51
|
Suppression of eEF-2K-mediated autophagy enhances the cytotoxicity of raddeanin A against human breast cancer cells in vitro. Acta Pharmacol Sin 2018; 39:642-648. [PMID: 29239350 DOI: 10.1038/aps.2017.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022] Open
Abstract
Recent evidence shows that raddeanin A (RA), an oleanane-type triterpenoid saponin extracted from Anemone raddeana Regel, exerts remarkable cytotoxicity against cancer cells in vitro and in vivo. In addition, RA has also been found to activate autophagy in human gastric cancer cells. In this study, we investigated the molecular mechanisms underlying RA-induced autophagy as well as the relationship between RA-induced autophagy and its cytotoxicity in human breast cancer cells in vitro. Treatment with RA (2-8 μmol/L) dose-dependently enhanced autophagy, as evidenced by increased LC3 levels in breast cancer cell lines T47D, MCF-7 and MDA-MB-231. Furthermore, the Akt-mTOR-eEF-2K signaling pathway was demonstrated to be involved in RA-induced activation of autophagy in the 3 breast cancer cell lines. Treatment with RA (2-10 μmol/L) dose-dependently induced apoptosis in the 3 breast cancer cell lines. Pretreatment with the autophagy inhibitor chloroquine (CQ, 20 μmol/L) significantly enhanced RA-caused cytotoxicity via promoting apoptosis. In conclusion, our results suggest that modulating autophagy can reinforce the cytotoxicity of RA against human breast cancer cells.
Collapse
|
52
|
Garza-Lombó C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. CURRENT OPINION IN TOXICOLOGY 2018; 8:102-110. [PMID: 30417160 PMCID: PMC6223325 DOI: 10.1016/j.cotox.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) and the adenosine monophosphate-activated protein kinase (AMPK) regulate cell survival and metabolism in response to diverse stimuli such as variations in amino acid content, changes in cellular bioenergetics, oxygen levels, neurotrophic factors and xenobiotics. This Opinion paper aims to discuss the current state of knowledge regarding how mTOR and AMPK regulate the metabolism and survival of brain cells and the close interrelationship between both signaling cascades. It is now clear that both mTOR and AMPK pathways regulate cellular homeostasis at multiple levels. Studies so far demonstrate that dysregulation in these two pathways is associated with neuronal injury, degeneration and neurotoxicity, but the mechanisms involved remain unclear. Most of the work so far has been focused on their antagonistic regulation of autophagy, but recent findings highlight that changes in protein synthesis, metabolism and mitochondrial function are likely to play a role in the regulatory effects of both mTOR and AMPK on neuronal health. Understanding the role and relationship between these two master regulators of cell metabolism is crucial for future therapeutic approaches to counteract alterations in cell metabolism and survival in brain injury and disease.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México 04510
| | - Annika Schroder
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Elsa M. Reyes-Reyes
- University of Arizona College of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Tucson, AZ 85724
| | - Rodrigo Franco
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
53
|
Ji C, Xu Q, Guo L, Wang X, Ren Y, Zhang H, Zhu W, Ming Z, Yuan Y, Ren X, Song J, Cheng Y, Yang J, Zhang Y. eEF-2 Kinase-targeted miR-449b confers radiation sensitivity to cancer cells. Cancer Lett 2018; 418:64-74. [DOI: 10.1016/j.canlet.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
54
|
El-Naggar AM, Sorensen PH. Translational control of aberrant stress responses as a hallmark of cancer. J Pathol 2018; 244:650-666. [PMID: 29293271 DOI: 10.1002/path.5030] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| |
Collapse
|
55
|
Wang Y, Huang G, Wang Z, Qin H, Mo B, Wang C. Elongation factor-2 kinase acts downstream of p38 MAPK to regulate proliferation, apoptosis and autophagy in human lung fibroblasts. Exp Cell Res 2018; 363:291-298. [PMID: 29355493 DOI: 10.1016/j.yexcr.2018.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal and progressive fibro-proliferative lung disease, and fibroblast-to-myofibroblast differentiation is a crucial process in the development of IPF. Elongation factor-2 kinase (eEF2K) has been reported to play an important role in various disease types, but the role of eEF2K in IPF is unknown. In this study, we investigated the role of eEF2K in normal lung fibroblast (NHLF) proliferation, differentiation, apoptosis, and autophagy as well as the interaction between eEF2K and p38 MAPK signaling through in vitro experiments. We found that the inhibition of eEF2K markedly augmented cell proliferation and differentiation, suppressed apoptosis and autophagy, and reversed the anti-fibrotic effects of a p38 MAPK inhibitor. Together, our results indicate that eEF2K might inhibit TGF-β1-induced NHLF proliferation and differentiation and activate NHLF cell apoptosis and autophagy through p38 MAPK signaling, which might ameliorate lung fibroblast-to-myofibroblast differentiation.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Respiratory Medcine (Department of Respiiratory and Critical Care Medcine), Key Cite of National Clinical Research Center for Respiratory Disease. Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Guojin Huang
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, Guangxi, China
| | - Zhixia Wang
- Department of Respiratory Medcine (Department of Respiiratory and Critical Care Medcine), Key Cite of National Clinical Research Center for Respiratory Disease. Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Huiping Qin
- Department of Respiratory Medcine (Department of Respiiratory and Critical Care Medcine), Key Cite of National Clinical Research Center for Respiratory Disease. Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Biwen Mo
- Department of Respiratory, Guilin People's Hospital affiliated of Guilin Medical University, 15 Lequn Road, Guilin, Guangxi, China
| | - Changming Wang
- Department of Respiratory, Guilin People's Hospital affiliated of Guilin Medical University, 12 Wenming Road, Guilin, Guangxi, China.
| |
Collapse
|
56
|
mTOR Signaling Pathway and Protein Synthesis: From Training to Aging and Muscle Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:139-151. [PMID: 30390251 DOI: 10.1007/978-981-13-1435-3_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In muscle tissue there is a balance between the processes muscle synthesis and degradation. The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating protein synthesis in order to maintain muscular protein turnover and trophism. Studies have shown that both down- and upregulation mechanisms are involved in this process in a manner dependent on stimulus and cellular conditions. Additionally, mTOR signaling has recently been implicated in several physiological conditions related to cell survival, such as self-digestion (autophagy), energy production, and the preservation of cellular metabolic balance over the lifespan. Here we briefly describe the mTOR structure and its regulatory protein synthesis pathway. Furthermore, the role of mTOR protein in autophagy, aging, and mitochondrial function in muscle tissue is presented.
Collapse
|
57
|
Xie J, Shen K, Lenchine RV, Gethings LA, Trim PJ, Snel MF, Zhou Y, Kenney JW, Kamei M, Kochetkova M, Wang X, Proud CG. Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. Int J Cancer 2017; 142:1865-1877. [PMID: 29235102 DOI: 10.1002/ijc.31210] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation phase of mRNA translation and hence protein synthesis. Increasing evidence indicates that eEF2K plays an important role in the survival and migration of cancer cells and in tumor progression. As demonstrated by two-dimensional wound-healing and three-dimensional transwell invasion assays, knocking down or inhibiting eEF2K in cancer cells impairs migration and invasion of cancer cells. Conversely, exogenous expression of eEF2K or knocking down eEF2 (the substrate of eEF2K) accelerates wound healing and invasion. Importantly, using LC-HDMSE analysis, we identify 150 proteins whose expression is decreased and 73 proteins which are increased upon knocking down eEF2K in human lung carcinoma cells. Of interest, 34 downregulated proteins are integrins and other proteins implicated in cell migration, suggesting that inhibiting eEF2K may help prevent cancer cell mobility and metastasis. Interestingly, eEF2K promotes the association of integrin mRNAs with polysomes, providing a mechanism by which eEF2K may enhance their cellular levels. Consistent with this, genetic knock down or pharmacological inhibition of eEF2K reduces the protein expression levels of integrins. Notably, pharmacological or genetic inhibition of eEF2K almost completely blocked tumor growth and effectively prevented the spread of tumor cells in vivo. High levels of eEF2K expression were associated with invasive carcinoma and metastatic tumors. These data provide the evidence that eEF2K is a new potential therapeutic target for preventing tumor metastasis.
Collapse
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Roman V Lenchine
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, United Kingdom
| | - Paul J Trim
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Marten F Snel
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Ying Zhou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Justin W Kenney
- Program in Neurosciences and Mental Health, the Hospital for Sick Children, Toronto, Canada
| | - Makoto Kamei
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Marina Kochetkova
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Xuemin Wang
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
58
|
Ouyang L, Zhang L, Liu J, Fu L, Yao D, Zhao Y, Zhang S, Wang G, He G, Liu B. Discovery of a Small-Molecule Bromodomain-Containing Protein 4 (BRD4) Inhibitor That Induces AMP-Activated Protein Kinase-Modulated Autophagy-Associated Cell Death in Breast Cancer. J Med Chem 2017; 60:9990-10012. [PMID: 29172540 DOI: 10.1021/acs.jmedchem.7b00275] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upon the basis of The Cancer Genome Atlas (TCGA) data set, we identified that several autophagy-related proteins such as AMP-activated protein kinase (AMPK) were remarkably downregulated in breast cancer. Combined with coimmunoprecipitation assay, we demonstrated that BRD4 might interact with AMPK. After analyses of the pharmacophore and WPF interaction optimization, we designed a small-molecule inhibitor of BRD4, 9f (FL-411) which was validated by cocrystal structure with BD1 of BRD4. Subsequently, 9f was discovered to induce ATG5-dependent autophagy-associated cell death (ACD) by blocking BRD4-AMPK interaction and thus activating AMPK-mTOR-ULK1-modulated autophagic pathway in breast cancer cells. Interestingly, the iTRAQ-based proteomics analyses revealed that 9f induced ACD pathways involved in HMGB1, VDAC1/2, and eEF2. Moreover, 9f displayed a therapeutic potential on both breast cancer xenograft mouse and zebrafish models. Together, these results demonstrate that a novel small-molecule inhibitor of BRD4 induces BRD4-AMPK-modulated ACD in breast cancer, which may provide a candidate drug for future cancer therapy.
Collapse
Affiliation(s)
- Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Leilei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Dahong Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
59
|
Deng Z, Luo P, Lai W, Song T, Peng J, Wei HK. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis. Biochem Biophys Res Commun 2017; 494:278-284. [DOI: 10.1016/j.bbrc.2017.10.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
|
60
|
Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers (Basel) 2017; 9:cancers9120162. [PMID: 29186827 PMCID: PMC5742810 DOI: 10.3390/cancers9120162] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly unusual protein kinase that negatively regulates the elongation step of protein synthesis. This step uses the vast majority of the large amount of energy and amino acids required for protein synthesis. eEF2K activity is controlled by an array of regulatory inputs, including inhibition by signalling through mammalian target of rapamycin complex 1 (mTORC1). eEF2K is activated under conditions of stress, such as energy depletion or nutrient deprivation, which can arise in poorly-vascularised tumours. In many such stress conditions, eEF2K exerts cytoprotective effects. A growing body of data indicates eEF2K aids the growth of solid tumours in vivo. Since eEF2K is not essential (in mice) under ‘normal’ conditions, eEF2K may be a useful target in the treatment of solid tumours. However, some reports suggest that eEF2K may actually impair tumorigenesis in some situations. Such a dual role of eEF2K in cancer would be analogous to the situation for other pathways involved in cell metabolism, such as autophagy and mTORC1. Further studies are needed to define the role of eEF2K in different tumour types and at differing stages in tumorigenesis, and to assess its utility as a therapeutic target in oncology.
Collapse
|
61
|
Bayraktar R, Pichler M, Kanlikilicer P, Ivan C, Bayraktar E, Kahraman N, Aslan B, Oguztuzun S, Ulasli M, Arslan A, Calin G, Lopez-Berestein G, Ozpolat B. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget 2017; 8:11641-11658. [PMID: 28036267 PMCID: PMC5355293 DOI: 10.18632/oncotarget.14264] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer characterized by the absence of defined molecular targets, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and is associated with high rates of relapse and distant metastasis despite surgery and adjuvant chemotherapy. The lack of effective targeted therapies for TNBC represents an unmet therapeutic challenge. Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical calcium/calmodulin-dependent serine/threonine kinase that promotes TNBC tumorigenesis, progression, and drug resistance, representing a potential novel molecular target. However, the mechanisms regulating eEF2K expression are unknown. Here, we report that eEF2K protein expression is highly up-regulated in TNBC cells and patient tumors and it is associated with poor patient survival and clinical outcome. We found that loss/reduced expression of miR-603 leads to eEF2K overexpression in TNBC cell lines. Its expression results in inhibition of eEF2K by directly targeting the 3-UTR and the inhibition of tumor cell growth, migration and invasion in TNBC. In vivo therapeutic gene delivery of miR-603 into TNBC xenograft mouse models by systemic administration of miR-603-nanoparticles led to a significant inhibition of eEF2K expression and tumor growth, which was associated with decreased activity of the downstream targets of eEF2K, including Src, Akt, cyclin D1 and c-myc. Our findings suggest that miR-603 functions as a tumor suppressor and loss of miR-603 expression leads to increase in eEF2K expression and contributes to the growth, invasion, and progression of TNBC. Taken together, our data suggest that miR-603-based gene therapy is a potential strategy against TNBC.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Medical Biology, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Martin Pichler
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Medical Biology, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mustafa Ulasli
- Department of Medical Biology, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Arslan
- Department of Medical Biology, School of Medicine, Gaziantep University, Gaziantep, Turkey
| | - George Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
62
|
Johanns M, Pyr Dit Ruys S, Houddane A, Vertommen D, Herinckx G, Hue L, Proud CG, Rider MH. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Cell Signal 2017; 36:212-221. [PMID: 28502587 DOI: 10.1016/j.cellsig.2017.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a key regulator of protein synthesis in mammalian cells. It phosphorylates and inhibits eEF2, the translation factor necessary for peptide translocation during the elongation phase of protein synthesis. When cellular energy demand outweighs energy supply, AMP-activated protein kinase (AMPK) and eEF2K become activated, leading to eEF2 phosphorylation, which reduces the rate of protein synthesis, a process that consumes a large proportion of cellular energy under optimal conditions. AIM The goal of the present study was to elucidate the mechanisms by which AMPK activation leads to increased eEF2 phosphorylation to decrease protein synthesis. METHODS Using genetically modified mouse embryo fibroblasts (MEFs), effects of treatments with commonly used AMPK activators to increase eEF2 phosphorylation were compared with that of the novel compound 991. Bacterially expressed recombinant eEF2K was phosphorylated in vitro by recombinant activated AMPK for phosphorylation site-identification by mass spectrometry followed by site-directed mutagenesis of the identified sites to alanine residues to study effects on the kinetic properties of eEF2K. Wild-type eEF2K and a Ser491/Ser492 mutant were retrovirally re-introduced in eEF2K-deficient MEFs and effects of 991 treatment on eEF2 phosphorylation and protein synthesis rates were studied in these cells. RESULTS & CONCLUSIONS AMPK activation leads to increased eEF2 phosphorylation in MEFs mainly by direct activation of eEF2K and partly by inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment of MEFs with AMPK activators can also lead to eEF2K activation independently of AMPK probably via a rise in intracellular Ca2+. AMPK activates eEF2K by multi-site phosphorylation and the newly identified Ser491/Ser492 is important for activation, leading to mTOR-independent inhibition of protein synthesis. Our study provides new insights into the control of eEF2K by AMPK, with implications for linking metabolic stress to decreased protein synthesis to conserve energy reserves, a pathway that is of major importance in cancer cell survival.
Collapse
Affiliation(s)
- M Johanns
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - S Pyr Dit Ruys
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - A Houddane
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - D Vertommen
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - G Herinckx
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - L Hue
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - C G Proud
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - M H Rider
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium.
| |
Collapse
|
63
|
Horigome T, Takumi S, Shirai K, Kido T, Hagiwara-Chatani N, Nakashima A, Adachi N, Yano H, Hirai Y. Sulfated glycosaminoglycans and non-classically secreted proteins, basic FGF and epimorphin, coordinately regulate TGF-β-induced cell behaviors of human scar dermal fibroblasts. J Dermatol Sci 2017; 86:132-141. [DOI: 10.1016/j.jdermsci.2017.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/15/2022]
|
64
|
Kameshima S, Okada M, Yamawaki H. [Mechanisms of control of cardiovascular, tumorous and neuronal diseases by eEF2K/eEF2 signaling and suggestion of eEF2K/eEF2 as pharmacotherapeutic target]. Nihon Yakurigaku Zasshi 2017; 149:194-199. [PMID: 28484099 DOI: 10.1254/fpj.149.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
65
|
Tavares CDJ, Giles DH, Stancu G, Chitjian CA, Ferguson SB, Wellmann RM, Kaoud TS, Ghose R, Dalby KN. Signal Integration at Elongation Factor 2 Kinase: THE ROLES OF CALCIUM, CALMODULIN, AND SER-500 PHOSPHORYLATION. J Biol Chem 2016; 292:2032-2045. [PMID: 27956550 DOI: 10.1074/jbc.m116.753277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity.
Collapse
Affiliation(s)
- Clint D J Tavares
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712.
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Gabriel Stancu
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Catrina A Chitjian
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Scarlett B Ferguson
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Rebecca M Wellmann
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Ranajeet Ghose
- the Department of Chemistry, City College of New York, New York, New York 10031; the Graduate Center, City University of New York, New York, New York 10016
| | - Kevin N Dalby
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712.
| |
Collapse
|
66
|
De Gassart A, Demaria O, Panes R, Zaffalon L, Ryazanov AG, Gilliet M, Martinon F. Pharmacological eEF2K activation promotes cell death and inhibits cancer progression. EMBO Rep 2016; 17:1471-1484. [PMID: 27572820 DOI: 10.15252/embr.201642194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022] Open
Abstract
Activation of the elongation factor 2 kinase (eEF2K) leads to the phosphorylation and inhibition of the elongation factor eEF2, reducing mRNA translation rates. Emerging evidence indicates that the regulation of factors involved in protein synthesis may be critical for controlling diverse biological processes including cancer progression. Here we show that inhibitors of the HIV aspartyl protease (HIV-PIs), nelfinavir in particular, trigger a robust activation of eEF2K leading to the phosphorylation of eEF2. Beyond its anti-viral effects, nelfinavir has antitumoral activity and promotes cell death. We show that nelfinavir-resistant cells specifically evade eEF2 inhibition. Decreased cell viability induced by nelfinavir is impaired in cells lacking eEF2K. Moreover, nelfinavir-mediated anti-tumoral activity is severely compromised in eEF2K-deficient engrafted tumors in vivo Our findings imply that exacerbated activation of eEF2K is detrimental for tumor survival and describe a mechanism explaining the anti-tumoral properties of HIV-PIs.
Collapse
Affiliation(s)
- Aude De Gassart
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Rébecca Panes
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Léa Zaffalon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Alexey G Ryazanov
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | | | - Fabio Martinon
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
67
|
Wu R, Tao W, Zhang H, Xue W, Zou Z, Wu H, Cai B, Doron R, Chen G. Instant and Persistent Antidepressant Response of Gardenia Yellow Pigment Is Associated with Acute Protein Synthesis and Delayed Upregulation of BDNF Expression in the Hippocampus. ACS Chem Neurosci 2016; 7:1068-76. [PMID: 27203575 DOI: 10.1021/acschemneuro.6b00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gardenia yellow pigment (GYP) is a collection of compounds with shared structure of crocin, which confers antidepressant activity. GYP is remarkably enriched in Gardenia jasminoides Ellis, implicated in rapid antidepressant effects that are exerted through enhanced neuroplasticity. This study aims to investigate the rapid antidepressant-like activity of GYP and its underlying mechanism. After the optimal dose was determined, antidepressant responses in tail suspension test or forced swim test were monitored at 30 min, 1 day, 3 days, and 7 days post a single GYP administration. Rapid antidepressant potential was tested using learned helplessness paradigm. The expression of proteins involved in hippocampal neuroplasticity was determined. The effect of blockade of protein synthesis on GYP's antidepressant response was examined. Antidepressant response was detected at 30 min, and lasted for at least 3 days post a single administration of GYP. A single administration of GYP also reversed the deficits in learned helplessness test. Thirty minutes post GYP administration, ERK signaling was activated, and its downstream effector phosphorylated eukaryotic elongation factor 2 was inhibited, contributing to increased protein translation. Expression of synaptic proteins GluR1 and synapsin 1 was upregulated. Blockade of protein synthesis with anisomycin blunted the immediate antidepressant response of GYP. CREB signaling and BDNF expression were upregulated at 24 h, but not at 30 min. In conclusion, GYP-induced immediate antidepressant response was dependent on synthesis of proteins, including synaptic proteins. This was followed by enhanced expression of CREB and BDNF, which likely mediated the persistent antidepressant responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ravid Doron
- School
of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel- Aviv 61083, Israel
- Department
of Education and Psychology, The Open University of Israel, 108 Ravutski
St., P.O. BOX 808, Raanana 43107, Israel
| | | |
Collapse
|
68
|
McKnight RA, Yost CC, Zinkhan EK, Fu Q, Callaway CW, Fung CM. Intrauterine growth restriction inhibits expression of eukaryotic elongation factor 2 kinase, a regulator of protein translation. Physiol Genomics 2016; 48:616-25. [PMID: 27317589 DOI: 10.1152/physiolgenomics.00045.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022] Open
Abstract
Nutrient deprivation suppresses protein synthesis by blocking peptide elongation. Transcriptional upregulation and activation of eukaryotic elongation factor 2 kinase (eEF2K) blocks peptide elongation by phosphorylating eukaryotic elongation factor 2. Previous studies examining placentas from intrauterine growth restricted (IUGR) newborn infants show decreased eEF2K expression and activity despite chronic nutrient deprivation. However, the effect of IUGR on hepatic eEF2K expression in the fetus is unknown. We, therefore, examined the transcriptional regulation of hepatic eEF2K gene expression in a Sprague-Dawley rat model of IUGR. We found decreased hepatic eEF2K mRNA and protein levels in IUGR offspring at birth compared with control, consistent with previous placental observations. Furthermore, the CpG island within the eEF2K promoter demonstrated increased methylation at a critical USF 1/2 transcription factor binding site. In vitro methylation of this binding site caused near complete loss of eEF2K promoter activity, designating this promoter as methylation sensitive. The eEF2K promotor in IUGR offspring also lost the protective histone covalent modifications associated with unmethylated CGIs. In addition, the +1 nucleosome was displaced 3' and RNA polymerase loading was reduced at the IUGR eEF2K promoter. Our findings provide evidence to explain why IUGR-induced chronic nutrient deprivation does not result in the upregulation of eEF2K gene transcription.
Collapse
Affiliation(s)
- Robert A McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Erin K Zinkhan
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Qi Fu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher W Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Camille M Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
69
|
Domanova W, Krycer J, Chaudhuri R, Yang P, Vafaee F, Fazakerley D, Humphrey S, James D, Kuncic Z. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies. PLoS One 2016; 11:e0157763. [PMID: 27336693 PMCID: PMC4918924 DOI: 10.1371/journal.pone.0157763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds), making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs) is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same linear consensus motif, and provide evidence suggesting IRS-1 S265 as a novel Akt site. KSR-LIVE is an open-access algorithm that allows users to dissect phosphorylation signaling within a specific biological context, with the potential to be included in the standard analysis workflow for studying temporal high-throughput signal transduction data.
Collapse
Affiliation(s)
- Westa Domanova
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - James Krycer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rima Chaudhuri
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pengyi Yang
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, United States of America
| | - Fatemeh Vafaee
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Fazakerley
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - David James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
70
|
Cheng Y, Ren X, Yuan Y, Shan Y, Li L, Chen X, Zhang L, Takahashi Y, Yang JW, Han B, Liao J, Li Y, Harvey H, Ryazanov A, Robertson GP, Wan G, Liu D, Chen AF, Tao Y, Yang JM. eEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis. Oncogene 2016; 35:6293-6308. [PMID: 27181208 DOI: 10.1038/onc.2016.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022]
Abstract
Cancer cells predominantly metabolize glucose by glycolysis to produce energy in order to meet their metabolic requirement, a phenomenon known as Warburg effect. Although Warburg effect is considered a peculiarity critical for survival and proliferation of cancer cells, the regulatory mechanisms behind this phenomenon remain incompletely understood. We report here that eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, has a critical role in promoting glycolysis in cancer cells. We showed that deficiency in eEF-2K significantly reduced the uptake of glucose and decreased the productions of lactate and adenosine triphosphate in tumor cells and in the Ras-transformed mouse embryonic fibroblasts. We further demonstrated that the promotive effect of eEF-2K on glycolysis resulted from the kinase-mediated restriction of synthesis of the protein phosphatase 2A-A (PP2A-A), a key factor that facilitates the ubiquitin-proteasomal degradation of c-Myc protein, as knockdown of eEF-2K expression led to a significant increase in PP2A-A protein synthesis and remarkable downregulation of c-Myc and pyruvate kinase M2 isoform, the key glycolytic enzyme transcriptionally activated by c-Myc. In addition, depletion of eEF-2K reduced the ability of the transformed cells to proliferate and enhanced the sensitivity of tumor cells to chemotherapy both in vitro and in vivo. These results, which uncover a role of the eEF-2K-mediated control of PP2A-A in tumor cell glycolysis, provide new insights into the regulation of the Warburg effect.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - X Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - Y Yuan
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Y Shan
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - L Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - X Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - L Zhang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - Y Takahashi
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - J W Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - B Han
- Department of Pathology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - J Liao
- Division of Biostatistics and Bioinformatics, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - Y Li
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - H Harvey
- Department of Medicine, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - A Ryazanov
- Department of Pharmacology, Robert wood Jonson Medical School, Rutgers University, Piscataway, NJ, USA
| | - G P Robertson
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - G Wan
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| | - D Liu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - A F Chen
- Center for Vascular and Translational Medicine, College of Pharmacy, and The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Y Tao
- Cancer Research Institute, School of Basic Medicine, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Central South University, Changsha, China
| | - J-M Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
71
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
72
|
Shan N, Zhou W, Zhang S, Zhang Y. Identification of HSPA8 as a candidate biomarker for endometrial carcinoma by using iTRAQ-based proteomic analysis. Onco Targets Ther 2016; 9:2169-79. [PMID: 27110132 PMCID: PMC4835145 DOI: 10.2147/ott.s97983] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although there are advances in diagnostic, predictive, and therapeutic strategies, discovering protein biomarker for early detection is required for improving the survival rate of the patients with endometrial carcinoma. In this study, we identify proteins that are differentially expressed between the Stage I endometrial carcinoma and the normal pericarcinous tissues by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. Totally, we screened 1,266 proteins. Among them, 103 proteins were significantly overexpressed, and 30 were significantly downexpressed in endometrial carcinoma. Using the bioinformatics analysis, we identified a list of proteins that might be closely associated with endometrial carcinoma, including CCT7, HSPA8, PCBP2, LONP1, PFN1, and EEF2. We validated the gene overexpression of these molecules in the endometrial carcinoma tissues and found that HSPA8 was most significantly upregulated. We further validated the overexpression of HSPA8 by using immunoblot analysis. Then, HSPA8 siRNA was transferred into the endometrial cancer cells RL-95-2 and HEC-1B. The depletion of HSPA8 siRNAs significantly reduced cell proliferation, promoted cell apoptosis, and suppressed cell growth in both cell lines. Taken together, HSPA8 plays a vital role in the development of endometrial carcinoma. HSPA8 is a candidate biomarker for early diagnosis and therapy of Stage I endometrial carcinoma.
Collapse
Affiliation(s)
- Nianchun Shan
- Department of Obstetric and Gynecology, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Zhou
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shufen Zhang
- Department of Obstetric and Gynecology, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Zhang
- Department of Obstetric and Gynecology, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
73
|
Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 2016; 37:285-94. [PMID: 26806303 DOI: 10.1038/aps.2015.123] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual protein kinase that regulates the elongation stage of protein synthesis by phosphorylating and inhibiting its only known substrate, eEF2. Elongation is a highly energy-consuming process, and eEF2K activity is tightly regulated by several signaling pathways. Regulating translation elongation can modulate the cellular energy demand and may also control the expression of specific proteins. Growing evidence links eEF2K to a range of human diseases, including cardiovascular conditions (atherosclerosis, via macrophage survival) and pulmonary arterial hypertension, as well as solid tumors, where eEF2K appears to play contrasting roles depending on tumor type and stage. eEF2K is also involved in neurological disorders and may be a valuable target in treating depression and certain neurodegenerative diseases. Because eEF2K is not required for mammalian development or cell viability, inhibiting its function may not elicit serious side effects, while the fact that it is an atypical kinase and quite distinct from the vast majority of other mammalian kinases suggests the possibility to develop it into compounds that inhibit eEF2K without affecting other important protein kinases. Further research is needed to explore these possibilities and there is an urgent need to identify and characterize potent and specific small-molecule inhibitors of eEF2K. In this article we review the recent evidence concerning the role of eEF2K in human diseases as well as the progress in developing small-molecule inhibitors of this enzyme.
Collapse
|
74
|
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the small family of atypical protein kinases termed α-kinases, and is the only calcium/calmodulin (Ca/CaM)-dependent member of that group. It phosphorylates and inactivates eEF2, to slow down the rate of elongation, the stage in mRNA translation that consumes almost all the energy and amino acids consumed by protein synthesis. In addition to activation by Ca/CaM, eEF2K is also regulated by an array of other regulatory inputs, which include inhibition by the nutrient- and growth-factor activated signalling pathways. Recent evidence shows that eEF2K plays an important role in learning and memory, processes that require the synthesis of new proteins and involve Ca-mediated signalling. eEF2K is activated under conditions of nutrient and energy depletion. In cancer cells, or certain tumours, eEF2K exerts cytoprotective effects, which probably reflect its ability to inhibit protein synthesis, and nutrient consumption, under starvation conditions. eEF2K is being evaluated as a potential therapeutic target in cancer.
Collapse
|
75
|
Nakajima H, Murakami Y, Morii E, Akao T, Tatsumi N, Odajima S, Fukuda M, Machitani T, Iwai M, Kawata S, Hojo N, Oka Y, Sugiyama H, Oji Y. Induction of eEF2-specific antitumor CTL responses in vivo by vaccination with eEF2-derived 9mer-peptides. Oncol Rep 2016; 35:1959-66. [PMID: 26820500 DOI: 10.3892/or.2016.4589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) is an essential factor for protein synthesis. Previous studies have shown that the eEF2 gene was overexpressed and plays an oncogenic role in various types of cancers and that eEF2 gene product elicited both humoral immune responses to produce eEF2-specific IgG autoantibody in cancer-bearing individuals and cellular immune responses to induce eEF2 peptide-specific cytotoxic T lymphocytes (CTLs) in vitro. The purpose of the present study was to induce eEF2-specific, antitumor CTL responses in vivo by vaccination with MHC class I-binding eEF2-derived peptide. First, two mouse MHC class I-restricted eEF2‑derived, 9-mer peptides, EF17 (17-25 aa, ANIRNMSVI) and EF180 (180-188 aa, RIVENVNVI) were identified as eEF2-specific CTL peptides, and mice were vaccinated intradermally eight times with either EF17 or EF180 peptide emulsified with Montanide ISA51 adjuvant. Cytotoxicity assay showed that eEF2-specific CTLs were induced in both EF17‑and EF180‑vaccinated mice, and histological study showed no detectable damage in the organs of these mice. Next, to examine in vivo antitumor effects of eEF2 peptide vaccination in a therapeutic model, mice were vaccinated four times with one each of the two eEF2 peptides at weekly intervals after implantation of eEF2-expressing leukemia cells. The vaccination with eEF2 peptides induced eEF2-specific CTLs and suppressed tumor growth, and disease-free survival was significantly longer in EF180-vaccinated mice compared to control mice. The survival was associated with the robustness of eEF2-specific CTL induction. These results indicate that vaccination with MHC class I-binding eEF2 peptide induced eEF2-targeting, antitumor CTL responses in vivo without damage to normal organs, which provided us a rationale for eEF2 peptide-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yui Murakami
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiki Akao
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Tatsumi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoko Odajima
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Fukuda
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Machitani
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miki Iwai
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayo Kawata
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nozomi Hojo
- Department of Functional Diagnostic Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
76
|
Moore CEJ, Wang X, Xie J, Pickford J, Barron J, Regufe da Mota S, Versele M, Proud CG. Elongation factor 2 kinase promotes cell survival by inhibiting protein synthesis without inducing autophagy. Cell Signal 2016; 28:284-93. [PMID: 26795954 PMCID: PMC4760274 DOI: 10.1016/j.cellsig.2016.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/10/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) inhibits the elongation stage of protein synthesis by phosphorylating its only known substrate, eEF2. eEF2K is tightly regulated by nutrient-sensitive signalling pathways. For example, it is inhibited by signalling through mammalian target of rapamycin complex 1 (mTORC1). It is therefore activated under conditions of nutrient deficiency. Here we show that inhibiting eEF2K or knocking down its expression renders cancer cells sensitive to death under nutrient-starved conditions, and that this is rescued by compounds that block protein synthesis. This implies that eEF2K protects nutrient-deprived cells by inhibiting protein synthesis. Cells in which signalling through mTORC1 is highly active are very sensitive to nutrient withdrawal. Inhibiting mTORC1 protects them. Our data reveal that eEF2K makes a substantial contribution to the cytoprotective effect of mTORC1 inhibition. eEF2K is also reported to promote another potentially cytoprotective process, autophagy. We have used several approaches to test whether inhibition or loss of eEF2K affects autophagy under a variety of conditions. We find no evidence that eEF2K is involved in the activation of autophagy in the cell types we have studied. We conclude that eEF2K protects cancer cells against nutrient starvation by inhibiting protein synthesis rather than by activating autophagy. Eukaryotic elongation factor-2 kinase helps cancer cells survive nutrient starvation and is an attractive anti-cancer target. eEF2K has been reported to promote autophagy; however, our evidence shows eEF2K does not modulate autophagy. eEF2K protects cells by inhibiting protein synthesis.
Collapse
Affiliation(s)
- Claire E J Moore
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia
| | - Xuemin Wang
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| | - Jianling Xie
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia
| | - Jo Pickford
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - John Barron
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Sergio Regufe da Mota
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Matthias Versele
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Christopher G Proud
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom; South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia.
| |
Collapse
|
77
|
Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 2015; 14:473-80. [PMID: 25590164 PMCID: PMC4615141 DOI: 10.4161/15384101.2014.991572] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.
Collapse
Affiliation(s)
- Masahiro Morita
- a Department of Biochemistry and Goodman Cancer Research Centre ; McGill University ; Montreal , QC Canada
| | | | | | | | | | | | | |
Collapse
|
78
|
Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation. Biochem J 2015; 473:473-85. [PMID: 26621875 DOI: 10.1042/bj20150419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
CVB3 (coxsackievirus 3) is a primary causal agent of viral myocarditis. Emodin is a natural compound isolated from certain plant roots. In the present study, we found that emodin inhibited CVB3 replication in vitro and in mice, and now we report an unrecognized mechanism by which emodin inhibits CVB3 replication through suppression of viral protein translation via multiple pathways. On one hand, emodin treatment inhibited Akt/mTOR (mammalian target of rapamycin) signalling and activated 4EBP1 (eukaryotic initiation factor 4R-binding protein 1), leading to suppression of translation initiation of ribosomal protein L32 encoded by a 5'-TOP (terminal oligopyrimidine) mRNA. On the other hand, emodin treatment differentially regulated multiple signal cascades, including Akt/mTORC1/p70(S6K) (p70 S6 kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2)/p90(RSK) (p90 ribosomal S6 kinase) and Ca(2+)/calmodulin, leading to activation of eEF2K (eukaryotic elongation factor 2 kinase) and subsequent inactivation of eEF2 (eukaryotic elongation factor 2), resulting in inhibition of CVB3 VP1 (viral protein 1) synthesis. These data imply that eEF2K is a major factor mediating cross-talk of different arms of signalling cascades in this signal network. This notion was verified by either overexpressing eEF2K or treating the cells with siRNAs or eEF2K inhibitor A484954. We showed further that the emodin-induced decrease in p70(S6K) phosphorylation plays a dominant positive role in activation of eEF2K and in turn in conferring the antiviral effect of emodin. This finding was further solidified by expressing constitutively active and dominant-negative Akt. Collectively, our data reveal that emodin inhibits viral replication through impairing translational machinery and suppression of viral translation elongation.
Collapse
|
79
|
Alves V. Reactivity of vertebrate-directed phospho-eEF2 antibody against the Caenorhabditis elegans orthologue phospho-EEF-2. F1000Res 2015. [DOI: 10.12688/f1000research.7127.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic protein translation is divided into three mains stages: initiation, elongation and termination. Regulation of this process occurs at the initiation and elongation step. eEF2 kinase phosphorylates eEF2 factor, blocking its ribosome interaction and thus translation elongation. This kinase activity can be detected by measuring eEF2 phosphorylation status. Here I show that vertebrate-specific antibody against phospho-eEF2 has excellent reactivity against C. elegans orthologue protein phospho-EEF-2.
Collapse
|
80
|
Kardos GR, Robertson GP. Therapeutic interventions to disrupt the protein synthetic machinery in melanoma. Pigment Cell Melanoma Res 2015; 28:501-19. [PMID: 26139519 PMCID: PMC4716672 DOI: 10.1111/pcmr.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023]
Abstract
Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, to increase the protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery, thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma.
Collapse
Affiliation(s)
- Gregory R. Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
| | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
- The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA, 17033
| |
Collapse
|
81
|
Regulated stability of eukaryotic elongation factor 2 kinase requires intrinsic but not ongoing activity. Biochem J 2015; 467:321-31. [DOI: 10.1042/bj20150089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase which negatively regulates protein synthesis, is activated under stress conditions and plays a role in cytoprotection, e.g. in cancer cells. It is regarded as a possible target for therapeutic intervention in solid tumours. Earlier studies showed that eEF2K is degraded by a proteasome-dependent pathway in response to genotoxic stress and that this requires a phosphodegron that includes an autophosphorylation site. Thus, application of eEF2K inhibitors would stabilize eEF2K, partially negating the effects of inhibiting its activity. In the present study, we show that under a range of other stress conditions, including acidosis or treatment of cells with 2-deoxyglucose, eEF2K is also degraded. However, in these settings, the previously identified phosphodegron is not required for its degradation. Nevertheless, kinase-dead and other activity-deficient mutants of eEF2K are stabilized, as is a mutant lacking a critical autophosphorylation site (Thr348 in eEF2K), which is thought to be required for eEF2K and other α-kinases to achieve their active conformations. In contrast, application of small-molecule eEF2K inhibitors does not stabilize the protein. Our data suggest that achieving an active conformation, rather than eEF2K activity per se, is required for its susceptibility to degradation. Additional degrons and E3 ligases beyond those already identified are probably involved in regulating eEF2K levels. Our findings have significant implications for therapeutic targeting of eEF2K, e.g. in oncology.
Collapse
|
82
|
Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival. Mol Cell Biol 2015; 35:1805-24. [PMID: 25776553 DOI: 10.1128/mcb.00012-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
Acidification of the extracellular and/or intracellular environment is involved in many aspects of cell physiology and pathology. Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca(2+)/calmodulin-dependent kinase that regulates translation elongation by phosphorylating and inhibiting eEF2. Here we show that extracellular acidosis elicits activation of eEF2K in vivo, leading to enhanced phosphorylation of eEF2. We identify five histidine residues in eEF2K that are crucial for the activation of eEF2K during acidosis. Three of them (H80, H87, and H94) are in its calmodulin-binding site, and their protonation appears to enhance the ability of calmodulin to activate eEF2K. The other two histidines (H227 and H230) lie in the catalytic domain of eEF2K. We also identify His108 in calmodulin as essential for activation of eEF2K. Acidification of cancer cell microenvironments is a hallmark of malignant solid tumors. Knocking down eEF2K in cancer cells attenuated the decrease in global protein synthesis when cells were cultured at acidic pH. Importantly, activation of eEF2K is linked to cancer cell survival under acidic conditions. Inhibition of eEF2K promotes cancer cell death under acidosis.
Collapse
|