51
|
Gang J, Wang H, Xue X, Zhang S. Microbiota and COVID-19: Long-term and complex influencing factors. Front Microbiol 2022; 13:963488. [PMID: 36033885 PMCID: PMC9417543 DOI: 10.3389/fmicb.2022.963488] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the World Health Organization statistics, more than 500 million individuals have been infected and more than 6 million deaths have resulted worldwide. Although COVID-19 mainly affects the respiratory system, considerable evidence shows that the digestive, cardiovascular, nervous, and reproductive systems can all be involved. Angiotensin-converting enzyme 2 (AEC2), the target of SARS-CoV-2 invasion of the host is mainly distributed in the respiratory and gastrointestinal tract. Studies found that microbiota contributes to the onset and progression of many diseases, including COVID-19. Here, we firstly conclude the characterization of respiratory, gut, and oral microbial dysbiosis, including bacteria, fungi, and viruses. Then we explore the potential mechanisms of microbial involvement in COVID-19. Microbial dysbiosis could influence COVID-19 by complex interactions with SARS-CoV-2 and host immunity. Moreover, microbiota may have an impact on COVID-19 through their metabolites or modulation of ACE2 expression. Subsequently, we generalize the potential of microbiota as diagnostic markers for COVID-19 patients and its possible association with post-acute COVID-19 syndrome (PACS) and relapse after recovery. Finally, we proposed directed microbiota-targeted treatments from the perspective of gut microecology such as probiotics and prebiotics, fecal transplantation and antibiotics, and other interventions such as traditional Chinese medicine, COVID-19 vaccines, and ACE2-based treatments.
Collapse
Affiliation(s)
- Jiaqi Gang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangsheng Xue
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Shu Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
52
|
Taylo LJ, Keeler EL, Bushman FD, Collman RG. The enigmatic roles of Anelloviridae and Redondoviridae in humans. Curr Opin Virol 2022; 55:101248. [PMID: 35870315 DOI: 10.1016/j.coviro.2022.101248] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Anelloviridae and Redondoviridae are virus families with small, circular, single-stranded DNA genomes that are common components of the human virome. Despite their small genome size of less than 5000 bases, they are remarkably successful - anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in human health and disease.
Collapse
Affiliation(s)
- Louis J Taylo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
53
|
Andrade BGN, Cuadrat RRC, Tonetti FR, Kitazawa H, Villena J. The role of respiratory microbiota in the protection against viral diseases: respiratory commensal bacteria as next-generation probiotics for COVID-19. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:94-102. [PMID: 35846832 PMCID: PMC9246420 DOI: 10.12938/bmfh.2022-009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022]
Abstract
On March 11, 2020, the World Health Organization declared a pandemic of coronavirus infectious disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and imposed the biggest public health challenge for our civilization, with unforeseen impacts in the subsequent years. Similar to other respiratory infections, COVID-19 is associated with significant changes in the composition of the upper respiratory tract microbiome. Studies have pointed to a significant reduction of diversity and richness of the respiratory microbiota in COVID-19 patients. Furthermore, it has been suggested that Prevotella, Staphylococcus, and Streptococcus are associated with severe COVID-19 cases, while Dolosigranulum and Corynebacterium are significantly more abundant in asymptomatic subjects or with mild disease. These results have stimulated the search for new microorganisms from the respiratory microbiota with probiotic properties that could alleviate symptoms and even help in the fight against COVID-19. To date, the potential positive effects of probiotics in the context of SARS-CoV-2 infection and COVID-19 pandemics have been extrapolated from studies carried out with other viral pathogens, such as influenza virus and respiratory syncytial virus. However, scientific evidence has started to emerge demonstrating the capacity of immunomodulatory bacteria to beneficially influence the resistance against SARS-CoV-2 infection. Here we review the scientific knowledge regarding the role of the respiratory microbiota in viral infections in general and in the infection caused by SARS-CoV-2 in particular. In addition, the scientific work that supports the use of immunomodulatory probiotic microorganisms as beneficial tools to reduce the severity of respiratory viral infections is also reviewed. In particular, our recent studies that evaluated the role of immunomodulatory Dolosigranulum pigrum strains in the context of SARS-CoV-2 infection are highlighted.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Adapt Centre, Munster Technological University (MTU), T12 P928 Cork, Ireland
| | - Rafael R C Cuadrat
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 13125 Berlin, Germany.,Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000 Tucumán, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000 Tucumán, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| |
Collapse
|
54
|
Rocafort M, Henares D, Brotons P, Launes C, Fernandez de Sevilla M, Fumado V, Barrabeig I, Arias S, Redin A, Ponomarenko J, Mele M, Millat-Martinez P, Claverol J, Balanza N, Mira A, Garcia-Garcia JJ, Bassat Q, Jordan I, Muñoz-Almagro C. Impact of COVID-19 Lockdown on the Nasopharyngeal Microbiota of Children and Adults Self-Confined at Home. Viruses 2022; 14:v14071521. [PMID: 35891502 PMCID: PMC9315980 DOI: 10.3390/v14071521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
The increased incidence of COVID-19 cases and deaths in Spain in March 2020 led to the declaration by the Spanish government of a state of emergency imposing strict confinement measures on the population. The objective of this study was to characterize the nasopharyngeal microbiota of children and adults and its relation to SARS-CoV-2 infection and COVID-19 severity during the pandemic lockdown in Spain. This cross-sectional study included family households located in metropolitan Barcelona, Spain, with one adult with a previous confirmed COVID-19 episode and one or more exposed co-habiting child contacts. Nasopharyngeal swabs were used to determine SARS-CoV-2 infection status, characterize the nasopharyngeal microbiota and determine common respiratory DNA/RNA viral co-infections. A total of 173 adult cases and 470 exposed children were included. Overall, a predominance of Corynebacterium and Dolosigranulum and a limited abundance of common pathobionts including Haemophilus and Streptococcus were found both among adults and children. Children with current SARS-CoV-2 infection presented higher bacterial richness and increased Fusobacterium, Streptococcus and Prevotella abundance than non-infected children. Among adults, persistent SARS-CoV-2 RNA was associated with an increased abundance of an unclassified member of the Actinomycetales order. COVID-19 severity was associated with increased Staphylococcus and reduced Dolosigranulum abundance. The stringent COVID-19 lockdown in Spain had a significant impact on the nasopharyngeal microbiota of children, reflected in the limited abundance of common respiratory pathobionts and the predominance of Corynebacterium, regardless of SARS-CoV-2 detection. COVID-19 severity in adults was associated with decreased nasopharynx levels of healthy commensal bacteria.
Collapse
Affiliation(s)
- Muntsa Rocafort
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
| | - Desiree Henares
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
| | - Cristian Launes
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Mariona Fernandez de Sevilla
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Victoria Fumado
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Irene Barrabeig
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Epidemiological Surveillance Unit, Department of Health, Generalitat de Catalunya, 08907 Barcelona, Spain
| | - Sara Arias
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Alba Redin
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Maria Mele
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Pere Millat-Martinez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Joana Claverol
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
| | - Nuria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
| | - Alex Mira
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Department of Health and Genomics, Center for Advanced Research in Public Health, Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain
| | - Juan J. Garcia-Garcia
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Quique Bassat
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (S.A.); (P.M.-M.); (N.B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça Maputo 1929, Mozambique
| | - Iolanda Jordan
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain; (M.R.); (D.H.); (P.B.); (C.L.); (M.F.d.S.); (V.F.); (A.R.); (M.M.); (J.C.); (J.J.G.-G.); (I.J.)
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (I.B.); (A.M.); (Q.B.)
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain
- Correspondence: ; Tel.: +34-673302405; Fax: +34-932803626
| |
Collapse
|
55
|
Rovito R, Augello M, Ben-Haim A, Bono V, d'Arminio Monforte A, Marchetti G. Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Front Immunol 2022; 13:912336. [PMID: 35757770 PMCID: PMC9231592 DOI: 10.3389/fimmu.2022.912336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Two years into Coronavirus Disease 2019 (COVID-19) pandemic, a comprehensive characterization of the pathogenesis of severe and critical forms of COVID-19 is still missing. While a deep dysregulation of both the magnitude and functionality of innate and adaptive immune responses have been described in severe COVID-19, the mechanisms underlying such dysregulations are still a matter of scientific debate, in turn hampering the identification of new therapies and of subgroups of patients that would most benefit from individual clinical interventions. Here we review the current understanding of viral and host factors that contribute to immune dysregulation associated with COVID-19 severity in the attempt to unfold and broaden the comprehension of COVID-19 pathogenesis and to define correlates of protection to further inform strategies of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Assaf Ben-Haim
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
56
|
Devi P, Maurya R, Mehta P, Shamim U, Yadav A, Chattopadhyay P, Kanakan A, Khare K, Vasudevan JS, Sahni S, Mishra P, Tyagi A, Jha S, Budhiraja S, Tarai B, Pandey R. Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiol Spectr 2022; 10:e0231121. [PMID: 35579429 PMCID: PMC9241827 DOI: 10.1128/spectrum.02311-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/17/2022] [Indexed: 12/13/2022] Open
Abstract
The modulators of severe COVID-19 have emerged as the most intriguing features of SARS-CoV-2 pathogenesis. This is especially true as we are encountering variants of concern (VOC) with increased transmissibility and vaccination breakthroughs. Microbial co-infections are being investigated as one of the crucial factors for exacerbation of disease severity and complications of COVID-19. A key question remains whether early transcriptionally active microbial signature/s in COVID-19 patients can provide a window for future disease severity susceptibility and outcome? Using complementary metagenomics sequencing approaches, respiratory virus oligo panel (RVOP) and Holo-seq, our study highlights the possible functional role of nasopharyngeal early resident transcriptionally active microbes in modulating disease severity, within recovered patients with sub-phenotypes (mild, moderate, severe) and mortality. The integrative analysis combines patients' clinical parameters, SARS-CoV-2 phylogenetic analysis, microbial differential composition, and their functional role. The clinical sub-phenotypes analysis led to the identification of transcriptionally active bacterial species associated with disease severity. We found significant transcript abundance of Achromobacter xylosoxidans and Bacillus cereus in the mortality, Leptotrichia buccalis in the severe, Veillonella parvula in the moderate, and Actinomyces meyeri and Halomonas sp. in the mild COVID-19 patients. Additionally, the metabolic pathways, distinguishing the microbial functional signatures between the clinical sub-phenotypes, were also identified. We report a plausible mechanism wherein the increased transcriptionally active bacterial isolates might contribute to enhanced inflammatory response and co-infections that could modulate the disease severity in these groups. Current study provides an opportunity for potentially using these bacterial species for screening and identifying COVID-19 patient sub-groups with severe disease outcome and priority medical care. IMPORTANCE COVID-19 is invariably a disease of diverse clinical manifestation, with multiple facets involved in modulating the progression and outcome. In this regard, we investigated the role of transcriptionally active microbial co-infections as possible modulators of disease pathology in hospital admitted SARS-CoV-2 infected patients. Specifically, can there be early nasopharyngeal microbial signatures indicative of prospective disease severity? Based on disease severity symptoms, the patients were segregated into clinical sub-phenotypes: mild, moderate, severe (recovered), and mortality. We identified significant presence of transcriptionally active isolates, Achromobacter xylosoxidans and Bacillus cereus in the mortality patients. Importantly, the bacterial species might contribute toward enhancing the inflammatory responses as well as reported to be resistant to common antibiotic therapy, which together hold potential to alter the disease severity and outcome.
Collapse
Affiliation(s)
- Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aanchal Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kriti Khare
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Shweta Sahni
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
57
|
Watkins RR. Using Precision Medicine for the Diagnosis and Treatment of Viral Pneumonia. Adv Ther 2022; 39:3061-3071. [PMID: 35596912 PMCID: PMC9123616 DOI: 10.1007/s12325-022-02180-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
The COVID-19 pandemic has drawn considerable attention to viral pneumonia from clinicians, public health authorities, and the general public. With dozens of viruses able to cause pneumonia in humans, differentiating viral from bacterial pneumonia can be very challenging in clinical practice using traditional diagnostic methods. Precision medicine is a medical model in which decisions, practices, interventions, and therapies are adapted to the individual patient on the basis of their predicted response or risk of disease. Precision medicine approaches hold promise as a way to improve outcomes for patients with viral pneumonia. This review describes the latest advances in the use of precision medicine for diagnosing and treating viral pneumonia in adults and discusses areas where further research is warranted.
Collapse
Affiliation(s)
- Richard R Watkins
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
58
|
Porto BN. Insights Into the Role of the Lung Virome During Respiratory Viral Infections. Front Immunol 2022; 13:885341. [PMID: 35572506 PMCID: PMC9091589 DOI: 10.3389/fimmu.2022.885341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The virome constitutes the viral component of the microbiome and it consists of the genomes of all the viruses that inhabit a particular region of the human body, including those that cause acute, persistent or latent infection, and retroviral elements integrated to host chromosomes. The human virome is composed by eukaryotic viruses, bacteriophages and archaeal viruses. The understanding of the virome composition and role on human health has been delayed by the absence of specific tools and techniques to accurately characterize viruses. However, more recently, advanced methods for viral diagnostics, such as deep sequencing and metagenomics, have allowed a better understanding of the diverse viral species present in the human body. Previous studies have shown that the respiratory virome modulates the host immunity and that, since childhood, the human lung is populated by viruses for whom there is no disease association. Whether these viruses are potentially pathogenic and the reason for their persistence remain elusive. Increased respiratory viral load can cause exacerbation of chronic pulmonary diseases, including COPD, cystic fibrosis, and asthma. Moreover, the presence of resident viral populations may contribute to the pathogenesis of community-acquired respiratory virus infections. In this mini review, I will discuss the recent progress on our understanding of the human lung virome and summarize the up-to-date knowledge on the relationships among community-acquired respiratory viruses, the lung virome and the immune response to better understand disease pathophysiology and the factors that may lead to viral persistence.
Collapse
Affiliation(s)
- Bárbara N Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
59
|
Mizutani T, Ishizaka A, Koga M, Tsutsumi T, Yotsuyanagi H. Role of Microbiota in Viral Infections and Pathological Progression. Viruses 2022; 14:950. [PMID: 35632692 PMCID: PMC9144409 DOI: 10.3390/v14050950] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Viral infections are influenced by various microorganisms in the environment surrounding the target tissue, and the correlation between the type and balance of commensal microbiota is the key to establishment of the infection and pathogenicity. Some commensal microorganisms are known to resist or promote viral infection, while others are involved in pathogenicity. It is also becoming evident that the profile of the commensal microbiota under normal conditions influences the progression of viral diseases. Thus, to understand the pathogenesis underlying viral infections, it is important to elucidate the interactions among viruses, target tissues, and the surrounding environment, including the commensal microbiota, which should have different relationships with each virus. In this review, we outline the role of microorganisms in viral infections. Particularly, we focus on gaining an in-depth understanding of the correlations among viral infections, target tissues, and the surrounding environment, including the commensal microbiota and the gut virome, and discussing the impact of changes in the microbiota (dysbiosis) on the pathological progression of viral infections.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
60
|
Characterization of the Upper Respiratory Bacterial Microbiome in Critically Ill COVID-19 Patients. Biomedicines 2022; 10:biomedicines10050982. [PMID: 35625719 PMCID: PMC9138573 DOI: 10.3390/biomedicines10050982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
The upper respiratory tract (URT) microbiome can contribute to the acquisition and severity of respiratory viral infections. The described associations between URT microbiota and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited at microbiota genus level and by the lack of functional interpretation. Our study, therefore, characterized the URT bacterial microbiome at species level and their encoded pathways in patients with COVID-19 and correlated these to clinical outcomes. Whole metagenome sequencing was performed on nasopharyngeal samples from hospitalized patients with critical COVID-19 (n = 37) and SARS-CoV-2-negative individuals (n = 20). Decreased bacterial diversity, a reduction in commensal bacteria, and high abundance of pathogenic bacteria were observed in patients compared to negative controls. Several bacterial species and metabolic pathways were associated with better respiratory status and lower inflammation. Strong correlations were found between species biomarkers and metabolic pathways associated with better clinical outcome, especially Moraxella lincolnii and pathways of vitamin K2 biosynthesis. Our study demonstrates correlations between the URT microbiome and COVID-19 patient outcomes; further studies are warranted to validate these findings and to explore the causal roles of the identified microbiome biomarkers in COVID-19 pathogenesis.
Collapse
|
61
|
Bai GH, Lin SC, Hsu YH, Chen SY. The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications. Viruses 2022; 14:278. [PMID: 35215871 PMCID: PMC8876576 DOI: 10.3390/v14020278] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.
Collapse
Affiliation(s)
- Geng-Hao Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Education, Taipei Medical University Hospital, Taipei City 11031, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
62
|
Zhang Y, Wang C, Zhu C, Ye W, Gu Q, Shu C, Feng X, Chen X, Zhang W, Shan T. Redondoviridae infection regulates circRNAome in periodontitis. J Med Virol 2022; 94:2537-2547. [PMID: 35075668 DOI: 10.1002/jmv.27624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
Redondoviridae is a recently identified family of DNA viruses associated with periodontitis. Circular RNAs (circRNAs) are novel endogenous, conserved noncoding RNAs contributing to the virus-related immune-inflammatory response. The present study aimed to analyze the expression profiles of circRNAs in the gingival tissues of periodontitis patients with and without Redondoviridae-infection and healthy controls using high-throughput RNA sequencing combined with experimental validation. Out of 17819 circRNAs, 175 were dysregulated. Functional annotation and enrichment analysis of the differential circRNA host genes demonstrated potential alterations in the molecular and cellular components and metabolism in individuals suffering from periodontitis with Redondoviridae infection. Moreover, "axon guidance", "lysine biosynthesis", and "vascular endothelial growth factor signaling pathways" were significantly enriched in Redondoviridae-infected gingivitis tissues. Furthermore, the key circRNAs (circCOL1A1, circAASS, circPTK2, circATP2B4, circDOCK1, circTTBK2, and circMCTP2) associated with the pathobiology of Redondoviridae-related periodontitis were identified by constructing circRNA-miRNA-mRNA networks. Bioinformatics analyses demonstrated that abnormally expressed circRNAs might contribute to the etiopathogenesis and development of Redondoviridae-related periodontitis. The present study's findings have enhanced the current understanding ofthe Redondoviridae-related periodontitis mechanism and provide insights into further applications for diagnostic markers and therapeutic uses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Ce Zhu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Wei Ye
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Qin Gu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Chenbin Shu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Xiping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,National Clinical Research Center for Oral Diseases, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| |
Collapse
|
63
|
Shilts MH, Rosas-Salazar C, Strickland BA, Kimura KS, Asad M, Sehanobish E, Freeman MH, Wessinger BC, Gupta V, Brown HM, Boone HH, Patel V, Barbi M, Bottalico D, O’Neill M, Akbar N, Rajagopala SV, Mallal S, Phillips E, Turner JH, Jerschow E, Das SR. Severe COVID-19 Is Associated With an Altered Upper Respiratory Tract Microbiome. Front Cell Infect Microbiol 2022; 11:781968. [PMID: 35141167 PMCID: PMC8819187 DOI: 10.3389/fcimb.2021.781968] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The upper respiratory tract (URT) is the portal of entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and SARS-CoV-2 likely interacts with the URT microbiome. However, understanding of the associations between the URT microbiome and the severity of coronavirus disease 2019 (COVID-19) is still limited. Objective Our primary objective was to identify URT microbiome signature/s that consistently changed over a spectrum of COVID-19 severity. Methods Using data from 103 adult participants from two cities in the United States, we compared the bacterial load and the URT microbiome between five groups: 20 asymptomatic SARS-CoV-2-negative participants, 27 participants with mild COVID-19, 28 participants with moderate COVID-19, 15 hospitalized patients with severe COVID-19, and 13 hospitalized patients in the ICU with very severe COVID-19. Results URT bacterial load, bacterial richness, and within-group microbiome composition dissimilarity consistently increased as COVID-19 severity increased, while the relative abundance of an amplicon sequence variant (ASV), Corynebacterium_unclassified.ASV0002, consistently decreased as COVID-19 severity increased. Conclusions We observed that the URT microbiome composition significantly changed as COVID-19 severity increased. The URT microbiome could potentially predict which patients may be more likely to progress to severe disease or be modified to decrease severity. However, further research in additional longitudinal cohorts is needed to better understand how the microbiome affects COVID-19 severity.
Collapse
Affiliation(s)
- Meghan H. Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian Rosas-Salazar
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Britton A. Strickland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kyle S. Kimura
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asad
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Esha Sehanobish
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael H. Freeman
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bronson C. Wessinger
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Veerain Gupta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hunter M. Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Helen H. Boone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Viraj Patel
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Danielle Bottalico
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Meaghan O’Neill
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nadeem Akbar
- Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elizabeth Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin H. Turner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elina Jerschow
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Suman R. Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
64
|
Affiliation(s)
- John E McGinniss
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| | - Ronald G Collman
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania
| |
Collapse
|
65
|
Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison. Nat Rev Rheumatol 2021; 17:731-748. [PMID: 34716418 PMCID: PMC8554518 DOI: 10.1038/s41584-021-00709-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Children and adolescents infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are predominantly asymptomatic or have mild symptoms compared with the more severe coronavirus disease 2019 (COVID-19) described in adults. However, SARS-CoV-2 is also associated with a widely reported but poorly understood paediatric systemic vasculitis. This multisystem inflammatory syndrome in children (MIS-C) has features that overlap with myocarditis, toxic-shock syndrome and Kawasaki disease. Current evidence indicates that MIS-C is the result of an exaggerated innate and adaptive immune response, characterized by a cytokine storm, and that it is triggered by prior SARS-CoV-2 exposure. Epidemiological, clinical and immunological differences classify MIS-C as being distinct from Kawasaki disease. Differences include the age range, and the geographical and ethnic distribution of patients. MIS-C is associated with prominent gastrointestinal and cardiovascular system involvement, admission to intensive care unit, neutrophilia, lymphopenia, high levels of IFNγ and low counts of naive CD4+ T cells, with a high proportion of activated memory T cells. Further investigation of MIS-C will continue to enhance our understanding of similar conditions associated with a cytokine storm.
Collapse
|
66
|
de Castilhos J, Zamir E, Hippchen T, Rohrbach R, Schmidt S, Hengler S, Schumacher H, Neubauer M, Kunz S, Müller-Esch T, Hiergeist A, Gessner A, Khalid D, Gaiser R, Cullin N, Papagiannarou SM, Beuthien-Baumann B, Krämer A, Bartenschlager R, Jäger D, Müller M, Herth F, Duerschmied D, Schneider J, Schmid RM, Eberhardt JF, Khodamoradi Y, Vehreschild MJGT, Teufel A, Ebert MP, Hau P, Salzberger B, Schnitzler P, Poeck H, Elinav E, Merle U, Stein-Thoeringer CK. Severe Dysbiosis and Specific Haemophilus and Neisseria Signatures as Hallmarks of the Oropharyngeal Microbiome in Critically Ill Coronavirus Disease 2019 (COVID-19) Patients. Clin Infect Dis 2021; 75:e1063-e1071. [PMID: 34694375 PMCID: PMC8586732 DOI: 10.1093/cid/ciab902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND At the entry site of respiratory virus infections, the oropharyngeal microbiome has been proposed as a major hub integrating viral and host immune signals. Early studies suggested that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with changes of the upper and lower airway microbiome, and that specific microbial signatures may predict coronavirus disease 2019 (COVID-19) illness. However, the results are not conclusive, as critical illness can drastically alter a patient's microbiome through multiple confounders. METHODS To study oropharyngeal microbiome profiles in SARS-CoV-2 infection, clinical confounders, and prediction models in COVID-19, we performed a multicenter, cross-sectional clinical study analyzing oropharyngeal microbial metagenomes in healthy adults, patients with non-SARS-CoV-2 infections, or with mild, moderate, and severe COVID-19 (n = 322 participants). RESULTS In contrast to mild infections, patients admitted to a hospital with moderate or severe COVID-19 showed dysbiotic microbial configurations, which were significantly pronounced in patients treated with broad-spectrum antibiotics, receiving invasive mechanical ventilation, or when sampling was performed during prolonged hospitalization. In contrast, specimens collected early after admission allowed us to segregate microbiome features predictive of hospital COVID-19 mortality utilizing machine learning models. Taxonomic signatures were found to perform better than models utilizing clinical variables with Neisseria and Haemophilus species abundances as most important features. CONCLUSIONS In addition to the infection per se, several factors shape the oropharyngeal microbiome of severely affected COVID-19 patients and deserve consideration in the interpretation of the role of the microbiome in severe COVID-19. Nevertheless, we were able to extract microbial features that can help to predict clinical outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany,Vale do Rio dos Sinos University (UNISINOS), Sao Leopoldo, Brazil
| | - Eli Zamir
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Theresa Hippchen
- Department of Gastroenterology and Infectious Diseases, University Clinic Heidelberg, Heidelberg, Germany
| | - Roman Rohrbach
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Sabine Schmidt
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Silvana Hengler
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Hanna Schumacher
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Melanie Neubauer
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabrina Kunz
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany
| | - Tonia Müller-Esch
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Clinic Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Clinic Regensburg, Regensburg, Germany
| | - Dina Khalid
- Department of Virology, University Clinic Heidelberg, Heidelberg, Germany
| | - Rogier Gaiser
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Nyssa Cullin
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | - Stamatia M Papagiannarou
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany
| | | | - Alwin Krämer
- German Cancer Research Center (DKFZ), Research Division Molecular Hematology/Oncology, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany,German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg
| | - Dirk Jäger
- National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Michael Müller
- Thoraxklinik and Translational Lung Research Center, Heidelberg University, Heidelberg, Germany
| | - Felix Herth
- Thoraxklinik and Translational Lung Research Center, Heidelberg University, Heidelberg, Germany
| | - Daniel Duerschmied
- Department of Internal Medicine III, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Schneider
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johann F Eberhardt
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Frankfurt, Germany,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Andreas Teufel
- Department of Medicine II, Section of Hepatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, and Center for Preventive Medicine and Digital Health Baden-Württemberg, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Section of Hepatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, and Center for Preventive Medicine and Digital Health Baden-Württemberg, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Clinic Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Department of Infectious Disease, University Clinic Regensburg, Regensburg, Germany
| | - Paul Schnitzler
- Department of Virology, University Clinic Heidelberg, Heidelberg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany,National Center for Tumor Diseases (NCT) WERA
| | - Eran Elinav
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany,Weizmann Institute of Science, Rehovot, Israel
| | - Uta Merle
- Department of Gastroenterology and Infectious Diseases, University Clinic Heidelberg, Heidelberg, Germany
| | - Christoph K Stein-Thoeringer
- German Cancer Research Center (DKFZ), Research Division Microbiome and Cancer, Heidelberg, Germany,National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany,Corresponding author: Christoph K. Stein-Thoeringer, MD, Microbiome and Cancer Research Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany,
| |
Collapse
|
67
|
Nesbitt H, Burke C, Haghi M. Manipulation of the Upper Respiratory Microbiota to Reduce Incidence and Severity of Upper Respiratory Viral Infections: A Literature Review. Front Microbiol 2021; 12:713703. [PMID: 34512591 PMCID: PMC8432964 DOI: 10.3389/fmicb.2021.713703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
There is a high incidence of upper respiratory viral infections in the human population, with infection severity being unique to each individual. Upper respiratory viruses have been associated previously with secondary bacterial infection, however, several cross-sectional studies analyzed in the literature indicate that an inverse relationship can also occur. Pathobiont abundance and/or bacterial dysbiosis can impair epithelial integrity and predispose an individual to viral infection. In this review we describe common commensal microorganisms that have the capacity to reduce the abundance of pathobionts and maintain bacterial symbiosis in the upper respiratory tract and discuss the potential and limitations of localized probiotic formulations of commensal bacteria to reduce the incidence and severity of viral infections.
Collapse
Affiliation(s)
- Henry Nesbitt
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine Burke
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Mehra Haghi
- Discipline of Pharmacy, Graduate School Health, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|