51
|
CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia 2013; 28:609-20. [PMID: 24270736 DOI: 10.1038/leu.2013.354] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
Abstract
Switches from the lymphoid to myeloid lineage during B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment are considered rare and thus far have been detected in MLL-rearranged leukemia. Here, we describe a novel BCP-ALL subset, switching BCP-ALL or swALL, which demonstrated monocytosis early during treatment. Despite their monocytic phenotype, 'monocytoids' share immunoreceptor gene rearrangements with leukemic B lymphoblasts. All swALLs demonstrated BCP-ALL with CD2 positivity and no MLL alterations, and the proportion of swALLs cases among BCP-ALLs was unexpectedly high (4%). The upregulation of CEBPα and demethylation of the CEBPA gene were significant in blasts at diagnosis, prior to the time when most of the switching occurs. Intermediate stages between CD14(neg)CD19(pos)CD34(pos) B lymphoblasts and CD14(pos)CD19(neg)CD34(neg) 'monocytoids' were detected, and changes in the expression of PAX5, PU1, M-CSFR, GM-CSFR and other genes accompanied the switch. Alterations in the Ikaros and ERG genes were more frequent in swALL patients; however, both were altered in only a minority of swALLs. Moreover, switching could be recapitulated in vitro and in mouse xenografts. Although children with swALL respond slowly to initial therapy, risk-based ALL therapy appears the treatment of choice for swALL. SwALL shows that transdifferentiating into monocytic lineage is specifically associated with CEBPα changes and CD2 expression.
Collapse
|
52
|
Humbert M, Federzoni EA, Britschgi A, Schläfli AM, Valk PJM, Kaufmann T, Haferlach T, Behre G, Simon HU, Torbett BE, Fey MF, Tschan MP. The tumor suppressor gene DAPK2 is induced by the myeloid transcription factors PU.1 and C/EBPα during granulocytic differentiation but repressed by PML-RARα in APL. J Leukoc Biol 2013; 95:83-93. [PMID: 24038216 DOI: 10.1189/jlb.1112608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DAPK2 is a proapoptotic protein that is mostly expressed in the hematopoietic tissue. A detailed DAPK2 expression analysis in two large AML patient cohorts revealed particularly low DAPK2 mRNA levels in APL. DAPK2 levels were restored in APL patients undergoing ATRA therapy. PML-RARA is the predominant lesion in APL causing transcriptional repression of genes important for neutrophil differentiation. We found binding of PML-RARA and PU.1, a myeloid master regulator, to RARA and PU.1 binding sites in the DAPK2 promoter. Ectopic expression of PML-RARA in non-APL, as well as knocking down PU.1 in APL cells, resulted in a significant reduction of DAPK2 expression. Restoring DAPK2 expression in PU.1 knockdown APL cells partially rescued neutrophil differentiation, thereby identifying DAPK2 as a relevant PU.1 downstream effector. Moreover, low DAPK2 expression is also associated with C/EBPα-mutated AML patients, and we found C/EBPα-dependent regulation of DAPK2 during APL differentiation. In conclusion, we identified first inhibitory mechanisms responsible for the low DAPK2 expression in particular AML subtypes, and the regulation of DAPK2 by two myeloid transcription factors underlines its importance in neutrophil development.
Collapse
Affiliation(s)
- Magali Humbert
- 1.Division of Experimental Pathology, TP2, University of Bern, Murtenstrasse 31, P.O. Box 62, CH-3010 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, Wang K, Zhang J. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol 2013; 6:25. [PMID: 23547873 PMCID: PMC3618267 DOI: 10.1186/1756-8722-6-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/18/2013] [Indexed: 01/09/2023] Open
Abstract
Background Transcription factor PU.1, a member of the ETS family, is a master regulator of myeloid differentiation whose functional disruption is often associated with acute myeloid leukemia (AML). Although much has been learned about PU.1 over the past decades, relatively little is known about cis-elements that interact with this factor under physiological or pathological conditions, especially in the whole-genome scale. We aimed to define the cistrome of PU.1 in acute promyelocytic leukemia (APL) cells and characterize the cis-elements bound by PU.1. Methods Chromatin immunoprecipitation with specific antibody coupled with deep sequencing (ChIP-seq) was used to investigate the in vivo PU.1 binding sites at the whole-genome scale in APL-derived NB4 cells. The ChIP-quantitative (q)-PCR and luciferase reporter assays were used to validate the binding events and trans-activity, respectively. Various computational analyses, including motif mining, evolutionary conservation analysis and functional enrichment analysis, were performed to characterize the cis-elements that interacted with PU.1. Results A total of 26,907 significantly enriched binding regions of PU.1 were identified under the false discovery rate 0.1% in NB4 cells. PU.1 bound to various types of genomic regions and acted as a promoter-enhancer dual binding transcription factor. Based on the sequence length and composition, two types of representative motifs were identified in PU.1 binding sites: a long and a short motif. The long motif, characterized by high sequence specificity and binding affinity, predominantly resided in the promoter-distal regions. In contrast, the short one, with strong evolutionary constraint, represented the primary PU.1 cis-elements in the promoter-proximal regions. Interestingly, the short one showed more preference to be correlated with the binding of other factors, especially PML/RARα. Moreover, genes targeted by both PU.1 and PML/RARα were significantly involved in categories associated with oncogenesis, hematopoiesis and the pathogenesis of acute myeloid leukemia. Conclusions Our results demonstrate that structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in APL, suggesting that the sequence diversity of cis-elements might be a critical mechanism by which cells interpret the genome, and contribute to distinct physiological and/or pathological function.
Collapse
Affiliation(s)
- Maoxiang Qian
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CAS, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Moore AJ, Anderson MK. Dendritic cell development: a choose-your-own-adventure story. Adv Hematol 2013; 2013:949513. [PMID: 23476654 PMCID: PMC3588201 DOI: 10.1155/2013/949513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are essential components of the immune system and contribute to immune responses by activating or tolerizing T cells. DCs comprise a heterogeneous mixture of subsets that are located throughout the body and possess distinct and specialized functions. Although numerous defined precursors from the bone marrow and spleen have been identified, emerging data in the field suggests many alternative routes of DC differentiation from precursors with multilineage potential. Here, we discuss how the combinatorial expression of transcription factors can promote one DC lineage over another as well as the integration of cytokine signaling in this process.
Collapse
Affiliation(s)
- Amanda J. Moore
- Division of Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
- Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Michele K. Anderson
- Division of Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
- Department of Immunology, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
55
|
Hikami K, Kawasaki A, Ito I, Koga M, Ito S, Hayashi T, Matsumoto I, Tsutsumi A, Kusaoi M, Takasaki Y, Hashimoto H, Arinami T, Sumida T, Tsuchiya N. Association of a functional polymorphism in the 3'-untranslated region of SPI1 with systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 63:755-63. [PMID: 21360505 DOI: 10.1002/art.30188] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE SPI1, also referred to as PU.1, is an Ets family transcription factor that interacts with IRF2, IRF4, and IRF8. In view of the significance of the type I interferon pathway in systemic lupus erythematosus (SLE), this study was undertaken to investigate a possible association between SPI1 polymorphisms and SLE. METHODS A case-control association study was performed using 6 tag single-nucleotide polymorphisms (SNPs), as well as a SNP located upstream of SPI1 previously found to be associated with acute myelogenous leukemia, in 400 Japanese patients with SLE and 450 healthy controls. Resequencing of all exons and known regulatory regions was performed to identify functional polymorphisms. Association of genotype and SPI1 expression was examined using the GENEVAR database and reporter assays. RESULTS A significant association was detected in 2 SNPs in intron 2 (rs10769258 and rs4752829) (P = 0.005 and P = 0.008, respectively, under the dominant model). The association was stronger in patients with nephropathy. Resequencing identified a potentially functional polymorphism in the 3'-untranslated region (3'-UTR), rs1057233, which was in strong linkage disequilibrium with the SNPs in intron 2. The number of risk alleles at rs1057233 was strongly correlated with SPI1 messenger RNA (mRNA) level in the database analysis (P = 0.0002), and was confirmed by a reporter assay. Interestingly, rs1057233 alters a target sequence for microRNA hsa-miR-569 (miR-569). Transfection experiments demonstrated that miR-569 inhibits expression of a reporter construct with the 3'-UTR sequence containing the nonrisk allele but not the risk allele. CONCLUSION Our findings indicate that a SNP in the 3'-UTR of SPI1 is associated with elevated SPI1 mRNA level and with susceptibility to SLE.
Collapse
|
56
|
|
57
|
Brown G, Hughes PJ, Ceredig R. The versatile landscape of haematopoiesis: are leukaemia stem cells as versatile? Crit Rev Clin Lab Sci 2012; 49:232-40. [PMID: 23153117 DOI: 10.3109/10408363.2012.742487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the early 1980s, developing haematopoietic cells have been categorised into three well-defined compartments: multi-potent haematopoietic stem cells (HSC), which are able to self-renew, followed by haematopoietic progenitor cells (HPC), which undergo decision-making and age as they divide rather than self-renew, and the final compartment of functional blood and immune cells. The classic model of haematopoiesis divides cells into two families, myeloid and lymphoid, and dictates a route to a particular cell fate. New discoveries question these long-held principles, including: (i) the identification of lineage-biased cells that self-renew; (ii) a strict myeloid/lymphoid dichotomy is refuted by the existence of progenitors with lymphoid potential and an incomplete set of myeloid potentials; (iii) there are multiple routes to some end cell types; and (iv) thymocyte progenitor cells that have progressed some way along this pathway retain clandestine myeloid options. In essence, the progeny of HSC are more versatile and the process of haematopoiesis is more flexible than previously thought. Here we examine this new way of viewing haematopoiesis and the impact of rewriting an account of haematopoiesis on our understanding of what goes awry in leukaemia.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
58
|
Abdgawad M, Pettersson Å, Gunnarsson L, Bengtsson AA, Geborek P, Nilsson L, Segelmark M, Hellmark T. Decreased neutrophil apoptosis in quiescent ANCA-associated systemic vasculitis. PLoS One 2012; 7:e32439. [PMID: 22403660 PMCID: PMC3293802 DOI: 10.1371/journal.pone.0032439] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/31/2012] [Indexed: 11/25/2022] Open
Abstract
Background ANCA-Associated Systemic Vasculitis (AASV) is characterized by leukocytoclasis, accumulation of unscavenged apoptotic and necrotic neutrophils in perivascular tissues. Dysregulation of neutrophil cell death may contribute directly to the pathogenesis of AASV. Methods Neutrophils from Healthy Blood Donors (HBD), patients with AASV most in complete remission, Polycythemia Vera (PV), Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and renal transplant recipients (TP) were incubated in vitro, and the rate of spontaneous apoptosis was measured by FACS. Plasma levels of cytokines and sFAS were measured with cytometric bead array and ELISA. Expression of pro/anti-apoptotic factors, transcription factors C/EBP-α, C/EBP-β and PU.1 and inhibitors of survival/JAK2-pathway were measured by real-time-PCR. Results AASV, PV and RA neutrophils had a significantly lower rate of apoptosis compared to HBD neutrophils (AASV 50±14% vs. HBD 64±11%, p<0.0001). In RA but not in AASV and PV, low apoptosis rate correlated with increased plasma levels of GM-CSF and high mRNA levels of anti-apoptotic factors Bcl-2A1 and Mcl-1. AASV patients had normal levels of G-CSF, GM-CSF and IL-3. Both C/EBP-α, C/EBP-β were significantly higher in neutrophils from AASV patients than HBD. Levels of sFAS were significantly higher in AASV compared to HBD. Conclusion Neutrophil apoptosis rates in vitro are decreased in AASV, RA and PV but mechanisms seem to differ. Increased mRNA levels of granulopoiesis-associated transcription factors and increased levels of sFAS in plasma were observed in AASV. Additional studies are required to define the mechanisms behind the decreased apoptosis rates, and possible connections with accumulation of dying neutrophils in regions of vascular lesions in AASV patients.
Collapse
Affiliation(s)
- Mohamed Abdgawad
- Department of Nephrology, Clinical Sciences, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Fiedler K, Brunner C. The role of transcription factors in the guidance of granulopoiesis. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:57-65. [PMID: 22432088 PMCID: PMC3301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
In recent years, the prospective isolation of hematopoietic stem and progenitor cells has identified the hierarchical structure of hematopoietic development and lineage-commitment. Moreover, these isolated cell populations allowed the elucitation of the molecular mechansims associated with lineage choice and revealed the indispensable functions of transcription factors as lineage determinants. This review summarizes current concepts regarding adult murine granulopoiesis and illustrates the importance of the transcription factors C/EBPα, PU.1 and GATA-2 for the development of neutrophil, eosinophil and basophil granulocytes.
Collapse
Affiliation(s)
- Katja Fiedler
- Institute of Physiological Chemistry, University Ulm Germany
| | | |
Collapse
|
60
|
Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med 2011; 60:47-55. [PMID: 21720200 DOI: 10.2302/kjm.60.47] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation of hematopoietic cells is a sequential process of cell fate decision originating from hematopoietic stem cells (HSCs), allowing multi- or oligopotent progenitors to commit to certain lineages. HSCs are cells that are able to self-renew and repopulate the marrow for the long term. They first differentiate into multipotent progenitors (MPPs), which give rise to common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CMPs then differentiate into granulocyte monocyte progenitors (GMPs) and megakaryocyte erythroid progenitors (MEPs), which are the precursors of granulocytes/monocytes and erythrocytes/megakaryocytes, respectively. Lineage specification at differentiation branch points is dictated by the activation of lineage-specific transcription factors such as C/EBPα, PU.1, and GATA-1. The role of these transcription factors is generally instructive, and the expression of a single factor can often determine cell fate. Differentiation was long regarded as an irreversible process, and it was believed that somatic cells would not change their fate once they were differentiated. This paradigm was first challenged by the finding that ectopic cytokine signals could change the fate of differentiation, probably through modulating internal transcription networks. Subsequently, we and others showed that virtually all progenitors, including CLPs, CMPs, GMPs, and MEPs, still retain differentiation plasticity, and they can be converted into lineages other than their own by ectopic activation of only a single lineage-specific transcription factor. These findings established a novel paradigm for cellular differentiation and opened up an avenue for artificially manipulating cell fate for clinical use.
Collapse
|
61
|
The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch Immunol Ther Exp (Warsz) 2011; 59:431-40. [DOI: 10.1007/s00005-011-0147-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
|
62
|
Sarrazin S, Sieweke M. Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Semin Immunol 2011; 23:326-34. [DOI: 10.1016/j.smim.2011.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/19/2011] [Indexed: 02/03/2023]
|
63
|
Santos AXS, Maia JE, Crespo PM, Pettenuzzo LF, Daniotti JL, Barbé-Tuana FM, Martins LM, Trindade VMT, Borojevic R, Guma FCR. GD1a modulates GM-CSF-induced cell proliferation. Cytokine 2011; 56:600-7. [PMID: 21930390 DOI: 10.1016/j.cyto.2011.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/30/2011] [Accepted: 08/24/2011] [Indexed: 01/13/2023]
Abstract
Gangliosides have been extensively described to be involved in the proliferation and differentiation of various cell types, such including hematopoietic cells. Our previous studies on murine models of stroma-mediated myelopoiesis have shown that gangliosides are required for optimal capacity of stromal cells to support proliferation of myeloid precursor cells, being shed to the supernatant and selectively incorporated into myeloid cell membranes. Here we describe the effect of gangliosides on the specific granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced proliferation. For that, we used the monocytic FDC-P1 cell line, which is dependent upon GM-CSF for survival and proliferation. Cells were cultured in the presence of GM-CSF and exogenous gangliosides (GM3, GD1a or GM1) or in the absence of endogenous ganglioside synthesis by the use of a ceramide-synthase inhibitor, D-PDMP. We observed that exogenous addition of GD1a enhanced the GM-CSF-induced proliferation of the FDC-P1 cells. Also, we detected an increase in the expression of the α isoform of the GM-CSF receptor (GMRα) as well as of the transcription factor C/EBPα. On the contrary, inhibition of glucosylceramide synthesis was accompanied by a decrease in cell proliferation, which was restored upon the addition of exogenous GD1a. We also show a co-localization of GD1a and GMR by immunocytochemistry. Taken together, our results suggest for the first time that ganglioside GD1a play a role on the modulation of GM-CSF-mediated proliferative response, which might be of great interest not only in hematopoiesis, but also in other immunological processes, Alzheimer disease, alveolar proteinosis and wherever GM-CSF exerts its effects.
Collapse
Affiliation(s)
- A X S Santos
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Depto Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Satpathy AT, Murphy KM, KC W. Transcription factor networks in dendritic cell development. Semin Immunol 2011; 23:388-97. [PMID: 21924924 PMCID: PMC4010935 DOI: 10.1016/j.smim.2011.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/19/2011] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population within the mononuclear phagocyte system (MPS) that derive from bone marrow precursors. Commitment and specification of hematopoietic progenitors to the DC lineage is critical for the proper induction of both immunity and tolerance. This review summarizes the important cytokines and transcription factors required for differentiation of the DC lineage as well as further diversification into specific DC subsets. We highlight recent advances in the characterization of immediate DC precursors arising from the common myeloid progenitor (CMP). Particular emphasis is placed on the corresponding temporal expression of relevant factors involved in regulating developmental options.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
65
|
PU.1 and Haematopoietic Cell Fate: Dosage Matters. Int J Cell Biol 2011; 2011:808524. [PMID: 21845190 PMCID: PMC3154517 DOI: 10.1155/2011/808524] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022] Open
Abstract
The ETS family transcription factor PU.1 is a key regulator of haematopoietic differentiation. Its expression is dynamically controlled throughout haematopoiesis in order to direct appropriate lineage specification. Elucidating the biological role of PU.1 has proved challenging. This paper will discuss how a range of experiments in cell lines and mutant and transgenic mouse models have enhanced our knowledge of the mechanisms by which PU.1 drives lineage-specific differentiation during haematopoiesis.
Collapse
|
66
|
Shima Y, Kitabayashi I. Deregulated transcription factors in leukemia. Int J Hematol 2011; 94:134-141. [PMID: 21823042 DOI: 10.1007/s12185-011-0905-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 12/16/2022]
Abstract
Specific chromosomal translocations and other mutations associated with acute myeloblastic leukemia (AML) often involve transcription factors and transcriptional coactivators. Such target genes include AML1, C/EBPα, RARα, MOZ, p300/CBP, and MLL, all of which are important in the regulation of hematopoiesis. The resultant fusion or mutant proteins deregulate the transcription of the affected genes and disrupt their essential role in hematopoiesis, causing differentiation block and abnormal proliferation and/or survival. This review focuses on such transcription factors and coactivators, and describes their roles in leukemogenesis and hematopoiesis.
Collapse
Affiliation(s)
- Yutaka Shima
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
67
|
Abstract
The transcription factor (TF) RUNX1 cooperates with lineage-specifying TFs (eg, PU.1/SPI1) to activate myeloid differentiation genes, such as macrophage and granulocyte macrophage colony-stimulating factor receptors (MCSFR and GMCSFR). Disruption of cooperative gene activation could contribute to aberrant repression of differentiation genes and leukemogenesis initiated by mutations and translocations of RUNX1. To investigate the mechanisms underlying cooperative gene activation, the effects of Runx1 deficiency were examined in an in vitro model of Pu.1-driven macrophage differentiation and in primary cells. Runx1 deficiency decreased Pu.1-mediated activation of Mcsfr and Gmcsfr, accompanied by decreased histone acetylation at the Mcsfr and Gmcsfr promoters, and increased endogenous corepressor (Eto2, Sin3A, and Hdac2) coimmunoprecipitation with Pu.1. In cotransfection experiments, corepressors were excluded from a multiprotein complex containing full-length RUNX1 and PU.1. However, corepressors interacted with PU.1 if wild-type RUNX1 was replaced with truncated variants associated with leukemia. Histone deacetylase (HDAC) enzyme activity is a major component of corepressor function. HDAC inhibition using suberoylanilide hydroxamic acid or MS-275 significantly increased MCSFR and GMCSFR expression in leukemia cell lines that express PU.1 and mutated or translocated RUNX1. RUNX1 deficiency is associated with persistent corepressor interaction with PU.1. Thus, inhibiting HDAC can partly compensate for the functional consequences of RUNX1 deficiency.
Collapse
|
68
|
Hikima JI, Ohtani M, Kondo H, Hirono I, Jung TS, Aoki T. Characterization and gene expression of transcription factors, PU.1 and C/EBPα driving transcription from the tumor necrosis factor α promoter in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:304-313. [PMID: 20951726 DOI: 10.1016/j.dci.2010.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
Both PU.1 and C/EBPα transcription factors play important roles in myeloid development and inflammatory response. These transcripts were cloned from the Japanese flounder (Paralichthys olivaceus) and were highly conserved with those of other vertebrates. PU.1 mRNA was mainly expressed in lymphoid tissues while C/EBPα mRNA was widely expressed in all tissues examined. Higher levels of PU.1 mRNA were expressed in the IgM(+) cells of both PBL and KL, while C/EBPα expression was higher only in the IgM(-) cells of KL. The expression of C/EBPα mRNA was induced only in KL stimulated with LPS. Interestingly, PU.1 mRNA expression was induced by Edwardsiella tarda, whereas the expression of C/EBPα mRNA was induced by Streptococcus iniae infection. Both PU.1 and C/EBPα drove transcription from the LPS-responsive region of the Japanese flounder TNFα gene, suggesting that both PU.1 and C/EBPα induced by bacterial infection are involved in inflammation mediated through TNFα expression.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwa-Dong, Jinju, Gyeongnam 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
69
|
Brown G, Hughes PJ, Michell RH, Ceredig R. The versatility of haematopoietic stem cells: implications for leukaemia. Crit Rev Clin Lab Sci 2010; 47:171-80. [DOI: 10.3109/10408363.2010.530150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Geoffrey Brown
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | |
Collapse
|
70
|
|
71
|
The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 2010; 32:628-41. [PMID: 20510871 DOI: 10.1016/j.immuni.2010.05.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/15/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022]
Abstract
The transcription factor PU.1 plays multiple context and concentration dependent roles in lymphoid and myeloid cell development. Here we showed that PU.1 (encoded by Sfpi1) was essential for dendritic cell (DC) development in vivo and that conditional ablation of PU.1 in defined precursors, including the common DC progenitor, blocked Flt3 ligand-induced DC generation in vitro. PU.1 was also required for the parallel granulocyte-macrophage colony stimulating factor-induced DC pathway from early hematopoietic progenitors. Molecular studies demonstrated that PU.1 directly regulated Flt3 in a concentration-dependent manner, as Sfpi1(+/-) cells displayed reduced expression of Flt3 and impaired DC formation. These studies identify PU.1 as a critical regulator of both conventional and plasmacytoid DC development and provide one mechanism how altered PU.1 concentration can have profound functional consequences for hematopoietic cell development.
Collapse
|
72
|
Uchiumi F, Enokida K, Shiraishi T, Masumi A, Tanuma SI. Characterization of the promoter region of the human IGHMBP2 (Smubp-2) gene and its response to TPA in HL-60 cells. Gene 2010; 463:8-17. [PMID: 20441787 DOI: 10.1016/j.gene.2010.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
Immunoglobulin mu-binding protein 2 (IGHMBP2/Smubp-2) is a helicase motif-containing DNA-binding protein that has been suggested to regulate various nuclear functions. Recent studies indicated that mutations in the IGHMBP2 gene are responsible for spinal muscular atrophy with respiratory distress type I (SMARD1). However, the mechanism of regulation of IGHMBP2 gene expression remains unclear. In the present study, a 2.0-kb fragment of the 5'-flanking (promoter) region of the human IGHMBP2 gene was isolated from the HL-60 genome by PCR and ligated into a luciferase (Luc) expression vector, pGL3, to generate the pSmu-Luc plasmid. Deletion analyses revealed that a 108-bp region is essential for basal promoter activity with a response to TPA in HL-60 cells. TF-SEARCH analysis showed that overlapping ets (GGAA) motifs are located upstream of the transcription start sites. Chromatin immunoprecipitation (ChIP) assay, electropheretic mobility shift assay (EMSA) and competition analyses indicated that PU.1 (Spi-1) recognizes and binds to the duplicated ets motifs in this 108-bp region. Moreover, co-transfection of the PU.1 expression plasmid and pSmu-Luc into HL-60 cells revealed that PU.1 modulates TPA-induced IGHMBP2 promoter activity. Taken together, these observations suggest that the duplicated GGAA motifs are essential for the IGHMBP2 promoter activity and its positive response to TPA in HL-60 cells.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 270-8510 Japan.
| | | | | | | | | |
Collapse
|
73
|
Oakford PC, James SR, Qadi A, West AC, Ray SN, Bert AG, Cockerill PN, Holloway AF. Transcriptional and epigenetic regulation of the GM-CSF promoter by RUNX1. Leuk Res 2010; 34:1203-13. [PMID: 20439113 DOI: 10.1016/j.leukres.2010.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
The RUNX1 gene, which is essential for normal hematopoiesis, is frequently rearranged by the t(8;21) chromosomal translocation in acute myeloid leukemia. The resulting RUNX1-ETO fusion protein contributes to leukemic progression by directing aberrant association of transcriptional cofactors and epigenetic modifiers to RUNX1 target genes. For example, the GM-CSF gene is activated by RUNX1, but is repressed by RUNX1-ETO. Here we show that RUNX1 normally cooperates with the histone acetyltransferase, CBP, to regulate GM-CSF expression at two levels. Firstly, it directs the establishment of a competent chromatin environment at the GM-CSF promoter prior to gene activation. It then participates in the transcriptional activation of the promoter in response to immune stimuli. In contrast, RUNX1-ETO, which cannot associate with CBP, is unable to transactivate the GM-CSF promoter and is associated with the generation of a repressive chromatin environment at the promoter.
Collapse
|
74
|
Choe KS, Ujhelly O, Wontakal SN, Skoultchi AI. PU.1 directly regulates cdk6 gene expression, linking the cell proliferation and differentiation programs in erythroid cells. J Biol Chem 2009; 285:3044-52. [PMID: 19955566 DOI: 10.1074/jbc.m109.077727] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell proliferation and differentiation are highly coordinated processes during normal development. Most leukemia cells are blocked from undergoing terminal differentiation and also exhibit uncontrolled proliferation. Dysregulated expression of transcription factor PU.1 is strongly associated with Friend virus-induced erythroleukemia. PU.1 inhibits erythroid differentiation by binding to and inhibiting GATA-1. PU.1 also may be involved in controlling proliferation of erythroid cells. We reported previously that the G(1) phase-specific cyclin-dependent kinase 6 (CDK6) also blocks erythroid differentiation. We now report that PU.1 directly stimulates transcription of the cdk6 gene in both normal erythroid progenitors and erythroleukemia cells, as well as in macrophages. We propose that PU.1 coordinates proliferation and differentiation in immature erythroid cells by inhibiting the GATA-1-mediated gene expression program and also by regulating expression of genes that control progression through the G(1) phase of the cell cycle, the period during which the decision to differentiate is made.
Collapse
Affiliation(s)
- Kevin S Choe
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
75
|
Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors. PLoS Comput Biol 2009; 5:e1000518. [PMID: 19911036 PMCID: PMC2736398 DOI: 10.1371/journal.pcbi.1000518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/25/2009] [Indexed: 02/08/2023] Open
Abstract
Autoregulation of transcription factors and cross-antagonism between lineage-specific transcription factors are a recurrent theme in cell differentiation. An equally prevalent event that is frequently overlooked in lineage commitment models is the upregulation of lineage-specific receptors, often through lineage-specific transcription factors. Here, we use a minimal model that combines cell-extrinsic and cell-intrinsic elements of regulation in order to understand how both instructive and stochastic events can inform cell commitment decisions in hematopoiesis. Our results suggest that cytokine-mediated positive receptor feedback can induce a “switch-like” response to external stimuli during multilineage differentiation by providing robustness to both bipotent and committed states while protecting progenitors from noise-induced differentiation or decommitment. Our model provides support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments and provides a computational framework that can integrate both classical and alternative commitment paths in hematopoiesis that have been observed experimentally. Complex biomolecular interaction pathways in signaling networks can lead to non-intuitive behaviors that can prove critical for the regulation and robustness of biological processes. In this work, we present a signaling topology that can generate dynamic responses that are particularly pertinent to cell commitment in hematopoiesis. Our minimal model explores fundamental questions of instructive signaling that have persisted in cell-fate decisions. We show that even when lineage commitment decisions are inherently noisy, external cytokine signals, amplified by receptor upregulation, can bias the lineage choices of a progenitor cell. The multipotent progenitor, based on its differentiation potential, can exhibit several layers of memory to provide stability to both intermediate and mature states and can potentially bypass canonical intermediate states in generating mature cell types. Thus, our model provides a computational framework that can accommodate both classical and non-classical commitment paths in hematopoiesis.
Collapse
|
76
|
Tissières P, Araud T, Ochoda A, Drifte G, Dunn-Siegrist I, Pugin J. Cooperation between PU.1 and CAAT/enhancer-binding protein beta is necessary to induce the expression of the MD-2 gene. J Biol Chem 2009; 284:26261-72. [PMID: 19632992 DOI: 10.1074/jbc.m109.042580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myeloid differentiation factor 2 (MD-2) binds Gram-negative bacterial lipopolysaccharide with high affinity and is essential for Toll-like receptor 4-dependent signal transduction. MD-2 has recently been recognized as a type II acute phase protein. Plasma concentrations of the soluble form of MD-2 increase markedly during the course of severe infections. Its production is regulated in hepatocytes and myeloid cells by interleukin-6 (IL-6) but not IL-1beta. In the present work we show that two transcription factors (TF), PU.1 and CAAT/enhancer-binding protein beta (C/EBPbeta), participate in the activation of the human MD-2 gene in hepatocytic cells after stimulation with IL-6. PU.1 TF and proximal PU.1 binding sites in the MD-2 promoter were shown to be critical for the basal activity of the promoter as well as for IL-6-induced soluble MD-2 production. Deletions of proximal portions of the MD-2 promoter containing PU.1 and/or NF-IL-6 consensus binding sites as well as site-directed mutagenesis of these binding sites abrogated IL-6-dependent MD-2 gene activation. We show that the cooperation between C/EBPbeta and PU.1 is critical for the transcriptional activation of the MD-2 gene by IL-6. PU.1 was essentially known as a TF involved in the differentiation of myeloid precursor cells and the expression of surface receptors of the innate immunity. Herein, we show that it also participates in the regulation of an acute phase protein, MD-2, in nonmyeloid cells cooperatively with C/EBPbeta, a classical IL-6-inducible TF.
Collapse
Affiliation(s)
- Pierre Tissières
- Intensive Care, University Hospitals of Geneva, Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
77
|
Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 2009; 122:264-80. [DOI: 10.1016/j.pharmthera.2009.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/03/2009] [Indexed: 12/11/2022]
|
78
|
Gupta P, Gurudutta GU, Saluja D, Tripathi RP. PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis. J Cell Mol Med 2009; 13:4349-63. [PMID: 19382896 PMCID: PMC4515051 DOI: 10.1111/j.1582-4934.2009.00757.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During normal haematopoiesis, cell development and differentiation programs are accomplished by switching ‘on’ and ‘off’ specific set of genes. Specificity of gene expression is primarily achieved by combinatorial control, i.e. through physical and functional interactions among several transcription factors that form sequence-specific multiprotein complexes on regulatory regions (gene promoters and enhancers). Such combinatorial gene switches permit flexibility of regulation and allow numerous developmental decisions to be taken with a limited number of regulators. The haematopoietic-specific Ets family transcription factor PU.1 regulates many lymphoid- and myeloid-specific gene promoters and enhancers by interacting with multiple proteins during haematopoietic development. Such protein–protein interactions regulate DNA binding, subcellular localization, target gene selection and transcriptional activity of PU.1 itself in response to diverse signals including cytokines, growth factors, antigen and cellular stresses. Specific domains of PU.1 interact with many protein motifs such as bHLH, bZipper, zinc fingers and paired domain for regulating its activity. This review focuses on important protein–protein interactions of PU.1 that play a crucial role in regulation of normal as well as malignant haematopoiesis. Precise delineation of PU.1 protein-partner interacting interface may provide an improved insight of the molecular mechanisms underlying haematopoietic stem cell fate regulation. Its interactions with some proteins could be targeted to modulate the aberrant signalling pathways for reversing the malignant phenotype and to control the generation of specific haematopoietic progeny for treatment of haematopoietic disorders.
Collapse
Affiliation(s)
- Pallavi Gupta
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, DRDO, Delhi, India
| | | | | | | |
Collapse
|
79
|
Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y. FIP1L1-PDGFRalpha imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem 2009; 284:7719-32. [PMID: 19147501 DOI: 10.1074/jbc.m807489200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although leukemogenic tyrosine kinases (LTKs) activate a common set of downstream molecules, the phenotypes of leukemia caused by LTKs are rather distinct. Here we report the molecular mechanism underlying the development of hypereosinophilic syndrome/chronic eosinophilic leukemia by FIP1L1-PDGFRalpha. When introduced into c-Kit(high)Sca-1(+)Lineage(-) cells, FIP1L1-PDGFRalpha conferred cytokine-independent growth on these cells and enhanced their self-renewal, whereas it did not immortalize common myeloid progenitors in in vitro replating assays and transplantation assays. Importantly, FIP1L1-PDGFRalpha but not TEL-PDGFRbeta enhanced the development of Gr-1(+)IL-5Ralpha(+) eosinophil progenitors from c-Kit(high)Sca-1(+)Lineage(-) cells. FIP1L1-PDGFRalpha also promoted eosinophil development from common myeloid progenitors. Furthermore, when expressed in megakaryocyte/erythrocyte progenitors and common lymphoid progenitors, FIP1L1-PDGFRalpha not only inhibited differentiation toward erythroid cells, megakaryocytes, and B-lymphocytes but aberrantly developed eosinophil progenitors from megakaryocyte/erythrocyte progenitors and common lymphoid progenitors. As for the mechanism of FIP1L1-PDGFRalpha-induced eosinophil development, FIP1L1-PDGFRalpha was found to more intensely activate MEK1/2 and p38(MAPK) than TEL-PDGFRbeta. In addition, a MEK1/2 inhibitor and a p38(MAPK) inhibitor suppressed FIP1L1-PDGFRalpha-promoted eosinophil development. Also, reverse transcription-PCR analysis revealed that FIP1L1-PDGFRalpha augmented the expression of C/EBPalpha, GATA-1, and GATA-2, whereas it hardly affected PU.1 expression. In addition, short hairpin RNAs against C/EBPalpha and GATA-2 and GATA-3KRR, which can act as a dominant-negative form over all GATA members, inhibited FIP1L1-PDGFRalpha-induced eosinophil development. Furthermore, FIP1L1-PDGFRalpha and its downstream Ras inhibited PU.1 activity in luciferase assays. Together, these results indicate that FIP1L1-PDGFRalpha enhances eosinophil development by modifying the expression and activity of lineage-specific transcription factors through Ras/MEK and p38(MAPK) cascades.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Uchiumi F, Sakakibara G, Sato J, Tanuma SI. Characterization of the promoter region of the humanPARGgene and its response to PU.1 during differentiation of HL-60 cells. Genes Cells 2008; 13:1229-47. [DOI: 10.1111/j.1365-2443.2008.01240.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Singh H. PU.1, a shared transcriptional regulator of innate and adaptive immune cell fates. THE JOURNAL OF IMMUNOLOGY 2008; 181:1595-6. [PMID: 18641293 DOI: 10.4049/jimmunol.181.3.1595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Harinder Singh
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
82
|
Croker BA, Mielke LA, Wormald S, Metcalf D, Kiu H, Alexander WS, Hilton DJ, Roberts AW. Socs3 maintains the specificity of biological responses to cytokine signals during granulocyte and macrophage differentiation. Exp Hematol 2008; 36:786-98. [PMID: 18400361 PMCID: PMC2556307 DOI: 10.1016/j.exphem.2008.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 11/25/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) play key roles in regulating emergency granulopoiesis and inflammation, and are both negatively regulated by the inducible intracellular protein suppressor of cytokine signaling-3 (Socs3). Mice with Socs3 deleted specifically in hematopoietic cells succumb to severe neutrophil and macrophage-driven inflammation by 1 year of age, and responses to G-CSF are grossly exacerbated. In order to determine which elements of cellular responses to cytokines require Socs3, we have examined the differentiative and proliferative capacity of hematopoietic progenitor cells stimulated by G-CSF and IL-6. The differentiation of Socs3-deficient progenitor cells is skewed toward macrophage production in response to G-CSF or IL-6, whereas wild-type progenitor cells produce mainly neutrophils. The proliferative capacity of Socs3-deficient progenitor cells is greatly enhanced in response to G-CSF at all concentrations, but only at low concentrations for IL-6. Strikingly, synergistic responses to costimulation with stem cell factor and IL-6 (but not G-CSF) are lost at higher concentrations in Socs3-deficient progenitor cells. Cytokine-induced expression of transcriptional regulators including cebpb, Ets2, Bcl3, c-Myc, Jun, and Fosl2 are differentially regulated in Socs3-deficient cells. The tight regulation by Socs3 of signal transducer and activator of transcription 3 phosphorylation and gene transcription after cytokine receptor ligation significantly influences the fate of myeloid progenitor cells.
Collapse
Affiliation(s)
- Ben A Croker
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins. Blood 2008; 112:1068-77. [PMID: 18523151 DOI: 10.1182/blood-2008-01-133504] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage-specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins.
Collapse
|
84
|
t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood 2008; 112:1392-401. [PMID: 18511808 DOI: 10.1182/blood-2007-11-124735] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromosome abnormalities are frequently associated with cancer development. The 8;21(q22;q22) chromosomal translocation is one of the most common chromosome abnormalities identified in leukemia. It generates fusion proteins between AML1 and ETO. Since AML1 is a well-defined DNA-binding protein, AML1-ETO fusion proteins have been recognized as DNA-binding proteins interacting with the same consensus DNA-binding site as AML1. The alteration of AML1 target gene expression due to the presence of AML1-ETO is related to the development of leukemia. Here, using a 25-bp random double-stranded oligonucleotide library and a polymerase chain reaction (PCR)-based DNA-binding site screen, we show that compared with native AML1, AML1-ETO fusion proteins preferentially bind to DNA sequences with duplicated AML1 consensus sites. This finding is further confirmed by both in vitro and in vivo DNA-protein interaction assays. These results suggest that AML1-ETO fusion proteins have a selective preference for certain AML1 target genes that contain multimerized AML1 consensus sites in their regulatory elements. Such selected regulation provides an important molecular mechanism for the dysregulation of gene expression during cancer development.
Collapse
|
85
|
Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp Hematol 2008; 36:871-85. [PMID: 18375040 DOI: 10.1016/j.exphem.2008.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 12/30/2007] [Accepted: 01/28/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVE High-dose radiation exposure induces acute myeloid leukemia (AML) in C3H mice, most of which have a frequent hemizygous deletion around the D2Mit15 marker on chromosome 2. This region includes PU.1, a critical candidate gene for initiation of leukemogenesis. To identify novel cooperative genes with PU.1, relevant to radiation-induced leukemogenesis, we analyzed the copy number alterations of tumor-related gene loci by array CGH, and their expressions in primary and transplanted AMLs. MATERIALS AND METHODS For the induction of AMLs, C3H/He Nrs mice were exposed to 3 Gy of x-rays or gamma-rays. The genomic alterations of 35 primary AMLs and 34 transplanted AMLs obtained from the recipient mice transplanted the primary AMLs were analyzed by array CGH. According to the genomic alterations and mutations of the 235th arginine of PU.1 allele, we classified the radiogenic AMLs into three types such as Chr2(del) PU.1(del/R235-) AML, Chr2(del) PU.1(del/R235+) AML and Chr2(intact) PU.1(R235+/R235+) AML, to compare the expression levels of 8 tumor-related genes quantitatively by real-time polymerase chain reaction and cell-surface antigen expression. Results. In addition to well-known loss of PU.1 with hemizygous deletion of chromosome 2, novel genomic alterations such as partial gain of chromosome 6 were recurrently detected in AMLs. In this study, we found similarity between cell-surface antigen expressions of bone marrows and those of spleens in AML mice and significantly higher expressions of c-myc and PU.1 expression, especially in the PU.1-deficient (Chr2(del) PU.1(del/R235-)) AML and Chr2(del) PU.1(del/R235+) compared to Chr2(intact) PU.1(R235+/R235+) AMLs. CONCLUSION The new finding on upregulation of c-myc and PU.1 in both and hemizygous PU.1-deficient AMLs and different genomic alterations detected by array CGH suggests that the molecular mechanism for development of radiation-induced AML should be different among three types of AML.
Collapse
|
86
|
Frecha C, Toscano MG, Costa C, Saez-Lara MJ, Cosset FL, Verhoeyen E, Martin F. Improved lentiviral vectors for Wiskott–Aldrich syndrome gene therapy mimic endogenous expression profiles throughout haematopoiesis. Gene Ther 2008; 15:930-41. [DOI: 10.1038/gt.2008.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
87
|
Houston IB, Huang KJ, Jennings SR, DeKoter RP. PU.1 immortalizes hematopoietic progenitors in a GM-CSF-dependent manner. Exp Hematol 2007; 35:374-384. [PMID: 17309818 DOI: 10.1016/j.exphem.2006.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The Ets family transcription factor PU.1 is essential for both myeloid and lymphoid development. PU.1 was discovered because of its involvement in murine erythroleukemia. We previously described that infection with a retroviral vector encoding PU.1 immortalizes fetal liver progenitor cells in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. In this study, we sought to characterize PU.1-immortalized progenitor (PIP) cells. METHODS PIP cells were characterized using microscopy, reverse-transcriptase polymerase chain reaction analysis, and flow cytometric analysis. In addition, progenitors were immortalized with a retrovirus containing a PU.1 cDNA flanked by loxP sites. The differentiation potential of immortalized progenitors was tested by Cre-mediated excision of the proviral PU.1 cDNA. RESULTS PIP cells are blastlike in morphology and express cell surface markers indicative of myeloid development. Immortalization of progenitor cells requires both an acidic activation domain and an intact DNA-binding domain of PU.1. Gene expression analysis of PIP cells demonstrated the expression of genes of both myeloid and erythroid lineages. Proliferation of PIP cells was GM-CSF dependent and restricted. Upon Cre-mediated excision of proviral PU.1 cDNA, increased expression of myeloid and erythroid-specific genes was observed; as well as the appearance of both macrophages and erythrocytes in culture. CONCLUSION We demonstrate that ectopic expression of PU.1 is sufficient to immortalize a hematopoietic progenitor with myeloid and erythroid differentiation potential in response to GM-CSF. These data highlight the importance of the level of PU.1 expression at critical stages of hematopoiesis.
Collapse
Affiliation(s)
- Isaac B Houston
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
88
|
Dai H, Xue Y, Pan J, Wu Y, Wang Y, Shen J, Zhang J. Two novel translocations disrupt the RUNX1 gene in acute myeloid leukemia. ACTA ACUST UNITED AC 2007; 177:120-4. [PMID: 17854666 DOI: 10.1016/j.cancergencyto.2007.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/02/2007] [Accepted: 05/15/2007] [Indexed: 11/21/2022]
Abstract
Translocations involving 21q22 are commonly observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). They often result in the disruption of RUNX1 and give rise to fusion genes consisting of RUNX1 and different partner genes, which contribute to leukemogenesis. To date, at least 21 such translocations are known from the literature. Here we report two novel translocations involving the RUNX1 gene: t(1;21)(q12;q22) in a 53-year-old woman with AML-M5b and t(11;21)(q13;q22) in a 65-year-old man with AML-M2. The abnormalities revealed by R-banding karyotypic analysis were confirmed with interphase and metaphase fluorescence in situ hybridization (FISH), chromosome painting, and M-FISH.
Collapse
MESH Headings
- Aged
- Chromosome Banding
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 21/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Female
- Humans
- Karyotyping
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Myeloid, Acute/genetics
- Male
- Middle Aged
- Translocation, Genetic
Collapse
Affiliation(s)
- Haiping Dai
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, 188 Shizi Street, 215006 Suzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
89
|
Li D, Sinha KK, Hay MA, Rinaldi CR, Saunthararajah Y, Nucifora G. RUNX1-RUNX1 Homodimerization Modulates RUNX1 Activity and Function. J Biol Chem 2007; 282:13542-51. [PMID: 17355962 DOI: 10.1074/jbc.m700074200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RUNX1 (AML1, CBFalpha2, PEBP2alphaB) is a transcription factor essential for the establishment of the hematopoietic stem cell. It is generally thought that RUNX1 exists as a monomer that regulates hematopoietic differentiation by interacting with tissue-specific factors and its DNA consensus through its N terminus. RUNX1 is frequently altered in human leukemia by gene fusions or point mutations. In general, these alterations do not affect the N terminus of the protein, and it is unclear how they consistently lead to hematopoietic transformation and leukemia. Here we report that RUNX1 homodimerizes through a mechanism involving C terminus-C terminus interaction. This RUNX1-RUNX1 interaction regulates the activity of the protein in reporter gene assays and modulates its ability to induce hematopoietic differentiation of hematopoietic cell lines. The promoters of genes regulated by RUNX1 often contain multiple RUNX1 binding sites. This arrangement suggests that RUNX1 could homodimerize to bring and hold together distant chromatin sites and factors and that if the dimerization region is removed by gene fusions or is altered by point mutations, as observed in leukemia, the ability of RUNX1 to regulate differentiation could be impaired.
Collapse
Affiliation(s)
- Donglan Li
- Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
90
|
Mameli G, Deshmane SL, Ghafouri M, Cui J, Simbiri K, Khalili K, Mukerjee R, Dolei A, Amini S, Sawaya BE. C/EBPbeta regulates human immunodeficiency virus 1 gene expression through its association with cdk9. J Gen Virol 2007; 88:631-640. [PMID: 17251582 DOI: 10.1099/vir.0.82487-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transcriptional regulation of the human immunodeficiency virus type 1 (HIV-1) is a complex event that requires the cooperative action of both viral (e.g. Tat) and cellular (e.g. C/EBPbeta, NF-kappaB) factors. The HIV-1 Tat protein recruits the human positive transcription elongation factor P-TEFb, consisting of cdk9 and cyclin T1, to the HIV-1 transactivation response (TAR) region. In the absence of TAR, Tat activates the HIV-1 long terminal repeat (LTR) through its association with several cellular factors including C/EBPbeta. C/EBPbeta is a member of the CCAAT/enhancer-binding protein family of transcription factors and has been shown to be a critical transcriptional regulator of HIV-1 LTR. We examined whether Tat-C/EBPbeta association requires the presence of the P-TEFb complex. Using immunoprecipitation followed by Western blot, we demonstrated that C/EBPbeta-cyclin T1 association requires the presence of cdk9. Further, due to its instability, cdk9 was unable to physically interact with C/EBPbeta in the absence of cyclin T1 or Tat. Using kinase assays, we demonstrated that cdk9, but not a cdk9 dominant-negative mutant (cdk9-dn), phosphorylates C/EBPbeta. Our functional data show that co-transfection of C/EBPbeta and cdk9 leads to an increase in HIV-1 gene expression when compared to C/EBPbeta alone. Addition of C/EBP homologous protein (CHOP) inhibits C/EBPbeta transcriptional activity in the presence and absence of cdk9 and causes a delay in HIV-1 replication in T-cells. Together, our data suggest that Tat-C/EBPbeta association is mediated through cdk9, and that phosphorylated C/EBPbeta may influence AIDS progression by increasing expression of HIV-1 genes.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, Sassari, Italy
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Satish L Deshmane
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Mohammad Ghafouri
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Jianqi Cui
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Kenneth Simbiri
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Ruma Mukerjee
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Antonina Dolei
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, Sassari, Italy
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street 015-96, Philadelphia, PA 19122, USA
| |
Collapse
|
91
|
Durual S, Rideau A, Ruault-Jungblut S, Cossali D, Beris P, Piguet V, Matthes T. Lentiviral PU.1 overexpression restores differentiation in myeloid leukemic blasts. Leukemia 2007; 21:1050-9. [PMID: 17361223 DOI: 10.1038/sj.leu.2404645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PU.1, a transcription factor of the ETS family, plays a pivotal role in normal hematopoiesis, and particularly in myeloid differentiation. Altered PU.1 function is possibly implicated in leukemogenesis, as PU.1 gene mutations were identified in some patients with acute myeloid leukemia (AML) and as several oncogenic products (AML1-ETO, promyelocytic leukemia-retinoic acid receptor alpha, FMS-like receptor tyrosine kinase 3 internal tandem duplication) are associated with PU.1 downregulation. To demonstrate directly a role of PU.1 in the blocked differentiation of leukemic blasts, we transduced cells from myeloid cell lines and primary blasts from AML patients with a lentivector encoding PU.1. In NB4 cells we obtained increases in PU.1 mRNA and protein, comparable to increases obtained with all-trans retinoic acid-stimulation. Transduced cells showed increased myelomonocytic surface antigen expression, decreased proliferation rates and increased apoptosis. Similar results were obtained in primary AML blasts from 12 patients. These phenotypic changes are characteristic of restored blast differentiation. PU.1 should therefore constitute an interesting target for therapeutic intervention in AML.
Collapse
Affiliation(s)
- S Durual
- 1Division of Hematology, University Hospital Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
92
|
Gombart AF, Grewal J, Koeffler HP. ATF4 differentially regulates transcriptional activation of myeloid-specific genes by C/EBPepsilon and C/EBPalpha. J Leukoc Biol 2007; 81:1535-47. [PMID: 17347301 DOI: 10.1189/jlb.0806516] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dimerization between different basic region leucine zipper (ZIP) transcription factors is regarded as an important mechanism for integrating various extracellular signals to control specific patterns of gene expression in cells. The activating transcription factor 4 (ATF4) protein was identified as a principal partner for the myeloid-specific transcriptional factor C/EBPepsilon. Dimerization required the ZIP motif of each protein and redirected DNA binding of C/EBPepsilon and ATF4 from their respective symmetric consensus sites to asymmetric C/EBP and cAMP response element sites. The C/EBPepsilon:ATF4 heterodimer bound to the C/EBP sites in the promoters of the myeloid-specific genes encoding neutrophil elastase (NE) and the G-CSF receptor (G-CSFR). Also, the heterodimer bound a previously uncharacterized site in the promoter of the mim-1 gene at nucleotide -174. Coexpression of ATF4 and C/EBPepsilon in the presence of c-Myb synergistically activated the mim-1 and NE promoters compared with C/EBPepsilon plus c-Myb alone. Synergistic activation was not observed for the G-CSFR promoter and only occurred in the presence of c-myb with the NE or mim-1 promoters. In contrast, ATF4:C/EBPalpha dimers bound to the C/EBP sites in the G-CSFR and NE promoters, but transcriptional activation was inhibited by 30-80% in the presence or absence of c-Myb. We propose that ATF4 may regulate myeloid gene expression differentially by potentiating C/EBPepsilon but inhibiting C/EBPalpha-mediated transcriptional activation.
Collapse
Affiliation(s)
- Adrian F Gombart
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, Davis Bldg. 5019, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
93
|
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bédard A, Tenen DG, Hoang T. c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 2007; 27:2919-33. [PMID: 17283046 PMCID: PMC1899927 DOI: 10.1128/mcb.00936-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1beta (IL-1beta) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein beta (C/EBPbeta). Unexpectedly, the interaction interface with PU.1 and C/EBPbeta involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1beta locus is occupied by PU.1 and C/EBPbeta and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Collapse
Affiliation(s)
- Benoit Grondin
- Institute of Research in Immunology and Cancer, University of Montreal, P.O. Box 6128, Downtown station, Montréal, Québec
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Liu TX, Rhodes J, Deng M, Hsu K, Radomska HS, Kanki JP, Tenen DG, Look AT. Dominant-interfering C/EBPalpha stimulates primitive erythropoiesis in zebrafish. Exp Hematol 2007; 35:230-9. [PMID: 17258072 PMCID: PMC2967023 DOI: 10.1016/j.exphem.2006.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We investigated the role of CCAAT enhancer-binding protein-alpha (C/EBPalpha) during zebrafish embryonic blood development. METHODS Whole-mount mRNA in situ hybridization was performed to determine the spatio-temporal expression pattern of zebrafish cebpa in developing hematopoietic progenitors. A deletion mutation of cebpa (zD420), which mimics the human dominant-negative mutations of C/EBPalpha, was transfected into CV1 cell line to evaluate its transcriptional activity in vitro and injected into zebrafish embryos at the one- to two-cell stage to examine its effects on primitive hematopoiesis during early zebrafish development. RESULTS Zebrafish cebpa is expressed in the anterior and posterior lateral plate mesoderm at 12 hours postfertilization, along with scl, pu.1, and gata1 in developing hematopoietic progenitors. In vitro, the deletion mutation of cebpa (zD420) prevents expression of the full-length protein, allowing the expression of truncated isoforms from internal translational initiation sites. As in the human, the truncated zebrafish C/EBPalpha proteins did not activate the expression of known target granulocytic genes, and in fact suppressed transactivation that was induced in vitro by the full-length protein. Forced expression of the zD420 mRNA in zebrafish embryos led to an expansion of primitive erythropoiesis, without a discernible effect on granulopoiesis. CONCLUSION Expression of the truncated isoforms of cebpa alters the developmental pattern of hematopoietic progenitor cells during embryogenesis.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blood Vessels/embryology
- Blood Vessels/metabolism
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- DNA, Complementary/genetics
- Embryonic Development/genetics
- Embryonic Development/physiology
- Erythropoiesis/genetics
- Gene Deletion
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- RNA, Messenger
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, DNA
- Translocation, Genetic/genetics
- Translocation, Genetic/physiology
- Transplantation, Heterologous
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Ting Xi Liu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Laboratory of Development and Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jennifer Rhodes
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Min Deng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Karl Hsu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Hanna S. Radomska
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - John P. Kanki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Daniel G. Tenen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| |
Collapse
|
95
|
Dakic A, Wu L, Nutt SL. Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol 2007; 28:108-14. [PMID: 17267285 DOI: 10.1016/j.it.2007.01.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/04/2007] [Accepted: 01/19/2007] [Indexed: 11/20/2022]
Abstract
The transcription factor PU.1 is an essential regulator of haemopoiesis and a suppressor of myeloid leukaemia. PU.1 displays a complex expression pattern characterized by high expression in myeloid cells and low amounts in lymphoid cells. Based on this transcriptional profile, and the analysis of cell lines and mice expressing altered levels of PU.1, a model has been proposed where the concentration of PU.1 determines cell fate, whereas the graded reduction, but not absence, of PU.1 facilitates leukaemogenesis. The recent reports of mouse strains that enable the accurate determination of PU.1 expression and the conditional inactivation of PU.1 in adult haemopoiesis have led us to re-examine our understanding of the complex functions of PU.1. Here, we will discuss the data that, we believe, argue against the dosage-sensitive model of PU.1-mediated lineage commitment and leukaemogenesis.
Collapse
Affiliation(s)
- Aleksandar Dakic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | |
Collapse
|
96
|
Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, Zhang Y, Zhang L, Yuan ZR, Tan HSW, Das G, Devadas S. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. Cell Res 2006; 16:126-33. [PMID: 16474424 DOI: 10.1038/sj.cr.7310017] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor and immune modulator. GM-CSF also has profound effects on the functional activities of various circulating leukocytes. It is produced by a variety of cell types including T cells, macrophages, endothelial cells and fibroblasts upon receiving immune stimuli. Although GM-CSF is produced locally, it can act in a paracrine fashion to recruit circulating neutrophils, monocytes and lymphocytes to enhance their functions in host defense. Recent intensive investigations are centered on the application of GM-CSF as an immune adjuvant for its ability to increase dendritic cell (DC) maturation and function as well as macrophage activity. It is used clinically to treat neutropenia in cancer patients undergoing chemotherapy, in AIDS patients during therapy, and in patients after bone marrow transplantation. Interestingly, the hematopoietic system of GM-CSF-deficient mice appears to be normal; the most significant changes are in some specific T cell responses. Although molecular cloning of GM-CSF was carried out using cDNA library of T cells and it is well known that the T cells produce GM-CSF after activation, there is a lack of systematic investigation of this cytokine in production by T cells and its effect on T cell function. In this article, we will focus mainly on the immunobiology of GM-CSF in T cells.
Collapse
Affiliation(s)
- Yufang Shi
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 661 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Suh HC, Gooya J, Renn K, Friedman AD, Johnson PF, Keller JR. C/EBPalpha determines hematopoietic cell fate in multipotential progenitor cells by inhibiting erythroid differentiation and inducing myeloid differentiation. Blood 2006; 107:4308-16. [PMID: 16469877 PMCID: PMC1895788 DOI: 10.1182/blood-2005-06-2216] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 01/22/2006] [Indexed: 12/21/2022] Open
Abstract
C/EBPalpha is an essential transcription factor required for myeloid differentiation. While C/EBPalpha can act as a cell fate switch to promote granulocyte differentiation in bipotential granulocyte-macrophage progenitors (GMPs), its role in regulating cell fate decisions in more primitive progenitors is not known. We found increased numbers of erythroid progenitors and erythroid cells in C/EBPalpha(-/-) fetal liver (FL). Also, enforced expression of C/EBPalpha in hematopoietic stem cells resulted in a loss of erythroid progenitors and an increase in myeloid cells by inhibition of erythroid development and inducing myeloid differentiation. Conditional expression of C/EBPalpha in murine erythroleukemia (MEL) cells induced myeloid-specific genes, while inhibiting erythroid-specific gene expression including erythropoietin receptor (EpoR), which suggests a novel mechanism to determine hematopoietic cell fate. Thus, C/EBPalpha functions in hematopoietic cell fate decisions by the dual actions of inhibiting erythroid and inducing myeloid gene expression in multipotential progenitors.
Collapse
Affiliation(s)
- Hyung Chan Suh
- Basic Research Program, Science Applications International Corporation-Frederick, National Cancer Institute at Frederick, MD 20702-1201, USA
| | | | | | | | | | | |
Collapse
|
98
|
Mueller BU, Pabst T, Hauser P, Gilliland G, Neuberg D, Tenen DG. Mutations of the transcription factor PU.1 are not associated with acute lymphoblastic leukaemia. Br J Cancer 2006; 94:1918-20. [PMID: 16735999 PMCID: PMC2361337 DOI: 10.1038/sj.bjc.6603198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The transcription factor PU.1 plays a crucial role during normal haematopoiesis in both myeloid cells and B-lymphocytes. Mice with a disruption in both alleles of the PU.1 locus were found to lack macrophages and B cells and had delayed appearance of neutrophils. In addition, critical decrease of PU.1 expression is sufficient to cause acute myeloid leukaemia (AML) and lymphomas in mice. Recently, we reported that heterozygous mutations in the PU.1 gene are present in some patients with AML. Thus, we hypothesised that PU.1 mutations might also contribute to the development of acute leukaemias of the B-cell lineage. Here, we screened 62 patients with B-cell acute lymphoblastic leukaemia (B-ALL) at diagnosis for genomic mutations by direct sequencing of all five exons of the PU.1 gene. We found no genomic alteration of the PU.1 gene suggesting that PU.1 mutations are not likely to be common in B-ALL.
Collapse
Affiliation(s)
- B U Mueller
- Department of Internal Medicine, University Hospital, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
99
|
Gross SA, Zheng JH, Le AT, Kerzic PJ, Irons RD. PU.1 phosphorylation correlates with hydroquinone-induced alterations in myeloid differentiation and cytokine-dependent clonogenic response in human CD34+ hematopoietic progenitor cells. Cell Biol Toxicol 2006; 22:229-41. [PMID: 16642264 DOI: 10.1007/s10565-006-0128-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 02/02/2005] [Indexed: 12/12/2022]
Abstract
The transcriptional regulatory factor PU.1 is important for the regulation of a diverse group of hematopoietic and myeloid genes. Posttranslational phosphorylation of PU.1 has been demonstrated in the regulation of a variety of promoters in normal cells. In leukemia cells, differing patterns of PU.1 phosphorylation have been described among acute myelogenous leukemia (AML) subtypes. Therefore, we hypothesized that modulation of PU.1-dependent gene expression might be a molecular mediator of alterations in myeloid cell growth and differentiation that have been demonstrated to be early events in benzene-induced leukemogenesis. We found that freshly isolated human CD34(+) hematopoietic progenitor cells (HPC) exhibit multiple PU.1-DNA binding species that represent PU.1 proteins in varying degrees of phosphorylation states as determined by phosphatase treatment in combination with electrophoretic mobility shift assay (EMSA). Maturation of granulocyte and monocyte lineages is also accompanied by distinct changes in PU.1-DNA binding patterns. Experiments reveal that increasing doses of the benzene metabolite, hydroquinone (HQ) induce a time-and dose-dependent alteration in the pattern of PU.1-DNA binding in cultured human CD34(+) cells, corresponding to hyperphosphorylation of the PU.1 protein. HQ-induced alterations in PU.1-DNA binding are concomitant with a sustained immature CD34(+) phenotype and cytokine-dependent enhanced clonogenic activity in cultured human HPC. These results suggest that HQ induces a dysregulation in the external signals modulating PU.1 protein phosphorylation and this dysregulation may be an early event in the generation of benzene-induced AML.
Collapse
Affiliation(s)
- S A Gross
- Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|
100
|
Lausen J, Liu S, Fliegauf M, Lübbert M, Werner MH. ELA2 is regulated by hematopoietic transcription factors, but not repressed by AML1-ETO. Oncogene 2006; 25:1349-57. [PMID: 16247445 DOI: 10.1038/sj.onc.1209181] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 117 bp fragment of the human ELA2 promoter has been characterized that can act as a minimal promoter for the expression of neutrophil elastase. Chromatin immunoprecipitation and siRNAs revealed that expression of ELA2 is regulated by the acute myeloid human leukemia 1 protein (AML1), C/EBPalpha, PU.1 and c-Myb transcription factors. ELA2 has also been investigated as a possible target of the leukemic fusion protein AML1-ETO resulting from the t(8;21) chromosomal translocation. AML1-ETO, like AML1, binds the ELA2 promoter in the myeloid cell lines Kasumi-1 and U937, but unexpectedly fails to significantly alter expression of ELA2. Although AML1-ETO downregulates the expression of C/EBPalpha, changes in C/EBPalpha expression do not correlate with changes in the expression of ELA2. Our observations indicate that AML1-ETO may not be a constitutive repressor of gene expression in every case in which it can associate with DNA, either on its own or in conjunction with C/EBPalpha. Since neither ETO nor AML1-ETO are typically expressed in hematopoietic progenitors, we hypothesize that it is the interactions between AML1-ETO and regulatory cofactors in disease-state cells that alter gene expression programs during hematopoiesis. These protein-protein interactions may not require simultaneous DNA binding by AML1-ETO for the deleterious effects of the fusion protein to be realized.
Collapse
Affiliation(s)
- J Lausen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|