51
|
Thang ND, Minh NV, Huong PT. Translocation of BBAP from the cytoplasm to the nucleus reduces the metastatic ability of vemurafenib-resistant SKMEL28 cells. Mol Med Rep 2016; 15:317-322. [PMID: 27922665 DOI: 10.3892/mmr.2016.5976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
To the best of our knowledge, the present study is the first to demonstrate that treatment of vemurafenib-resistant SKMEL28 (SKMEL28-R) cells with paclitaxel leads to a shift in localization of the E3-ligase BBAP from the cytoplasm to the nucleus, consequently decreasing the metastatic ability of this cell line. The present study revealed that the movement of BBAP from the cytoplasm to nucleus initiated a change in cell morphology. In addition, the translocation of BBAP led to a decrease of metastatic characteristics in SKMEL28‑R cells, including migration and invasion via downregulation of the phosphorylated form of focal adhesion kinase and N‑cadherin, as well as an upregulation of p21 and E-cadherin. The results of the present study suggested that BBAP may not only be a novel biomarker for melanoma, but also a novel therapeutic target for treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Nguyen Dinh Thang
- Department of Biochemistry and Plant Physiology, Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi 120564, Vietnam
| | - Nguyen Van Minh
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi 120564, Vietnam
| | - Pham Thu Huong
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Vietnam National University, Hanoi 120564, Vietnam
| |
Collapse
|
52
|
Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV, Kuznetsov VA. Sense-antisense gene-pairs in breast cancer and associated pathological pathways. Oncotarget 2016; 6:42197-221. [PMID: 26517092 PMCID: PMC4747219 DOI: 10.18632/oncotarget.6255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.
Collapse
Affiliation(s)
- Oleg V Grinchuk
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Efthymios Motakis
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Current address: RIKEN, Japan
| | - Surya Pavan Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhiqun Tang
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Aliaksandr A Yarmishyn
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anna V Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Computing Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
53
|
Posavec Marjanović M, Crawford K, Ahel I. PARP, transcription and chromatin modeling. Semin Cell Dev Biol 2016; 63:102-113. [PMID: 27677453 DOI: 10.1016/j.semcdb.2016.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Compaction mode of chromatin and chromatin highly organised structures regulate gene expression. Posttranslational modifications, histone variants and chromatin remodelers modulate the compaction, structure and therefore function of specific regions of chromatin. The generation of poly(ADP-ribose) (PAR) is emerging as one of the key signalling events on sites undergoing chromatin structure modulation. PAR is generated locally in response to stresses. These include genotoxic stress but also differentiation signals, metabolic and hormonal cues. A pictures emerges in which transient PAR formation is essential to orchestrate chromatin remodelling and transcription factors allowing the cell to adapt to alteration in its environment. This review summarizes the diverse factors of ADP-ribosylation in the adaptive regulation of chromatin structure and transcription.
Collapse
Affiliation(s)
| | - Kerryanne Crawford
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, UK,.
| |
Collapse
|
54
|
Sanchez N, Chapdelaine P, Rousseau J, Raymond F, Corbeil J, Tremblay JP. Characterization of frataxin gene network in Friedreich's ataxia fibroblasts using the RNA-Seq technique. Mitochondrion 2016; 30:59-66. [PMID: 27350085 DOI: 10.1016/j.mito.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Noëlia Sanchez
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Pierre Chapdelaine
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Joël Rousseau
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Frédéric Raymond
- Axe maladies infectieuses et immunitaires, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Jacques Corbeil
- Axe maladies infectieuses et immunitaires, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| | - Jacques P Tremblay
- Axe neurosciences, Centre de recherche du CHUL, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
55
|
Pei H, Zuo L, Ma J, Cui L, Yu F, Lin Y. Transcriptome profiling reveals differential expression of interferon family induced by dengue virus 2 in human endothelial cells on tissue culture plastic and polyacrylamide hydrogel. J Med Virol 2016; 88:1137-51. [PMID: 27061404 DOI: 10.1002/jmv.24465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 02/06/2023]
Abstract
A cell model is critical for studying the molecular mechanisms of dengue virus 2 (DENV-2) invasions and cell bioactivity can be easily affected by the substrate matrix. Tissue culture plastic (TCP) and polyacrylamide hydrogel (PAMH) are two kinds of matrices widely used for cells. The effects of different matrices on the cultured cells with DENV-2 invasion remain unknown. To address the issue, the effects of TCP and PAMH were explored in primary human umbilical vein endothelial cells (HUVECs) with DENV-2 invasion. HUVECs were assigned into four groups: group A (cultured on TCP), group B (cultured on PAMH), group C (cultured on TCP with DENV-2 invasion), and group D (cultured on PAMH with DENV-2 invasion). Flow cytometry was performed on HUVECs after 48-hr culture. Gene expression patterns were analyzed by gene microarray. The levels of interleukin-29 (IL-29) were measured by real-time qRT-PCR and ELISA. There were no cell apoptosis induced by DENV-2 in HUVECs cultured on TCP and PAMH (P > 0.05). After DENV-2 invasion, the up-regulated genes involve in the activities of oligoadenylate synthetase (OAS), interferon-related cytokine, and growth factors so on. The up-regulated pathways involve in the responses to DENV-2 and innate immunity. IL-29 was induced in the HUVECs on PAMH when compared with the cells on TCP (P < 0.05). Thus, different matrices cause different immune responses, which should be considered in the cell models for exploring the molecular mechanisms of DENV-induced diseases.
Collapse
Affiliation(s)
- Hua Pei
- Department of Immunology, Guiyang Medical University, Guiyang, China
- Department of Immunology, Hainan Medical University, Longhua District, Haikou, China
| | - Li Zuo
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Jing Ma
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Lili Cui
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Fangfang Yu
- Department of Immunology, Guiyang Medical University, Guiyang, China
| | - Yingzi Lin
- Department of Immunology, Hainan Medical University, Longhua District, Haikou, China
| |
Collapse
|
56
|
Polak A, Kiliszek P, Sewastianik T, Szydłowski M, Jabłońska E, Białopiotrowicz E, Górniak P, Markowicz S, Nowak E, Grygorowicz MA, Prochorec-Sobieszek M, Nowis D, Gołąb J, Giebel S, Lech-Marańda E, Warzocha K, Juszczyński P. MEK Inhibition Sensitizes Precursor B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells to Dexamethasone through Modulation of mTOR Activity and Stimulation of Autophagy. PLoS One 2016; 11:e0155893. [PMID: 27196001 PMCID: PMC4872998 DOI: 10.1371/journal.pone.0155893] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 01/16/2023] Open
Abstract
Resistance to glucocorticosteroids (GCs) is a major adverse prognostic factor in B-ALL, but the molecular mechanisms leading to GC resistance are not completely understood. Herein, we sought to elucidate the molecular background of GC resistance in B-ALL and characterize the therapeutic potential of targeted intervention in these mechanisms. Using exploratory bioinformatic approaches, we found that resistant cells exhibited significantly higher expression of MEK/ERK (MAPK) pathway components. We found that GC-resistant ALL cell lines had markedly higher baseline activity of MEK and small-molecule MEK1/2 inhibitor selumetinib increased GCs-induced cell death. MEK inhibitor similarly increased in vitro dexamethasone activity in primary ALL blasts from 19 of 22 tested patients. To further confirm these observations, we overexpressed a constitutively active MEK mutant in GC-sensitive cells and found that forced MEK activity induced resistance to dexamethasone. Since recent studies highlight the role GC-induced autophagy upstream of apoptotic cell death, we assessed LC3 processing, MDC staining and GFP-LC3 relocalization in cells incubated with either DEX, SEL or combination of drugs. Unlike either drug alone, only their combination markedly increased these markers of autophagy. These changes were associated with decreased mTOR activity and blocked 4E-BP1 phosphorylation. In cells with silenced beclin-1 (BCN1), required for autophagosome formation, the synergy of DEX and SEL was markedly reduced. Taken together, we show that MEK inhibitor selumetinib enhances dexamethasone toxicity in GC-resistant B-ALL cells. The underlying mechanism of this interaction involves inhibition of mTOR signaling pathway and modulation of autophagy markers, likely reflecting induction of this process and required for cell death. Thus, our data demonstrate that modulation of MEK/ERK pathway is an attractive therapeutic strategy overcoming GC resistance in B-ALL patients.
Collapse
Affiliation(s)
- Anna Polak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Kiliszek
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tomasz Sewastianik
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Jabłońska
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Emilia Białopiotrowicz
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Górniak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Dept. of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Sergiusz Markowicz
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | - Eliza Nowak
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | - Monika A. Grygorowicz
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | | | - Dominika Nowis
- Genomic Medicine, Dept. of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Gołąb
- Dept. of Immunology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Dept. of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Ewa Lech-Marańda
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Dept. of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Krzysztof Warzocha
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- * E-mail:
| |
Collapse
|
57
|
Sewastianik T, Szydlowski M, Jablonska E, Bialopiotrowicz E, Kiliszek P, Gorniak P, Polak A, Prochorec-Sobieszek M, Szumera-Cieckiewicz A, Kaminski TS, Markowicz S, Nowak E, Grygorowicz MA, Warzocha K, Juszczynski P. FOXO1 is a TXN- and p300-dependent sensor and effector of oxidative stress in diffuse large B-cell lymphomas characterized by increased oxidative metabolism. Oncogene 2016; 35:5989-6000. [PMID: 27132507 DOI: 10.1038/onc.2016.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Molecular profiling has led to identification of subtypes of diffuse large B-cell lymphomas (DLBCLs) differing in terms of oncogenic signaling and metabolic programs. The OxPhos-DLBCL subtype is characterized by enhanced mitochondrial oxidative phosphorylation. As increased oxidative metabolism leads to overproduction of potentially toxic reactive oxygen species (ROS), we sought to identify mechanisms responsible for adaptation of OxPhos cells to these conditions. Herein, we describe a mechanism involving the FOXO1-TXN-p300 redox-dependent circuit protecting OxPhos-DLBCL cells from ROS toxicity. We identify a BCL6-dependent transcriptional mechanism leading to relative TXN overexpression in OxPhos cells. We found that OxPhos cells lacking TXN were uniformly more sensitive to ROS and doxorubicin than control cells. Consistent with this, the overall survival of patients with high TXN mRNA expression, treated with doxorubicin-containing regimens, is significantly shorter than of those with low TXN mRNA expression. TXN overexpression curtails p300-mediated FOXO1 acetylation and its nuclear translocation in response to oxidative stress, thus attenuating FOXO1 transcriptional activity toward genes involved in apoptosis and cell cycle inhibition. We also demonstrate that FOXO1 knockdown in cells with silenced TXN expression markedly reduces ROS-induced apoptosis, indicating that FOXO1 is the major sensor and effector of oxidative stress in OxPhos-DLBCLs. These data highlight dynamic, context-dependent modulation of FOXO1 tumor-suppressor functions via acetylation and reveal potentially targetable vulnerabilities in these DLBCLs.
Collapse
Affiliation(s)
- T Sewastianik
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - M Szydlowski
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - E Jablonska
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - E Bialopiotrowicz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - P Kiliszek
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - P Gorniak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - A Polak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - M Prochorec-Sobieszek
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - A Szumera-Cieckiewicz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - T S Kaminski
- Department of Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - S Markowicz
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center-Institute of Oncology, Warsaw, Poland
| | - E Nowak
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center-Institute of Oncology, Warsaw, Poland
| | - M A Grygorowicz
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center-Institute of Oncology, Warsaw, Poland
| | - K Warzocha
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - P Juszczynski
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
58
|
Johnson DP, Spitz GS, Tharkar S, Quayle SN, Shearstone JR, Jones S, McDowell ME, Wellman H, Tyler JK, Cairns BR, Chandrasekharan MB, Bhaskara S. HDAC1,2 inhibition impairs EZH2- and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget 2016; 6:4863-87. [PMID: 25605023 PMCID: PMC4467121 DOI: 10.18632/oncotarget.3120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
Gain-of-function mutations in the catalytic site of EZH2 (Enhancer of Zeste Homologue 2), is observed in about 22% of diffuse large B-cell lymphoma (DLBCL) cases. Here we show that selective inhibition of histone deacetylase 1,2 (HDAC1,2) activity using a small molecule inhibitor causes cytotoxic or cytostatic effects in EZH2 gain-of-function mutant (EZH2GOF) DLBCL cells. Our results show that blocking the activity of HDAC1,2 increases global H3K27ac without causing a concomitant global decrease in H3K27me3 levels. Our data shows that inhibition of HDAC1,2 is sufficient to decrease H3K27me3 present at DSBs, decrease DSB repair and activate the DNA damage response in these cells. In addition to increased H3K27me3, we found that the EZH2GOF DLBCL cells overexpress another chemotherapy resistance factor − B-lymphoma and BAL-associated protein (BBAP). BBAP monoubiquitinates histone H4K91, a residue that is also subjected to acetylation. Our results show that selective inhibition of HDAC1,2 increases H4K91ac, decreases BBAP-mediated H4K91 monoubiquitination, impairs BBAP-dependent DSB repair and sensitizes the refractory EZH2GOF DLBCL cells to treatment with doxorubicin, a chemotherapy agent. Hence, selective HDAC1,2 inhibition provides a novel DNA repair mechanism-based therapeutic approach as it can overcome both EZH2- and BBAP-mediated DSB repair in the EZH2GOF DLBCL cells.
Collapse
Affiliation(s)
- Danielle P Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabriella S Spitz
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shweta Tharkar
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | - Simon Jones
- Acetylon Pharmaceuticals, Inc., Boston, MA, USA
| | - Maria E McDowell
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hannah Wellman
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
59
|
Rack JGM, Perina D, Ahel I. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annu Rev Biochem 2016; 85:431-54. [PMID: 26844395 DOI: 10.1146/annurev-biochem-060815-014935] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Dragutin Perina
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10002, Croatia;
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; ,
| |
Collapse
|
60
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
61
|
Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA, Agapov E, Wang Z, Tidwell RM, Atkinson JJ, Huang G, McCarthy R, Yu J, Yun NE, Paessler S, Lawson TG, Omattage NS, Brett TJ, Holtzman MJ. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat Immunol 2015; 16:1215-27. [PMID: 26479788 PMCID: PMC4653074 DOI: 10.1038/ni.3279] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
Abstract
Enhancing the response to interferon could offer an immunological advantage to the host. In support of this concept, we used a modified form of the transcription factor STAT1 to achieve hyper-responsiveness to interferon without toxicity and markedly improve antiviral function in transgenic mice and transduced human cells. We found that the improvement depended on expression of a PARP9-DTX3L complex with distinct domains for interaction with STAT1 and for activity as an E3 ubiquitin ligase that acted on host histone H2BJ to promote interferon-stimulated gene expression and on viral 3C proteases to degrade these proteases via the immunoproteasome. Thus, PARP9-DTX3L acted on host and pathogen to achieve a double layer of immunity within a safe reserve in the interferon signaling pathway.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Dailing Mao
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - William T Roswit
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Xiaohua Jin
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Anand C Patel
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri USA
| | - Dhara A Patel
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Eugene Agapov
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Zhepeng Wang
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Rose M Tidwell
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Jeffrey J Atkinson
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Guangming Huang
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Ronald McCarthy
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri USA
| | - Nadezhda E Yun
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas USA
| | - Slobodan Paessler
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas USA
| | - T Glen Lawson
- Department of Chemistry, Bates College, Lewiston, Maine USA
| | - Natalie S Omattage
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
| | - Tom J Brett
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri USA
| | - Michael J Holtzman
- Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri USA
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri USA
| |
Collapse
|
62
|
Swan AL, Stekel DJ, Hodgman C, Allaway D, Alqahtani MH, Mobasheri A, Bacardit J. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data. BMC Genomics 2015; 16 Suppl 1:S2. [PMID: 25923811 PMCID: PMC4315157 DOI: 10.1186/1471-2164-16-s1-s2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key component of typical machine learning pipelines for omics data is feature selection, which is used to reduce the raw high-dimensional data into a tractable number of features. Feature selection needs to balance the objective of using as few features as possible, while maintaining high predictive power. This balance is crucial when the goal of data analysis is the identification of highly accurate but small panels of biomarkers with potential clinical utility. In this paper we propose a heuristic for the selection of very small feature subsets, via an iterative feature elimination process that is guided by rule-based machine learning, called RGIFE (Rule-guided Iterative Feature Elimination). We use this heuristic to identify putative biomarkers of osteoarthritis (OA), articular cartilage degradation and synovial inflammation, using both proteomic and transcriptomic datasets. RESULTS AND DISCUSSION Our RGIFE heuristic increased the classification accuracies achieved for all datasets when no feature selection is used, and performed well in a comparison with other feature selection methods. Using this method the datasets were reduced to a smaller number of genes or proteins, including those known to be relevant to OA, cartilage degradation and joint inflammation. The results have shown the RGIFE feature reduction method to be suitable for analysing both proteomic and transcriptomics data. Methods that generate large 'omics' datasets are increasingly being used in the area of rheumatology. CONCLUSIONS Feature reduction methods are advantageous for the analysis of omics data in the field of rheumatology, as the applications of such techniques are likely to result in improvements in diagnosis, treatment and drug discovery.
Collapse
Affiliation(s)
- Anna L Swan
- School of Biosciences, Faculty of Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Dov J Stekel
- School of Biosciences, Faculty of Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Charlie Hodgman
- School of Biosciences, Faculty of Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
- The D-BOARD European Consortium for Biomarker Discovery, The Universities of Surrey, Nottingham and Newcastle, United Kingdom
| | - David Allaway
- WALTHAM® Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, United Kingdom
| | - Mohammed H Alqahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, The Universities of Surrey, Nottingham and Newcastle, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey, GU2 7XH, United Kingdom
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, 21589, Kingdom of Saudi Arabia
- Arthritis Research UK Centre for Sport, Exercise, and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jaume Bacardit
- The D-BOARD European Consortium for Biomarker Discovery, The Universities of Surrey, Nottingham and Newcastle, United Kingdom
- The Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Newcastle University, Claremont Tower, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
63
|
Schmaltz-Panneau B, Cordova A, Dhorne-Pollet S, Hennequet-Antier C, Uzbekova S, Martinot E, Doret S, Martin P, Mermillod P, Locatelli Y. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim Reprod Sci 2014; 149:103-16. [DOI: 10.1016/j.anireprosci.2014.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/26/2014] [Accepted: 06/19/2014] [Indexed: 01/12/2023]
|
64
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
65
|
Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet 2014; 10:e1004403. [PMID: 24875882 PMCID: PMC4038475 DOI: 10.1371/journal.pgen.1004403] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/09/2014] [Indexed: 01/23/2023] Open
Abstract
Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic ‘arms races’ with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in ‘housekeeping’ functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts. The outcome of viral infections is determined by the repertoire and specificity of the antiviral genes in a particular animal species. The identification of candidate immunity genes and mechanisms is a key step in describing this repertoire. Despite advances in genome sequencing, identification of antiviral genes has largely remained dependent on demonstration of their activity against candidate viruses. However, antiviral proteins that directly interact with viral targets or antagonists also bear signatures of recurrent evolutionary adaptation, which can be used to identify candidate antivirals. Here, we find that five out of seventeen genes that contain a domain that can catalyze the post-translational addition ADP-ribose to proteins bear such signatures of recurrent genetic innovation. In particular, we find that all the genes that encode both ADP-ribose addition (via PARP domains) as well as recognition and/or removal (via macro domains) activities have evolved under extremely strong diversifying selection in mammals. Furthermore, such genes have undergone multiple episodes of gene duplications and losses throughout mammalian evolution. Combined with the knowledge that some viruses also encode macro domains to counteract host immunity, our evolutionary analyses therefore implicate ADP-ribosylation as an underappreciated key step in antiviral defense in mammalian genomes.
Collapse
|
66
|
Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Mol Cancer 2014; 13:125. [PMID: 24886089 PMCID: PMC4070648 DOI: 10.1186/1476-4598-13-125] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the leading causes of cancer-related mortality and morbidity in the aging male population and represents the most frequently diagnosed malignancy in men around the world. The Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L), also known as B-lymphoma and BAL-associated protein (BBAP), was originally identified as a binding partner of the diphtheria-toxin-like macrodomain containing ADP-ribosyltransferase-9 (ARTD9), also known as BAL1 and PARP9. We have previously demonstrated that ARTD9 acts as a novel oncogenic survival factor in high-risk, chemo-resistant, diffuse large B cell lymphoma (DLBCL). The mono-ADP-ribosyltransferase ARTD8, also known as PARP14 functions as a STAT6-specific co-regulator of IL4-mediated proliferation and survival in B cells. Methods Co-expression of DTX3L, ARTD8, ARTD9 and STAT1 was analyzed in the metastatic PCa (mPCa) cell lines PC3, DU145, LNCaP and in the normal prostate luminal epithelial cell lines HPE and RWPE1. Effects on cell proliferation, survival and cell migration were determined in PC3, DU145 and/or LNCaP cells depleted of DTX3L, ARTD8, ARTD9, STAT1 and/or IRF1 compared to their proficient control cells, respectively. In further experiments, real-time RT-PCR, Western blot, immunofluorescence and co-immunoprecipitations were conducted to evaluate the physical and functional interactions between DTX3L, ARTD8 and ARTD9. Results Here we could identify DTX3L, ARTD9 and ARTD8 as novel oncogenic survival factors in mPCa cells. Our studies revealed that DTX3L forms a complex with ARTD8 and mediates together with ARTD8 and ARTD9 proliferation, chemo-resistance and survival of mPCa cells. In addition, DTX3L, ARTD8 and ARTD9 form complexes with each other. Our study provides first evidence that the enzymatic activity of ARTD8 is required for survival of mPCa cells. DTX3L and ARTD9 act together as repressors of the tumor suppressor IRF1 in mPCa cells. Furthermore, the present study shows that DTX3L together with STAT1 and STAT3 is implicated in cell migration of mPCa cells. Conclusions Our data strongly indicate that a crosstalk between STAT1, DTX3L and ARTD-like mono-ADP-ribosyltransferases mediates proliferation and survival of mPCa cells. The present study further suggests that the combined targeted inhibition of STAT1, ARTD8, ARTD9 and/or DTX3L could increase the efficacy of chemotherapy or radiation treatment in prostate and other high-risk tumor types with an increased STAT1 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
67
|
Holleman J, Marchese A. The ubiquitin ligase deltex-3l regulates endosomal sorting of the G protein-coupled receptor CXCR4. Mol Biol Cell 2014; 25:1892-904. [PMID: 24790097 PMCID: PMC4055268 DOI: 10.1091/mbc.e13-10-0612] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G protein-coupled receptor (GPCR) sorting into the degradative pathway is important for limiting the duration and magnitude of signaling. Agonist activation of the GPCR CXCR4 induces its rapid ubiquitination and sorting to lysosomes via the endosomal sorting complex required for transport (ESCRT) pathway. We recently reported that ESCRT-0 ubiquitination is linked to the efficiency with which CXCR4 is sorted for lysosomal degradation; however mechanistic insight is lacking. Here we define a novel role for the really interesting new gene-domain E3 ubiquitin ligase deltex-3-like (DTX3L) in regulating CXCR4 sorting from endosomes to lysosomes. We show that DTX3L localizes to early endosomes upon CXCR4 activation and interacts directly with and inhibits the activity of the E3 ubiquitin ligase atrophin-1 interacting protein 4. This serves to limit the extent to which ESCRT-0 is ubiquitinated and is able to sort CXCR4 for lysosomal degradation. Therefore we define a novel role for DTX3L in GPCR endosomal sorting and reveal an unprecedented link between two distinct E3 ubiquitin ligases to control the activity of the ESCRT machinery.
Collapse
Affiliation(s)
- Justine Holleman
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Adriano Marchese
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
68
|
Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 2014; 4:2240. [PMID: 23917125 PMCID: PMC3756671 DOI: 10.1038/ncomms3240] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/03/2013] [Indexed: 12/12/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
69
|
Abstract
ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.
Collapse
Affiliation(s)
- Nan Li
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
USA
| |
Collapse
|
70
|
Virag P, Fischer-Fodor E, Perde-Schrepler M, Brie I, Tatomir C, Balacescu L, Berindan-Neagoe I, Victor B, Balacescu O. Oxaliplatin induces different cellular and molecular chemoresistance patterns in colorectal cancer cell lines of identical origins. BMC Genomics 2013; 14:480. [PMID: 23865481 PMCID: PMC3776436 DOI: 10.1186/1471-2164-14-480] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022] Open
Abstract
Background Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drug’s efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drug’s clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively. Results Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells’ adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P < 0.001). The treatment with oxaliplatin caused major DNA cross-links in both parental cell lines; in Colo320R small amounts of DNA cross-links were still detectable, while in HT-29R not. We identified 441 differentially expressed genes in Colo320R and 613 in HT-29R as compared to their parental counterparts (at least 1.5 -fold up- or down- regulation, p < 0.05). More disrupted functions and pathways were detected in HT-29R cell line than in Colo320R, involving genes responsible for apoptosis inhibition, cellular proliferation and epithelial-to-mesenchymal transition. Several upstream regulators were detected as activated in HT-29R cell line, but not in Colo320R. Conclusions Our findings revealed a more resistant phenotype in HT-29R as compared to Colo320R and different cellular and molecular chemoresistance patterns induced by prolonged treatment with oxaliplatin in cell lines with identical origins (colorectal adenocarcinomas).
Collapse
Affiliation(s)
- Piroska Virag
- The Oncology Institute Prof.Dr.I. Chiricuta, 400015 Republicii Str,, nr, 34-36, Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Scarpa ES, Fabrizio G, Di Girolamo M. A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J 2013; 280:3551-62. [PMID: 23590234 DOI: 10.1111/febs.12290] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
During the development, progression and dissemination of neoplastic lesions, cancer cells can hijack normal pathways and mechanisms. This includes the control of the function of cellular proteins through reversible post-translational modifications, such as ADP-ribosylation, phosphorylation, and acetylation. In the case of mono-ADP-ribosylation and poly-ADP-ribosylation, the addition of one or several units of ADP-ribose to target proteins occurs via two families of enzymes that can generate ADP-ribosylated proteins: the diphtheria toxin-like ADP-ribosyltransferase (ARTD) family, comprising 17 different proteins that are either poly-ADP-ribosyltransferases or mono-ADP-ribosyltransferases or inactive enzymes; and the clostridial toxin-like ADP-ribosyltransferase family, with four human members, two of which are active mono-ADP-ribosyltransferases, and two of which are enzymatically inactive. In line with a central role for poly-ADP-ribose polymerase 1 in response to DNA damage, specific inhibitors of this enzyme have been developed as anticancer therapeutics and evaluated in several clinical trials. Recently, in combination with the discovery of a large number of enzymes that can catalyse mono-ADP-ribosylation, the role of this modification has been linked to human diseases, such as inflammation, diabetes, neurodegeneration, and cancer, thus revealing the need for the development of specific ARTD inhibitors. This will provide a better understanding of the roles of these enzymes in human physiology and pathology, so that they can be targeted in the future to generate new and efficacious drugs. This review summarizes our present knowledge of the ARTD enzymes that are involved in mono-ADP-ribosylation reactions and that have roles in cancer biology. In particular, the well-documented role of macro-containing ARTD8 in lymphoma and the putative role of ARTD15 in cancer are discussed.
Collapse
Affiliation(s)
- Emanuele S Scarpa
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
72
|
Posavec M, Timinszky G, Buschbeck M. Macro domains as metabolite sensors on chromatin. Cell Mol Life Sci 2013; 70:1509-24. [PMID: 23455074 PMCID: PMC11113152 DOI: 10.1007/s00018-013-1294-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD(+)-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.
Collapse
Affiliation(s)
- Melanija Posavec
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| | - Gyula Timinszky
- Butenandt Institute of Physiological Chemistry, Ludwig Maximilian University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | - Marcus Buschbeck
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| |
Collapse
|
73
|
Czapski GA, Adamczyk A, Strosznajder RP, Strosznajder JB. Expression and activity of PARP family members in the hippocampus during systemic inflammation: Their role in the regulation of prooxidative genes. Neurochem Int 2013; 62:664-73. [DOI: 10.1016/j.neuint.2013.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
74
|
Camicia R, Bachmann SB, Winkler HC, Beer M, Tinguely M, Haralambieva E, Hassa PO. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-53 axes in diffuse large B-cell lymphoma. J Cell Sci 2013; 126:1969-80. [DOI: 10.1242/jcs.118174] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The B-aggressive lymphoma-1 protein and ADP-ribosyltransferase BAL1/ARTD9 has been recently identified as a novel risk-related gene product in aggressive diffuse large B-cell lymphoma (DLBCL). BAL1 is constitutively expressed in a subset of high-risk DLBCL with an active host inflammatory response and suggested to be associated with interferon related gene expression. Here we identify BAL1 as a novel oncogenic survival factor in DLBCL and show that constitutive overexpression of BAL1 in DLBCL tightly associates with intrinsic interferon-gamma (IFNγ) signaling and constitutive activity of signal transducer and activator of transcription (STAT)-1. Remarkably, BAL1 stimulates the phosphorylation of both STAT1 isoforms STAT1α and STAT1β, on Y701 and thereby promoting the nuclear accumulation of the antagonistically acting and transcriptionally repressive isoform STAT1β. Moreover, BAL1 physically interacts with both isoforms of STAT1, STAT1α and STAT1β through its macro domains in an ADP-ribosylation dependent manner. BAL1 directly inhibits together with STAT1β the expression of tumor suppressor and interferon response factor (IRF)-1. Conversely, BAL1 enhances the expression of the proto-oncogenes IRF2 and B-cell CLL/lymphoma (BCL)-6 in DLBCL. Our results show the first time that BAL1 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-53 axes and mediates proliferation, survival and chemo-resistance in DLBCL. As a consequence constitutive IFNγ-STAT1 signaling does not lead to apoptosis but rather to chemo-resistance in DLBCL overexpressing BAL1. Our results suggest that BAL1 may induce an oncogenic switch in STAT1 from a tumor suppressor to an oncogene in high-risk DLBCL.
Collapse
|
75
|
BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol Cell Biol 2012; 33:845-57. [PMID: 23230272 DOI: 10.1128/mcb.00990-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BAL1 macrodomain-containing protein and its partner E3 ligase, BBAP, are overexpressed in chemotherapy-resistant lymphomas. BBAP selectively ubiquitylates histone H4 and indirectly promotes early 53BP1 recruitment to DNA damage sites. However, neither BBAP nor BAL1 has been directly associated with a DNA damage response (DDR), and the function of BAL1 remains undefined. Herein, we describe a direct link between rapid and short-lived poly(ADP-ribose) (PAR) polymerase 1 (PARP1) activation and PARylation at DNA damage sites, PAR-dependent recruitment of the BAL1 macrodomain-containing protein and its partner E3 ligase, local BBAP-mediated ubiquitylation, and subsequent recruitment of the checkpoint mediators 53BP1 and BRCA1. The PARP1-dependent localization of BAL1-BBAP functionally limits both early and delayed DNA damage and enhances cellular viability independent of ATM, MDC1, and RNF8. These data establish that BAL1 and BBAP are bona fide members of a DNA damage response pathway and are directly associated with PARP1 activation, BRCA1 recruitment, and double-strand break repair.
Collapse
|
76
|
Treeck O, Belgutay D, Häring J, Schüler S, Lattrich C, Ortmann O. Network analysis of icb-1 gene function in human breast cancer cells. J Cell Biochem 2012; 113:2979-88. [PMID: 22565810 DOI: 10.1002/jcb.24175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Icb-1 is a human gene previously described by our group to exert important functions in cancer cells of different origin. We now performed microarray-based gene expression profiling with subsequent network modeling to further elucidate the role of icb-1 in breast cancer cells. Analyzing the effect of icb-1 knockdown on the transcriptome of MCF-7 cells, we found 151 differentially expressed genes exhibiting more than twofold changes, 97 of which were up- and 54 downregulated. Most of the upregulated genes were cancer-related genes associated with poor prognosis, invasion and metastasis, building an oncogenic network of TNF target genes. On the other hand, network analysis identified the downregulated genes to be primarily involved in interferon signaling and cellular apoptosis. Confirming these network data, we observed that cells with reduced levels of icb-1 exhibited an impaired response to the apoptosis inducers tamoxifen, staurosporine, actinomycin, and camptothecin. The data of this study suggest that icb-1 might exert a tumor-suppressor function in breast cancer and that its loss might confer relative resistance of breast cancer cells to apoptotic drugs.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Obstetrics and Gynecology, Laboratory of Molecular Oncology, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
77
|
Leung A, Todorova T, Ando Y, Chang P. Poly(ADP-ribose) regulates post-transcriptional gene regulation in the cytoplasm. RNA Biol 2012; 9:542-8. [PMID: 22531498 DOI: 10.4161/rna.19899] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since its discovery in 1963, poly(ADP-ribose) (pADPr) has been shown to play important functions in the nucleus of multicellular eukaryotes. Each of these functions centers upon DNA metabolism, including DNA-damage repair, chromatin remodeling, transcription and telomere functions. We recently described two novel functions for pADPr in the cytoplasm, both of which involve RNA metabolism - 1) the assembly of cytoplasmic stress granules, cellular macrostructures that aggregate translationally stalled mRNA/protein complexes, and 2) modulation of microRNA activities. Multiple stress granule-localized, post-transcriptional gene regulators, including microRNA-binding argonaute family members, are substrates for pADPr modification and are increasingly modified by pADPr upon stress. Interestingly, the cytoplasmic RNA regulatory functions for PARPs are likely mediated through activities of catalytically inactive PARP-13/ARTD13/ZC3HAV1/ZAP and mono/poly(ADP-ribose)-synthesizing enzymes, including PARP-5a/ARTD5/TNKS1, PARP-12/ARTD12/ZC3HDC1 and PARP-15/ARTD7/BAL3. These data are consistent with other recent work, which suggests that mono(ADP-ribosyl)ated residues can be poly(ADP-ribosyl)ated by different enzymes.
Collapse
Affiliation(s)
- Anthony Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
78
|
Obiero J, Walker JR, Dhe-Paganon S. Fold of the conserved DTC domain in deltex proteins. Proteins 2012; 80:1495-9. [DOI: 10.1002/prot.24054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/19/2011] [Accepted: 01/03/2012] [Indexed: 11/07/2022]
|
79
|
Welsby I, Hutin D, Leo O. Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. Biochem Pharmacol 2012; 84:11-20. [PMID: 22402301 DOI: 10.1016/j.bcp.2012.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/25/2022]
Abstract
ADP ribosylation has been recently recognised as an important posttranslational modification regulating numerous cellular processes. This enzymatic activity is shared by two major families of enzymes, the extracellular ADP-ribosyl-transferases, or ecto-ARTS and the poly-ADP-ribosyltranferases, whose denomination derives from the capacity of its founding member, PARP1, to synthesise large linear or branched polymers of ADP-ribose on target proteins. This latter post-translational modification has recently attracted much interest based on its role in the cellular response to genotoxic and oxidative stress. Accordingly, a series of PARP-specific pharmacological inhibitors have demonstrated cell survival and anti-inflammatory properties in vivo, promoting a renewed interest in the potential immunoregulatory role of this gene family. More recently, the role of ADP-ribosylation in regulating several aspects of intracellular signalling and gene transcription has been uncovered, in particular within cells of the immune system, revealing the potential immunomodulatory role of several members of this family in addition to PARP1. We review herein the experimental evidence illustrating the complex role played by this gene family in regulating multiple aspects of the immune response, including cell survival, cytokine gene transcription and antiviral innate defences. In particular, the unexpected potential anti-inflammatory role of members of this family (including in particular PARP5a, 5b and PARP14) will be briefly discussed, raising some concern on the use of pan-specific PARP inhibitors to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Iain Welsby
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
80
|
Leung AKL, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell 2011; 42:489-99. [PMID: 21596313 DOI: 10.1016/j.molcel.2011.04.015] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribose) is a major regulatory macromolecule in the nucleus, where it regulates transcription, chromosome structure, and DNA damage repair. Functions in the interphase cytoplasm are less understood. Here, we identify a requirement for poly(ADP-ribose) in the assembly of cytoplasmic stress granules, which accumulate RNA-binding proteins that regulate the translation and stability of mRNAs upon stress. We show that poly(ADP-ribose), six specific poly(ADP-ribose) polymerases, and two poly(ADP-ribose) glycohydrolase isoforms are stress granule components. A subset of stress granule proteins, including microRNA-binding Argonaute family members Ago1-4, are modified by poly(ADP-ribose), and such modification increases upon stress, a condition when both microRNA-mediated translational repression and microRNA-directed mRNA cleavage are relieved. Similar relief of repression is also observed upon overexpression of specific poly(ADP-ribose) polymerases or, conversely, upon knockdown of glycohydrolase. We conclude that poly(ADP-ribose) is a key regulator of posttranscriptional gene expression in the cytoplasm.
Collapse
Affiliation(s)
- Anthony K L Leung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
81
|
Viral induction and targeted inhibition of galectin-1 in EBV+ posttransplant lymphoproliferative disorders. Blood 2011; 117:4315-22. [PMID: 21300977 DOI: 10.1182/blood-2010-11-320481] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLDs) are potentially fatal, EBV-driven B-cell malignancies that develop in immunocompromised solid organ or hematopoietic stem cell recipients. In PTLD, the expression of EBV proteins, including latent membrane protein 1 (LMP1) and LMP2A, viral immune evasion strategies, and impaired host immune surveillance foster the proliferation of EBV-transformed B cells. Current PTLD treatment strategies include reduction of immunosuppression, which increases the risk of graft rejection, anti-CD20 treatment, combination chemotherapy, and administration of EBV-specific cytotoxic T cells. In the present study, we report that EBV-transformed lymphoblastoid B-cell lines (LCLs) and primary PTLDs overexpress galectin-1 (Gal1), a carbohydrate-binding lectin that induces tolerogenic dendritic cells and triggers the selective apoptosis of CD4(+) Th1 and Th17 cells and cytotoxic T cells. In transcriptional reporter assays, LMP2A and LMP1 each increased Gal1-driven luciferase expression, and the combination of LMP2A and LMP1 was additive. In addition, small interfering RNA (siRNA)-mediated depletion of LMP2A decreased Gal1 protein abundance in EBV-transformed LCLs. Gal1 expression in LCLs was dependent on both activating protein 1 (AP-1) and PI3K. A newly developed neutralizing Gal1 mAb selectively inhibited Gal1-mediated apoptosis of EBV-specific CD8(+) T cells. Given the tolerogenic and immunosuppressive function of Gal1, antibody-mediated Gal1 neutralization may represent a novel immunotherapeutic strategy for PTLD and other Gal1-expressing tumors.
Collapse
|
82
|
Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C, Kashigi F, Goto S, Kameoka S, Fujikura D, Yamada T, Mizutani T, Kazumata M, Sato M, Tanaka J, Asaka M, Ohba Y, Miyazaki T, Imamura M, Takaoka A. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 2011; 12:37-44. [PMID: 21102435 DOI: 10.1038/ni.1963] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/28/2010] [Indexed: 12/12/2022]
Abstract
The poly(ADP-ribose) polymerases (PARPs) participate in many biological and pathological processes. Here we report that the PARP-13 shorter isoform (ZAPS), rather than the full-length protein (ZAP), was selectively induced by 5'-triphosphate-modified RNA (3pRNA) and functioned as a potent stimulator of interferon responses in human cells mediated by the RNA helicase RIG-I. ZAPS associated with RIG-I to promote the oligomerization and ATPase activity of RIG-I, which led to robust activation of IRF3 and NF-κB transcription factors. Disruption of the gene encoding ZAPS resulted in impaired induction of interferon-α (IFN-α), IFN-β and other cytokines after viral infection. These results indicate that ZAPS is a key regulator of RIG-I signaling during the innate antiviral immune response, which suggests its possible use as a therapeutic target for viral control.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Zhu W, Higgs BW, Morehouse C, Streicher K, Ambrose CS, Woo J, Kemble GW, Jallal B, Yao Y. A whole genome transcriptional analysis of the early immune response induced by live attenuated and inactivated influenza vaccines in young children. Vaccine 2010; 28:2865-76. [PMID: 20153794 DOI: 10.1016/j.vaccine.2010.01.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/18/2010] [Accepted: 01/28/2010] [Indexed: 12/23/2022]
Abstract
The protective mechanisms of influenza vaccines in young children are not completely understood. A phase 2 clinical study was conducted in 85 children 12-35 months of age to describe and compare the immune responses to live attenuated influenza vaccine (LAIV) with trivalent inactivated influenza vaccine (TIV). To better understand the biology of vaccine effects, oligonucleotide microarrays were employed to measure the genome-wide changes in transcript profiles in whole blood at approximately 7 days after 1 dose of LAIV or TIV. Of the total 265 differentially expressed genes identified in this study, 6 clusters of genes were identified to be tightly coexpressed, many of which are likely modulated by cytokines including type 1 interferons (IFNs) and granulocyte-macrophage colony-stimulating factor. Additional functional analyses revealed that the type 1 IFN pathway and cell cycle regulation-related genes are enriched in the 6 coexpressed gene sets. Promoter characterization of these coexpressed genes also supported this conclusion. Moreover, it is suggested that the IFN-stimulated response element is likely to be a potential bidirectional promoter, and the CCAAT/enhancer-binding protein might cooperate with the E2F transcription factor family in the regulation of the cell cycle in the early immune response induced by the influenza vaccine. Overall, our study clearly indicates that the expression profile changes induced by LAIV are significantly different from those induced by TIV. These results suggest that the pattern of overexpression of type 1 IFN-stimulated genes can potentially be used as a biomarker to identify the early vaccination response of LAIV and may also explain, to a certain extent, previous clinical study observations of LAIV-induced protection against influenza-like illness in the first 2 weeks after administration.
Collapse
Affiliation(s)
- Wei Zhu
- MedImmune, Translational Sciences, Gaithersburg, MD 20878, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Grinchuk OV, Motakis E, Kuznetsov VA. Complex sense-antisense architecture of TNFAIP1/POLDIP2 on 17q11.2 represents a novel transcriptional structural-functional gene module involved in breast cancer progression. BMC Genomics 2010; 11 Suppl 1:S9. [PMID: 20158880 PMCID: PMC2822537 DOI: 10.1186/1471-2164-11-s1-s9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background A sense-antisense gene pair (SAGP) is a gene pair where two oppositely transcribed genes share a common nucleotide sequence region. In eukaryotic genomes, SAGPs can be organized in complex sense-antisense architectures (CSAGAs) in which at least one sense gene shares loci with two or more antisense partners. As shown in several case studies, SAGPs may be involved in cancers, neurological diseases and complex syndromes. However, CSAGAs have not yet been characterized in the context of human disease or cancer. Results We characterize five genes (TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199) organized in a CSAGA on 17q11.2 (we term this the TNFAIP1/POLDIP2 CSAGA) and demonstrate their strong and reproducible co-regulatory transcription pattern in breast cancer tumours. Genes of the TNFAIP1/POLDIP2 CSAGA are located inside the smallest region of recurrent amplification on 17q11.2 and their expression profile correlates with the DNA copy number of the region. Survival analysis of a group of 410 breast cancer patients revealed significant survival-associated individual genes and gene pairs in the TNFAIP1/POLDIP2 CSAGA. Moreover, several of the gene pairs associated with survival, demonstrated synergistic effects. Expression of genes-members of the TNFAIP1/POLDIP2 CSAGA also strongly correlated with expression of genes of ERBB2 core region of recurrent amplification on 17q12. We clearly demonstrate that the observed co-regulatory transcription profile of the TNFAIP1/POLDIP2 CSAGA is maintained not only by a DNA amplification mechanism, but also by chromatin remodelling and local transcription activation. Conclusion We have identified a novel TNFAIP1/POLDIP2 CSAGA and characterized its co-regulatory transcription profile in cancerous breast tissues. We suggest that the TNFAIP1/POLDIP2 CSAGA represents a clinically significant transcriptional structural-functional gene module associated with amplification of the genomic region on 17q11.2 and correlated with expression ERBB2 amplicon core genes in breast cancer. Co-expression pattern of this module correlates with histological grades and a poor prognosis in breast cancer when over-expressed. TNFAIP1/POLDIP2 CSAGA maps the risks of breast cancer relapse onto the complex genomic locus on 17q11.2.
Collapse
|
85
|
Yan Q, Dutt S, Xu R, Graves K, Juszczynski P, Manis JP, Shipp MA. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol Cell 2009; 36:110-20. [PMID: 19818714 DOI: 10.1016/j.molcel.2009.08.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/01/2009] [Accepted: 08/18/2009] [Indexed: 11/28/2022]
Abstract
Although the BBAP E3 ligase and its binding partner BAL are overexpressed in chemotherapy-resistant lymphomas, the role of these proteins in DNA damage responses remains undefined. Because BAL proteins modulate promoter-coupled transcription and contain structural motifs associated with chromatin remodeling and DNA repair, we reasoned that the BBAP E3 ligase might target nucleosomal proteins. Herein, we demonstrate that BBAP selectively monoubiquitylates histone H4 lysine 91 and protects cells exposed to DNA-damaging agents. Disruption of BBAP-mediated monoubiquitylation of histone H4K91 is associated with the loss of chromatin-associated H4K20 methylase, mono- and dimethyl H4K20, and a delay in the kinetics of 53BP1 foci formation at sites of DNA damage. Because 53BP1 localizes to DNA damage sites, in part, via an interaction with dimethyl H4K20, these data directly implicate BBAP in the monoubiquitylation and additional posttranslational modification of histone H4 and an associated DNA damage response.
Collapse
Affiliation(s)
- Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
BCL6 modulates tonic BCR signaling in diffuse large B-cell lymphomas by repressing the SYK phosphatase, PTPROt. Blood 2009; 114:5315-21. [PMID: 19855081 DOI: 10.1182/blood-2009-02-204362] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tonic B-cell receptor (BCR) signaling is a key survival pathway during normal B-cell ontogenesis and in a subset of diffuse large B-cell lymphomas (DLBCLs). We previously demonstrated that BCR-dependent DLBCL cell lines and primary tumors underwent apoptosis after treatment with an ATP-competitive inhibitor of the BCR-associated spleen tyrosine kinase (SYK). These "BCR-type" tumors also have more abundant expression of the transcriptional repressor, BCL6, and increased sensitivity to BCL6 inhibition. Herein, we evaluated potential connections between BCL6-mediated transcriptional repression and SYK-dependent BCR signaling. In transcriptionally profiled normal B-cell subsets (naive, germinal center, and memory B cells) and in primary DLBCLs, there were reciprocal patterns of expression of BCL6 and the SYK tyrosine phosphatase PTPROt. BCL6 repressed PTPROt transcription via a direct interaction with functional BCL6 binding sites in the PTPROt promoter. Enforced expression of BCL6 in normal naive B cells and RNAi-mediated depletion of BCL6 in germinal center B cells directly modulated PTPROt expression. In "BCR-type" DLBCLs, BCL6 depletion increased PTPROt expression and decreased phosphorylation of SYK and the downstream adaptor protein BLNK. Because BCL6 augments BCR signaling and BCL6 and SYK are both promising therapeutic targets in many DLBCLs, combined inhibition of these functionally related pathways warrants further study.
Collapse
|
87
|
Uwanogho DA, Yasin SA, Starling B, Price J. The intergenic region between the Mouse Recql4 and Lrrc14 genes functions as an evolutionary conserved bidirectional promoter. Gene 2009; 449:103-17. [PMID: 19720120 DOI: 10.1016/j.gene.2009.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
Mammalian genomes are highly complex, with neighbouring genes arranged in divergent, convergent, tandem, antisense, and interleaving fashions. Despite the vast genomic space, a substantial portion of human genes (approximately 10%) are arranged in a divergent, head-to-head fashion and controlled by bidirectional promoters. Here we define a small core bidirectional promoter that drives expression of the mouse genes Recql4, on one strand, and Lrrc14; a novel member of the LRR gene family, on the opposite strand. Regulation of Lrrc14 expression is highly complex, involving multiple promoters' and alternative splicing. Expression of this gene is predominately restricted to neural tissue during embryogenesis and is expressed in a wide range of tissues in the adult.
Collapse
Affiliation(s)
- D A Uwanogho
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour & MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 9NU, UK.
| | | | | | | |
Collapse
|
88
|
Abramson JS, Chen W, Juszczynski P, Takahashi H, Neuberg D, Kutok JL, Takeyama K, Shipp MA. The heat shock protein 90 inhibitor IPI-504 induces apoptosis of AKT-dependent diffuse large B-cell lymphomas. Br J Haematol 2008; 144:358-66. [PMID: 19036086 DOI: 10.1111/j.1365-2141.2008.07484.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that stabilizes critical client proteins in multiple cancers. Gene expression profiling was utilized to characterize HSP90 isoform expression in primary human diffuse large B-cell lymphomas (DLBCLs). HSP90 alpha and beta isoforms were differentially expressed in subsets of tumours defined by their transcriptional profiles. Thereafter, we assessed the activity of the HSP90 inhibitor, IPI-504, in an extensive panel of DLBCL cell lines. IPI-504, which interacts with the conserved ATP-binding site in both HSP90 isoforms, inhibited proliferation and induced apoptosis in the majority of DLBCL cell lines at low micromolar concentrations. IPI-504-sensitive cell lines expressed high levels of the HSP90 client protein, pAKT, and exhibited dose-dependent decreases in pAKT levels following IPI-504 treatment and significantly reduced proliferation following AKT RNAi. Furthermore, the combination of low-dose (<1 micromol/l) IPI-504 and the AKT/Pi3K pathway inhibitor, LY24009, was synergistic in IPI-504-sensitive DLBCL cell lines. Low-dose IPI-504 was also synergistic with the chemotherapeutic agent, doxorubicin. The HSP90 inhibitor IPI-504 warrants further investigation in DLBCL alone and in combination with identified client protein inhibitors and active chemotherapeutic agents.
Collapse
Affiliation(s)
- Jeremy S Abramson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Hakmé A, Wong HK, Dantzer F, Schreiber V. The expanding field of poly(ADP-ribosyl)ation reactions. 'Protein Modifications: Beyond the Usual Suspects' Review Series. EMBO Rep 2008; 9:1094-100. [PMID: 18927583 PMCID: PMC2581850 DOI: 10.1038/embor.2008.191] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/16/2008] [Indexed: 11/11/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins that is mediated by poly(ADP-ribose) polymerases (PARPs). Although the existence and nature of the nucleic acid-like molecule poly(ADP-ribose) (PAR) has been known for 40 years, understanding its biological functions—originally thought to be only the regulation of chromatin superstructure when DNA is broken—is still the subject of intense research. Here, we review the mechanisms controlling the biosynthesis of this complex macromolecule and some of its main biological functions, with an emphasis on the most recent advances and hypotheses that have developed in this rapidly growing field.
Collapse
Affiliation(s)
- Antoinette Hakmé
- Université Strasbourg 1, Institut Gilbert Laustriat, CNRS-UMR 7175, ESBS, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch Cedex, France
| | | | | | | |
Collapse
|
90
|
Hakmé A, Huber A, Dollé P, Schreiber V. The macroPARP genes Parp-9 and Parp-14 are developmentally and differentially regulated in mouse tissues. Dev Dyn 2008; 237:209-15. [PMID: 18069692 PMCID: PMC7163462 DOI: 10.1002/dvdy.21399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The macroPARPs Parp‐9 and Parp‐14 are macro domain containing poly(ADP‐ribose) polymerases involved in transcriptional regulation in response to immunoregulatory cytokines. Their genes reside in the same locus (16B3), and the Parp‐9 gene lies head‐to‐head and shares its promoter with the gene encoding its partner, Bbap. Here, we provide a detailed analysis of Parp‐9, Parp‐14, and Bbap expression during mouse development and adulthood. Parp‐9 is developmentally regulated, and prominently expressed in the thymus and specific regions of the brain and gut. In adults, highest expression is maintained in the thymus and intestine. Parp‐14 is more weakly expressed, mainly in the thymus during development and in adulthood. In addition, we show that Bbap is essentially coexpressed with Parp‐9 during development and in adult mouse. However, the different levels of their transcripts detected in the developing brain and gut suggest that Bbap and Parp‐9 display both common and independent tissue‐specific regulations. Developmental Dynamics 237:209–215, 2008. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Antoinette Hakmé
- Université Strasbourg 1, Institut Gilbert Laustriat, CNRS - UMR 7175, Département Intégrité du Génome, ESBS, Bld Sébastien Brant, BP 10413, Illkirch Cedex, France
| | | | | | | |
Collapse
|
91
|
Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J, Chen W, Kutok JL, Rabinovich GA, Shipp MA. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 2007; 104:13134-9. [PMID: 17670934 PMCID: PMC1936978 DOI: 10.1073/pnas.0706017104] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Indexed: 12/21/2022] Open
Abstract
Classical Hodgkin lymphomas (cHLs) contain small numbers of neoplastic Reed-Sternberg (RS) cells within an extensive inflammatory infiltrate that includes abundant T helper (Th)-2 and T regulatory (Treg) cells. The skewed nature of the T cell infiltrate and the lack of an effective host antitumor immune response suggest that RS cells use potent mechanisms to evade immune attack. In a screen for T cell-inhibitory molecules in cHL, we found that RS cells selectively overexpressed the immunoregulatory glycan-binding protein, galectin-1 (Gal1), through an AP1-dependent enhancer. In cocultures of activated T cells and Hodgkin cell lines, RNAi-mediated blockade of RS cell Gal1 increased T cell viability and restored the Th1/Th2 balance. In contrast, Gal1 treatment of activated T cells favored the secretion of Th2 cytokines and the expansion of CD4+CD25high FOXP3+ Treg cells. These data directly implicate RS cell Gal1 in the development and maintenance of an immunosuppressive Th2/Treg-skewed microenvironment in cHL and provide the molecular basis for selective Gal1 expression in RS cells. Thus, Gal1 represents a potential therapeutic target for restoring immune surveillance in cHL.
Collapse
Affiliation(s)
- Przemyslaw Juszczynski
- *Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Jing Ouyang
- *Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Stefano Monti
- Broad Institute, Cambridge Center, Cambridge, MA 02142
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115; and
| | - Kunihiko Takeyama
- *Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Jeremy Abramson
- *Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Wen Chen
- *Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115; and
| | - Gabriel A. Rabinovich
- Institute of Biology and Experimental Medicine, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Vuelta de Obligado 2490 and Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, C1428ADN, Buenos Aires, Argentina
| | - Margaret A. Shipp
- *Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
| |
Collapse
|
92
|
Parekh S, Polo JM, Shaknovich R, Juszczynski P, Lev P, Ranuncolo SM, Yin Y, Klein U, Cattoretti G, Dalla Favera R, Shipp MA, Melnick A. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 2007; 110:2067-74. [PMID: 17545502 PMCID: PMC1976344 DOI: 10.1182/blood-2007-01-069575] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BCL6 transcriptional repressor is the most commonly involved oncogene in diffuse large B-cell lymphomas (DLBCLs). Constitutive expression of BCL6 mediates lymphomagenesis through aberrant proliferation, survival, and differentiation blockade. Binding of BCL6 to the SMRT/N-CoR corepressors mediates the BCL6 survival effect in DLBCL. Although the basis for differentiation blockade is unknown in DLBCL, recent data suggest that BCL6 binding to the MTA3 corepressor might be involved. We report that BCL6 and MTA3 are coexpressed in normal germinal center B cells and DLBCL. Depletion of MTA3 in DLBCL cells induced a differentiation-related BCL6 target gene (PRDM1), but not target genes involved in survival. Accordingly, MTA3 and PRDM1 expression are mutually exclusive in germinal center B cells. We performed chromatin immunoprecipitation (ChIP)-on-chip mapping of the PRDM1 locus, identifying a novel BCL6 binding site on intron 3 of the PRDM1 gene, and show that BCL6 recruits MTA3 to this site. In DLBCL cells, MTA3 depletion induced plasmacytic differentiation but did not decrease viability of DLBCL cells. However, MTA3 depletion synergized with a specific BCL6 inhibitor that blocks SMRT/N-CoR binding to decrease DLBCL viability. Taken together, these results show that BCL6 regulates distinct transcriptional programs through the SMRT/N-CoR and MTA3 corepressors, respectively, and provides a basis for combinatorial therapeutic targeting of BCL6.
Collapse
MESH Headings
- Blotting, Western
- Cell Differentiation
- Cell Survival
- Chromatin Immunoprecipitation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Nuclear Receptor Co-Repressor 2
- Oligonucleotide Array Sequence Analysis
- Positive Regulatory Domain I-Binding Factor 1
- Proto-Oncogene Proteins c-bcl-6/genetics
- Proto-Oncogene Proteins c-bcl-6/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/pharmacology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tissue Array Analysis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Samir Parekh
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Goenka S, Cho SH, Boothby M. Collaborator of Stat6 (CoaSt6)-associated poly(ADP-ribose) polymerase activity modulates Stat6-dependent gene transcription. J Biol Chem 2007; 282:18732-9. [PMID: 17478423 DOI: 10.1074/jbc.m611283200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor Stat6 plays a critical role in interleukin-4-dependent gene activation. To mediate this function, Stat6 recruits canonical transcriptional co-activators including the histone acetyl transferases CREB-binding protein and NCoA-1 and other proteins such as a p100 co-factor. However, much remains unknown regarding the constituents of Stat6 enhancer complexes, and the exact molecular events that modulate Stat6-dependent gene activation are not fully understood. Recently, we identified a novel co-factor, CoaSt6 (collaborator of Stat6), which associates with Stat6 and enhances its transcriptional activity. Sequence homologies place CoaSt6 in a superfamily of poly(ADP-ribosyl)polymerase (PARP)-like proteins. We have demonstrated here that PARP enzymatic activity is associated with CoaSt6, and this function of CoaSt6 can append ADP-ribose to itself and p100. Further, we show that a catalytically inactive mutant of CoaSt6 was unable to enhance Stat6-mediated transcription of a test promoter. Consistent with these findings, chemical inhibition of PARP activity blocked interleukin-4-dependent transcription from target promoters in vivo. Taken together, we have identified a CoaSt6-associated PARP activity and provided evidence for a role of poly(ADP ribosyl)ation in Stat-mediated transcriptional responses involving a novel PARP.
Collapse
Affiliation(s)
- Shreevrat Goenka
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, USA.
| | | | | |
Collapse
|
94
|
Polo JM, Juszczynski P, Monti S, Cerchietti L, Ye K, Greally JM, Shipp M, Melnick A. Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large B cell lymphomas. Proc Natl Acad Sci U S A 2007; 104:3207-12. [PMID: 17360630 PMCID: PMC1805543 DOI: 10.1073/pnas.0611399104] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Indexed: 12/16/2022] Open
Abstract
Diffuse large B cell lymphomas (DLBCLs) often express BCL6, a transcriptional repressor required for the formation of normal germinal centers. In a subset of DLBCLs, BCL6 is deregulated by chromosomal translocations or aberrant somatic hypermutation; in other tumors, BCL6 expression may simply reflect germinal center lineage. DLBCLs dependent on BCL6-regulated pathways should exhibit differential regulation of BCL6 target genes. Genomic array ChIP-on-chip was used to identify the cohort of direct BCL6 target genes. This set of genes was enriched in modulators of transcription, chromatin structure, protein ubiquitylation, cell cycle, and DNA damage responses. In primary DLBCLs classified on the basis of gene expression profiles, these BCL6 target genes were clearly differentially regulated in "BCR" tumors, a subset of DLBCLs with increased BCL6 expression and more frequent BCL6 translocations. In a panel of DLBCL cell lines analyzed by expression arrays and classified according to their gene expression profiles, only BCR tumors were highly sensitive to the BCL6 peptide inhibitor, BPI. These studies identify a discrete subset of DLBCLs that are reliant on BCL6 signaling and uniquely sensitive to BCL6 inhibitors. More broadly, these data show how genome-wide identification of direct target genes can identify tumors dependent on oncogenic transcription factors and amenable to targeted therapeutics.
Collapse
Affiliation(s)
- Jose M. Polo
- Departments of *Developmental and Molecular Biology
| | - Przemyslaw Juszczynski
- Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115; and
| | - Stefano Monti
- Broad Institute, 320 Charles Street, Cambridge, MA 02141
| | | | - Kenny Ye
- Epidemiology and Biostatistics, and
| | - John M. Greally
- Medical Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Margaret Shipp
- Department of Medical Oncology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115; and
| | - Ari Melnick
- Departments of *Developmental and Molecular Biology
| |
Collapse
|
95
|
Greene WK, Sontani Y, Sharp MA, Dunn DS, Kees UR, Bellgard MI. A promoter with bidirectional activity is located between TLX1/HOX11 and a divergently transcribed novel human gene. Gene 2007; 391:223-32. [PMID: 17303350 DOI: 10.1016/j.gene.2006.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/22/2006] [Accepted: 12/22/2006] [Indexed: 11/21/2022]
Abstract
The chromosomal region 10q24 is involved in reciprocal translocations with one of the T-cell receptor loci in a significant proportion of human T-cell acute lymphoblastic leukemias. The breakpoints of these rearrangements cluster immediately upstream of the TLX1 homeobox gene and lead to its transcriptional activation. Genomic analysis using sequences located on the opposite side of the breakpoint cluster region identified a novel gene composed of three exons that is oriented in a head-to-head manner with TLX1. The novel gene, named TDI (TLX1 divergent) codes for a 1.9 kb transcript with an atypically long 5' leader sequence. Although predicted to be a transcriptional regulator of 13.4 kDa, the TDI protein has no significant sequence similarity to any known protein. The TLX1 and TDI genes are separated by a short spacer of only 161 bp that contains numerous GC boxes and a centrally located CCAAT box embedded within a CpG island. Using luciferase as the reporter in transient transfection assays, the intergenic region was found to be a functional promoter with robust bidirectional activity. TLX1 and TDI thus appear to represent another example of a divergently transcribed gene pair whose expression is regulated by a common promoter. Our finding that TDI is transcriptionally co-activated in leukemic cells that aberrantly express TLX1, additionally suggests that it may have the potential to act as a co-operating oncogene in leukemogenesis.
Collapse
Affiliation(s)
- Wayne K Greene
- School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, Perth WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|