria, leading to increased reactive oxygen species and cell death, demonstrating the broad applicability of these findings. Further, this study validates VU0026921 as a probe to further decipher mechanisms required to maintain metal homeostasis in Gram-positive bacteria.
Collapse
|
59
|
Abstract
Bacteria must acquire essential nutrients, including zinc, from their environment. For bacterial pathogens, this necessitates overcoming the host metal-withholding response known as nutritional immunity. A novel type of zinc uptake mechanism that involves the bacterial production of a small zinc-scavenging molecule was recently described in the human pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia pestis, as well as the soil-associated bacterium Paenibacillus mucilaginosus. This suggests that zincophores may be important for zinc acquisition in diverse environments. In this study, we sought to identify other zincophore-producing bacteria using bioinformatics. We identified almost 250 unique zincophore-producing species, including human and animal pathogens, as well as isolates from soil, rhizosphere, plant, and marine habitats. Crucially, we observed diversity at the amino acid and gene organization levels, suggesting that many of these species are producing unique zincophores. Together, our findings highlight the importance of zincophores for a broad array of bacteria living in diverse environments. Zinc is an essential nutrient in biological systems due to its structural or catalytic requirement in proteins involved in diverse cellular processes. To meet this cellular demand, microbes must acquire sufficient zinc from their environment. However, many environments have low zinc availability. One of the mechanisms used by bacteria to acquire zinc is through the production of small molecules known as zincophores. Similar to bacterial siderophores used for iron uptake, zincophores are synthesized by the bacterium and exported and then reimported as zincophore-zinc complexes. Thus far, only four zincophores have been described, including two from the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa, in which they play a critical role in zinc acquisition during infection, and one in a soil bacterium. To determine what other microbes may produce zincophores, we used bioinformatic analyses to identify new zincophore biosynthetic gene clusters (BGCs) and predict the diversity of molecules synthesized. Genome neighborhood network analysis identified approximately 250 unique zincophore-producing species from actinobacteria, firmicutes, proteobacteria, and fusobacteria. This indicates that zincophores are produced by diverse bacteria that inhabit a broad range of ecological niches. Many of the BGCs likely produce characterized zincophores, based on similarity to the characterized systems. However, this analysis also identified numerous BGCs that, based on the colocalization of additional modifying enzymes and sequence divergence of the biosynthetic enzymes, are likely to produce unique zincophores. Collectively, these findings provide a comprehensive understanding of the zincophore biosynthetic landscape that will be invaluable for future research on these important small molecules. IMPORTANCE Bacteria must acquire essential nutrients, including zinc, from their environment. For bacterial pathogens, this necessitates overcoming the host metal-withholding response known as nutritional immunity. A novel type of zinc uptake mechanism that involves the bacterial production of a small zinc-scavenging molecule was recently described in the human pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia pestis, as well as the soil-associated bacterium Paenibacillus mucilaginosus. This suggests that zincophores may be important for zinc acquisition in diverse environments. In this study, we sought to identify other zincophore-producing bacteria using bioinformatics. We identified almost 250 unique zincophore-producing species, including human and animal pathogens, as well as isolates from soil, rhizosphere, plant, and marine habitats. Crucially, we observed diversity at the amino acid and gene organization levels, suggesting that many of these species are producing unique zincophores. Together, our findings highlight the importance of zincophores for a broad array of bacteria living in diverse environments.
Collapse
|
60
|
Bearne SL. Through the Looking Glass: Chiral Recognition of Substrates and Products at the Active Sites of Racemases and Epimerases. Chemistry 2020; 26:10367-10390. [DOI: 10.1002/chem.201905826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/09/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry & Molecular BiologyDepartment of ChemistryDalhousie University Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
61
|
Zhang Y, Sen S, Giedroc DP. Iron Acquisition by Bacterial Pathogens: Beyond Tris-Catecholate Complexes. Chembiochem 2020; 21:1955-1967. [PMID: 32180318 PMCID: PMC7367709 DOI: 10.1002/cbic.201900778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Sequestration of the essential nutrient iron from bacterial invaders that colonize the vertebrate host is a central feature of nutritional immunity and the "fight over transition metals" at the host-pathogen interface. The iron quota for many bacterial pathogens is large, as iron enzymes often make up a significant share of the metalloproteome. Iron enzymes play critical roles in respiration, energy metabolism, and other cellular processes by catalyzing a wide range of oxidation-reduction, electron transfer, and oxygen activation reactions. In this Concept article, we discuss recent insights into the diverse ways that bacterial pathogens acquire this essential nutrient, beyond the well-characterized tris-catecholate FeIII complexes, in competition and cooperation with significant host efforts to cripple these processes. We also discuss pathogen strategies to adapt their metabolism to less-than-optimal iron concentrations, and briefly speculate on what might be an integrated adaptive response to the concurrent limitation of both iron and zinc in the infected host.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sambuddha Sen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
62
|
Carlson SK, Erickson DL, Wilson E. Staphylococcus aureus metal acquisition in the mastitic mammary gland. Microb Pathog 2020; 144:104179. [DOI: 10.1016/j.micpath.2020.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022]
|
63
|
Abideen ZU, Ahmad A, Usman M, Majaz S, Ali W, Noreen S, Mahmood T, Nouroz F. Dynamics and conformational propensities of staphylococcal CntA. J Biomol Struct Dyn 2020; 39:4923-4935. [PMID: 32573341 DOI: 10.1080/07391102.2020.1782263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Enzymes use transition metals as co-factors for catalytic roles in biological processes. Notably, manganese, iron, cobalt, nickel, copper and zinc are abundantly used. Staphylococcus aureus, a commensal bacterium asymptomatically, lies on the human body causing variety of infections. S. aureus is equipped by advanced virulence-regulatory circuits of metal acquisition like Cnt that acquires metals at infection sites by utilizing a nicotianamine-like metallophore staphylopine. Despite significant growth in structural studies, how CntA of Cnt system transmits conformational signal upon staphylopine recognition remains elusive. Here, we analyzed the structural changes adopted by CntA during close-to-open transition by computational approaches. CntA uses a bi-domain architectural form of domain II which performed 37° rigid body rotation and 1.1 Å translation assisted by inter-domain hinge cluster residues. Important clustered communities were found regulating the conformational changes in CntA where communities 4 and 5 are found crucial. Besides open and close states, the fluctuating regions sampled two additional intermediate states which were considered close or open previously. CntA prefers fluctuating the non-conserved regions rather than conserved where domain II turned out to be rigid and maintains a stable fold. Overall, the CntA system is a potential target for structural biologist to hamper such conformational behaviors at family level.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Muhammad Usman
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Waqar Ali
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Shumaila Noreen
- Department of Zoology, University of Peshawar, Peshawar, KPK, Pakistan
| | - Tariq Mahmood
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Agriculture, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Botany, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
64
|
Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infect Immun 2020; 88:IAI.00102-20. [PMID: 32205403 DOI: 10.1128/iai.00102-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Collapse
|
65
|
Genetic Regulation of Metal Ion Homeostasis in Staphylococcus aureus. Trends Microbiol 2020; 28:821-831. [PMID: 32381454 DOI: 10.1016/j.tim.2020.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
The acquisition of metal ions and the proper maturation of holo-metalloproteins are essential processes for all organisms. However, metal ion homeostasis is a double-edged sword. A cytosolic accumulation of metal ions can lead to mismetallation of proteins and cell death. Therefore, maintenance of proper concentrations of intracellular metals is essential for cell fitness and pathogenesis. Staphylococcus aureus, like all bacterial pathogens, uses transcriptional metalloregulatory proteins to aid in the detection and the genetic response to changes in metal ion concentrations. Herein, we review the mechanisms by which S. aureus senses and responds to alterations in the levels of cellular zinc, iron, heme, and copper. The interplay between metal ion sensing and metal-dependent expression of virulence factors is also discussed.
Collapse
|
66
|
Grim KP, Radin JN, Solórzano PKP, Morey JR, Frye KA, Ganio K, Neville SL, McDevitt CA, Kehl-Fie TE. Intracellular Accumulation of Staphylopine Can Sensitize Staphylococcus aureus to Host-Imposed Zinc Starvation by Chelation-Independent Toxicity. J Bacteriol 2020; 202:e00014-20. [PMID: 32071094 PMCID: PMC7148132 DOI: 10.1128/jb.00014-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant.IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.
Collapse
Affiliation(s)
- Kyle P Grim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katie A Frye
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
67
|
Maurakis S, Cornelissen CN. Metal-Limited Growth of Neisseria gonorrhoeae for Characterization of Metal-Responsive Genes and Metal Acquisition from Host Ligands. J Vis Exp 2020. [PMID: 32202529 DOI: 10.3791/60903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Trace metals such as iron and zinc are vital nutrients known to play key roles in prokaryotic processes including gene regulation, catalysis, and protein structure. Metal sequestration by hosts often leads to metal limitation for the bacterium. This limitation induces bacterial gene expression whose protein products allow bacteria to overcome their metal-limited environment. Characterization of such genes is challenging. Bacteria must be grown in meticulously prepared media that allows sufficient access to nutritional metals to permit bacterial growth while maintaining a metal profile conducive to achieving expression of the aforementioned genes. As such, a delicate balance must be established for the concentrations of these metals. Growing a nutritionally fastidious organism such as Neisseria gonorrhoeae, which has evolved to survive only in the human host, adds an additional level of complexity. Here, we describe the preparation of a defined metal-limited medium sufficient to allow gonococcal growth and the desired gene expression. This method allows the investigator to chelate iron and zinc from undesired sources while supplementing the media with defined sources of iron or zinc, whose preparation is also described. Finally, we outline three experiments that utilize this media to help characterize the protein products of metal-regulated gonococcal genes.
Collapse
|
68
|
Dey P, Das G, Ramesh A. Interplay between Supramolecular and Coordination Interactions in Synthetic Amphiphiles: Triggering Metal Starvation and Anchorage onto MRSA Cell Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2110-2119. [PMID: 32031818 DOI: 10.1021/acs.langmuir.9b03073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present work highlights the implications of supramolecular interaction and metal coordination on the self-assembly behavior and bactericidal potential of salicaldehyde-(C1) and napthaldehyde-based (C2) amphiphiles against methicillin-resistant Staphylococcus aureus (MRSA). LB trough and atomic force microscope (AFM) analysis indicated the propensity of the amphiphiles to form a monolayer as well as spherical aggregates, with the critical micelle concentration (CMC) for C2 (7.0 μM) being lower than C1 (18.5 μM) in water. Formation of an amphiphile-metal complex was evidenced by ESI-MS, FTIR, FETEM-EDX, and ITC analysis. Growth of S. aureus MRSA 100 cells was remarkably impaired in the presence of 5.0 μM C1 or 20 μM C2 as compared to free cells or cells grown in the presence of equivalent levels of amphiphile-metal complexes, suggesting that the amphiphiles perhaps sequester metal and induce metal starvation in MRSA. C1 and C2 rendered superior membrane damage in MRSA and were less toxic to human embryonic kidney (HEK 293) cells as compared to their metal complexes. C1 and C2 rendered a dose-dependent inhibition of S. aureus biofilm formation, while revival of biofilm upon Zn(II) addition suggested that zinc starvation rendered by the amphiphiles may induce biofilm inhibition. C1 imposed a concentration-dependent metal starvation response in MRSA as there was an upregulation of the cntL gene and downregulation of cntA gene, which are involved in synthesis of the zincophore staphylopine (Stp) and transport of the Stp-Zn complex, respectively. ITC analysis revealed that binding of C1 and C2 to staphylococcal lipoteichoic acid (LTA) was stronger than the corresponding Zn(II) complexes, which perhaps accounted for the higher bactericidal potency of the amphiphiles. The study provides a fundamental understanding on how the chemistry-driven multimodal interaction of the amphiphile translates into growth inhibition and metal starvation in MRSA and advances the idea of combating drug resistance in pathogenic bacteria through amphiphiles, which are pluri-active.
Collapse
Affiliation(s)
- Poulomi Dey
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
69
|
Jordan MR, Wang J, Capdevila DA, Giedroc DP. Multi-metal nutrient restriction and crosstalk in metallostasis systems in microbial pathogens. Curr Opin Microbiol 2020; 55:17-25. [PMID: 32062305 DOI: 10.1016/j.mib.2020.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Transition metals from manganese to zinc function as catalytic and structural cofactors for an amazing diversity of proteins and enzymes, and thus are essential for all forms of life. During infection, inflammatory host proteins limit the accessibility of multiple transition metals to invading pathogens in a process termed nutritional immunity. In order to respond to host-mediated metal starvation, bacteria employ both protein and RNA-based mechanisms to sense prevailing transition metal concentrations that collectively regulate systems-level strategies to maintain cellular metallostasis. In this review, we discuss a number of recent advances in our understanding of how bacteria orchestrate the adaptive response to host-mediated multi-metal restriction, highlighting crosstalk among these regulatory systems.
Collapse
Affiliation(s)
- Matthew R Jordan
- Departments of Chemistry and of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States
| | - Jiefei Wang
- Departments of Chemistry and of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - David P Giedroc
- Departments of Chemistry and of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
70
|
Laffont C, Arnoux P. The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores. Metallomics 2020; 12:1480-1493. [PMID: 33084706 DOI: 10.1039/d0mt00150c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotianamine (NA) is a metabolite synthesized by all plants, in which it is involved in the homeostasis of different micronutrients such as iron, nickel or zinc. In some plants it also serves as a precursor of phytosiderophores, which are used for extracellular iron scavenging. Previous studies have also established the presence of NA in filamentous fungi and some mosses, whereas an analogue of NA was inferred in an archaeon. More recently, opine-type metallophores with homology to NA were uncovered in bacteria, especially in human pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa or Yersinia pestis, synthesizing respectively staphylopine, pseudopaline and yersinopine. Here, we review the current state of knowledge regarding the discovery, biosynthesis, function and regulation of these metallophores. We also discuss the genomic environment of the cntL gene, which is homologous to the plant NA synthase (NAS) gene, and plays a central role in the synthesis of NA-like metallophores. This reveals a large diversity of biosynthetic, export and import pathways. Using sequence similarity networks, we uncovered that these metallophores are widespread in numerous bacteria thriving in very different environments, such as those living at the host-pathogen interface, but also in the soil. We additionally established a phylogeny of the NAS/cntL gene and, as a result, we propose that this gene is an ancient gene and NA, or its derivatives, is an ancient metallophore that played a prominent role in metal acquisition or metal resistance. Indeed, our phylogenetic analysis suggests an evolutionary model where the possibility to synthesize this metallophore was present early in the appearance of life, although it was later lost by most living microorganisms, unless facing metal starvation such as at the host-pathogen interface or in some soils. According to our model, NA then re-emerged as a central metabolite for metal homeostasis in fungi, mosses and all known higher plants.
Collapse
Affiliation(s)
- Clémentine Laffont
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13108, France.
| | - Pascal Arnoux
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13108, France.
| |
Collapse
|
71
|
Hofmann M, Retamal-Morales G, Tischler D. Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 2020; 37:1262-1283. [DOI: 10.1039/c9np00058e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallophores can chelate many different metal and metalloid ions next to iron, make them valuable for many applications.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences
- Chemistry and Physics Faculty
- TU Bergakademie Freiberg
- 09599 Freiberg
- Germany
| | - Gerardo Retamal-Morales
- Laboratorio de Microbiología Básica y Aplicada
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Dirk Tischler
- Microbial Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
72
|
Lalaouna D, Baude J, Wu Z, Tomasini A, Chicher J, Marzi S, Vandenesch F, Romby P, Caldelari I, Moreau K. RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Res 2019; 47:9871-9887. [PMID: 31504767 PMCID: PMC6765141 DOI: 10.1093/nar/gkz728] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
The human opportunistic pathogen Staphylococcus aureus produces numerous small regulatory RNAs (sRNAs) for which functions are still poorly understood. Here, we focused on an atypical and large sRNA called RsaC. Its length varies between different isolates due to the presence of repeated sequences at the 5′ end while its 3′ part is structurally independent and highly conserved. Using MS2-affinity purification coupled with RNA sequencing (MAPS) and quantitative differential proteomics, sodA mRNA was identified as a primary target of RsaC sRNA. SodA is a Mn-dependent superoxide dismutase involved in oxidative stress response. Remarkably, rsaC gene is co-transcribed with the major manganese ABC transporter MntABC and, consequently, RsaC is mainly produced in response to Mn starvation. This 3′UTR-derived sRNA is released from mntABC-RsaC precursor after cleavage by RNase III. The mature and stable form of RsaC inhibits the synthesis of the Mn-containing enzyme SodA synthesis and favors the oxidative stress response mediated by SodM, an alternative SOD enzyme using either Mn or Fe as co-factor. In addition, other putative targets of RsaC are involved in oxidative stress (ROS and NOS) and metal homeostasis (Fe and Zn). Consequently, RsaC may balance two interconnected defensive responses, i.e. oxidative stress and metal-dependent nutritional immunity.
Collapse
Affiliation(s)
- David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Jessica Baude
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Arnaud Tomasini
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg-Esplanade, IBMC-CNRS, Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France.,Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon1, Ecole Normale Supérieure de Lyon, CNRS UMR5308, Lyon, France
| |
Collapse
|
73
|
Lonergan ZR, Skaar EP. Nutrient Zinc at the Host-Pathogen Interface. Trends Biochem Sci 2019; 44:1041-1056. [PMID: 31326221 PMCID: PMC6864270 DOI: 10.1016/j.tibs.2019.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential cofactor required for life and, as such, mechanisms exist for its homeostatic maintenance in biological systems. Despite the evolutionary distance between vertebrates and microbial life, there are parallel mechanisms to balance the essentiality of zinc with its inherent toxicity. Vertebrates regulate zinc homeostasis through a complex network of metal transporters and buffering systems that respond to changes in nutritional zinc availability or inflammation. Fine-tuning of this network becomes crucial during infections, where host nutritional immunity attempts to limit zinc availability to pathogens. However, accumulating evidence demonstrates that pathogens have evolved mechanisms to subvert host-mediated zinc withholding, and these metal homeostasis systems are important for survival within the host. We discuss here the mechanisms of vertebrate and bacterial zinc homeostasis and mobilization, as well as recent developments in our understanding of microbial zinc acquisition.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
74
|
Ibberson CB, Whiteley M. The Staphylococcus aureus Transcriptome during Cystic Fibrosis Lung Infection. mBio 2019; 10:e02774-19. [PMID: 31744924 PMCID: PMC6867902 DOI: 10.1128/mbio.02774-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Laboratory models have been invaluable for the field of microbiology for over 100 years and have provided key insights into core aspects of bacterial physiology such as regulation and metabolism. However, it is important to identify the extent to which these models recapitulate bacterial physiology within a human infection environment. Here, we performed transcriptomics (RNA-seq), focusing on the physiology of the prominent pathogen Staphylococcus aureusin situ in human cystic fibrosis (CF) infection. Through principal-component and hierarchal clustering analyses, we found remarkable conservation in S. aureus gene expression in the CF lung despite differences in the patient clinic, clinical status, age, and therapeutic regimen. We used a machine learning approach to identify an S. aureus transcriptomic signature of 32 genes that can reliably distinguish between S. aureus transcriptomes in the CF lung and in vitro The majority of these genes were involved in virulence and metabolism and were used to improve a common CF infection model. Collectively, these results advance our knowledge of S. aureus physiology during human CF lung infection and demonstrate how in vitro models can be improved to better capture bacterial physiology in infection.IMPORTANCE Although bacteria have been studied in infection for over 100 years, the majority of these studies have utilized laboratory and animal models that often have unknown relevance to the human infections they are meant to represent. A primary challenge has been to assess bacterial physiology in the human host. To address this challenge, we performed transcriptomics of S. aureus during human cystic fibrosis (CF) lung infection. Using a machine learning framework, we defined a "human CF lung transcriptome signature" that primarily included genes involved in metabolism and virulence. In addition, we were able to apply our findings to improve an in vitro model of CF infection. Understanding bacterial gene expression within human infection is a critical step toward the development of improved laboratory models and new therapeutics.
Collapse
Affiliation(s)
- Carolyn B Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
75
|
The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. Infect Immun 2019; 87:IAI.00746-19. [PMID: 31548324 DOI: 10.1128/iai.00746-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen capable of causing a variety of infections, including pneumonia, sepsis, wound, and burn infections. A. baumannii is an increasing threat to public health due to the prevalence of multidrug-resistant strains, leading the World Health Organization to declare A. baumannii a "Priority 1: Critical" pathogen, for which the development of novel antimicrobials is desperately needed. Zinc (Zn) is an essential nutrient that pathogenic bacteria, including A. baumannii, must acquire from their hosts in order to survive. Consequently, vertebrate hosts have defense mechanisms to sequester Zn from invading bacteria through a process known as nutritional immunity. Here, we describe a Zn uptake (Znu) system that enables A. baumannii to overcome this host-imposed Zn limitation. The Znu system consists of an inner membrane ABC transporter and an outer membrane TonB-dependent receptor. Strains of A. baumannii lacking any individual Znu component are unable to grow in Zn-starved conditions, including in the presence of the host nutritional immunity protein calprotectin. The Znu system contributes to Zn-limited growth by aiding directly in the uptake of Zn into A. baumannii cells and is important for pathogenesis in murine models of A. baumannii infection. These results demonstrate that the Znu system allows A. baumannii to subvert host nutritional immunity and acquire Zn during infection.
Collapse
|
76
|
Dynamic Relay of Protein-Bound Lipoic Acid in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00446-19. [PMID: 31451544 DOI: 10.1128/jb.00446-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus competes for myriad essential nutrients during host infection. One of these nutrients is the organosulfur compound lipoic acid, a cofactor required for the activity of several metabolic enzyme complexes. In S. aureus, these include the E2 subunits of three α-ketoacid dehydrogenases and two H proteins, GcvH of the glycine cleavage system and its paralog, GcvH-L. We previously determined that the S. aureus amidotransferase LipL is required for lipoylation of the E2 subunits of pyruvate dehydrogenase (PDH) and branched-chain 2-oxoacid dehydrogenase (BCODH) complexes. The results from this study, coupled with those from Bacillus subtilis, suggested that LipL catalyzes lipoyl transfer from H proteins to E2 subunits. However, to date, the range of LipL targets, the extent of LipL-dependent lipoic acid shuttling between lipoyl domain-containing proteins, and the importance of lipoyl relay in pathogenesis remain unknown. Here, we demonstrate that LipL uses both lipoyl-H proteins as the substrates for lipoyl transfer to all E2 subunits. Moreover, LipL facilitates lipoyl relay between E2 subunits and between H proteins, a property that potentially constitutes an adaptive response to nutrient scarcity in the host, as LipL is required for virulence during infection. Together, these observations support a role for LipL in facilitating flexible lipoyl relay between proteins and highlight the complexity of protein lipoylation in S. aureus IMPORTANCE Protein lipoylation is a posttranslational modification that is evolutionarily conserved from bacteria to humans. Lipoic acid modifications are found on five proteins in S. aureus, four of which are components of major metabolic enzymes. In some bacteria, the amidotransferase LipL is critical for the attachment of lipoic acid to these proteins, and yet it is unclear to what extent LipL facilitates the transfer of this cofactor. We find that S. aureus LipL flexibly shuttles lipoic acid among metabolic enzyme subunits, alluding to a dynamic redistribution mechanism within the bacterial cell. This discovery exemplifies a potential means by which bacteria optimize the use of scarce nutrients when resources are limited.
Collapse
|
77
|
McFarlane JS, Zhang J, Wang S, Lei X, Moran GR, Lamb AL. Staphylopine and pseudopaline dehydrogenase from bacterial pathogens catalyze reversible reactions and produce stereospecific metallophores. J Biol Chem 2019; 294:17988-18001. [PMID: 31615895 DOI: 10.1074/jbc.ra119.011059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Indexed: 11/06/2022] Open
Abstract
Pseudopaline and staphylopine are opine metallophores biosynthesized by Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The final step in opine metallophore biosynthesis is the condensation of the product of a nicotianamine (NA) synthase reaction (i.e. l-HisNA for pseudopaline and d-HisNA for staphylopine) with an α-keto acid (α-ketoglutarate for pseudopaline and pyruvate for staphylopine), which is performed by an opine dehydrogenase. We hypothesized that the opine dehydrogenase reaction would be reversible only for the opine metallophore product with (R)-stereochemistry at carbon C2 of the α-keto acid (prochiral prior to catalysis). A kinetic analysis using stopped-flow spectrometry with (R)- or (S)-staphylopine and kinetic and structural analysis with (R)- and (S)-pseudopaline confirmed catalysis in the reverse direction for only (R)-staphylopine and (R)-pseudopaline, verifying the stereochemistry of these two opine metallophores. Structural analysis at 1.57-1.85 Å resolution captured the hydrolysis of (R)-pseudopaline and allowed identification of a binding pocket for the l-histidine moiety of pseudopaline formed through a repositioning of Phe-340 and Tyr-289 during the catalytic cycle. Transient-state kinetic analysis revealed an ordered release of NADP+ followed by staphylopine, with staphylopine release being the rate-limiting step in catalysis. Knowledge of the stereochemistry for opine metallophores has implications for future studies involving kinetic analysis, as well as opine metallophore transport, metal coordination, and the generation of chiral amines for pharmaceutical development.
Collapse
Affiliation(s)
- Jeffrey S McFarlane
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Jian Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Sanshan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University, Chicago, Illinois 60660
| | - Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
78
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
79
|
Peng ED, Schmitt MP. Identification of zinc and Zur-regulated genes in Corynebacterium diphtheriae. PLoS One 2019; 14:e0221711. [PMID: 31454392 PMCID: PMC6711530 DOI: 10.1371/journal.pone.0221711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae is a Gram-positive bacterial pathogen and the causative agent of diphtheria, a severe disease of the upper respiratory tract of humans. Factors required for C. diphtheriae to survive in the human host are not well defined, but likely include the acquisition of essential metals such as zinc. In C. diphtheriae, zinc-responsive global gene regulation is controlled by the Zinc Uptake Regulator (Zur), a member of the Fur-family of transcriptional regulators. In this study, we use transcriptomics to identify zinc-regulated genes in C. diphtheriae by comparing gene expression of a wild-type strain grown without and with zinc supplementation. Zur-regulated genes were identified by comparing wild-type gene expression with that of an isogenic zur mutant. We observed zinc repression of several putative surface proteins, the heme efflux system hrtBA, various ABC transporters, and the non-ribosomal peptide synthetase/polyketide synthase cluster sidAB. Furthermore, increased gene expression in response to zinc was observed for the alcohol dehydrogenase, adhA. Zinc and Zur regulation were confirmed for several genes by complementing the zur deletion and subsequent RT-qPCR analysis. We used MEME to predict Zur binding sites within the promoter regions of zinc- and Zur-regulated genes, and verified Zur binding by electrophoretic mobility shift assays. Additionally, we characterized cztA (dip1101), which encodes a putative cobalt/zinc/cadmium efflux family protein. Deletion of cztA results in increased sensitivity to zinc, but not to cobalt or cadmium. This study advances our knowledge of changes to Zur-dependent global gene expression in response to zinc in C. diphtheriae. The identification of zinc-regulated ABC transporters herein will facilitate future studies to characterize zinc transport in C. diphtheriae.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration,Silver Spring, MD, United States of America
- * E-mail: (MS); (EP)
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration,Silver Spring, MD, United States of America
- * E-mail: (MS); (EP)
| |
Collapse
|
80
|
Simple rules govern the diversity of bacterial nicotianamine-like metallophores. Biochem J 2019; 476:2221-2233. [PMID: 31300464 DOI: 10.1042/bcj20190384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host's nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified in Staphylococcus aureus, Pseudomonas aeruginosa and Yersinia pestis, respectively. Depending on the species, these metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH). Here, we explored the substrate specificity of CntM by combining bioinformatic and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity is mainly due to the amino acid at position 33 (S. aureus numbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM from P. aeruginosa preferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity toward α-ketoacids is largely governed by a single residue at position 150 of CntM (S. aureus numbering): an aspartate at this position ensures selectivity toward pyruvate, whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue in P. aeruginosa led to a complete reversal of selectivity. Thus, the diversity of opine-type metallophore is governed by the absence/presence of a cntK gene encoding a histidine racemase, and the amino acid residue at position 150 of CntM. These two simple rules predict the production of a fourth metallophore by Paenibacillus mucilaginosus, which was confirmed in vitro and called bacillopaline.
Collapse
|
81
|
Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE. Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. mBio 2019; 10:e01321-19. [PMID: 31387906 PMCID: PMC6686040 DOI: 10.1128/mbio.01321-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.
Collapse
Affiliation(s)
- Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
82
|
Luo S, Ju Y, Zhou J, Gu Q, Xu J, Zhou H. Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus. Int J Biol Macromol 2019; 135:725-733. [DOI: 10.1016/j.ijbiomac.2019.05.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
83
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
84
|
Jordan MR, Wang J, Weiss A, Skaar EP, Capdevila DA, Giedroc DP. Mechanistic Insights into the Metal-Dependent Activation of Zn II-Dependent Metallochaperones. Inorg Chem 2019; 58:13661-13672. [PMID: 31247880 DOI: 10.1021/acs.inorgchem.9b01173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the COG0523 subfamily of candidate GTPase metallochaperones function in bacterial transition-metal homeostasis, but the nature of the cognate metal, mechanism of metal transfer, and identification of target protein(s) for metal delivery remain open questions. Here, we explore the multifunctionality of members of the subfamily linked to delivering ZnII to apoprotein targets under conditions of host-imposed transition-metal depletion. We examine two zinc-uptake repressor (Zur)-regulated COG0523 family members, each from a major human pathogen, Acinetobacter baumannii (AbZigA) and Staphylococcus aureus (SaZigA), in an effort to develop a model for ZnII metallochaperone activity. ZnII chelator competition experiments reveal one high-affinity (KZn1 ≈ 1010-1011 M-1) metal-binding site in each GTPase, while AbZigA and SaZigA are characterized by an additional one and two (lower-affinity) metal-binding sites, respectively. CoII titrations reveal that both metallochaperones have similar electronic absorption characteristics that indicate the presence of two tetrahedral metal coordination sites. High-affinity metal binding at the CXCC motif activates the GTPase activity of both enzymes, with ZnII more effective than CoII. Both GTPases bind the product, GDP, more tightly in the apoprotein than the ZnII-bound state and exhibit what is best described as a "locked" conformation around the GTP substrate. Negative thermodynamic linkage is observed between nucleotide binding and metal binding, leading to a new mechanistic model for COG0523-catalyzed metal delivery.
Collapse
Affiliation(s)
| | | | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | | | | |
Collapse
|
85
|
Abstract
Staphylococcus aureus is clearly the most pathogenic member of the Staphylococcaceae. This is in large part due to the acquisition of an impressive arsenal of virulence factors that are coordinately regulated by a series of dedicated transcription factors. What is becoming more and more appreciated in the field is the influence of the metabolic state of S. aureus on the activity of these virulence regulators and their roles in modulating metabolic gene expression. Here I highlight recent advances in S. aureus metabolism as it pertains to virulence. Specifically, mechanisms of nutrient acquisition are outlined including carbohydrate and non-carbohydrate carbon/energy sources as well as micronutrient (Fe, Mn, Zn and S) acquisition. Additionally, energy producing strategies (respiration versus fermentation) are discussed and put in the context of pathogenesis. Finally, transcriptional regulators that coordinate metabolic gene expression are outlined, particularly those that affect the activities of major virulence factor regulators. This chapter essentially connects many recent observations that link the metabolism of S. aureus to its overall pathogenesis and hints that the mere presence of a plethora of virulence factors may not entirely explain the extraordinary pathogenic potential of S. aureus.
Collapse
|
86
|
Chen C, Hooper DC. Intracellular accumulation of staphylopine impairs the fitness of Staphylococcus aureus cntE mutant. FEBS Lett 2019; 593:1213-1222. [PMID: 31045247 DOI: 10.1002/1873-3468.13396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus exports staphylopine (StP), a broad-spectrum metallophore, via the CntE efflux pump. Here, the mechanism of the fitness defect in the ΔcntE mutant under metal depletion was investigated. Deletion of the StP exporter CntE results in a substantial growth defect, and disrupting the StP biosynthesis gene cntL restores growth of the ΔcntE mutant in metal-depleted media. High-resolution mass spectrometry revealed cytoplasmic accumulation of StP and the absence of extracellular StP in the ΔcntE mutant. The fitness defect of the ΔcntE mutant in mouse subcutaneous abscesses is largely due to StP accumulation. Expression of StP biosynthesis genes are upregulated in the ΔcntE mutant under metal starvation induction. In conclusion, failure to efflux StP results in intracellular StP accumulation and substantially impairs the fitness of S. aureus.
Collapse
Affiliation(s)
- Chunhui Chen
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - David C Hooper
- Division of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
87
|
Hajjar C, Fanelli R, Laffont C, Brutesco C, Cullia G, Tribout M, Nurizzo D, Borezée-Durant E, Voulhoux R, Pignol D, Lavergne J, Cavelier F, Arnoux P. Control by Metals of Staphylopine Dehydrogenase Activity during Metallophore Biosynthesis. J Am Chem Soc 2019; 141:5555-5562. [DOI: 10.1021/jacs.9b01676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christine Hajjar
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| | - Roberto Fanelli
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Clémentine Laffont
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| | - Catherine Brutesco
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| | - Gregorio Cullia
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Mathilde Tribout
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Elise Borezée-Durant
- Micalis Institute, INRA, AgroParisTech, University Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Romé Voulhoux
- Institut de Microbiologie de la Méditerranée, CNRS LCB UMR 7283, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - David Pignol
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| | - Jérôme Lavergne
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Pascal Arnoux
- Aix Marseille Université, CEA, CNRS,
BIAM, F-13108 Saint Paul-Lez-Durance, France
| |
Collapse
|
88
|
The role of metal ions in the virulence and viability of bacterial pathogens. Biochem Soc Trans 2019; 47:77-87. [PMID: 30626704 DOI: 10.1042/bst20180275] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Metal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.
Collapse
|
89
|
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE. Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during Staphylococcus aureus Infection. Infect Immun 2019; 87:e00642-18. [PMID: 30348827 PMCID: PMC6300641 DOI: 10.1128/iai.00642-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jamie Zhu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
90
|
Crawford CL, Dalecki AG, Narmore WT, Hoff J, Hargett AA, Renfrow MB, Zhang M, Kalubowilage M, Bossmann SH, Queern SL, Lapi SE, Hunter RN, Bao D, Augelli-Szafran CE, Kutsch O, Wolschendorf F. Pyrazolopyrimidinones, a novel class of copper-dependent bactericidal antibiotics against multi-drug resistant S. aureus. Metallomics 2019; 11:784-798. [DOI: 10.1039/c8mt00316e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrazolopyrimidinones traffic copper into S. aureus, depleting ATP and altering essential ion concentrations, resulting in the death of the bacteria.
Collapse
Affiliation(s)
| | - Alex G. Dalecki
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | | - Jessica Hoff
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Man Zhang
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | | | | | - Stacy L. Queern
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Suzanne E. Lapi
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Robert N. Hunter
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | - Donghui Bao
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | | | - Olaf Kutsch
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | |
Collapse
|
91
|
Neupane DP, Kumar S, Yukl ET. Two ABC Transporters and a Periplasmic Metallochaperone Participate in Zinc Acquisition in Paracoccus denitrificans. Biochemistry 2018; 58:126-136. [PMID: 30353723 PMCID: PMC6824839 DOI: 10.1021/acs.biochem.8b00854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Bacteria must acquire the essential
element zinc from extremely
limited environments, and this function is performed largely by ATP
binding cassette (ABC) transporters. These systems rely on a periplasmic
or extracellular solute binding protein (SBP) to bind zinc specifically
with a high affinity and deliver it to the membrane permease for import
into the cytoplasm. However, zinc acquisition systems in bacteria
may be more complex, involving multiple transporters and other periplasmic
or extracellular zinc binding proteins. Here we describe the zinc
acquisition functions of two zinc SBPs (ZnuA and AztC) and a novel
periplasmic metallochaperone (AztD) in Paracoccus denitrificans. ZnuA was characterized in vitro and demonstrated
to bind as many as 5 zinc ions with a high affinity. It does not interact
with AztD, in contrast to what has been demonstrated for AztC, which
is able to acquire a single zinc ion through associative transfer
from AztD. Deletions of the corresponding genes singly and in combination
show that either AztC or ZnuA is sufficient and essential for robust
growth in zinc-limited media. Although AztD cannot support transport
of zinc into the cytoplasm, it likely functions to store zinc in the
periplasm for transfer through the AztABCD system.
Collapse
Affiliation(s)
- Durga P Neupane
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Santosh Kumar
- Department of Biological Sciences , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Erik T Yukl
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| |
Collapse
|
92
|
Intergenic evolution during host adaptation increases expression of the metallophore pseudopaline in Pseudomonas aeruginosa. Microbiology (Reading) 2018; 164:1038-1047. [DOI: 10.1099/mic.0.000687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
93
|
Abstract
In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host-microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host-microbe interface and beyond.
Collapse
Affiliation(s)
- Emily M Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
94
|
McFarlane JS, Davis CL, Lamb AL. Staphylopine, pseudopaline, and yersinopine dehydrogenases: A structural and kinetic analysis of a new functional class of opine dehydrogenase. J Biol Chem 2018; 293:8009-8019. [PMID: 29618515 PMCID: PMC5971449 DOI: 10.1074/jbc.ra118.002007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/03/2018] [Indexed: 11/06/2022] Open
Abstract
Opine dehydrogenases (ODHs) from the bacterial pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia pestis perform the final enzymatic step in the biosynthesis of a new class of opine metallophores, which includes staphylopine, pseudopaline, and yersinopine, respectively. Growing evidence indicates an important role for this pathway in metal acquisition and virulence, including in lung and burn-wound infections (P. aeruginosa) and in blood and heart infections (S. aureus). Here, we present kinetic and structural characterizations of these three opine dehydrogenases. A steady-state kinetic analysis revealed that the three enzymes differ in α-keto acid and NAD(P)H substrate specificity and nicotianamine-like substrate stereoselectivity. The structural basis for these differences was determined from five ODH X-ray crystal structures, ranging in resolution from 1.9 to 2.5 Å, with or without NADP+ bound. Variation in hydrogen bonding with NADPH suggested an explanation for the differential recognition of this substrate by these three enzymes. Our analysis further revealed candidate residues in the active sites required for binding of the α-keto acid and nicotianamine-like substrates and for catalysis. This work reports the first structural kinetic analyses of enzymes involved in opine metallophore biosynthesis in three important bacterial pathogens of humans.
Collapse
Affiliation(s)
- Jeffrey S McFarlane
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Cara L Davis
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045; Department of Chemistry, University of Kansas, Lawrence, Kansas 66045.
| |
Collapse
|
95
|
Laczkovich I, Teoh WP, Flury S, Grayczyk JP, Zorzoli A, Alonzo F. Increased flexibility in the use of exogenous lipoic acid by Staphylococcus aureus. Mol Microbiol 2018; 109:150-168. [PMID: 29660187 DOI: 10.1111/mmi.13970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Lipoic acid is a cofactor required for intermediary metabolism that is either synthesized de novo or acquired from environmental sources. The bacterial pathogen Staphylococcus aureus encodes enzymes required for de novo biosynthesis, but also encodes two ligases, LplA1 and LplA2, that are sufficient for lipoic acid salvage during infection. S. aureus also encodes two H proteins, GcvH of the glycine cleavage system and the homologous GcvH-L encoded in an operon with LplA2. GcvH is a recognized conduit for lipoyl transfer to α-ketoacid dehydrogenase E2 subunits, while the function of GcvH-L remains unclear. The potential to produce two ligases and two H proteins is an unusual characteristic of S. aureus that is unlike most other Gram positive Firmicutes and might allude to an expanded pathway of lipoic acid acquisition in this microorganism. Here, we demonstrate that LplA1 and LplA2 facilitate lipoic acid salvage by differentially targeting lipoyl domain-containing proteins; LplA1 targets H proteins and LplA2 targets α-ketoacid dehydrogenase E2 subunits. Furthermore, GcvH and GcvH-L both facilitate lipoyl relay to E2 subunits. Altogether, these studies identify an expanded mode of lipoic acid salvage used by S. aureus and more broadly underscore the importance of bacterial adaptations when faced with nutritional limitation.
Collapse
Affiliation(s)
- Irina Laczkovich
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Wei Ping Teoh
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Sarah Flury
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Azul Zorzoli
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago - Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA
| |
Collapse
|
96
|
Song L, Zhang Y, Chen W, Gu T, Zhang SY, Ji Q. Mechanistic insights into staphylopine-mediated metal acquisition. Proc Natl Acad Sci U S A 2018; 115:3942-3947. [PMID: 29581261 PMCID: PMC5899449 DOI: 10.1073/pnas.1718382115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metal acquisition is vital to pathogens for successful infection within hosts. Staphylopine (StP), a broad-spectrum metallophore biosynthesized by the major human pathogen, Staphylococcus aureus, plays a central role in transition-metal acquisition and bacterial virulence. The StP-like biosynthesis loci are present in various pathogens, and the proteins responsible for StP/metal transportation have been determined. However, the molecular mechanisms of how StP/metal complexes are recognized and transported remain unknown. We report multiple structures of the extracytoplasmic solute-binding protein CntA from the StP/metal transportation system in apo form and in complex with StP and three different metals. We elucidated a sophisticated metal-bound StP recognition mechanism and determined that StP/metal binding triggers a notable interdomain conformational change in CntA. Furthermore, CRISPR/Cas9-mediated single-base substitution mutations and biochemical analysis highlight the importance of StP/metal recognition for StP/metal acquisition. These discoveries provide critical insights into the study of novel metal-acquisition mechanisms in microbes.
Collapse
Affiliation(s)
- Liqiang Song
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yifei Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Tongnian Gu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China;
| |
Collapse
|
97
|
Fojcik C, Arnoux P, Ouerdane L, Aigle M, Alfonsi L, Borezée-Durant E. Independent and cooperative regulation of staphylopine biosynthesis and trafficking by Fur and Zur. Mol Microbiol 2018; 108:159-177. [DOI: 10.1111/mmi.13927] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Clémentine Fojcik
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| | - Pascal Arnoux
- CEA, DRF, BIAM, Laboratoire de Bioénergétique Cellulaire; Saint-Paul-lez-Durance France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales; Saint-Paul-lez-Durance France
- Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales; Saint Paul-Lez-Durance 13108 France
| | - Laurent Ouerdane
- CNRS-UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, Hélioparc, 2; Av. Angot 64053 Pau France
| | - Marina Aigle
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| | - Laura Alfonsi
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| | - Elise Borezée-Durant
- Micalis Institute, INRA, AgroParisTech; University Paris-Saclay; 78350 Jouy-en-Josas France
| |
Collapse
|
98
|
Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:722-733. [PMID: 29410128 DOI: 10.1016/j.bbagrm.2018.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland.
| |
Collapse
|