51
|
Frontini M, Imbriano C, diSilvio A, Bell B, Bogni A, Romier C, Moras D, Tora L, Davidson I, Mantovani R. NF-Y recruitment of TFIID, multiple interactions with histone fold TAF(II)s. J Biol Chem 2002; 277:5841-8. [PMID: 11689552 DOI: 10.1074/jbc.m103651200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear factor y (NF-Y) trimer and TFIID contain histone fold subunits, and their binding to the CCAAT and Initiator elements of the major histocompatibility complex class II Ea promoter is required for transcriptional activation. Using agarose-electrophoretic mobility shift assay we found that NF-Y increases the affinity of holo-TFIID for Ea in a CCAAT- and Inr-dependent manner. We began to dissect the interplay between NF-Y- and TBP-associated factors PO1II (TAF(II)s)-containing histone fold domains in protein-protein interactions and transfections. hTAF(II)20, hTAF(II)28, and hTAF(II)18-hTAF(II)28 bind to the NF-Y B-NF-YC histone fold dimer; hTAF(II)80 and hTAF(II)31-hTAF(II)80 interact with the trimer but not with the NF-YB-NF-YC dimer. The histone fold alpha2 helix of hTAF(II)80 is not required for NF-Y association, as determined by interactions with the naturally occurring splice variant hTAF(II)80 delta. Expression of hTAF(II)28 and hTAF(II)18 in mouse cells significantly and specifically reduced NF-Y activation in GAL4-based experiments, whereas hTAF(II)20 and hTAF(II)135 increased it. These results indicate that NF-Y (i) recruits purified holo-TFIID in vitro and (ii) can associate multiple TAF(II)s, potentially accommodating different core promoter architectures.
Collapse
Affiliation(s)
- Mattia Frontini
- Dipartimento di Biologia Animale, Università di Modena e Reggio, Via Campi 213/d, Modena 41100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Liu WL, Midgley C, Stephen C, Saville M, Lane DP. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein. J Mol Biol 2001; 313:711-31. [PMID: 11697899 DOI: 10.1006/jmbi.2001.5082] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The p53 tumour suppressor protein plays a central role in maintaining genomic integrity in eukaryotic cells. The most significant biological function of p53 is to act as a sequence-specific DNA-binding transcription factor, which can induce the expression of a variety of target genes in response to diverse stress stimuli. The p53 protein contains six highly conserved regions, one of which, termed Box I, is located in the N-terminal transactivation domain (amino acid residues 13 and 26). The second half of the Box I region is crucial for the interaction with the basal transcription machinery and is thus required for p53's activity as a transcription factor. The same region also binds to Mdm2. Since p53 is targeted by Mdm2 for ubiquitin-mediated proteasome-dependent degradation, this region is also essential for the regulation of p53's stability in response to stress signals. Although the first half of Box I is highly conserved, its biological function is not clearly defined. The aim of this study was to characterise this conserved region and investigate its role in the biological functions of p53. We have generated short deletions and point mutations within this region and analysed their effect on p53 function and regulation. Biochemical analyses demonstrate that deletion of residues 13 to 16 significantly increases both the transcriptional transactivation and G(2) arrest-inducing activities of murine p53. Residues 13 to 16 appear to function as a regulatory element in p53, modulating p53-dependent transcriptional transactivation and cell-cycle arrest, possibly by affecting the structural stability of the core domain of the protein. In support of this, the deletion was found to induce second-site reversion of the Val135 temperature-sensitive mutant of murine p53.
Collapse
Affiliation(s)
- W L Liu
- CRC Cell Transformation Research Group, Department of Surgery, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | | | | | | | | |
Collapse
|
53
|
Aoyagi N, Wassarman DA. Developmental and transcriptional consequences of mutations in Drosophila TAF(II)60. Mol Cell Biol 2001; 21:6808-19. [PMID: 11564865 PMCID: PMC99858 DOI: 10.1128/mcb.21.20.6808-6819.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2001] [Accepted: 07/12/2001] [Indexed: 11/20/2022] Open
Abstract
In vitro, the TAF(II)60 component of the TFIID complex contributes to RNA polymerase II transcription initiation by serving as a coactivator that interacts with specific activator proteins and possibly as a promoter selectivity factor that interacts with the downstream promoter element. In vivo roles for TAF(II)60 in metazoan transcription are not as clear. Here we have investigated the developmental and transcriptional requirements for TAF(II)60 by analyzing four independent Drosophila melanogaster TAF(II)60 mutants. Loss-of-function mutations in Drosophila TAF(II)60 result in lethality, indicating that TAF(II)60 provides a nonredundant function in vivo. Molecular analysis of TAF(II)60 alleles revealed that essential TAF(II)60 functions are provided by two evolutionarily conserved regions located in the N-terminal half of the protein. TAF(II)60 is required at all stages of Drosophila development, in both germ cells and somatic cells. Expression of TAF(II)60 from a transgene rescued the lethality of TAF(II)60 mutants and exposed requirements for TAF(II)60 during imaginal development, spermatogenesis, and oogenesis. Phenotypes of rescued TAF(II)60 mutant flies implicate TAF(II)60 in transcriptional mechanisms that regulate cell growth and cell fate specification and suggest that TAF(II)60 is a limiting component of the machinery that regulates the transcription of dosage-sensitive genes. Finally, TAF(II)60 plays roles in developmental regulation of gene expression that are distinct from those of other TAF(II) proteins.
Collapse
Affiliation(s)
- N Aoyagi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
54
|
Pointud JC, Larsson J, Dastugue B, Couderc JL. The BTB/POZ domain of the regulatory proteins Bric à brac 1 (BAB1) and Bric à brac 2 (BAB2) interacts with the novel Drosophila TAF(II) factor BIP2/dTAF(II)155. Dev Biol 2001; 237:368-80. [PMID: 11543621 DOI: 10.1006/dbio.2001.0358] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The BTB/POZ domain is an evolutionarily conserved protein-protein interaction domain present in the N-terminal region of numerous transcription factors involved in development, chromatin remodeling, and human cancers. This domain is involved in homomeric and heteromeric associations with other BTB/POZ domains. The Drosophila BTB/POZ proteins Bric à brac 1 (BAB1) and Bric à brac 2 (BAB2) are developmentally regulated transcription factors which are involved in pattern formation along the proximo-distal axis of the leg and antenna, in the morphogenesis of the adult ovaries, and in the control of sexually dimorphic characters. We have identified partners of the BAB1 protein by using the two-hybrid system. The characterization of one of these proteins, called BIP2 for BAB Interacting Protein 2, is presented. BIP2 is a novel Drosophila TATA-box Protein Associated Factor (TAF(II)), also named dTAF(II)155. We show that the BTB/POZ domains of BAB1 and BAB2 are sufficient to mediate a direct interaction with BIP2/dTAF(II)155. This provides a direct link between these BTB/POZ transcription factors and the basal transcriptional machinery. We discuss the implications of the interaction between a BTB/POZ domain and a TAF(II) for the molecular mechanisms of transcriptional control mediated by BTB/POZ transcription factors.
Collapse
Affiliation(s)
- J C Pointud
- Institut National de la Santé et de la Recherche Médicale U384, Laboratoire de Biochimie, UFR Médecine, 28, place Henri Dunant, Clermont-Ferrand, 63001, France
| | | | | | | |
Collapse
|
55
|
Bentires-Alj M, Dejardin E, Viatour P, Van Lint C, Froesch B, Reed JC, Merville MP, Bours V. Inhibition of the NF-kappa B transcription factor increases Bax expression in cancer cell lines. Oncogene 2001; 20:2805-13. [PMID: 11420692 DOI: 10.1038/sj.onc.1204343] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Revised: 09/27/2000] [Accepted: 02/06/2001] [Indexed: 11/09/2022]
Abstract
The NF-kappa B transcription factor has been shown to inhibit apoptosis in several experimental systems. We therefore investigated whether the expression of the Bax proapoptotic protein could be influenced by NF-kappa B activity. Increased Bax protein expression was detected in HCT116, OVCAR-3 and MCF7 cells stably expressing a mutated unresponsive I kappa B-alpha inhibitory protein that blocks NF-kappa B activity. Northern blots showed that bax mRNA expression was increased as a consequence of mutated I kappa B-alpha expression in HCT116 cells. A careful examination of the human bax gene promoter sequence showed three putative binding sites for NF-kappa B, and the kappa B2 site at position -687 could indeed bind NF-kappa B complexes in vitro. Transient transfection of a bax promoter luciferase construct in HCT116 cells showed that NF-kappa B proteins could partially inhibit the transactivation of the bax promoter by p53. Mutations or deletions of the kappa B sites, including kappa B2, indicated that this NF-kappa B-dependent inhibitory effect did not require NF-kappa B DNA-binding, and was thus an indirect effect. However, cotransfection of expression vectors for several known cofactors failed to identify a competition between p53 and NF-kappa B for a transcription coactivator. Our findings thus demonstrate for the first time that NF-kappa B regulates, through an indirect pathway, the bax gene expression.
Collapse
Affiliation(s)
- M Bentires-Alj
- Laboratory of Medical Chemistry and Medical Oncology, University of Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Johnson RA, Ince TA, Scotto KW. Transcriptional repression by p53 through direct binding to a novel DNA element. J Biol Chem 2001; 276:27716-20. [PMID: 11350951 DOI: 10.1074/jbc.c100121200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein p53 has been well documented as a transcriptional activator involved in the regulation of a number of critical genes involved in the cell cycle, response to DNA damage, and apoptosis. Activation by p53 requires the interaction of the protein with a consensus binding site consisting of two half-sites, each comprising two copies of the sequence PuPuPuC(A/T) arranged head-to-head and separated by 0-13 base pairs. In addition to activation, p53 has been shown to be a potent repressor of transcription. However, the basis for p53-mediated repression is not well understood and has been proposed to occur indirectly through interactions with other promoter-bound transcription factors. In the present study, we show that p53 can repress transcription directly by binding to a novel head-to-tail (HT) site within the MDR1 promoter. A mutation that disrupted p53 binding to the MDR1 HT site blocked p53-mediated repression of the MDR1 promoter in transfection assays. Replacement of the HT site with a head-to-head (HH) site converted the activity of p53 from repression to activation, indicating that simple recruitment of p53 to the promoter is not sufficient for repression and that the orientation of the binding element determines the fate of p53-regulated promoters.
Collapse
Affiliation(s)
- R A Johnson
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 1002, USA
| | | | | |
Collapse
|
57
|
Torgeman A, Mor-Vaknin N, Zelin E, Ben-Aroya Z, Löchelt M, Flügel RM, Aboud M. Sp1-p53 heterocomplex mediates activation of HTLV-I long terminal repeat by 12-O-tetradecanoylphorbol-13-acetate that is antagonized by protein kinase C. Virology 2001; 281:10-20. [PMID: 11222091 DOI: 10.1006/viro.2000.0779] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) activates human T-cell leukemia virus type-I long terminal repeat (LTR) in Jurkat cells by a protein kinase C (PKC)-independent mechanism involving a posttranslational activation of Sp1 binding to an Sp1 site located within the Ets responsive region-1 (ERR-1). By employing the PKC inhibitor, bisindolylmaleimide I and cotransfecting the reporter LTR construct with a vector expressing PKC-alpha, we demonstrated, in the present study, that this effect of TPA was not only independent of, but actually antagonized by, PKC. Electrophoretic mobility shift assays together with antibody-mediated supershift and immuno-coprecipitation analyses, revealed that the posttranslational activation of Sp1 was exerted by inducing the formation of Sp1-p53 heterocomplex capable of binding to the Sp1 site in ERR-1. Furthermore, we demonstrated that Jurkat cells contain both wild-type (w.t.) and mutant forms of p53 and we detected both of them in this complex at variable combinations; some molecules of the complex contained either the w.t. or the mutant p53 separately, whereas others contained the two of them together. Finally, we showed that the Sp1-p53 complexes could bind also to an Sp1 site present in the promoter of another gene such as the cyclin-dependent kinase inhibitor p21(WAF-1), but not to consensus recognition sequences of the w.t. p53. Therefore, we speculate that there might be several other PKC-independent biological effects of TPA which result from interaction of such Sp1-p53 complexes with Sp1 recognition sites residing in the promoters of a wide variety of cellular and viral genes.
Collapse
Affiliation(s)
- A Torgeman
- Department of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
58
|
Manni I, Mazzaro G, Gurtner A, Mantovani R, Haugwitz U, Krause K, Engeland K, Sacchi A, Soddu S, Piaggio G. NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25C promoters upon induced G2 arrest. J Biol Chem 2001; 276:5570-6. [PMID: 11096075 DOI: 10.1074/jbc.m006052200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During normal cell cycles, the function of mitotic cyclin-cdk1 complexes, as well as of cdc25C phosphatase, is required for G2 phase progression. Accordingly, the G2 arrest induced by DNA damage is associated with a down-regulation of mitotic cyclins, cdk1, and cdc25C phosphatase expression. We found that the promoter activity of these genes is repressed in the G2 arrest induced by DNA damage. We asked whether the CCAAT-binding NF-Y modulates mitotic cyclins, cdk1, and cdc25C gene transcription during this type of G2 arrest. In our experimental conditions, the integrity of the CCAAT boxes of cyclin B1, cyclin B2, and cdc25C promoters, as well as the presence of a functional NF-Y complex, is strictly required for the transcriptional inhibition of these promoters. Furthermore, a dominant-negative p53 protein, impairing doxorubicin-induced G2 arrest, prevents transcriptional down-regulation of the mitotic cyclins, cdk1, and cdc25C genes. We conclude that, as already demonstrated for cdk1, NF-Y mediates the transcriptional inhibition of the mitotic cyclins and the cdc25C genes during p53-dependent G2 arrest induced by DNA damage. These data suggest a transcriptional regulatory role of NF-Y in the G2 checkpoint after DNA damage.
Collapse
Affiliation(s)
- I Manni
- Laboratorio Oncogenesi Molecolare, Istituto Regina Elena, Rome 00158, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Offer H, Milyavsky M, Erez N, Matas D, Zurer I, Harris CC, Rotter V. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene 2001; 20:581-9. [PMID: 11313990 DOI: 10.1038/sj.onc.1204120] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Revised: 11/14/2000] [Accepted: 11/16/2000] [Indexed: 11/09/2022]
Abstract
p53 is involved in several DNA repair pathways. Some of these require the specific transactivation of p53-dependent genes and others involve direct interactions between the p53 protein and DNA repair associated proteins. Previously, we have shown that p53 acts directly in Base Excision Repair (BER) when assayed under in vitro conditions. Our present data indicate that this involvement is independent of the transcriptional activity of the p53 molecule. We found that under both in vitro and in vivo conditions, a p53 transactivation-deficient molecule, p53-22-23 was more efficient in BER activity than was wild type p53. However, mutations in the core domain or C-terminal alterations strongly reduced p53-mediated BER activity. These results are consistent with the hypothesis that the involvement of p53 in BER activity, a housekeeping DNA repair pathway, is a prompt and immediate one that does not involve the activation of p53 transactivation-dependent mechanisms, but rather concerns with the p53 protein itself. In an endogenous DNA damage status p53 is active in BER pathways as a protein and not as a transcription factor.
Collapse
Affiliation(s)
- H Offer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
60
|
Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M, Giaccia A. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 2001; 21:1297-310. [PMID: 11158315 PMCID: PMC99582 DOI: 10.1128/mcb.21.4.1297-1310.2001] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxic stress, like DNA damage, induces p53 protein accumulation and p53-dependent apoptosis in oncogenically transformed cells. Unlike DNA damage, hypoxia does not induce p53-dependent cell cycle arrest, suggesting that p53 activity is differentially regulated by these two stresses. Here we report that hypoxia induces p53 protein accumulation, but in contrast to DNA damage, hypoxia fails to induce endogenous downstream p53 effector mRNAs and proteins. Hypoxia does not inhibit the induction of p53 target genes by ionizing radiation, indicating that p53-dependent transactivation requires a DNA damage-inducible signal that is lacking under hypoxic treatment alone. At the molecular level, DNA damage induces the interaction of p53 with the transcriptional activator p300 as well as with the transcriptional corepressor mSin3A. In contrast, hypoxia primarily induces an interaction of p53 with mSin3A, but not with p300. Pretreatment of cells with an inhibitor of histone deacetylases that relieves transcriptional repression resulted in a significant reduction of p53-dependent transrepression and hypoxia-induced apoptosis. These results led us to propose a model in which different cellular pools of p53 can modulate transcriptional activity through interactions with transcriptional coactivators or corepressors. Genotoxic stress induces both kinds of interactions, whereas stresses that lack a DNA damage component as exemplified by hypoxia primarily induce interaction with corepressors. However, inhibition of either type of interaction can result in diminished apoptotic activity.
Collapse
Affiliation(s)
- C Koumenis
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cain C, Miller S, Ahn J, Prives C. The N terminus of p53 regulates its dissociation from DNA. J Biol Chem 2000; 275:39944-53. [PMID: 10993878 DOI: 10.1074/jbc.m002509200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is important to gain insight into p53 DNA binding and how it is regulated. By using electrophoretic mobility shift assays and DNase I footprinting, we show that a region within the N terminus of the protein controls the dissociation of p53 from a p53-binding site. When p53 is bound by a number of N-terminal-specific monoclonal antibodies, its rate of dissociation from DNA is reduced, and its ability to protect a cognate site from DNase I digestion is increased. Moreover, greatly reduced dissociation is observed with p53 protein lacking the N-terminal 96 amino acids. By contrast, deletion of the C terminus does not affect p53 dissociation from DNA or DNase I protection. p53 protein expressed in and purified from bacterial cells displays markedly more instability on its consensus DNA-binding site than does p53 produced in insect cells, suggesting that post-translational modifications may affect the stability of the protein. Our results provide evidence that the N terminus of p53 possesses an auto-inhibitory function that is mechanistically different from the inhibitory region at the C terminus.
Collapse
Affiliation(s)
- C Cain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
62
|
Otsuka M, Kato N, Lan K, Yoshida H, Kato J, Goto T, Shiratori Y, Omata M. Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem 2000; 275:34122-30. [PMID: 10924497 DOI: 10.1074/jbc.m000578200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) causes a persistent infection, chronic hepatitis, and hepatocellular carcinoma. Since there are several reports indicating that some viruses influence the tumor suppressor p53 function, we determined the effects of HCV proteins on p53 function and its mechanism determined by use of a reporter assay. Among seven HCV proteins investigated (core, NS2, NS3, NS4A, NS4B, NS5A, and NS5B), only core protein augmented the transcriptional activity of p53 and increased the expression of p21(waf1) protein, which is a major target of p53. Core protein increased both DNA-binding affinity of p53 in electrophoretic morbidity shift assay and transcriptional ability of p53 itself in a reporter assay. The direct interaction between core protein and C terminus of p53 was also shown by glutathione S-transferase fusion protein binding assay. In addition, core protein interacted with hTAF(II)28, a component of the transcriptional factor complex in vivo and in vitro. These results suggest that HCV core protein interacts with p53 and modulates p53-dependent promoter activities during HCV infection.
Collapse
Affiliation(s)
- M Otsuka
- Department of Gastroenterology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
The assembly of transcription complexes at eukaryotic promoters involves a number of distinct steps including chromatin remodeling, and recruitment of a TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme. Each of these stages is controlled by both positive and negative factors. In this review, mechanisms that regulate the interactions of TBP with promoter DNA are described. The first is autorepression, where TBP sequesters its DNA-binding surface through dimerization. Once TBP is bound to DNA, factors such as TAF(II)250 and Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the TBP/DNA complex into an inactive state. TFIIA antagonizes these TBP repressors but may be effective only in conjunction with the recruitment of the RNA polymerase II holoenzyme by promoter-bound activators. Taken together, the ability to induce a gene may depend minimally upon the ability to remodel chromatin as well as alleviate direct repression of TBP and other components of the general transcription machinery. The magnitude by which an activated gene is expressed, and thus repeatedly transcribed, might depend in part on competition between TBP inhibitors and the holoenzyme for access to the TBP/TATA complex.
Collapse
Affiliation(s)
- B F Pugh
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 6802, University Park, PA, USA.
| |
Collapse
|
64
|
Saifudeen Z, Du H, Dipp S, El-Dahr SS. The bradykinin type 2 receptor is a target for p53-mediated transcriptional activation. J Biol Chem 2000; 275:15557-62. [PMID: 10748162 DOI: 10.1074/jbc.m909810199] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bradykinin type 2 receptor (BK2) is a developmentally regulated G protein-coupled receptor that mediates diverse actions such as vascular reactivity, salt and water excretion, inflammatory responses, and cell growth. However, little is known regarding regulation of the BK2 gene. We report here that the rat BK2 receptor is transcriptionally regulated by the tumor suppressor protein p53. The 5'-flanking region of the rat BK2 gene contains two p53-like binding sites: a sequence at -70 base pairs (P1 site) that is conserved in the murine and human BK2 genes; and a sequence at -707 (P2) that is not. The P1 and P2 motifs bind specifically to p53, as assessed by gel mobility shift assays. Transient transfection into HeLa cells of a CAT reporter construct driven by 1.2-kilobases of the BK2 gene 5'-flanking region demonstrated that the BK2 promoter is dose dependently activated by co-expression of wild-type p53. Co-expression of a dominant negative mutant p53 suppresses the activation of BK2 by wild-type p53. Promoter truncation localized the p53-responsive element to the region between -38 and -94 base pairs encompassing the p53-binding P1 sequence. Furthermore, p53-mediated activation of the BK2 promoter is augmented by the transcriptional co-activators, CBP/p300. Interestingly, removal of the P2 site by truncation or site-directed deletion amplifies p53-mediated activation of the BK2 promoter. These results demonstrate that the rat BK2 promoter is a target for p53-mediated activation and suggest a new physiological role for p53 in the regulation of G protein-coupled receptor gene expression.
Collapse
Affiliation(s)
- Z Saifudeen
- Department of Pediatrics, Section of Pediatric Nephrology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
65
|
Abstract
The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur following cellular stress. Some of these modifications may activate the p53 protein, interfere with MDM2 binding and/or dictate cellular localization of p53. This review will focus on recent findings about how the p53 response may be activated following cellular stress.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, USA.
| |
Collapse
|
66
|
Liu J, He L, Collins I, Ge H, Libutti D, Li J, Egly JM, Levens D. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell 2000; 5:331-41. [PMID: 10882074 DOI: 10.1016/s1097-2765(00)80428-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
FUSE-binding protein (FBP) binds the single-stranded far upstream element of active c-myc genes, possesses potent transcription activation and repression domains, and is necessary for c-myc expression. A novel 60 kDa protein, the FBP interacting repressor (FIR), blocked activator-dependent, but not basal, transcription through TFIIH. Recruited through FBP's nucleic acid-binding domain, FIR formed a ternary complex with FBP and FUSE. FIR repressed a c-myc reporter via the FUSE. The amino terminus of FIR contained an activator-selective repression domain capable of acting in cis or even in trans in vivo and in vitro. The repression domain of FIR targeted only TFIIH's p89/XPB helicase, required at several stages in transcription, but not factors required for promoter selection. Thus, FIR locks TFIIH in an activation-resistant configuration that still supports basal transcription.
Collapse
Affiliation(s)
- J Liu
- Gene Regulation Section, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Oda T, Kayukawa K, Hagiwara H, Yudate HT, Masuho Y, Murakami Y, Tamura TA, Muramatsu MA. A novel TATA-binding protein-binding protein, ABT1, activates basal transcription and has a yeast homolog that is essential for growth. Mol Cell Biol 2000; 20:1407-18. [PMID: 10648625 PMCID: PMC85296 DOI: 10.1128/mcb.20.4.1407-1418.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Identification of a novel mouse nuclear protein termed activator of basal transcription 1 (mABT1) that associates with the TATA-binding protein (TBP) and enhances basal transcription activity of class II promoters is described. We also identify mABT1 homologous counterparts in Caenorhabditis elegans and Saccharomyces cerevisiae and show the homologous yeast gene to be essential for growth. The mABT1 associated with TBP in HeLa nuclear extracts and with purified mouse TBP in vitro. In addition, ectopically expressed mABT1 was coimmunoprecipitated with endogenous TBP in transfected cells. More importantly, mABT1 significantly enhanced transcription from an adenovirus major late promoter in a reconstituted cell-free system. We furthermore demonstrate that mABT1 consistently enhanced transcription from a reporter gene with a minimal core promoter as well as from reporter genes with various enhancer elements in a cotransfection assay. Taken together, these results suggest that mABT1 is a novel TBP-binding protein which can function as a basal transcription activator.
Collapse
Affiliation(s)
- T Oda
- Helix Research Institute, Inc., Kisarazu-shi, Chiba 292-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Doitsh G, Shaul Y. HBV transcription repression in response to genotoxic stress is p53-dependent and abrogated by pX. Oncogene 1999; 18:7506-13. [PMID: 10602509 DOI: 10.1038/sj.onc.1203209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transcription of hepatitis B Virus (HBV), an important risk factor of hepatocellular carcinoma (HCC), is controlled by cellular transcription activators including some of the cellular signaling targets. Consequently, HBV transcription rate changes in response to the cellular physiological conditions. In this report we investigated HBV gene expression and the role of physiological levels of the viral X protein (pX) under cisplatin induced genotoxic stress. We show that under these conditions the RNA level of an HBV mutant which does not express pX is sharply reduced. Studies revealed that transcription repression is responsible for the observed reduction in HBV RNA level. Repression of HBV transcription was obtained only in the p53 proficient cells. Furthermore, HBV transcription rate is recovered by the cotransfected p53 dominant negative plasmid, indicating that p53 is directly responsible for HBV transcription repression. Unexpectedly, p73, the recent p53 homologue, does not repress but rather activates HBV transcription. Interestingly, pX produced either by the HBV genome or by a cotransfected plasmid, relieves the p53 mediated repression. Collectively, these results attribute a physiological role to p53-inactivation by pX, and explain how pX may support HCC development.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Cisplatin/pharmacology
- DNA, Viral/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genes, Tumor Suppressor
- Hepatitis B virus/drug effects
- Hepatitis B virus/genetics
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Viral/drug effects
- Stress, Physiological
- Suppression, Genetic
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Tumor Protein p73
- Tumor Suppressor Protein p53/drug effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins
- Viral Regulatory and Accessory Proteins
Collapse
Affiliation(s)
- G Doitsh
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
69
|
Loging WT, Reisman D. Inhibition of the putative tumor suppressor gene TIMP-3 by tumor-derived p53 mutants and wild type p53. Oncogene 1999; 18:7608-15. [PMID: 10602522 DOI: 10.1038/sj.onc.1203135] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The p53 gene is a tumor suppressor that regulates the expression of genes required for cell cycle arrest or apoptosis. Mutations in p53 have been observed in over 60% of all human cancers. Certain classes of mutant p53 proteins maintain some of their activities or acquire novel activities and thus may contribute to the transformed phenotype. By carrying out an analysis of differential gene expression using cDNA expression arrays, we compared the expression patterns of cells expressing no p53 to isogenic lines expressing the codon 248 Arg to Trp mutant p53 allele (R248W). In this report, we show that the R248W and D281G p53 mutants, two of the more commonly occurring mutations, as well as wild type p53, repress transcription of the tissue inhibitor of metalloproteinases type 3 (TIMP-3) gene by greater than tenfold. TIMP-3 expression has been observed to be repressed in many tumors and its reduced expression is thought to contribute to tumor metastasis and invasiveness by allowing increased activity of metalloproteinases in the extracellular matrix. Since mutant forms of p53 tend to be expressed at greatly elevated levels in many human tumors, the retention of their ability to repress TIMP-3 illustrate one mechanism by which mutant forms of the p53 gene may contribute to tumorigenesis.
Collapse
Affiliation(s)
- W T Loging
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, SC 29208, USA
| | | |
Collapse
|
70
|
|
71
|
Lavigne AC, Gangloff YG, Carré L, Mengus G, Birck C, Poch O, Romier C, Moras D, Davidson I. Synergistic transcriptional activation by TATA-binding protein and hTAFII28 requires specific amino acids of the hTAFII28 histone fold. Mol Cell Biol 1999; 19:5050-60. [PMID: 10373554 PMCID: PMC84343 DOI: 10.1128/mcb.19.7.5050] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coexpression of the human TATA-binding protein (TBP)-associated factor 28 (hTAFII28) with the altered-specificity mutant TBP spm3 synergistically enhances transcriptional activation by the activation function 2 of the nuclear receptors (NRs) for estrogen and vitamin D3 from a reporter plasmid containing a TGTA element in mammalian cells. This synergy is abolished by mutation of specific amino acids in the alpha2-helix of the histone fold in the conserved C-terminal region of hTAFII28. Critical amino acids are found on both the exposed hydrophilic face of this helix and the hydrophobic interface with TAFII18. This alpha-helix of hTAFII28 therefore mediates multiple interactions required for coactivator activity. We further show that mutation of specific residues in the H1' alpha-helix of TBP either reduces or increases interactions with hTAFII28. The mutations which reduce interactions with hTAFII28 do not affect functional synergy, whereas the TBP mutation which increases interaction with hTAFII28 is defective in its ability to synergistically enhance activation by NRs. However, this TBP mutant supports activation by other activators and is thus specifically defective for its ability to synergize with hTAFII28.
Collapse
Affiliation(s)
- A C Lavigne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch Cédex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Lee KC, Crowe AJ, Barton MC. p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 1999; 19:1279-88. [PMID: 9891062 PMCID: PMC116057 DOI: 10.1128/mcb.19.2.1279] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 10/27/1998] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of the alpha-fetoprotein (AFP) gene is characteristic of a majority of hepatocellular carcinoma cases and serves as a diagnostic tumor-specific marker. By dissecting regulatory mechanisms through electromobility gel shift, transient-transfection, Western blot, and in vitro transcription analyses, we find that AFP gene expression is controlled in part by mutually exclusive binding of two trans-acting factors, p53 and hepatic nuclear factor 3 (HNF-3). HNF-3 protein activates while p53 represses AFP transcription through sequence-specific binding within the previously identified AFP developmental repressor domain. A single mutation within the DNA binding domain of p53 protein or a mutation of the p53 DNA binding element within the AFP developmental repressor eliminates p53-repressive effects in both transient-transfection and cell-free expression systems. Coexpression of p300 histone acetyltransferase, which has been shown to acetylate p53 and increase specific DNA binding, amplifies the p53-mediated repression. Western blot analysis of proteins present in developmentally staged, liver nuclear extracts reveal a one-to-one correlation between activation of p53 protein and repression of AFP during hepatic development. Induction of p53 in response to actinomycin D or hypoxic stress decreases AFP expression. Studies in fibroblast cells lacking HNF-3 further support a model for p53-mediated repression that is both passive through displacement of a tissue-specific activating factor and active in the presence of tissue-specific corepressors. This mechanism for p53-mediated repression of AFP gene expression may be active during hepatic differentiation and lost in the process of tumorigenesis.
Collapse
Affiliation(s)
- K C Lee
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
73
|
Yamabe Y, Shimamoto A, Goto M, Yokota J, Sugawara M, Furuichi Y. Sp1-mediated transcription of the Werner helicase gene is modulated by Rb and p53. Mol Cell Biol 1998; 18:6191-200. [PMID: 9774636 PMCID: PMC109206 DOI: 10.1128/mcb.18.11.6191] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of Werner's syndrome gene (WRN) expression was studied by characterizing the cis-regulatory elements in the promoter region and the trans-activating factors that bind to them. First, we defined the transcription initiation sites and the sequence of the 5' upstream region (2.8 kb) of WRN that contains a number of cis-regulatory elements, including 7 Sp1, 9 retinoblastoma control element (RCE), and 14 AP2 motifs. A region consisting of nucleotides -67 to +160 was identified as the principal promoter of WRN by reporter gene assays in HeLa cells, using a series of WRN promoter-luciferase reporter (WRN-Luc) plasmids that contained the 5'-truncated or mutated WRN upstream regions. In particular, two Sp1 elements proximal to the transcription initiation site are indispensable for WRN promoter activity and bind specifically to Sp1 proteins. The RCE enhances WRN promoter activity. Coexpression of the WRN-Luc plasmids with various dosages of plasmids expressing Rb or p53 in Saos2 cells lacking active Rb and p53 proteins showed that the introduced Rb upregulates WRN promoter activity a maximum of 2. 5-fold, while p53 downregulates it a maximum of 7-fold, both dose dependently. Consistently, the overexpressed Rb and p53 proteins also affected the endogenous WRN mRNA levels in Saos2 cells, resulting in an increase with Rb and a decrease with p53. These findings suggest that WRN expression, like that of other housekeeping genes, is directed mainly by the Sp1 transcriptional control system but is also further modulated by transcription factors, including Rb and p53, that are implicated in the cell cycle, cell senescence, and genomic instability.
Collapse
Affiliation(s)
- Y Yamabe
- AGENE Research Institute, Kamakura, Kanagawa 247, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Majello B, Napolitano G, Lania L. Recruitment of the TATA-binding protein to the HIV-1 promoter is a limiting step for Tat transactivation. AIDS 1998; 12:1957-64. [PMID: 9814863 DOI: 10.1097/00002030-199815000-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To examine the functional interaction between HIV-1 Tat protein and the TATA-binding protein (TBP). DESIGN HIV long terminal repeat reporter plasmids were cotransfected into mammalian and Drosophila insect cells with expression vectors encoding Tat and vectors encoding TBP either alone or linked to an heterologous DNA-binding domain. METHODS The activity of the different reporters was compared in the presence or absence of Tat or TBP, or both, upon cotransfections into human and Drosophila insect cell lines. RESULTS Tat protein is unable to transactivate enhancerless HIV-1 minimal promoter bearing only the TATA box and TAR. Artificial recruitment of human TBP (hTBP) to the enhancerless HIV minimal promoter was found to trigger gene expression and coexpression of Tat resulted in a marked synergy. Tat protein cooperated with DNA-bound hTBP by inducing high levels of processive viral transcripts. Synergy between Tat and hTBP was also observed when both factors were targeted to a promoter DNA template. The functional cooperation between TBP and Tat was further demonstrated using the Drosophila Schneider SL2 cells. In these cells Tat protein alone was ineffective; however, coexpression of Drosophila TBP and Tat resulted in a trans-activating response region-dependent synergistic transactivation of basal transcription. CONCLUSION The strong synergy between TBP and Tat in the absence of any DNA-bound activator suggests that Tat stimulates transcription in an activator-independent manner most likely by a functional interaction with general transcription factors that occurs after TBP recruitment. Thus, efficient recruitment of TBP represents a limiting step for Tat transactivation.
Collapse
Affiliation(s)
- B Majello
- Department of Genetics, Molecular and General Biology, University of Naples Federico II, Italy
| | | | | |
Collapse
|
75
|
Reindl A, Schöffl F. Interaction between the Arabidopsis thaliana heat shock transcription factor HSF1 and the TATA binding protein TBP. FEBS Lett 1998; 436:318-22. [PMID: 9801140 DOI: 10.1016/s0014-5793(98)01152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heat shock factor (HSF1) is the central regulator of the heat stress (hs) response and is required for stimulating the transcription of the hs genes and consequently the expression of heat shock proteins. To promote the polymerase II-dependent transcription of the hs genes, HSF has to communicate with the basal transcription machinery. Here, we report that the Arabidopsis thaliana HSF1 interacts directly with TBP, the general TATA box binding transcription factor, as shown by affinity chromatography and electrophoretic mobility shift analyses in vitro. An in vivo interaction between AtHSF1 and AtTBP1 was suggested by results employing the yeast two-hybrid system.
Collapse
Affiliation(s)
- A Reindl
- Universität Tübingen, Biologisches Institut, Lehrstuhl für Allgemeine Genetik, Germany
| | | |
Collapse
|
76
|
Saluja D, Vassallo MF, Tanese N. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol Cell Biol 1998; 18:5734-43. [PMID: 9742090 PMCID: PMC109159 DOI: 10.1128/mcb.18.10.5734] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 07/01/1998] [Indexed: 11/20/2022] Open
Abstract
TFIID is a multiprotein complex consisting of the TATA box binding protein and multiple tightly associated proteins (TAFIIs) that are required for transcription by selected activators. We previously reported cloning and partial characterization of human TAFII130 (hTAFII130). The central domain of hTAFII130 contains four glutamine-rich regions, designated Q1 to Q4, that are involved in interactions with the transcriptional activator Sp1. Mutational analysis has revealed specific regions within the glutamine-rich (Q1 to Q4) central region of hTAFII130 that are required for interaction with distinct activation domains. We tested amino- and carboxyl-terminal deletions of hTAFII130 for interaction with Sp1 activation domains A and B (Sp1A and Sp1B) and the N-terminal activation domain of CREB (CREB-N) by using the yeast two-hybrid system. Our results indicate that Sp1B interacts almost exclusively with the Q1 region of hTAFII130. In contrast, Sp1A makes multiple contacts with Q1 to Q4 of hTAFII130, while CREB-N interacts primarily with the Q1-Q2 hTAFII130 subdomain. Consistent with these interaction studies, overexpression of the Q1-to-Q4 region in HeLa cells inhibits Sp1- but not VP16-mediated transcriptional activation. These findings indicate that the Q1-to-Q4 region of hTAFII130 is required for Sp1-mediated transcriptional enhancement in mammalian cells and that different activation domains target distinct subdomains of hTAFII130.
Collapse
Affiliation(s)
- D Saluja
- Department of Microbiology and Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | | | |
Collapse
|
77
|
Abstract
p53 is a major tumour suppressor that is inactivated in a large proportion of human cancers. We show that p53 serves as a general repressor of transcription by RNA polymerase (pol) III. It can inhibit the synthesis of a range of essential small cellular RNAs including tRNA, 5S rRNA and U6 snRNA, as well as viral products such as the adenovirus VAI RNA. Fibroblasts derived from p53 knock-out mice display a substantial increase in pol III transcriptional activity. Endogenous cellular p53 is shown to interact with the TATA-binding protein (TBP)-containing general factor TFIIIB, thereby compromising its function severely. However, assembly of TFIIIB into a pre-initiation complex confers substantial protection against the inhibitory effects of p53. Since TFIIIB is an essential determinant of the biosynthetic capacity of cells, its release from repression by p53 may contribute to a loss of growth control during the development of many tumours.
Collapse
Affiliation(s)
- C A Cairns
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | | |
Collapse
|
78
|
Haviv I, Matza Y, Shaul Y. pX, the HBV-encoded coactivator, suppresses the phenotypes of TBP and TAFII250 mutants. Genes Dev 1998; 12:1217-26. [PMID: 9553050 PMCID: PMC316710 DOI: 10.1101/gad.12.8.1217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infects humans and causes a wide range of clinical manifestations, from acute hepatitis to hepatocellular carcinoma (HCC). The HBV genome contains multiple promoters with gene expression regulated predominantly by the cellular transcription initiation machinery. Accordingly, the HBV-encoded pX, the only known viral regulator, is a potent transcription coactivator. We investigated the relationship between pX and cellular coactivators. We show that pX restores wild-type activity to inactive TBPAS mutants with poor TAFII250 and activator-binding activity. This pX-mediated recovery, however, is not obtained with inactive TBPAS mutants in binding of other general transcription factors. Remarkably, ts13, a cell line temperature sensitive for TAFII250 function, exhibiting growth arrest and apoptosis at the restrictive temperature, is rescued partially by pX expression, thus generating a pX-dependent cell growth. Collectively, our results suggest that pX suppresses some of the phenotypes of TBP and TAFII250 mutations, implying that pX circumvents the need for a holo-TFIID complex for transcription activation to proceed.
Collapse
Affiliation(s)
- I Haviv
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100 Israel
| | | | | |
Collapse
|
79
|
Botuyan MV, Momand J, Chen Y. Solution conformation of an essential region of the p53 transactivation domain. FOLDING & DESIGN 1998; 2:331-42. [PMID: 9427007 DOI: 10.1016/s1359-0278(97)00047-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The peptide segment surrounding residues Leu22 and Trp23 of the p53 transactivation domain plays a critical role in the transactivation activity of p53. This region binds basal transcriptional components such as the TATA-box binding protein associated factors TAFII40 and TAFII60 as well as the mdm-2 and adenovirus type 5 E1B 55 kDa oncoproteins. RESULTS The structure of residues 14-28 of p53 was studied by nuclear magnetic resonance spectroscopy and found to prefer a two-beta-turn structure stabilized by a hydrophobic cluster consisting of residues known to be important for transactivation and binding to p53-binding proteins. A peptide segment in which Leu22 and Trp23 were replaced by Gln and Ser displays a random structure. CONCLUSIONS This structural propensity observed in the wild-type p53 peptide is important for understanding the mechanism of transcriptional activation, because very few structural data are available on transactivation domains to date. These results should aid in the design of therapeutics that could competitively inhibit binding of p53 to the oncogene product mdm-2.
Collapse
Affiliation(s)
- M V Botuyan
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
80
|
Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997; 11:3471-81. [PMID: 9407038 PMCID: PMC316806 DOI: 10.1101/gad.11.24.3471] [Citation(s) in RCA: 613] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/1997] [Accepted: 11/03/1997] [Indexed: 02/05/2023]
Abstract
Data are presented demonstrating that DNA damage leads to specific post-translational modifications of p53 protein. Using two-dimensional peptide mapping of in vivo radiolabeled p53 tryptic phosphopeptides, recombinant truncated p53 protein, and synthetic p53 tryptic peptides, a unique p53 phosphopeptide was identified after exposure of ML-1 cells to ionizing irradiation. This peptide represents the first 24 amino acids of p53 and contains three phosphorylated serine residues. A specific p53 phosphopeptide antibody identified serine-15 as one of the two serines in p53 that becomes phosphorylated following DNA damage induced by either ionizing irradiation (IR) or ultraviolet (UV) irradiation in multiple cell types. IR-induced phosphorylation of p53 does not affect the kinetics of p53 binding to or dissociating from DNA as assessed by electrophoretic mobility-shift assays. However, p53 phosphorylation induced by DNA damage correlates with enhanced transcription of downstream p53 target genes. Low levels of phosphoserine-15 p53 are detectable within 6 hr after IR in AT cells, whereas lymphoblasts from normal individuals exhibit this modification within 1 hr. In contrast, phosphorylation of p53 on serine-15 is similar in normal and AT cells after UV irradiation. Our results indicate that p53 is phosphorylated in response to DNA damage, that this de novo phosphorylation may be involved in the subsequent induction and activation of p53, and that although ATM affects the kinetics of p53 phosphorylation after IR, it is not absolutely required for phosphorylation of p53 on serine-15.
Collapse
Affiliation(s)
- J D Siliciano
- The Johns Hopkins School of Medicine, Oncology Center, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C, Pan ZQ. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol 1997; 17:7220-9. [PMID: 9372954 PMCID: PMC232579 DOI: 10.1128/mcb.17.12.7220] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The tumor suppressor protein p53 acts as a transcriptional activator that can mediate cellular responses to DNA damage by inducing apoptosis and cell cycle arrest. p53 is a nuclear phosphoprotein, and phosphorylation has been proposed to be a means by which the activity of p53 is regulated. The cyclin-dependent kinase (CDK)-activating kinase (CAK) was originally identified as a cellular kinase required for the activation of a CDK-cyclin complex, and CAK is comprised of three subunits: CDK7, cyclin H, and p36MAT1. CAK is part of the transcription factor IIH multiprotein complex, which is required for RNA polymerase II transcription and nucleotide excision repair. Because of the similarities between p53 and CAK in their involvement in the cell cycle, transcription, and repair, we investigated whether p53 could act as a substrate for phosphorylation by CAK. While CDK7-cyclin H is sufficient for phosphorylation of CDK2, we show that p36MAT1 is required for efficient phosphorylation of p53 by CDK7-cyclin H, suggesting that p36MAT1 can act as a substrate specificity-determining factor for CDK7-cyclin H. We have mapped a major site of phosphorylation by CAK to Ser-33 of p53 and have demonstrated as well that p53 is phosphorylated at this site in vivo. Both wild-type and tumor-derived mutant p53 proteins are efficiently phosphorylated by CAK. Furthermore, we show that p36 and p53 can interact both in vitro and in vivo. These studies reveal a potential mechanism for coupling the regulation of p53 with DNA repair and the basal transcriptional machinery.
Collapse
Affiliation(s)
- L J Ko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Xiao H, Hasegawa T, Miyaishi O, Ohkusu K, Isobe KI. Sodium butyrate induces NIH3T3 cells to senescence-like state and enhances promoter activity of p21WAF/CIP1 in p53-independent manner. Biochem Biophys Res Commun 1997; 237:457-60. [PMID: 9268733 DOI: 10.1006/bbrc.1997.7158] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sodium butyrate, a histone deacetylase inhibitor, has been shown to induce differentiation of many cancer cells and senescence-like state of human fibroblasts. Here we show that sodium butyrate also induces senescence-like state of NIH3T3 cells. The treated cells were blocked at G1 phase and featured morphologically like senescent cells with enlarged cytoplasm and multiple nuclei. The expression of p21(WAF/CIP1) (p21) increased after sodium butyrate treatment at transcriptional level. To analyze the induction of promoter activity, we isolated 4.6 kb of murine p21 promoter and inserted it upstream of a luciferase reporter gene. When this construct was transiently transfected into NIH3T3 cells, sodium butyrate enhanced the luciferase activity. p53 independency of sodium butyrate-inducible p21 promoter activity was confirmed by using the deletion mutants lacking p53 binding sites and p53 deficient cells in transfection experiments.
Collapse
Affiliation(s)
- H Xiao
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-Cho, Obu, Japan
| | | | | | | | | |
Collapse
|
83
|
Tanese N. Small-scale density gradient sedimentation to separate and analyze multiprotein complexes. Methods 1997; 12:224-34. [PMID: 9237167 DOI: 10.1006/meth.1997.0475] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor TFIID is a multisubunit complex that is required for promoter recognition and accurate initiation of transcription by RNA polymerase II. To dissect the molecular architecture and the biochemical properties of TFIID, a small-scale density gradient sedimentation method is employed to separate related complexes through differences in their sedimentation properties. A small amount of starting material is sufficient to obtain readily assayable amounts of separated proteins after centrifugation for 8 to 12 h in a benchtop ultracentrifuge. Gradient fractions are analyzed by immunoblotting for the presence of specific components of TFIID. Sucrose gradient sedimentation is performed to separate a mixture of multiprotein complexes from a crude nuclear extract immunoprecipitation of the proteins present in each fraction with an anti-TBP antibody reveals multiple TBP-containing complexes of different sizes. Density gradient sedimentation permits separation of specific components in a complex mixture and preserves activity, allowing functional assays.
Collapse
Affiliation(s)
- N Tanese
- Department of Microbiology, New York University Medical Center, New York 10016, USA.
| |
Collapse
|
84
|
Farmer G, Friedlander P, Colgan J, Manley JL, Prives C. Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein. Nucleic Acids Res 1996; 24:4281-8. [PMID: 8932384 PMCID: PMC146238 DOI: 10.1093/nar/24.21.4281] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In addition to serving a role as a DNA binding-dependent transcriptional activator, p53 has been reported to repress a variety of promoters that lack p53 binding sites. Data from recent studies have suggested that this activity is mediated via an interaction between p53 and the TATA box binding protein (TBP). To investigate the functional relevance of this interaction in vivo, we have performed transient transfection assays in Drosophila Schneider cells. Wild-type p53 was found to repress expression from TATA box- but not initiator (Inr)-containing promoters activated by GAL4-VP16, GAL4-ftzQ or Sp1. A mutant p53(His175), defective in DNA binding and transcriptional activation, also inhibited TATA-dependent transcription activated by Sp1. However, p53 was unable to repress a basal TATA promoter stimulated by overexpression of TBP. Furthermore, overexpression of TBP failed to rescue the p53-mediated repression of activated transcription and a p53 mutant with its N-terminal TBP interaction domain intact, but defective in transcriptional activation and binding to TBP-associated factors (TAFs), was similarly defective in transcriptional repression. These data suggest that a p53-TBP interaction is not sufficient for transcriptional repression by p53 and that repression involves an interaction between p53 and other factors, such as TAFs, that are required for activated but not basal transcription. We suggest that p53-mediated repression results from squelching of a factor limiting for activated transcription from TATA- but not Inr-containing promoters.
Collapse
Affiliation(s)
- G Farmer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|