51
|
Manfredi G, Kwong JQ, Oca-Cossio JA, Woischnik M, Gajewski CD, Martushova K, D'Aurelio M, Friedlich AL, Moraes CT. BCL-2 improves oxidative phosphorylation and modulates adenine nucleotide translocation in mitochondria of cells harboring mutant mtDNA. J Biol Chem 2003; 278:5639-45. [PMID: 12431997 DOI: 10.1074/jbc.m203080200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the BCL-2-related antiapoptotic family of proteins have been shown previously to regulate ATP/ADP exchange across the mitochondrial membranes and to prevent the loss of coupled mitochondrial respiration during apoptosis. We have found that BCL-2/BCL-x(L) can also improve mitochondrial oxidative phosphorylation in cells harboring pathogenic mutations in mitochondrial tRNA genes. The effect of BCL-2 overexpression in mutated cells was independent from apoptosis and was presumably associated with a modulation of adenine nucleotide exchange between mitochondria and cytosol. These results suggest that BCL-2 can regulate respiratory functions in response to mitochondrial distress by regulating the levels of adenine nucleotides.
Collapse
Affiliation(s)
- Giovanni Manfredi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Bayona-Bafaluy MP, Fernández-Silva P, Enríquez JA. The thankless task of playing genetics with mammalian mitochondrial DNA: a 30-year review. Mitochondrion 2002; 2:3-25. [PMID: 16120305 DOI: 10.1016/s1567-7249(02)00044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 05/22/2002] [Accepted: 06/05/2002] [Indexed: 10/27/2022]
Abstract
The advances obtained through the genetic tools available in yeast for studying the oxidative phosphorylation (OXPHOS) biogenesis and in particular the role of the mtDNA encoded genes, strongly contrast with the very limited benefits that similar approaches have generated for the study of mammalian mtDNA. Here we review the use of the genetic manipulation in mammalian mtDNA, its difficulty and the main types of mutants accumulated in the past 30 years and the information derived from them. We also point out the need for a substantial improvement in this field in order to obtain new tools for functional genetic studies and for the generation of animal models of mtDNA-linked diseases.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
| | | | | |
Collapse
|
53
|
Toompuu M, Yasukawa T, Suzuki T, Hakkinen T, Spelbrink JN, Watanabe K, Jacobs HT. The 7472insC mitochondrial DNA mutation impairs the synthesis and extent of aminoacylation of tRNASer(UCN) but not its structure or rate of turnover. J Biol Chem 2002; 277:22240-50. [PMID: 11919191 DOI: 10.1074/jbc.m200338200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 7472insC mitochondrial DNA mutation in the tRNA(Ser(UCN)) gene is associated with sensorineural deafness combined, in some patients, with a wider neurological syndrome. In cultured cybrid cells it causes a 70% decrease in tRNA(Ser(UCN)) abundance and mild respiratory impairment, previously suggested to be due to decreased tRNA stability. When mitochondrial transcription was blocked by ethidium bromide treatment, the half-life of the mutant tRNA was not significantly different from that of wild-type tRNA(Ser(UCN)). Over-expression of mitochondrial translational elongation factor EF-Tu also had no effect on the mutant phenotype. However, during recovery from prolonged ethidium bromide treatment, the synthesis of the mutant tRNA(Ser(UCN)) was specifically impaired, without polarity effects on downstream tRNAs of the light strand transcription unit. We infer that the mutation acts posttranscriptionally to decrease tRNA(Ser(UCN)) abundance by affecting its synthesis rather than its stability. The extent of aminoacylation of the mutant tRNA was also decreased by approximately 25%. In contrast, the mutation had no detectable effect on tRNA(Ser(UCN)) base modification or structure other than the insertion of an extra guanosine templated by the mutation, which was structurally protected from nuclease digestion like the surrounding nucleotides. These findings indicate a common molecular process underlying sensorineural deafness caused by mitochondrial tRNA(Ser(UCN)) mutations.
Collapse
MESH Headings
- Base Sequence
- DNA/biosynthesis
- DNA/metabolism
- DNA, Mitochondrial
- Ethidium/pharmacology
- Genotype
- Guanosine/chemistry
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/metabolism
- Humans
- Kinetics
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Oligonucleotides/pharmacology
- Oxygen/metabolism
- Phenotype
- Protein Biosynthesis
- Protein Conformation
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer/metabolism
- RNA, Transfer, Ser/chemistry
- Sequence Analysis, DNA
- Time Factors
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Marina Toompuu
- Institute of Medical Technology and Tampere University Hospital, FIN-33014 University of Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
54
|
Swerdlow RH. Mitochondrial DNA--related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med 2002; 126:271-80. [PMID: 11860299 DOI: 10.5858/2002-126-0271-mdrmdi] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondrial dysfunction occurs in several late-onset neurodegenerative diseases. Determining its origin and significance may provide insight into the pathogeneses of these disorders. Regarding origin, one hypothesis proposes mitochondrial dysfunction is driven by mitochondrial DNA (mtDNA) aberration. This hypothesis is primarily supported by data from studies of cytoplasmic hybrid (cybrid) cell lines, which facilitate the study of mitochondrial genotype-phenotype relationships. In cybrid cell lines in which mtDNA from persons with certain neurodegenerative diseases is assessed, mitochondrial physiology is altered in ways that are potentially relevant to programmed cell death pathways. Connecting mtDNA-related mitochondrial dysfunction with programmed cell death underscores the crucial if not central role for these organelles in neurodegenerative pathophysiology. This review discusses the cybrid technique and summarizes cybrid data implicating mtDNA-related mitochondrial dysfunction in certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Center for the Study of Neurodegenerative Diseases and the Department of Neurology, University of Virginia Health System, Charlottesville 22908, USA.
| |
Collapse
|
55
|
Chapter 3 Molecular Genetic Basis of the Mitochondrial Encephalomyopathies. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1877-3419(09)70062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
56
|
Affiliation(s)
- L A Tully
- Biotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
57
|
Tolkunova E, Park H, Xia J, King MP, Davidson E. The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem 2000; 275:35063-9. [PMID: 10952987 DOI: 10.1074/jbc.m006265200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cDNAs encoding human lysyl-tRNA synthetase have been identified. One encodes the cytoplasmic form of the enzyme identified previously. The second cDNA contains the same sequence but with a 180-bp insertion at the 5'-end of the mRNA. This results in a predicted protein whose carboxyl 576 amino acids are identical to those of the cytoplasmic enzyme but with a different amino terminus of 49 amino acids that contains a putative mitochondrial targeting sequence. Expression of the two lysyl-tRNA synthetase-green fluorescent protein gene fusions in a human cell line confirmed that the cytoplasmic form was targeted to the cytoplasm and the mitochondrial form to mitochondria. The genomic lysyl-tRNA synthetase gene consisted of 15 exons. The two isoforms were created by alternative splicing of the first three exons of the gene. The cytoplasmic form was created by splicing exon 1 to exon 3. The inclusion of exon 2 between exons 1 and 3 produced an mRNA encoding the mitochondrial isoform with an additional upstream small open reading frame, consisting mainly of a portion of the 5' coding region of the cytoplasmic isoform. This is the first example of mitochondrial targeting sequence being encoded on the second exon of a gene. Ribonuclease protection analysis showed that the mRNA encoding the cytoplasmic isoform makes up approximately 70%, and the mitochondrial isoform approximately 30%, of the mature transcripts from the lysyl-tRNA synthetase gene. The mitochondrial form of the enzyme, purified after expression in Escherichia coli, aminoacylated in vitro transcripts corresponding to both the cytoplasmic and mitochondrial tRNA(Lys), despite the difference in the discriminator base sequence in the acceptor stems of these tRNAs.
Collapse
Affiliation(s)
- E Tolkunova
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
58
|
Shtilbans A, Shanske S, Goodman S, Sue CM, Bruno C, Johnson TL, Lava NS, Waheed N, DiMauro S. G8363A mutation in the mitochondrial DNA transfer ribonucleic acidLys gene: another cause of Leigh syndrome. J Child Neurol 2000; 15:759-61. [PMID: 11108511 DOI: 10.1177/088307380001501109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified a G-->A transition at nt-8363 in the mitochondrial DNA transfer ribonucleic acidLys gene in blood and muscle from a 13-month-old girl who had clinical and neuroradiologic evidence of Leigh syndrome and died at age 27 months. The mutation was less abundant in the same tissues from the patient's mother, who developed myoclonus epilepsy with ragged red fibers (MERRF) in her late 20s. In both mother and daughter, muscle histochemistry showed ragged red and cytochrome c oxidase-negative fibers and biochemical analysis showed partial defects of multiple respiratory-chain enzymes. A maternal half-sister of the proband had died at 2.5 years of age from neuropathologically proven Leigh syndrome. The G8363A mutation, which previously had been associated with cardiomyopathy and hearing loss, MERRF, and multiple lipomas, also should be included in the differential diagnosis of maternally inherited Leigh syndrome.
Collapse
Affiliation(s)
- A Shtilbans
- H. Houston Merrit Clinical Research Center for Muscular Dystrophy and Related Diseases, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Hoffbuhr KC, Davidson E, Filiano BA, Davidson M, Kennaway NG, King MP. A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J Biol Chem 2000; 275:13994-4003. [PMID: 10788526 DOI: 10.1074/jbc.275.18.13994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A 15-base pair, in-frame, deletion (9480del15) in the mitochondrial DNA (mtDNA)-encoded cytochrome c oxidase subunit III (COX III) gene was identified previously in a patient with recurrent episodes of myoglobinuria and an isolated COX deficiency. Transmitochondrial cell lines harboring 0, 97, and 100% of the 9480del15 deletion were created by fusing human cells lacking mtDNA (rho(0) cells) with platelet and lymphocyte fractions isolated from the patient. The COX III gene mutation resulted in a severe respiratory chain defect in all mutant cell lines. Cells homoplasmic for the mutation had no detectable COX activity or respiratory ATP synthesis, and required uridine and pyruvate supplementation for growth, a phenotype similar to rho(0) cells. The cells with 97% mutated mtDNA exhibited severe reductions in both COX activity (6% of wild-type levels) and rates of ATP synthesis (9% of wild-type). The COX III polypeptide in the mutant cells, although translated at rates similar to wild-type, had reduced stability. There was no evidence for assembly of COX I, COX II, or COX III subunits in a multisubunit complex in cells homoplasmic for the mutation, thus indicating that there was no stable assembly of COX I with COX II in the absence of wild-type COX III. In contrast, the COX I and COX II subunits were assembled in cells with 97% mutated mtDNA.
Collapse
Affiliation(s)
- K C Hoffbuhr
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Over the past 11 years, a considerable body of evidence has accumulated implicating defects in the mitochondrial energy-generating pathway, oxidative phosphorylation, in a wide variety of degenerative diseases including myopathy and cardiomyopathy. Most classes of pathogenic mitochondrial DNA mutations affect the heart, in association with a variety of other clinical manifestations that can include skeletal muscle, the central nervous system (including eye), the endocrine system, and the renal system. To better understand the pathophysiologic basis of mitochondrial diseases and their role in myopathy and cardiomyopathy, several mouse models of mitochondrial disease have been prepared. Mitochondrial DNA mutations from cultured cells have been introduced into mice; nuclear DNA genes involved in mitochondrial energy production and reactive oxygen species detoxification have been genetically inactivated, which resulted in mice with hypertrophic and dilated cardiomyopathy, respectively. Physiologic characterization of these mice has confirmed the importance of decreased mitochondrial energy production, increased mitochondrial reactive oxygen species production, and the mitochondrial initiation of apoptosis in mitochondrial disease. With these insights, new therapeutic approaches for neuromuscular and cardiac disease have been suggested.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
61
|
Yuan JD, Shi JX, Meng GX, An LG, Hu GX. Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome. Cell Res 1999; 9:281-90. [PMID: 10628837 DOI: 10.1038/sj.cr.7290027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Novel pseudogenes homologous to the mitochondrial (mt) 16S rRNA gene were detected via different approaches. Eight pseudogenes were sequenced. Copy number polymorphism of the mtDNA pseudogenes was observed among randomly chosen individuals, and even among siblings. A mtDNA pseudogene in the Y-chromosome was observed in a YAC clone carrying only repetitive sequence tag site (STS). PCR screening of human yeast artificial chromosome (YAC) libraries showed that there were at least 5.7 x 10(5) bp of the mtDNA pseudogenes in each haploid nuclear genome. Possible involvement of the mtDNA pseudogenes in the variable part of the human nuclear genome is discussed.
Collapse
Affiliation(s)
- J D Yuan
- Shanghai Institute of Cell Biology and the Shanghai Life Science Center, Chinese Academy of Sciences
| | | | | | | | | |
Collapse
|
62
|
Antonická H, Floryk D, Klement P, Stratilová L, Hermanská J, Houstková H, Kalous M, Drahota Z, Zeman J, Houstek J. Defective kinetics of cytochrome c oxidase and alteration of mitochondrial membrane potential in fibroblasts and cytoplasmic hybrid cells with the mutation for myoclonus epilepsy with ragged-red fibres ('MERRF') at position 8344 nt. Biochem J 1999; 342 Pt 3:537-44. [PMID: 10477264 PMCID: PMC1220494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
We have investigated pathogenic effects of the tRNA(Lys) A8344G mutation associated with the syndrome myoclonus epilepsy with ragged-red fibres (MERRF) by using fibroblasts and fibroblast-derived cytoplasmic hybrid cells harbouring different percentages of mutated mitochondrial DNA (mtDNA). The activity of cytochrome c oxidase (COX) in patient fibroblasts with 89% mutated mtDNA was decreased to 20% of the control levels. COX exhibited altered kinetics, with a decreased V(max) for both the low-affinity and high-affinity phases; however, the K(m) values were not significantly changed. The substrate-dependent synthesis of ATP was decreased to 50% of the control. Analysis of the mitochondrial membrane potential, DeltaPsi, in digitonin-treated cells with tetramethylrhodamine methyl ester (TMRM) with the use of flow cytometry showed a 80% decrease in DeltaPsi at state 4 and an increased sensitivity of DeltaPsi to an uncoupler in fibroblasts from the patient. The investigation of transmitochondrial cytoplasmic hybrid clones derived from the patient's fibroblasts enabled us to characterize the relationship between heteroplasmy of the MERRF mutation, COX activity and DeltaPsi. Within the range of 87-73% mutated mtDNA, COX activity was decreased to 5-35% and DeltaPsi was decreased to 6-78%. These results demonstrate that the MERRF mutation affects COX activity and DeltaPsi in different proportions with regard to mutation heteroplasmy and indicate that the biochemical manifestation of the MERRF mutation exerts a very steep threshold of DeltaPsi inhibition.
Collapse
Affiliation(s)
- H Antonická
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague and Department of Pediatrics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Brini M, Pinton P, King MP, Davidson M, Schon EA, Rizzuto R. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 1999; 5:951-4. [PMID: 10426322 DOI: 10.1038/11396] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, genetic defects of the mitochondrial genome (mtDNA) were shown to be associated with a heterogeneous group of disorders, known as mitochondrial diseases, but the cellular events deriving from the molecular lesions and the mechanistic basis of the specificity of the syndromes are still incompletely understood. Mitochondrial calcium (Ca2+) homeostasis depends on close contacts with the endoplasmic reticulum and is essential in modulating organelle function. Given the strong dependence of mitochondrial Ca2+ uptake on the membrane potential and the intracellular distribution of the organelle, both of which may be altered in mitochondrial diseases, we investigated the occurrence of defects in mitochondrial Ca2+ handling in living cells with either the tRNALys mutation of MERRF (myoclonic epilepsy with ragged-red fibers) or the ATPase mutation of NARP (neurogenic muscle weakness, ataxia and retinitis pigmentosa). There was a derangement of mitochondrial Ca2+ homeostasis in MERRF, but not in NARP cells, whereas cytosolic Ca2+ responses were normal in both cell types. Treatment of MERRF cells with drugs affecting organellar Ca2+ transport mostly restored both the agonist-dependent mitochondrial Ca2+ uptake and the ensuing stimulation of ATP production. These results emphasize the differences in the cellular pathogenesis of the various mtDNA defects and indicate specific pharmacological approaches to the treatment of some mitochondrial diseases.
Collapse
Affiliation(s)
- M Brini
- Department of Biochemistry, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Over the past 10 years, mitochondrial defects have been implicated in a wide variety of degenerative diseases, aging, and cancer. Studies on patients with these diseases have revealed much about the complexities of mitochondrial genetics, which involves an interplay between mutations in the mitochondrial and nuclear genomes. However, the pathophysiology of mitochondrial diseases has remained perplexing. The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology. The importance and interrelationship of these functions are now being studied in mouse models of mitochondrial disease.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University, 1462 Clifton Road, Suite 420, Atlanta, GA 30322, USA.
| |
Collapse
|
65
|
Morgan-Hughes JA, Hanna MG. Mitochondrial encephalomyopathies: the enigma of genotype versus phenotype. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:125-45. [PMID: 10076022 DOI: 10.1016/s0005-2728(98)00162-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade a large body of evidence has accumulated implicating defects of human mitochondrial DNA in the pathogenesis of a group of disorders known collectively as the mitochondrial encephalomyopathies. Although impaired oxidative phosphorylation is likely to represent the final common pathway leading to cellular dysfunction in these diseases, fundamental issues still remain elusive. Perhaps the most challenging of these is to understand the mechanisms which underlie the complex relationship between genotype and phenotype. Here we examine this relationship and discuss some of the factors which are likely to be involved.
Collapse
Affiliation(s)
- J A Morgan-Hughes
- University Department of Clinical Neurology, Institute of Neurology, Queen Square, London WC1H 3BG, UK
| | | |
Collapse
|
66
|
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:103-23. [PMID: 10076021 DOI: 10.1016/s0005-2728(98)00161-3] [Citation(s) in RCA: 1033] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
Collapse
Affiliation(s)
- J W Taanman
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, University of London, Rowland Hill Street, London NW3 2PF,
| |
Collapse
|
67
|
Rossmanith W, Karwan RM. Impairment of tRNA processing by point mutations in mitochondrial tRNA(Leu)(UUR) associated with mitochondrial diseases. FEBS Lett 1998; 433:269-74. [PMID: 9744809 DOI: 10.1016/s0014-5793(98)00928-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several point mutations in mitochondrial tRNA genes have been linked to distinct clinical subgroups of mitochondrial diseases. A particularly large number of different mutations is found in the tRNA(Leu)(UUR) gene. We show that base substitutions at nucleotide position 3256, 3260, and 3271 of the mitochondrial genome, located in the D and anticodon stem of this tRNA, and mutation 3243 changing a base involved in a tertiary interaction, significantly impair the processing of the tRNA precursor in vitro. In correlation with other studies, our results suggest that inefficient processing of certain mutant variants of mitochondrial tRNA(Leu)(UUR) is a primary molecular impairment leading to mitochondrial dysfunction and consequently to disease.
Collapse
Affiliation(s)
- W Rossmanith
- Institut für Tumorbiologie-Krebsforschung der Universität Wien, PG Genexpression, Austria.
| | | |
Collapse
|
68
|
Koga Y, Yoshino M, Kato H. MELAS exhibits dominant negative effects on mitochondrial RNA processing. Ann Neurol 1998; 43:835. [PMID: 9629855 DOI: 10.1002/ana.410430620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
69
|
Chomyn A. The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am J Hum Genet 1998; 62:745-51. [PMID: 9529371 PMCID: PMC1377051 DOI: 10.1086/301813] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- A Chomyn
- Division of Biology, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
70
|
Hao H, Moraes CT. A disease-associated G5703A mutation in human mitochondrial DNA causes a conformational change and a marked decrease in steady-state levels of mitochondrial tRNA(Asn). Mol Cell Biol 1997; 17:6831-7. [PMID: 9372914 PMCID: PMC232539 DOI: 10.1128/mcb.17.12.6831] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We introduced mitochondrial DNA (mtDNA) from a patient with a mitochondrial myopathy into established mtDNA-less human osteosarcoma cells. The resulting transmitochondrial cybrid lines, containing either exclusively wild-type or mutated (G5703A transition in the tRNA[Asn] gene) mtDNA, were characterized and analyzed for oxidative phosphorylation function and steady-state levels of different RNA species. Functional studies showed that the G5703A mutation severely impairs oxidative phosphorylation function and mitochondrial protein synthesis. We detected a marked reduction in tRNA(Asn) steady-state levels which was not associated with an accumulation of intermediate transcripts containing tRNA(Asn) sequences or decreased transcription. Native polyacrylamide gel electrophoresis showed that the residual tRNA(Asn) fraction in mutant cybrids had an altered conformation, suggesting that the mutation destabilized the tRNA(Asn) secondary or tertiary structure. Our results suggest that the G5703 mutation causes a conformational change in the tRNA(Asn) which may impair aminoacylation. This alteration leads to a severe reduction in the functional tRNA(Asn) pool by increasing its in vivo degradation by mitochondrial RNases.
Collapse
Affiliation(s)
- H Hao
- Department of Neurology, University of Miami, Florida, USA
| | | |
Collapse
|
71
|
Abstract
Hearing impairment is a common disorder, largely genetic in origin, and showing classical features of a heterogeneous genetic disease. Up to 100 independently acting nuclear genes are involved in the disorder, of which around 30 have been mapped, but only a handful identified. Mutations in mitochondrial DNA also play a significant role in both syndromic and nonsyndromic sensorineural hearing impairment. Environmental agents such as aminoglycoside antibiotics and as yet unidentified nuclear genes interact with mitochondrial mutations in the expression of auditory phenotypes. The spectrum of different mitochondrial mutations associated with hearing impairment, taken together with mechanistic studies at the molecular level, suggests that the pathogenic process involves the accumulation of abnormal translation products inside mitochondria, in sensitive cells of the auditory system. This leads to a prediction of the involvement of a novel class of nuclear genes in hearing impairment, namely those with roles in 'mitochondrial protein quality control'.
Collapse
Affiliation(s)
- H T Jacobs
- Institute of Medical Technology, University of Tampere, Finland.
| |
Collapse
|
72
|
Abstract
Ragged-red fibers, a morphological hallmark of many patients with mitochondrial encephalomyopathies who harbor mitochondrial DNA (mtDNA) mutations, usually contain varying ratios of mutated and wild-type mtDNAs. Deficient respiratory function in muscle is almost invariably segmental. To investigate whether this observation may be explained by restricted lateral movement of mitochondria within myofibers, we studied the spatial and temporal behavior of two different mitochondrial populations within multinucleate myotubes. We co-cultured normal human and mouse myoblasts, allowed them to fuse into muscle heterokaryons and investigated whether the mitochondria remained segregated, or migrated and intermixed. Human and mouse nuclei were identified by their differential staining pattern with the dye Hoechst 33 258 and mitochondria were distinguished immunologically and by in situ hybridization. Although we observed some territoriality at very early time points after myoblast fusion, there was rapid intermixing of the mitochondrial populations, as early as 48 h after myoblast fusion. We conclude that mitochondria, unlike many other muscle components, lack territorial organization in cultured, differentiating heterokaryons.
Collapse
Affiliation(s)
- U A Walker
- Department of Neurology, Columbia University, College of Physicians and Surgeons, NY 10032, USA
| | | | | |
Collapse
|
73
|
Masucci JP, Schon EA, King MP. Point mutations in the mitochondrial tRNA(Lys) gene: implications for pathogenesis and mechanism. Mol Cell Biochem 1997; 174:215-9. [PMID: 9309690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MERRF (myoclonic epilepsy with ragged-red fibers) is a severe, multisystem disorder characterized by myoclonus, seizures, progressive cerebellar syndrome, muscle weakness, and the presence of ragged-red fibers in the muscle biopsy. MERRF is associated with heteroplasmic point mutations, either A8344G or T8356C, in the gene encoding the mitochondrial tRNA(Lys). The human rho degree cell system was utilized to examine the phenotypic consequences of these mutations, and to investigate their molecular genetic causes. Wild-type and mutant transmitochondrial cell lines harboring a pathogenic point mutation at either A8344G or T8356C in the human mitochondrial tRNA(Lys) gene were isolated and examined. Mitochondrial transformants containing 100% mutated mitochondrial DNAs (mtDNAs) exhibited severe defects in respiratory chain activity, in the rates of protein synthesis, and in the steady-state levels of mitochondrial translation products as compared with mitochondrial transformants containing 100% wild-type mtDNAs. In addition, both mutant cell lines exhibited the presence of aberrant mitochondrial translation products. These results demonstrate that two different mtDNA point mutations in tRNA(Lys) result in fundamentally identical defects at the cellular level, and that these specific protein synthesis abnormalities contribute to the pathogenesis of MERRF.
Collapse
Affiliation(s)
- J P Masucci
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
74
|
Arpa J, Campos Y, Gutiérrez-Molina M, Martin-Casanueva MA, Cruz-Martínez A, Pérez-Conde MC, López-Pajares R, Morales MC, Tatay J, Lacasa T, Barreiro P, Arenas J. Gene dosage effect in one family with myoclonic epilepsy and ragged-red fibers (MERRF). Acta Neurol Scand 1997; 96:65-71. [PMID: 9272179 DOI: 10.1111/j.1600-0404.1997.tb00241.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We analyzed the percentage of mitochondrial DNA (mtDNA) heteroplasmy in blood samples of 13 individuals belonging to a three family generation of myoclonic epilepsy with ragged-red fibers (MERRF) and compared the 5 affected patients and the 8 unaffected relatives. MATERIAL AND METHODS DNA was extracted from blood and muscle of the proband and from blood of 12 maternal relatives. A PCR restriction analysis method was used to detect the mutation. RESULTS The proband had the complete MERRF phenotype. The phenotype in three other individuals in the maternal lineage was consistent with the MERRF syndrome. The remaining were asymptomatic. The np 8344 mutation was observed in muscle and blood of the proband, and in blood from every one of 12 maternal relatives, ranging from 44% to 83% of mutated genomes. Symptomatic individuals had higher levels (P < 0.001) of mutated mtDNA than asymptomatic maternal relatives. However, high proportions of mutant genomes (up to 63%) were found in asymptomatic relatives. CONCLUSIONS Although there seems to be a gene dosage effect in MERRF, we found no absolute relationship between the relative proportion of mutant genomes in blood and clinical severity. Factors other than gene dosage in blood may account for the differences in clinical phenotype.
Collapse
Affiliation(s)
- J Arpa
- Department of Neurology, Hospital La Paz, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Mitochondrial diseases are a group of disorders characterized by morphological or functional defects of the mitochondria, the organelles producing most of our cellular energy. As the only extranuclear site carrying genetic information, the mitochondria add an important chapter into the inheritance patterns of genetic diseases. Mitochondrial DNA (mtDNA) is exclusively maternally inherited in humans, but a mitochondrial disorder may follow either maternal or Mendelian inheritance, depending on the site of the primary gene defect. After the initial finding of mtDNA mutations in rare ocular myopathies in 1988, an explosion in the amount of information on mitochondrial diseases has occurred. Because the mitochondria produce energy in all the tissues, symptoms resulting from mtDNA mutations may originate from any organ system, and the clinical spectrum of mitochondrial diseases has expanded to virtually all branches of medicine. Subgroups of several common diseases, such as diabetes, deafness and inherited cardiomyopathies, have been found to be caused by mtDNA mutations, and some mtDNA defects have been suggested to modify the outcome of diseases primarily caused by other factors, such as Parkinson's or Alzheimer's disease. Although no breakthroughs in the therapeutic trials on the devastating mitochondrial diseases have so far been achieved, detection of mtDNA mutations offers an accurate diagnosis and is a prerequisite for genetic counselling, being now accessible to most clinicians.
Collapse
Affiliation(s)
- A Suomalainen
- National Public Health Institute, Department of Human Molecular Genetics, Helsinki, Finland.
| |
Collapse
|
76
|
Abstract
Approximately there years ago, this journal published a review on the clinical and molecular analysis of mitochondrial encephalomyopathies, with emphasis on defects in mitochondrial DNA (mtDNA). At the time, approximately 30 point mutations associated with a variety of maternally-inherited (or rarely, sporadic) disorders had been described. Since that time, almost twenty new pathogenic mtDNA point mutations have been described, and the pace of discovery of such mutations shows no signs of abating. This accumulating body of data has begun to reveal some patterns that may be relevant to pathogenesis.
Collapse
Affiliation(s)
- E A Schon
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
77
|
Advances in Human Mitochondrial Diseases Molecular Genetic Analysis of Pathogenic mtDNA Mutations. Trends Cardiovasc Med 1997; 7:16-24. [DOI: 10.1016/s1050-1738(96)00122-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
78
|
Kaufmann P, Koga Y, Shanske S, Hirano M, DiMauro S, King MP, Schon EA. Mitochondrial DNA and RNA processing in MELAS. Ann Neurol 1996; 40:172-80. [PMID: 8773598 DOI: 10.1002/ana.410400208] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), a maternally inherited disorder, is usually associated with a point mutation in mitochondrial DNA (mtDNA) at position 3,243 in the tRNA Leu(UUR) gene. To further study the pathogenesis of MELAS, we analyzed tissues from 8 MELAS-3,243 patients. Southern blot analysis showed an increase in the ratio of mtDNA to nuclear DNA in almost all tissues examined, implying that mitochondrial proliferation is ubiquitous and is not confined to ragged-red fibers in muscle. By northern blot analysis, we demonstrated increased steady-state levels of RNA 19, a polycistronic transcript corresponding to the 16S rRNA + tRNA Leu(UUR) + ND1 genes (which are contiguous in the mtDNA) in heart, kidney, and muscle. These results provide further evidence that altered mitochondrial nucleic acid metabolism may have pathogenic significance in MELAS.
Collapse
Affiliation(s)
- P Kaufmann
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Disorders, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Santorelli FM, Mak SC, El-Schahawi M, Casali C, Shanske S, Baram TZ, Madrid RE, DiMauro S. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA(Lys) gene (G8363A). Am J Hum Genet 1996; 58:933-9. [PMID: 8651277 PMCID: PMC1914622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel G8363A mutation in the mtDNA tRNA(Lys) gene was associated, in two unrelated families, with a syndrome consisting of encephalomyopathy, sensorineural hearing loss, and hypertrophic cardiomyopathy. Muscle biopsies from the probands showed mitochondrial proliferation and partial defects of complexes I, III, and IV of the electron-transport chain. The G8363A mutation was very abundant (>95%) in muscle samples from the probands and was less copious in blood from 18 maternal relatives (mean 81.3% +/- 8.5%). Single-muscle-fiber analysis showed significantly higher levels of mutant genomes in cytochrome (c) oxidase-negative fibers than in cytochrome (c) oxidase-positive fibers. The mutation was not found in >200 individuals, including normal controls and patients with other mitochondrial encephalomyopathies, thus fulfilling accepted criteria for pathogenicity.
Collapse
Affiliation(s)
- F M Santorelli
- H. Houston Merritt Center for Muscular Research and Related Disorders, Department of Neurology, Columbia University 10032, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Many human mitochondrial disorders are associated with mutations in tRNA genes or with deletions of regions containing tRNA genes, all of which may be suspected to play a role in recognition by RNase P. Here we describe the analysis of five such mutations. The results presented here demonstrate that none of these mutations result in errors in RNase P function. Further studies of mutations in tRNAs need to be pursued to elucidate the identity elements for RNase P function in mammalian mitochondria.
Collapse
Affiliation(s)
- J P Masucci
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
81
|
Abstract
In few areas of medicine has progress been more spectacular than in the field of mitochondrial diseases, especially those related to mtDNA mutations. Much remains to be done, however, and this brief review discusses the following areas of research where progress has been more limited or data are still controversial: (1) the molecular basis of respiratory-chain defects due to nuclear DNA mutations; (2) defects of mitochondrial protein importation; (3) defects of intergenomic signalling; (4) pathophysiology of mtDNA-related disorders; (5) ageing and age-related neurodegenerative diseases; (6) therapy; and (7) genetic counselling.
Collapse
Affiliation(s)
- S DiMauro
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Department of Neurology, Columbia-Presbyterian Medical Center, New York, NY, USA
| |
Collapse
|
82
|
Affiliation(s)
- M P King
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|