51
|
Dhar D, Venkataramana M, Ponnuswamy A, Das S. Role of polypyrimidine tract binding protein in mediating internal initiation of translation of interferon regulatory factor 2 RNA. PLoS One 2009; 4:e7049. [PMID: 19756143 PMCID: PMC2737629 DOI: 10.1371/journal.pone.0007049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/14/2009] [Indexed: 11/19/2022] Open
Abstract
Background Earlier we have reported translational control of interferon regulatory factor 2 (IRF2) by internal initiation (Dhar et al, Nucleic Acids Res, 2007). The results implied possible role of IRF2 in controlling the intricate balance of cellular gene expression under stress conditions in general. Here we have investigated the secondary structure of the Internal Ribosome Entry Site of IRF2 RNA and demonstrated the role of PTB protein in ribosome assembly to facilitate internal initiation. Methodology/Principal Findings We have probed the putative secondary structure of the IRF2 5′UTR RNA using various enzymatic and chemical modification agents to constrain the secondary structure predicted from RNA folding algorithm Mfold. The IRES activity was found to be influenced by the interaction of trans-acting factor, polypyrimidine tract binding protein (PTB). Deletion of 25 nts from the 3′terminus of the 5′untranslated region resulted in reduced binding with PTB protein and also showed significant decrease in IRES activity compared to the wild type. We have also demonstrated putative contact points of PTB on the IRF2–5′UTR using primer extension inhibition assay. Majority of the PTB toe-prints were found to be restricted to the 3′end of the IRES. Additionally, Circular Dichroism (CD) spectra analysis suggested change in the conformation of the RNA upon PTB binding. Further, binding studies using S10 extract from HeLa cells, partially silenced for PTB gene expression, resulted in reduced binding by other trans-acting factors. Finally, we have demonstrated that addition of recombinant PTB enhances ribosome assembly on IRF2 IRES suggesting possible role of PTB in mediating internal initiation of translation of IRF2 RNA. Conclusion/Significance It appears that PTB binding to multiple sites within IRF2 5′UTR leads to a conformational change in the RNA that facilitate binding of other trans-acting factors to mediate internal initiation of translation.
Collapse
Affiliation(s)
- Debojyoti Dhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Musturi Venkataramana
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anand Ponnuswamy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
52
|
Spriggs KA, Cobbold LC, Ridley SH, Coldwell M, Bottley A, Bushell M, Willis AE, Siddle K. The human insulin receptor mRNA contains a functional internal ribosome entry segment. Nucleic Acids Res 2009; 37:5881-93. [PMID: 19654240 PMCID: PMC2761284 DOI: 10.1093/nar/gkp623] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regulation of mRNA translation is an important mechanism determining the level of expression of proteins in eukaryotic cells. Translation is most commonly initiated by cap-dependent scanning, but many eukaryotic mRNAs contain internal ribosome entry segments (IRESs), providing an alternative means of initiation capable of independent regulation. Here, we show by using dicistronic luciferase reporter vectors that the 5′-UTR of the mRNA encoding human insulin receptor (hIR) contains a functional IRES. RNAi-mediated knockdown showed that the protein PTB was required for maximum IRES activity. Electrophoretic mobility shift assays confirmed that PTB1, PTB2 and nPTB, but not unr or PTB4, bound to hIR mRNA, and deletion mapping implicated a CCU motif 448 nt upstream of the initiator AUG in PTB binding. The IR-IRES was functional in a number of cell lines, and most active in cells of neuronal origin, as assessed by luciferase reporter assays. The IRES was more active in confluent than sub-confluent cells, but activity did not change during differentiation of 3T3-L1 fibroblasts to adipocytes. IRES activity was stimulated by insulin in sub-confluent cells. The IRES may function to maintain expression of IR protein in tissues such as the brain where mRNA translation by cap-dependent scanning is less effective.
Collapse
Affiliation(s)
- Keith A Spriggs
- University of Nottingham, School of Pharmacy, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Polypyrimidine tract binding proteins (PTB) regulate the expression of apoptotic genes and susceptibility to caspase-dependent apoptosis in differentiating cardiomyocytes. Cell Death Differ 2009; 16:1460-8. [DOI: 10.1038/cdd.2009.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
54
|
Grover R, Candeias MM, Fåhraeus R, Das S. p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 2009; 28:2766-72. [DOI: 10.1038/onc.2009.138] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
55
|
The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 2009; 29:2899-912. [PMID: 19273590 DOI: 10.1128/mcb.01774-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.
Collapse
|
56
|
Frost P, Shi Y, Hoang B, Gera J, Lichtenstein A. Regulation of D-cyclin translation inhibition in myeloma cells treated with mammalian target of rapamycin inhibitors: rationale for combined treatment with extracellular signal-regulated kinase inhibitors and rapamycin. Mol Cancer Ther 2009; 8:83-93. [PMID: 19139116 DOI: 10.1158/1535-7163.mct-08-0254] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown that heightened AKT activity sensitized multiple myeloma cells to the antitumor effects of the mammalian target of rapamycin inhibitor CCI-779. To test the mechanism of the AKT regulatory role, we stably transfected U266 multiple myeloma cell lines with an activated AKT allele or empty vector. The AKT-transfected cells were more sensitive to cytostasis induced in vitro by rapamycin or in vivo by its analogue, CCI-779, whereas cells with quiescent AKT were resistant. The ability of mammalian target of rapamycin inhibitors to down-regulate D-cyclin expression was significantly greater in AKT-transfected multiple myeloma cells due, in part, to the ability of AKT to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. Similar AKT-dependent regulation of rapamycin responsiveness was shown in a second myeloma model: the PTEN-null OPM-2 cell line transfected with wild-type PTEN. Because extracellular signal-regulated kinase (ERK)/p38 activity facilitates IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of AKT-dependent effects on rapamycin sensitivity. AKT-transfected U266 cells showed significantly decreased ERK and p38 activity. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant "low-AKT" myeloma cells. Furthermore, the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down-regulated D-cyclin protein expression and G1 arrest. However, ectopic overexpression of an activated MEK gene did not increase cap-independent translation of D-cyclin in "high-AKT" myeloma cells, indicating that mitogen-activated protein kinase/ERK kinase/ERK activity was required, but not sufficient, for activation of the IRES. These data support a scenario where heightened AKT activity down-regulates D-cyclin IRES function in multiple myeloma cells and ERK facilitates activity.
Collapse
Affiliation(s)
- Patrick Frost
- Department of Medicine, Jonsson Comprehensive Cancer Center, University of California-Los Angeles and Department of Hematology-Oncology, W111H, VA West Los Angeles Hospital, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
57
|
Canonical initiation factor requirements of the Myc family of internal ribosome entry segments. Mol Cell Biol 2009; 29:1565-74. [PMID: 19124605 DOI: 10.1128/mcb.01283-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Initiation of protein synthesis in eukaryotes requires recruitment of the ribosome to the mRNA and its translocation to the start codon. There are at least two distinct mechanisms by which this process can be achieved; the ribosome can be recruited either to the cap structure at the 5' end of the message or to an internal ribosome entry segment (IRES), a complex RNA structural element located in the 5' untranslated region (5'-UTR) of the mRNA. However, it is not well understood how cellular IRESs function to recruit the ribosome or how the 40S ribosomal subunits translocate from the initial recruitment site on the mRNA to the AUG initiation codon. We have investigated the canonical factors that are required by the IRESs found in the 5'-UTRs of c-, L-, and N-myc, using specific inhibitors and a tissue culture-based assay system, and have shown that they differ considerably in their requirements. The L-myc IRES requires the eIF4F complex and the association of PABP and eIF3 with eIF4G for activity. The minimum requirements of the N- and c-myc IRESs are the C-terminal domain of eIF4G to which eIF4A is bound and eIF3, although interestingly this protein does not appear to be recruited to the IRES RNA via eIF4G. Finally, our data show that all three IRESs require a ternary complex, although in contrast to c- and L-myc IRESs, the N-myc IRES has a lesser requirement for a ternary complex.
Collapse
|
58
|
Ul-Hussain M, Dermietzel R, Zoidl G. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein. BMC Mol Biol 2008; 9:92. [PMID: 18947383 PMCID: PMC2579433 DOI: 10.1186/1471-2199-9-92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/23/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Connexin55.5 (Cx55.5) is a gap junction protein with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the receptor-horizontal cell complex in form of hemichannels where light-dependent plasticity occurs. This connexin is the first example of a gap junction protein processed to form two protein isoforms from a monocistronic message by an IRES mediated process. The nuclear occurrence of a carboxy-terminal fragment of this protein provides evidence that this gap junction protein may participate in a putative cytoplasmic to nuclear signal transfer. RESULTS We characterized the IRES element of Cx55.5 in terms of sequence elements necessary for its activity and protein factor(s), which may play a role for its function. Two stretches of polypyrimidine tracts designated PPT1 and PPT2 which influence the IRES activity of this neuronal gap junction protein were identified. Selective deletion of PPT1 results in an appreciable decrease of the IRES activity, while the deletion of PPT2 results in a complete loss. RNA-EMSA and UV-cross linking experiments showed that protein complexes bind to this IRES element, of which the polypyrimidine tract binding protein (PTB) was identified as one of the interacting partners with influence on IRES activity. These results indicate that PTB conveys a role in the regulation of the IRES activity of Cx55.5. CONCLUSION Our findings indicate that the activity of the IRES element of the neuronal gap junction protein Cx55.5 is subject of regulation through flanking polypyrimidine tracts, and that the non-canonical trans-activation factor PTB plays an essential role in this process. This observation is of considerable importance and may provide initial insight into molecular-functional relationships of electrical coupling in horizontal cells.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
59
|
Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 2008; 36:641-7. [PMID: 18631133 DOI: 10.1042/bst0360641] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PTB (polypyrimidine-tract-binding protein) is a ubiquitous RNA-binding protein. It was originally identified as a protein with a role in splicing but it is now known to function in a large number of diverse cellular processes including polyadenylation, mRNA stability and translation initiation. Specificity of PTB function is achieved by a combination of changes in the cellular localization of this protein (its ability to shuttle from the nucleus to the cytoplasm is tightly controlled) and its interaction with additional proteins. These differences in location and trans-acting factor requirements account for the fact that PTB acts both as a suppressor of splicing and an activator of translation. In the latter case, the role of PTB in translation has been studied extensively and it appears that this protein is required for an alternative form of translation initiation that is mediated by a large RNA structural element termed an IRES (internal ribosome entry site) that allows the synthesis of picornaviral proteins and cellular proteins that function to control cell growth and cell death. In the present review, we discuss how PTB regulates these disparate processes.
Collapse
|
60
|
Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A, Gera J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 2008; 283:23274-87. [PMID: 18562319 DOI: 10.1074/jbc.m801185200] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation of the cyclin D1 and c-myc mRNAs occurs via internal ribosome entry site (IRES)-mediated initiation under conditions of reduced eIF-4F complex formation and Akt activity. Here we identify hnRNP A1 as an IRES trans-acting factor that regulates cyclin D1 and c-myc IRES activity, depending on the Akt status of the cell. hnRNP A1 binds both IRESs in vitro and in intact cells and enhances in vitro IRES-dependent reporter expression. Akt regulates this IRES activity by inducing phosphorylation of hnRNP A1 on serine 199. Serine 199-phosphorylated hnRNP A1 binds to the IRESs normally but is unable to support IRES activity in vitro. Reducing expression levels of hnRNP A1 or overexpressing a dominant negative version of the protein markedly inhibits rapamycin-stimulated IRES activity in cells and correlated with redistribution of cyclin D1 and c-myc transcripts from heavy polysomes to monosomes. Importantly, knockdown of hnRNP A1 also renders quiescent Akt-containing cells sensitive to rapamycin-induced G(1) arrest. These results support a role for hnRNP A1 in mediating rapamycin-induced alterations of cyclin D1 and c-myc IRES activity in an Akt-dependent manner and provide the first direct link between Akt and the regulation of IRES activity.
Collapse
Affiliation(s)
- Oak D Jo
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA
| | | | | | | | | | | |
Collapse
|
61
|
Gomez GG, Hickey MJ, Tritz R, Kruse CA. Immunoresistant human glioma cell clones selected with alloreactive cytotoxic T lymphocytes: downregulation of multiple proapoptotic factors. GENE THERAPY & MOLECULAR BIOLOGY 2008; 12:101-110. [PMID: 19066635 PMCID: PMC2597650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We previously reported the cellular, functional and cytogenetic characterization of immunoresistant (IR) 13-06-IR29 and 13-06-IR30 human glioma cell clones isolated after immunoselection with alloreactive cytotoxic T lymphocytes (aCTL). Relative to the 13-06-MG parental cells, both clones resisted aCTL lysis at multiple effector to target ratios; the resistant phenotype was maintained for 13-41 cell doublings after cloning and when selective pressure was removed; cross-resistance to other inducers of apoptosis/cell death was also observed (Gomez et al, 2006; Gomez and Kruse, 2007). In this study we further characterize the IR clones for factors that may contribute to the resistance. Data obtained by in-vitro quantitative morphologic and 7-amino actinomycin D flow cytometric assays revealed reduced apoptotic cell death when IR clones were coincubated with aCTL, relative to the parental cells. Since changes in apoptosis were observed, we examined the expression patterns of apoptosis-related genes in several extracts of parental cells and IR clones using pathway-specific cDNA microarray analysis. In general, the apoptotic factors were downregulated in the IR clones. From three separate extracts analyzed separately on microarrays, three factors, ATM, caspases 3 and 8, were statistically downregulated in both IR clones. Immunoblotting of the proteins confirmed the findings. Therefore, a possible mechanism for immunoresistance in gliomas may be achieved by the downregulation of one or more genes in the apoptotic pathway.
Collapse
Affiliation(s)
- German G Gomez
- The Brain Tumor Research Program, Sidney Kimmel Cancer Center, San Diego, CA 92121
| | | | | | | |
Collapse
|
62
|
A gastrin transcript expressed in gastrointestinal cancer cells contains an internal ribosome entry site. Br J Cancer 2008; 98:1696-703. [PMID: 18392051 PMCID: PMC2391123 DOI: 10.1038/sj.bjc.6604326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As the hormone gastrin promotes gastrointestinal (GI) cancer progression by triggering survival pathways, regulation of gastrin expression at the translational level was explored. Sequence within the 5' untranslated region of a gastrin transcript expressed in GI cancer cells was investigated, then cloned into a bicistronic vector upstream of firefly luciferase and transfected into a series of GI cancer cell lines. Firefly luciferase activity was measured relative to that of a cap-dependent Renilla luciferase. A gastrin transcript that was different from that described in Ensembl was expressed in GI cancer cells. Its transcription appears to be initiated within the region designated as the gene's first intron. In GI cancer cells transfected with the bicistronic construct, firefly luciferase activity increased 8-15-fold compared with the control vector, and there was a further induction of the signal (up to 25-fold) following exposure of the cells to genotoxic stress or hypoxia, suggesting that the sequence acts as an internal ribosome entry site. These data suggest that the gastrin transcript within GI cancer cells contains an internal ribosome entry site that may allow continued expression of gastrin peptides when normal translational mechanisms are inactive, such as in hypoxia, thereby promoting cancer cell survival.
Collapse
|
63
|
Anderson EC, Hunt SL, Jackson RJ. Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5' untranslated region. J Gen Virol 2007; 88:3043-3052. [PMID: 17947529 DOI: 10.1099/vir.0.82463-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Internal initiation of translation from the human rhinovirus-2 (HRV-2) internal ribosome entry site (IRES) is dependent upon host cell trans-acting factors. The multiple cold shock domain protein Unr and the polypyrimidine tract-binding protein have been identified as synergistic activators of HRV-2 IRES-driven translation. In order to investigate the mechanism by which Unr acts in this process, we have mapped the binding sites of Unr to two distinct secondary structure domains of the HRV-2 IRES, and have identified specific nucleotides that are involved in the binding of Unr to the IRES. The data suggest that Unr acts as an RNA chaperone to maintain a complex tertiary IRES structure required for translational competency.
Collapse
Affiliation(s)
- Emma C Anderson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sarah L Hunt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Richard J Jackson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
64
|
Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol Cell Biol 2007; 28:40-9. [PMID: 17967896 DOI: 10.1128/mcb.01298-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogenes c-, L-, and N-myc can all be translated by the alternative method of internal ribosome entry whereby the ribosome is recruited to a complex structural element (an internal ribosome entry segment [IRES]). Ribosome recruitment is dependent upon the presence of IRES-trans-acting factors (ITAFs) that act as RNA chaperones and allow the mRNA to attain the correct conformation for the interaction of the 40S subunit. One of the major challenges for researchers in this area is to determine whether there are groups of ITAFs that regulate the IRES-mediated translation of subsets of mRNAs. We have identified four proteins, termed GRSF-1 (G-rich RNA sequence binding factor 1), YB-1 (Y-box binding protein 1), PSF (polypyrimidine tract binding protein-associated splicing factor), and its binding partner, p54nrb, that bind to the myc family of IRESs. We show that these proteins positively regulate the translation of the Myc family of oncoproteins (c-, L-, and N-Myc) in vivo and in vitro. Interestingly, synthesis from the unrelated IRESs, BAG-1 and Apaf-1, was not affected by YB-1, GRSF-1, or PSF levels in vivo, suggesting that these three ITAFs are specific to the myc IRESs. Myc proteins play a role in cell proliferation; therefore, these results have important implications regarding the control of tumorigenesis.
Collapse
|
65
|
Timmerman SL, Pfingsten JS, Kieft JS, Krushel LA. The 5' leader of the mRNA encoding the mouse neurotrophin receptor TrkB contains two internal ribosomal entry sites that are differentially regulated. PLoS One 2007; 3:e3242. [PMID: 18779873 PMCID: PMC2531235 DOI: 10.1371/journal.pone.0003242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/27/2008] [Indexed: 12/30/2022] Open
Abstract
A single internal ribosomal entry site (IRES) in conjunction with IRES transactivating factors (ITAFs) is sufficient to recruit the translational machinery to a eukaryotic mRNA independent of the cap structure. However, we demonstrate that the mouse TrkB mRNA contains two independent IRESes. The mouse TrkB mRNA consists of one of two 5′ leaders (1428 nt and 448 nt), both of which include the common 3′ exon (Ex2, 344 nt). Dicistronic RNA transfections and in vitro translation of monocistronic RNA demonstrated that both full-length 5′ leaders, as well as Ex2, exhibit IRES activity indicating the IRES is located within Ex2. Additional analysis of the upstream sequences demonstrated that the first 260 nt of exon 1 (Ex1a) also contains an IRES. Dicistronic RNA transfections into SH-SY5Y cells showed the Ex1a IRES is constitutively active. However, the Ex2 IRES is only active in response to retinoic acid induced neural differentiation, a state which correlates with the synthesis of the ITAF polypyrimidine tract binding protein (PTB1). Correspondingly, addition or knock-down of PTB1 altered Ex2, but not Ex1a IRES activity in vitro and ex vivo, respectively. These results demonstrate that the two functionally independent IRESes within the mouse TrkB 5′ leader are differentially regulated, in part by PTB1.
Collapse
Affiliation(s)
- Stephanie L. Timmerman
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Jennifer S. Pfingsten
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Les A. Krushel
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
66
|
Baird SD, Lewis SM, Turcotte M, Holcik M. A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 2007; 35:4664-77. [PMID: 17591613 PMCID: PMC1950536 DOI: 10.1093/nar/gkm483] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 01/01/2023] Open
Abstract
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5'UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5'UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function.
Collapse
Affiliation(s)
- Stephen D. Baird
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Stephen M. Lewis
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Marcel Turcotte
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Martin Holcik
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| |
Collapse
|
67
|
Reyes R, Izquierdo JM. The RNA-binding protein PTB exerts translational control on 3'-untranslated region of the mRNA for the ATP synthase beta-subunit. Biochem Biophys Res Commun 2007; 357:1107-12. [PMID: 17466948 DOI: 10.1016/j.bbrc.2007.04.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/12/2007] [Indexed: 11/18/2022]
Abstract
We have recently reported that RNA-binding proteins TIA-1 (T-cell intracellular antigen-1), TIAR (TIA-1 related protein), and HuR (Hu antigen R) modulate the expression of the ATP synthase beta-subunit mRNA (beta-F1-ATPase mRNA) [J.M. Izquierdo, Control of the ATP synthase beta subunit expression by RNA-binding proteins TIA-1, TIAR, and HuR, Biochem. Biophys. Res. Commun. 348 (2006) 703-711]. Here we found that PTB (Polypyrimidine Tract-Binding Protein) is a novel member of the ribonucleoprotein complex that interacts with the beta-F1-ATPase mRNA through an adenosine/uridine (AU)-rich element located to the beta-F1-ATPase 3'-untranslated region (beta-3'-UTR). Co-expression of GFP from a reporter mRNA quimera containing human beta-3'-UTR and recombinant PTB in HeLa cells increased the amount of GFP protein. Interestingly, this effect is not due to increased steady-state levels of GFP-beta-3'-UTR mRNA. Taken together, these results suggest that PTB regulates post-transcriptional expression of the beta-F1-ATPase mRNA at the translational level.
Collapse
Affiliation(s)
- Raquel Reyes
- Centro de Biología Molecular Severo Ochoa-Universidad Autónoma de Madrid (UAM-CSIC), Facultad de Ciencias, Módulo C-V, Lab-230, Cantoblanco DP 28049, Madrid, Spain
| | | |
Collapse
|
68
|
Kamrud KI, Custer M, Dudek JM, Owens G, Alterson KD, Lee JS, Groebner JL, Smith JF. Alphavirus replicon approach to promoterless analysis of IRES elements. Virology 2007; 360:376-87. [PMID: 17156813 PMCID: PMC1885372 DOI: 10.1016/j.virol.2006.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 02/05/2023]
Abstract
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Collapse
Affiliation(s)
- K I Kamrud
- AlphaVax, Inc., 2 Triangle Drive, Research Triangle Park, NC 27709-0307, USA.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Lewis SM, Veyrier A, Hosszu Ungureanu N, Bonnal S, Vagner S, Holcik M. Subcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation. Mol Biol Cell 2007; 18:1302-11. [PMID: 17287399 PMCID: PMC1838995 DOI: 10.1091/mbc.e06-06-0515] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/19/2007] [Accepted: 01/31/2007] [Indexed: 01/15/2023] Open
Abstract
Translation of the X-linked inhibitor of apoptosis (XIAP) proceeds by internal ribosome entry site (IRES)-mediated initiation, a process that is physiologically important because XIAP expression is essential for cell survival under conditions of compromised cap-dependent translation, such as cellular stress. The regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the IRES element. We used RNA-affinity chromatography to identify XIAP ITAFs and isolated the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). We find that hnRNP A1 interacts with XIAP IRES RNA both in vitro and in vivo and that hnRNP A1 negatively regulates XIAP IRES activity. Moreover, XIAP IRES-dependent translation is significantly reduced when hnRNP A1 accumulates in the cytoplasm. Osmotic shock, a cellular stress that causes cytoplasmic accumulation of hnRNP A1, also leads to a decrease in XIAP levels that is abrogated by knockdown of hnRNP A1 expression. These results suggest that the subcellular localization of hnRNP A1 is an important determinant of its ability to negatively regulate XIAP IRES activity, suggesting that the subcellular distribution of ITAFs plays a critical role in regulating IRES-dependent translation. Our findings demonstrate that cytoplasmic hnRNP A1 is a negative regulator of XIAP IRES-dependent translation, indicating a novel function for the cytoplasmic form of this protein.
Collapse
Affiliation(s)
- Stephen M. Lewis
- *Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Anne Veyrier
- INSERM U563, Toulouse, F-31000, France
- Institut Claudius Régaud, Toulouse, F-31052, France; and
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Nicoleta Hosszu Ungureanu
- *Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Sophie Bonnal
- INSERM U563, Toulouse, F-31000, France
- Institut Claudius Régaud, Toulouse, F-31052, France; and
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Stéphan Vagner
- INSERM U563, Toulouse, F-31000, France
- Institut Claudius Régaud, Toulouse, F-31052, France; and
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Martin Holcik
- *Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| |
Collapse
|
70
|
Gerbasi VR, Link AJ. The myotonic dystrophy type 2 protein ZNF9 is part of an ITAF complex that promotes cap-independent translation. Mol Cell Proteomics 2007; 6:1049-58. [PMID: 17327219 DOI: 10.1074/mcp.m600384-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 5'-untranslated region of the ornithine decarboxylase (ODC) mRNA contains an internal ribosomal entry site (IRES). Mutational analysis of the ODC IRES has led to the identification of sequences necessary for cap-independent translation of the ODC mRNA. To discover novel IRES trans-acting factors (ITAFs), we performed a proteomics screen for proteins that regulate ODC translation using the wild-type ODC mRNA and a mutant version with an inactive IRES. We identified two RNA-binding proteins that associate with the wild-type ODC IRES but not the mutant IRES. One of these RNA-binding proteins, PCBP2, is an established activator of viral and cellular IRESs. The second protein, ZNF9 (myotonic dystrophy type 2 protein), has not been shown previously to bind IRES-like elements. Using a series of biochemical assays, we validated the interaction of these proteins with ODC mRNA. Interestingly ZNF9 and PCBP2 biochemically associated with each other and appeared to function as part of a larger holo-ITAF ribonucleoprotein complex. Our functional studies showed that PCBP2 and ZNF9 stimulate translation of the ODC IRES. Importantly these results may provide insight into the normal role of ZNF9 and why ZNF9 mutations cause myotonic dystrophy.
Collapse
Affiliation(s)
- Vincent R Gerbasi
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
71
|
He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS, Beck WT. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 2007; 26:4961-8. [PMID: 17310993 PMCID: PMC2364716 DOI: 10.1038/sj.onc.1210307] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polypyrimidine tract-binding protein (PTB) is an RNA-binding protein with multiple functions in the regulation of RNA processing and IRES-mediated translation. We report here overexpression of PTB in a majority of epithelial ovarian tumors revealed by immunoblotting and tissue microarray (TMA) staining. By western blotting, we found that PTB was overexpressed in 17 out of 19 ovarian tumor specimens compared to their matched-normal tissues. By TMA staining, we found PTB expression in 38 out of 44 ovarian cancer cases but only in two out of nine normal adjacent tissues. PTB is also overexpressed in SV40 large T-antigen immortalized ovarian epithelial cells compared to normal human ovarian epithelial cells. Using doxycycline-inducible small interfering RNA technology, we found that knockdown of PTB expression in the ovarian tumor cell line A2780 substantially impaired tumor cell proliferation, anchorage-independent growth and in vitro invasiveness. These results suggest that overexpression of PTB is an important component of the multistep process of tumorigenesis, and might be required for the development and maintenance of epithelial ovarian tumors. Moreover, because of its novel role in tumor cell growth and invasiveness, shown here for the first time, PTB may be a novel therapeutic target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- X He
- Gynecologic Oncology Group, Core Laboratory in Molecular Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Dormoy-Raclet V, Markovits J, Malato Y, Huet S, Lagarde P, Montaudon D, Jacquemin-Sablon A, Jacquemin-Sablon H. Unr, a cytoplasmic RNA-binding protein with cold-shock domains, is involved in control of apoptosis in ES and HuH7 cells. Oncogene 2006; 26:2595-605. [PMID: 17086213 DOI: 10.1038/sj.onc.1210068] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unr (upstream of N-ras) is a cytoplasmic RNA-binding protein involved in the regulation of messenger RNA stability and internal initiation of translation. We have used Unr-deficient murine embryonic stem (ES) cells to analyse Unr role in cell proliferation and response to stress. Disruption of both unr gene copies had no effect on ES cell proliferation. However, after ionizing radiation (IR), clonogenic survival of unr(-/-) ES cells was approximately 3-fold enhanced as compared to unr(+/+) cells. We further determined that IR-induced apoptosis was decreased in unr(-/-) ES cells, and that reintroduction of the unr gene in unr(-/-) cells restored normal IR-induced apoptosis. Three pro-apoptotic genes, p53, caspase-3 and Gadd45gamma, were downregulated in unr(-/-) ES cells, indicating that Unr, as other cytoplasmic RNA-binding proteins, regulates a complex genetic program, promoting cell death after IR. In contrast, in the human hepatoma cell line HuH7, Unr knockdown using unr-specific small interfering RNAs induced apoptosis, both in untreated and gamma-irradiated cells. Thus, our results establish that Unr acts as a positive or negative regulator of cell death, depending on the cell type. Manipulating the level of Unr may constitute a specific approach to sensitize cancer cells to anticancer treatments.
Collapse
|
73
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
74
|
Bushell M, Stoneley M, Kong YW, Hamilton TL, Spriggs KA, Dobbyn HC, Qin X, Sarnow P, Willis AE. Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 2006; 23:401-12. [PMID: 16885029 DOI: 10.1016/j.molcel.2006.06.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 04/19/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
During apoptosis there is a substantial reduction in the rate of protein synthesis, and yet some mRNAs avoid this translational inhibition. To determine the impact that receptor-mediated cell death has on the translational efficiency of a large number of mRNAs, translational profiling was performed on MCF7 cells treated with the apoptosis-inducing ligand TRAIL. Our data indicate that approximately 3% of mRNAs remain associated with the polysomes in apoptotic cells, and genes that are involved in transcription, chromatin modification/remodeling, and the Notch signaling pathway are particularly prevalent among the mRNAs that evade translational inhibition. Internal ribosome entry segments (IRESs) were identified in several of the mRNAs that remained associated with the polysomes during apoptosis, and, importantly, these IRESs functioned efficiently in apoptotic cells. Finally, the data showed that polypyrimidine tract binding protein (PTB, a known IRES trans-acting factor or ITAF) is pivotal in regulating the apoptotic process by controlling IRES function.
Collapse
Affiliation(s)
- Martin Bushell
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Cheung HC, Corley LJ, Fuller GN, McCutcheon IE, Cote GJ. Polypyrimidine tract binding protein and Notch1 are independently re-expressed in glioma. Mod Pathol 2006; 19:1034-41. [PMID: 16729017 DOI: 10.1038/modpathol.3800635] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polypyrimidine tract binding protein (PTB) is expressed in developing mammalian astrocytes, absent in mature adult astrocytes, and aberrantly elevated in gliomas. It is unclear whether PTB is a coincidental marker of tumor progression or a significant mediator of tumorigenesis. In developing Drosophila, the absence of the PTB homolog, hephaestus, results in increased Notch activity. Since Notch is a well-known inducer of glial cell fate, we determined whether overexpression of PTB in glial cell tumors provides a selective growth advantage by inhibiting activated Notch (Notch1IC)-mediated differentiation. To do this, we performed an immunohistochemical analysis for expression of PTB, activated Notch1 (Notch1IC), Hes1 (a Notch target), and GFAP on an extensive human tissue microarray that included 246 gliomas, 10 gliosarcomas, and 10 normal brains. Statistically significant PTB overexpression was seen in all glioma grades, with the highest increase in grade IV tumors. Notch1IC was also abnormally expressed in gliomas except in a subset of grade IV tumors in which it was absent. This decrease in Notch1IC was not associated with increased PTB expression. We conclude that PTB, and Notch1 serve as independent and functionally unlinked markers of glioma progression.
Collapse
Affiliation(s)
- Hannah C Cheung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | |
Collapse
|
76
|
Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Many T. In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol 2006; 20:1652-60. [PMID: 16469771 DOI: 10.1210/me.2005-0333] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium and phosphate regulate PTH gene expression posttranscriptionally through the binding of trans-acting factors to a defined cis-acting instability element in the PTH mRNA 3'-untranslated region (UTR). We have previously defined AU-rich binding factor 1 as a PTH mRNA binding and stabilizing protein. We have now identified, by affinity chromatography, Upstream of N-ras (Unr) as another PTH mRNA 3'-UTR binding protein. Recombinant Unr bound the PTH 3'-UTR transcript, and supershift experiments with antibodies to Unr showed that Unr is part of the parathyroid RNA binding complex. Finally, because there is no parathyroid cell line, the functionality of Unr in regulating PTH mRNA levels was demonstrated in cotransfection experiments in heterologous human embryonic kidney 293 cells. Depletion of Unr by small interfering RNA decreased simian virus 40-driven PTH gene expression in human embryonic kidney 293 cells transiently cotransfected with the human PTH gene. Overexpression of Unr increased the rat full-length PTH mRNA levels but not a PTH mRNA lacking the terminal 60-nucleotide cis-acting protein binding region. Unr also stabilized a chimeric GH reporter mRNA that contained the rat PTH 63-nucleotide cis-acting element but not a truncated PTH element. Therefore, Unr binds to the PTH cis element and increases PTH mRNA levels, as does AU-rich binding factor 1. Our results suggest that Unr, together with the other proteins in the RNA binding complex, determines PTH mRNA stability.
Collapse
Affiliation(s)
- Maya Dinur
- Minerva Center for Calcium and Bone Metabolism, Hebrew University Hadassah Medical Center, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
77
|
Schepens B, Tinton SA, Bruynooghe Y, Beyaert R, Cornelis S. The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res 2005; 33:6884-94. [PMID: 16396835 PMCID: PMC1310900 DOI: 10.1093/nar/gki1000] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 01/12/2023] Open
Abstract
When oxygen supply is restricted, protein synthesis is rapidly abrogated owing to inhibition of global translation. However, HIF-1alpha protein expression can persist during hypoxia, owing to an internal ribosome entry site (IRES) in the 5'-untranslated region of its mRNA. Here, we report on the molecular mechanism of HIF-1alpha IRES-mediated translation during oxygen deprivation. Using RNA affinity chromatography and UV-crosslinking experiments, we show that the polypyrimidine tract binding protein (PTB) can specifically interact with the HIF-1alpha IRES, and that this interaction is enhanced in hypoxic conditions. Overexpression of PTB enhanced HIF-1alpha IRES activity, whereas RNA interference-mediated downregula-tion of PTB protein expression inhibited HIF-1alpha IRES activity. Furthermore, hypoxia-induced stimulation of the HIF-1alpha IRES was reduced in cells in which PTB function was downregulated. In agreement with these results, the IRES activity of HIF-1alpha IRES deletion mutants that are deficient in PTB-binding could not be stimulated by oxygen deprivation. All together, our data suggest that PTB plays a stimulatory role in the IRES-mediated translation of HIF-1alpha when oxygen supply is limited.
Collapse
Affiliation(s)
- Bert Schepens
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Sandrine A. Tinton
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Yanik Bruynooghe
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Rudi Beyaert
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| | - Sigrid Cornelis
- Department for Molecular Biomedical Research, VIB—Ghent University, Unit of Molecular Signal Transduction in InflammationB-9052 Gent-Zwijnaarde, Belgium
| |
Collapse
|
78
|
Investigation of interactions of polypyrimidine tract-binding protein with artificial internal ribosome entry segments. Biochem Soc Trans 2005; 33:1483-6. [PMID: 16246151 DOI: 10.1042/bst0331483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most eukaryotic translation initiation is thought to be dependent on the 5'-cap structure of the mRNA. It is becoming apparent, however, that the mRNAs of many genes contain IRESs (internal ribosome entry segments) within the 5'-UTR (5'-untranslated region) that allow ribosomes to initiate translation independently of the 5'-cap. IRESs can enable the expression of these genes under conditions (such as viral infection, cellular stress and apoptosis) when cap-dependent translation initiation is compromised, and also provide a target for regulation of gene expression. Recent results from our laboratory and others suggest that 10% of mRNAs (approximately 4000 genes) use this mechanism to initiate translation. One of the central goals of those working in the field of translation is to identify the sequence motif(s) and proteins that are required for internal ribosome entry. We have identified recently a unique PTB (polypyrimidine tract-binding protein) motif (CCU)n that is present in a large subset of cellular IRESs, and the results suggest that PTB itself is involved either directly or indirectly in ribosome recruitment. Here, we describe further investigations of PTB with artificial sequences that harbour this motif.
Collapse
|
79
|
Monie TP, Hernandez H, Robinson CV, Simpson P, Matthews S, Curry S. The polypyrimidine tract binding protein is a monomer. RNA (NEW YORK, N.Y.) 2005; 11:1803-8. [PMID: 16314454 PMCID: PMC1370869 DOI: 10.1261/rna.2214405] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 09/21/2005] [Indexed: 05/05/2023]
Abstract
The polypyrimidine tract binding (PTB) protein is a potent regulator of alternative mRNA splicing. It also participates in other essential cellular functions, including translation initiation and polyadenylation. Several published reports have suggested that the protein forms a dimer in solution, a feature that has been widely incorporated into mechanistic models of protein function. However, recent studies have provided indications that full-length PTB is a monomer. Here we present new biophysical and biochemical evidence supporting the monomeric status of the protein. By use of blue-native polyacrylamide gel electrophoresis and size-exclusion chromatography, PTB was observed as a single molecular species under native reducing environments, though in oxidizing conditions, a larger protein species was also detected. Further analyses of wild-type and mutant PTB molecules with SDS-PAGE and time-of-flight electrospray ionization mass spectroscopy confirmed these observations. They also identified the single reduced species as monomeric PTB and the higher-molecular-weight nonreduced species as disulphide-linked PTB dimer mediated by Cys23. Our results indicate that the use of oxidizing environments in previous studies is likely to have contributed to the mis-assignment of PTB as a dimer. Although purified PTB may form disulphide-linked dimers under these conditions, in the reducing intracellular environment the protein will be monomeric. These findings have implications for the construction of models of PTB function in regulating mRNA metabolism.
Collapse
Affiliation(s)
- Tom P Monie
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
80
|
Kozak M. A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 2005; 33:6593-602. [PMID: 16314320 PMCID: PMC1298923 DOI: 10.1093/nar/gki958] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/26/2005] [Indexed: 01/27/2023] Open
Abstract
This review takes a second look at a set of mRNAs that purportedly employ an alternative mechanism of initiation when cap-dependent translation is reduced during mitosis or stress conditions. A closer look is necessary because evidence cited in support of the internal initiation hypothesis is often flawed. When putative internal ribosome entry sequences (IRESs) are examined more carefully, they often turn out to harbor cryptic promoters or splice sites. This undermines the dicistronic assay, wherein IRES activity is measured by the ability to support translation of the 3' cistron. Most putative IRESs still have not been checked carefully to determine whether the dicistronic vector produces only the intended dicistronic mRNA. The widespread use of the pRF vector is a major problem because this vector, which has Renilla luciferase as the 5' cistron and firefly luciferase as the 3' cistron, has been found to generate spliced transcripts. RNA transfection assays could theoretically circumvent these problems, but most candidate IRESs score very weakly in that test. The practice of calling even very weak results 'positive' is one of the problems discussed herein. The extremely low efficiency of putative IRESs is inconsistent with their postulated biological roles.'
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
81
|
Campioni M, Santini D, Tonini G, Murace R, Dragonetti E, Spugnini EP, Baldi A. Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol 2005; 14:811-8. [PMID: 16232302 DOI: 10.1111/j.1600-0625.2005.00360.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptosis protease-activating factor-1 (Apaf-1) is a key regulator of the mitochondrial apoptotic pathway, being the central element of the multimeric apoptosome formed by procaspase 9, cytochrome c, and Apaf-1 itself. In this review, the principal aspects about Apaf-1 gene structure and function, and its role in the apoptotic machinery, are described. Moreover, the most recent findings about the involvement of this molecule in melanoma progression and chemoresistance, as well as the clinico-pathological relevance of these findings in the treatment of this deadly disease, are reported.
Collapse
Affiliation(s)
- Mara Campioni
- Department of Biochemistry and Biophysic F. Cedrangolo, Section of Pathology, Second University of Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
82
|
Krepela E, Procházka J, Fiala P, Zatloukal P, Selinger P. Expression of apoptosome pathway-related transcripts in non-small cell lung cancer. J Cancer Res Clin Oncol 2005; 132:57-68. [PMID: 16231180 DOI: 10.1007/s00432-005-0048-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 09/23/2005] [Indexed: 01/18/2023]
Abstract
PURPOSE Tumour cells killing by cytotoxic therapies largely depends on triggering the intrinsic apoptosome-mediated caspase activation pathway but it had never been evaluated whether the expression of transcripts encoding the core components of apoptosome pathway is altered in non-small cell lung carcinoma (NSCLC). METHODS We investigated the expression status of several apoptosome pathway-related transcripts including Apaf-1, procaspase-9, -3, -6, -7 and Smac in tumour and lung tissue samples from 65 surgically treated NSCLC patients and in 10 NSCLC cell lines with using real time RT-PCR. RESULTS NSCLC tissues and cell lines showed significantly increased expression of procaspase-9, -3, -6 and Smac mRNAs as compared to the lungs and expression of these transcripts was simultaneously upregulated in a subset of NSCLCs belonging to different histopathological type, grade and stage categories. The expression of procaspase-7 mRNA in NSCLC tissues and cell lines and lungs was not significantly different. By contrast, the expression of Apaf-1 mRNA was frequently downregulated in the tumours as compared to matched lungs. Nevertheless, the examined NSCLC cell lines showed significantly higher expression of Apaf-1 mRNA than the lungs. The expression of Apaf-1, procaspase-9 and -6 mRNAs was higher in lung adenocarcinomas as compared to squamous cell lung carcinomas but the expression levels of the studied apoptosome pathway-related transcripts in the tumours were independent of tumour's grade and stage. CONCLUSIONS The results of the present study suggest that there is a subgroup of NSCLCs, which may be intrinsically primed for apoptosis through upregulated expression of transcripts encoding the apoptosome pathway components.
Collapse
Affiliation(s)
- Evzen Krepela
- Clinic of Pneumology and Thoracic Surgery, University Hospital Bulovka and 3rd Faculty of Medicine, Charles University, Budínova 2, 180 81, Prague 8, Czech Republic.
| | | | | | | | | |
Collapse
|
83
|
Spriggs KA, Bushell M, Mitchell SA, Willis AE. Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 2005; 12:585-91. [PMID: 15900315 DOI: 10.1038/sj.cdd.4401642] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During apoptosis, there is a reduction in translation initiation caused by caspase cleavage of several of the factors required for the cap-dependent scanning mechanism. Under these circumstances, many proteins that are required for apoptosis are instead translated by the alternative method of internal ribosome entry. This mechanism requires the formation of a complex RNA structural element and in the presence of internal ribosome entry segment (IRES)-trans-acting factors (ITAFs), the ribosome is recruited to the RNA. The interactions of several ITAFs with IRESs have been investigated in detail, and several mechanisms of action have been noted, including acting as chaperones, stabilising and remodelling the RNA structure. Structural remodelling by PTB in particular will be discussed, and how this protein is able to facilitate recruitment of the ribosome to several IRESs by causing previously occluded sites to become more accessible.
Collapse
Affiliation(s)
- K A Spriggs
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| | | | | | | |
Collapse
|
84
|
Mitchell SA, Spriggs KA, Bushell M, Evans JR, Stoneley M, Le Quesne JPC, Spriggs RV, Willis AE. Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes Dev 2005; 19:1556-71. [PMID: 15998809 PMCID: PMC1172062 DOI: 10.1101/gad.339105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 05/19/2005] [Indexed: 02/05/2023]
Abstract
We have identified a novel motif which consists of the sequence (CCU)(n) as part of a polypyrimidine-rich tract and permits internal ribosome entry. A number of constructs containing variations of this motif were generated and these were found to function as artificial internal ribosome entry segments (AIRESs) in vivo and in vitro in the presence of polypyrimidine tract-binding protein (PTB). The data show that for these sequences to function as IRESs the RNA must be present as a double-stranded stem and, in agreement with this, rather surprisingly, we show that PTB binds strongly to double-stranded RNA. All the cellular 5' untranslated regions (UTRs) tested that harbor this sequence were shown to contain internal ribosome entry segments that are dependent upon PTB for function in vivo and in vitro. This therefore raises the possibility that PTB or its interacting protein partners could provide a bridge between the IRES-RNA and the ribosome. Given the number of putative cellular IRESs that could be dependent on PTB for function, these data strongly suggest that PTB-1 is a universal IRES-trans-acting factor.
Collapse
Affiliation(s)
- Sally A Mitchell
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Cells respond to stress stimuli through coordinated changes in gene expression. The regulation of translation is often used under these circumstances because it allows immediate and selective changes in protein levels. There are many examples of translational control in response to stress. Here we examine two representative models, the regulation of eukaryotic initiation factor-2alpha by phosphorylation and internal ribosome initiation through the internal ribosome-entry site, which illustrate the importance of translational control in the cellular stress response and apoptosis.
Collapse
Affiliation(s)
- Martin Holcik
- Apoptosis Research Center, Room R3116, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
| | | |
Collapse
|
86
|
Florez PM, Sessions OM, Wagner EJ, Gromeier M, Garcia-Blanco MA. The polypyrimidine tract binding protein is required for efficient picornavirus gene expression and propagation. J Virol 2005; 79:6172-9. [PMID: 15858002 PMCID: PMC1091667 DOI: 10.1128/jvi.79.10.6172-6179.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 01/12/2005] [Indexed: 02/05/2023] Open
Abstract
Mammalian host factors required for efficient viral gene expression and propagation have been often recalcitrant to genetic analysis. A case in point is the function of cellular factors that trans-activate internal ribosomal entry site (IRES)-driven translation, which is operative in many positive-stranded RNA viruses, including all picornaviruses. These IRES trans-acting factors have been elegantly studied in vitro, but their in vivo importance for viral gene expression and propagation has not been widely confirmed experimentally. Here we use RNA interference to deplete mammalian cells of one such factor, the polypyrimidine tract binding protein, and test its requirement in picornavirus gene expression and propagation. Depletion of the polypyrimidine tract binding protein resulted in a marked delay of particle propagation and significantly decreased synthesis and accumulation of viral proteins of poliovirus and encephalomyocarditis virus. These effects could be partially restored by expression of an RNA interference-resistant exogenous polypyrimidine tract binding protein. These data indicate a critical role for the polypyrimidine tract binding protein in picornavirus gene expression and strongly suggest a requirement for efficient IRES-dependent translation.
Collapse
Affiliation(s)
- Paola M Florez
- Duke University Medical Center, Box 3020 (451 Jones), Research Drive, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
87
|
Bushell M, Stoneley M, Sarnow P, Willis AE. Translation inhibition during the induction of apoptosis: RNA or protein degradation? Biochem Soc Trans 2005; 32:606-10. [PMID: 15270687 DOI: 10.1042/bst0320606] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The induction of apoptosis leads to a substantial inhibition of protein synthesis. During this process changes to the translation-initiation factors, the ribosome and the cellular level of mRNA have been documented. However, it is by no means clear which of these events are necessary to achieve translational shutdown. In this article, we discuss modifications to the translational apparatus that occur during apoptosis and examine the potential contributions that they make to the inhibition of protein synthesis. Moreover, we present evidence that suggests that a global increase in the rate of mRNA degradation occurs before the caspase-dependent cleavage of initiation factors. Increased mRNA decay is temporally correlated with the shutdown of translation and therefore plays a major role in the inhibition of protein synthesis in apoptotic cells.
Collapse
Affiliation(s)
- M Bushell
- Department of Biochemistry, University of Leicester, University Rd, Leicester LE1 7RH, UK.
| | | | | | | |
Collapse
|
88
|
Tinton S, Schepens B, Bruynooghe Y, Beyaert R, Cornelis S. Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 2005; 385:155-63. [PMID: 15330758 PMCID: PMC1134683 DOI: 10.1042/bj20040963] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/10/2004] [Accepted: 08/26/2004] [Indexed: 12/19/2022]
Abstract
The PITSLRE kinases belong to the large family of cyclin-dependent protein kinases. Their function has been related to cell-cycle regulation, splicing and apoptosis. We have previously shown that the open reading frame of the p110(PITSLRE) transcript contains an IRES (internal ribosome entry site) that allows the expression of a smaller p58(PITSLRE) isoform during the G2/M stage of the cell cycle. In the present study we investigated further the role of cis- and trans-acting factors in the regulation of the PITSLRE IRES. Progressive deletion analysis showed that both a purine-rich sequence and a Unr (upstream of N-ras) consensus binding site are essential for PITSLRE IRES activity. In line with these observations, we demonstrate that the PITSLRE IRES interacts with the Unr protein, which is more prominently expressed at the G2/M stage of the cell cycle. We also show that phosphorylation of the alpha-subunit of the canonical initiation factor eIF-2 is increased at G2/M. Interestingly, phosphorylation of eIF-2alpha has a permissive effect on the efficiency of both the PITSLRE IRES and the ornithine decarboxylase IRES, two cell cycle-dependent IRESs, in mediating internal initiation of translation, whereas this was not observed with the viral EMCV (encephalomyocarditis virus) and HRV (human rhinovirus) IRESs.
Collapse
Key Words
- cap-independent translation
- α-subunit of eukaryotic initiation factor 2 (eif-2α)
- g2/m cell-cycle stage
- internal ribosome-entry-site (ires)-specific trans-acting factor (itaf)
- p58pitslre protein kinase
- upstream of n-ras
- apaf-1, apoptotic-protease-activating factor 1
- cat-1, cationic amino acid transporter protein 1
- dtt, dithiothreitol
- eifs, eukaryotic initiation factors
- eif-2α, α-subunit of eukaryotic initiation factor 2
- emcv, encephalomyocarditis virus
- fcs, fetal-calf serum
- fluc, firefly luciferase
- hnrnp, heterogeneous nuclear ribonucleoprotein
- il-3, interleukin-3
- itaf, ires-specific trans-acting factor
- hrv, human rhinovirus
- ires, internal ribosome entry site
- odc, ornithine decarboxylase
- pars, polypurine (a)-rich sequence
- pdgf, platelet-derived growth factor
- pkr, double-stranded-rna-activated protein kinase
- pkr-k296r, death mutant [lys296→arginine]kpr
- ptb, polypyrimidine-tract-binding protein
- 5′-race, rapid amplification of cdna ends
- rluc, renilla luciferase
- rrl, rabbit reticulocyte lysate
- sv40, simian virus 40
- unr, upstream of n-ras (protein)
- 5′-utr, 5′-untranslated region
Collapse
Affiliation(s)
- Sandrine A. Tinton
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Bert Schepens
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Yanik Bruynooghe
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| | - Sigrid Cornelis
- Unit of Molecular Signal Transduction in Inflammation, Department for Molecular Biomedical Research, VIB (Flanders Interuniversity Institute for Biotechnology)–Ghent University, Technologiepark 927, B-9052 Gent-Zwijnaarde, Belgium
| |
Collapse
|
89
|
Satoh JI, Yamamura T. Gene expression profile following stable expression of the cellular prion protein. Cell Mol Neurobiol 2004; 24:793-814. [PMID: 15672681 DOI: 10.1007/s10571-004-6920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The cellular prion protein (PrPC) is expressed widely in neural and nonneural tissues at the highest level in neurons in the central nervous system (CNS). 2. Recent studies indicated that transgenic mice with the cytoplasmic accumulation of PrPC exhibited extensive neurodegeneration in the cerebellum, although the underlying mechanism remains unknown. To identify the genes whose expression is controlled by over-expression of PrPC in human cells, we have established a stable PrPC-expressing HEK293 cell line designated P1 by the site-specific recombination technique. 3. Microarray analysis identified 33 genes expressed differentially between P1 and the parent PrPC-non-expressing cell line among 12,814 genes examined. They included 18 genes involved in neuronal and glial functions, 5 related to production of extracellular matrix proteins, and 2 located in the complement cascade. 4. Northern blot analysis verified marked upregulation in P1 of the brain-specific protein phosphatase 2A beta subunit (PPP2R2B), a causative gene of spinocerebellar ataxia 12, and the cerebellar degeneration-related autoantigen (CDR34) gene associated with development of paraneoplastic cerebellar degeneration. 5. These results indicate that accumulation of PrPC in the cell caused aberrant regulation of a battery of the genes important for specific neuronal function. This represents a possible mechanism underlying PrPC-mediated selective neurodegeneration.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Immunology, National Institute of Neuroscience, NCNP, Tokyo, Japan.
| | | |
Collapse
|
90
|
Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC, Vagner S. Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2004; 280:4144-53. [PMID: 15525641 DOI: 10.1074/jbc.m411492200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative initiation of translation of the human fibroblast growth factor 2 (FGF-2) mRNA at five in-frame CUG or AUG translation initiation codons requires various RNA cis-acting elements, including an internal ribosome entry site (IRES). Here we describe the purification of a trans-acting factor controlling FGF-2 mRNA translation achieved by several biochemical purification approaches. We have identified the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a factor that binds to the FGF-2 5'-leader RNA and that also complements defective FGF-2 translation in vitro in rabbit reticulocyte lysate. Recombinant hnRNP A1 stimulates in vitro translation at the four IRES-dependent initiation codons but has no effect on the cap-dependent initiation codon. Consistent with a role of hnRNP A1 in the control of alternative initiation of translation, short interfering RNA-mediated knock down of hnRNP A1 specifically inhibits translation at the four IRES-dependent initiation codons. Furthermore, hnRNP A1 binds to the FGF-2 IRES, implicating this interaction in the control of alternative initiation of translation.
Collapse
Affiliation(s)
- Sophie Bonnal
- INSERM U589, Institut Louis Bugnard, Hopital Rangueil, TSA 50032, 31059 Toulouse Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
91
|
Nishimura K, Ueda K, Guwanan E, Sakakibara S, Do E, Osaki E, Yada K, Okuno T, Yamanishi K. A posttranscriptional regulator of Kaposi's sarcoma-associated herpesvirus interacts with RNA-binding protein PCBP1 and controls gene expression through the IRES. Virology 2004; 325:364-78. [PMID: 15246275 DOI: 10.1016/j.virol.2004.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/11/2004] [Accepted: 04/23/2004] [Indexed: 11/23/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8, HHV-8) belongs to the gamma-herpesvirus subfamily. The KSHV ORF57 gene is thought to be a homolog of posttranscriptional regulators that are conserved in the herpesvirus family and are essential for replication. We generated specific monoclonal antibodies (mAbs) against the ORF57 protein that detected the 51-kDa protein expressed in the nucleus of KSHV-infected cells. We also found that the ORF57 protein interacted with poly(rC)-binding protein 1 (PCBP1), a cellular RNA-binding, posttranscriptional regulator. ORF57's interaction with PCBP1 enhanced the activity of not only poliovirus internal ribosome-entry site (IRES)-dependent translation but also X-linked inhibitor of apoptosis (XIAP) and KSHV vFLIP IRES. Actually, when ORF57 expression was induced by the expression of replication and transcription activator (RTA) in KSHV-infected cells, the expression of XIAP was enhanced. These results suggest that ORF57 binds to PCBP1 as a functional partner for posttranscriptional regulation and is involved in the regulation of the expression of both cellular and viral genes through IRESs.
Collapse
Affiliation(s)
- Ken Nishimura
- Department of Microbiology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Jang GM, Leong LEC, Hoang LT, Wang PH, Gutman GA, Semler BL. Structurally distinct elements mediate internal ribosome entry within the 5'-noncoding region of a voltage-gated potassium channel mRNA. J Biol Chem 2004; 279:47419-30. [PMID: 15339906 DOI: 10.1074/jbc.m405885200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The approximately 1.2-kb 5'-noncoding region (5'-NCR) of mRNA species encoding mouse Kv1.4, a member of the Shaker-related subfamily of voltage-gated potassium channels, was shown to mediate internal ribosome entry in cells derived from brain, heart, and skeletal muscle, tissues known to express Kv1.4 mRNA species. We also show that the upstream approximately 1.0 kb and the downstream approximately 0.2 kb of the Kv1.4 5'-NCR independently mediated internal ribosome entry; however, separately, these sequences were less efficient in mediating internal ribosome entry than when together in the complete (and contiguous) 5'-NCR. Using enzymatic structure probing, the 3'-most approximately 0.2 kb was predicted to form three distinct stem-loop structures (stem-loops X, Y, and Z) and two defined single-stranded regions (loops Psi and Omega) in the presence and absence of the upstream approximately 1.0 kb. Although the systematic deletion of sequences within the 3'-most approximately 0.2 kb resulted in distinct changes in expression, enzymatic structure probing indicated that local RNA folding was not completely altered. Structure probing analysis strongly suggested an interaction between stem-loop X and a downstream polypyrimidine tract; however, opposing changes in activity were observed when sequences within these two regions were independently deleted. Moreover, deletions correlating with positive as well as negative changes in expression altered RNase cleavage within stem-loop X, indicating that this structure may be an integral element. Therefore, these findings indicate that Kv1.4 expression is mediated through a complex interplay between many distinct RNA regions.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
93
|
Pickering BM, Mitchell SA, Spriggs KA, Stoneley M, Willis AE. Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol Cell Biol 2004; 24:5595-605. [PMID: 15169918 PMCID: PMC419896 DOI: 10.1128/mcb.24.12.5595-5605.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 01/07/2004] [Accepted: 03/26/2004] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that an internal ribosome entry segment (IRES) directs the synthesis of the p36 isoform of Bag-1 and that polypyrimidine tract binding protein 1 (PTB-1) and poly(rC) binding protein 1 (PCBP1) stimulate IRES-mediated translation initiation in vitro and in vivo. Here, a secondary structural model of the Bag-1 IRES has been derived by using chemical and enzymatic probing data as constraints on the RNA folding algorithm Mfold. The ribosome entry window has been identified within this structural model and is located in a region in which many residues are involved in base-pairing interactions. The interactions of PTB-1 and PCBP1 with their cognate binding sites on the IRES disrupt many of the RNA-RNA interactions, and this creates a largely unstructured region of approximately 40 nucleotides that could permit ribosome binding. Mutational analysis of the PTB-1 and PCBP1 binding sites suggests that PCBP1 acts as an RNA chaperone to open the RNA in the vicinity of the ribosome entry window while PTB-1 is probably an essential part of the preinitiation complex.
Collapse
Affiliation(s)
- Becky M Pickering
- Department of Biochemistry, University of Leicester, LE1 7RH, United Kingdom
| | | | | | | | | |
Collapse
|
94
|
Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 2004; 23:3200-7. [PMID: 15094769 DOI: 10.1038/sj.onc.1207551] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Initiation of translation in eukaryotic cells can occur by two distinct mechanisms, cap-dependent scanning and internal ribosome entry. The latter mechanism requires the formation of a complex RNA structural element termed an internal ribosome entry segment (IRES). IRESs are located in the 5' untranslated region of the message, and in the presence of trans-acting factors allow the ribosome to be recruited to a site that is a considerable distance from the cap structure. Many cellular mRNAs have now been shown to contain IRESs and it is likely that up to 10% of all mRNAs have the capability to initiate translation by this mechanism. The majority of IRESs that have been identified thus far are found in mRNAs whose protein products are associated with the control of cell growth and cell death, including many growth factors, proto-oncogenes and proteins required for apoptosis. In this review, we discuss the cellular situations when IRESs are required, the trans-acting factors that are necessary for IRES function and deregulation of IRES-mediated translation in tumorigenesis.
Collapse
Affiliation(s)
- Mark Stoneley
- Department of Biochemistry, University of Leicester, University Rd, Leicester LE1 7RH, UK.
| | | |
Collapse
|
95
|
Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23:2861-74. [PMID: 15077149 DOI: 10.1038/sj.onc.1207523] [Citation(s) in RCA: 637] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A plethora of apoptotic stimuli converge on the mitochondria and affect their membrane integrity. As a consequence, multiple death-promoting factors residing in the mitochondrial intermembrane space are liberated in the cytosol. Pro- and antiapoptotic Bcl-2 family proteins control the release of these mitochondrial proteins by inducing or preventing permeabilization of the outer mitochondrial membrane. Once released into the cytosol, these mitochondrial proteins activate both caspase-dependent and -independent cell death pathways. Cytochrome c was the first protein shown to be released from the mitochondria into the cytosol, where it induces apoptosome formation. Other released mitochondrial proteins include apoptosis-inducing factor (AIF) and endonuclease G, both of which contribute to apoptotic nuclear DNA damage in a caspase-independent way. Other examples are Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low PI) and the serine protease HtrA2/OMI (high-temperature requirement protein A2), which both promote caspase activation and instigate caspase-independent cytotoxicity. The precise mode of action and importance of cytochrome c in apoptosis in mammalian cells has become clear through biochemical, structural and genetic studies. More recently identified factors, for example HtrA2/OMI and Smac/DIABLO, are still being studied intensively in order to delineate their functions in apoptosis. A better understanding of these functions may help to develop new strategies to treat cancer.
Collapse
Affiliation(s)
- Xavier Saelens
- Department for Molecular Biomedical Research, VIB and Ghent University, Fiers-Shell-Van Montagu Building, Ghent B9052, Belgium
| | | | | | | | | | | |
Collapse
|
96
|
Bieleski L, Hindley C, Talbot SJ. A polypyrimidine tract facilitates the expression of Kaposi's sarcoma-associated herpesvirus vFLIP through an internal ribosome entry site. J Gen Virol 2004; 85:615-620. [PMID: 14993645 DOI: 10.1099/vir.0.19733-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have identified a novel internal ribosome entry site (IRES) within a latently expressed Kaposi's sarcoma-associated herpesvirus (KSHV) gene (vCyclin) that controls the expression of a downstream open reading frame encoding an inhibitor of apoptosis (vFLIP). This IRES is the first such element to be identified in a DNA virus and may represent a novel mechanism through which this virus controls gene expression. We have used a dual luciferase reporter assay to identify important sequence elements essential for the activity of the IRES. A sequence of 32 nucleotides incorporating a polypyrimidine tract (PPT) was found to be required for the proper functioning of the IRES. We also show, using an electrophoretic mobility shift assay (EMSA), that proteins specific to a KSHV-infected cell line (BCP-1) but not a KSHV-negative cell line (HEK293) were able to form complexes with the IRES. By using an in vitro RNA binding assay, the cellular polypyrimidine tract binding protein (PTB, hnRNP-I) was found to bind to the IRES RNA. These results suggest that the interaction of PTB with the PPT may contribute to the correct functioning of the KSHV IRES in infected cells.
Collapse
Affiliation(s)
- Lara Bieleski
- University of Edinburgh, Centre for Infectious Diseases, Summerhall, Edinburgh EH9 1QH, UK
| | - Clemence Hindley
- University of Edinburgh, Centre for Infectious Diseases, Summerhall, Edinburgh EH9 1QH, UK
| | - Simon J Talbot
- University of Edinburgh, Centre for Infectious Diseases, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
97
|
Van Eden ME, Byrd MP, Sherrill KW, Lloyd RE. Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA (NEW YORK, N.Y.) 2004; 10:720-30. [PMID: 15037781 PMCID: PMC1370562 DOI: 10.1261/rna.5225204] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 01/13/2004] [Indexed: 05/18/2023]
Abstract
The dicistronic assay for internal ribosome entry site (IRES) activity is the most widely used method for testing putative sequences that may drive cap-independent translation initiation. This assay typically involves the transfection of cells with dicistronic DNA test constructs. Many of the reports describing eukaryotic IRES elements have been criticized for the use of inadequate methods for the detection of aberrant RNAs that may form in transfected cells using this assay. Here we propose the combined use of a new RNAi-based method together with RT-PCR to effectively identify aberrant RNAs. We illustrate the use of these methods for analysis of RNAs generated in cells transfected with dicistronic test DNAs containing either the hepatitis C virus (HCV) IRES or the X-linked inhibitor of apoptosis (XIAP) cellular IRES. Both analyses indicated aberrantly spliced transcripts occurred in cells transfected with the XIAP dicistronic DNA construct. This contributed to the unusually high levels of apparent IRES activity exhibited by the XIAP 5' UTR in vivo. Cells transfected directly with dicistronic RNA exhibited much lower levels of XIAP IRES activity, resembling the lower levels observed after translation of dicistronic RNA in rabbit reticulocyte lysates. No aberrantly spliced transcripts could be detected following direct RNA transfection of cells. Interestingly, transfection of dicistronic DNA or RNA containing the HCV IRES did not form aberrantly spliced transcripts. These observations stress the importance of using alternative test procedures (e.g., direct RNA transfection) in conjunction with a combination of sensitive RNA analyses for discerning IRES-containing sequences in eukaryotic mRNAs.
Collapse
Affiliation(s)
- Marc E Van Eden
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | | | |
Collapse
|
98
|
Venkatramana M, Ray PS, Chadda A, Das S. A 25 kDa cleavage product of polypyrimidine tract binding protein (PTB) present in mouse tissues prevents PTB binding to the 5' untranslated region and inhibits translation of hepatitis A virus RNA. Virus Res 2004; 98:141-9. [PMID: 14659561 DOI: 10.1016/j.virusres.2003.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 5' untranslated region (5'UTR) of the hepatitis A virus (HAV) genomic RNA contains an internal ribosome entry site (IRES) which interacts with various cellular proteins and facilitates cap-independent translation. We report the interaction of a 25kDa protein (p25), present in certain murine tissues and most abundantly in mouse kidney, with the HAV 5'UTR. This protein was found to be a cleavage product of the polypyrimidine tract-binding protein (PTB) and competed with it for binding to the HAV 5'UTR RNA. The binding site of p25 overlapped with the reported binding site of PTB. Exogenous addition of partially purified p25 to in vitro translation reactions resulted in the inhibition of HAV IRES-mediated translation, which could be rescued by the addition of purified PTB. These results suggest that p25 is a cleavage product of PTB which binds to the HAV IRES and antagonizes the translation-stimulating activity of PTB. The presence of the 25kDa cleavage product of PTB may therefore play a role in the inhibition of HAV IRES-mediated translation in mouse tissues.
Collapse
Affiliation(s)
- Musturi Venkatramana
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | | | | | | |
Collapse
|
99
|
Coles LS, Bartley MA, Bert A, Hunter J, Polyak S, Diamond P, Vadas MA, Goodall GJ. A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. ACTA ACUST UNITED AC 2004; 271:648-60. [PMID: 14728692 DOI: 10.1111/j.1432-1033.2003.03968.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and post-transcriptional regulation plays a major role in VEGF expression. Both the 5'- and 3'-UTR are required for VEGF post-transcriptional regulation but factors binding to functional sequences within the 5'-UTR have not been fully characterized. We report here the identification of complexes, binding to the VEGFmRNA 5'- and 3'-UTR, that contain cold shock domain (CSD) and polypyrimidine tract binding (PTB) RNA binding proteins. Analysis of the CSD/PTB binding sites revealed a potential role in VEGF mRNA stability, in both noninduced and induced conditions, demonstrating a general stabilizing function. Such a stabilizing mechanism had not been reported previously for the VEGF gene. We further found that the CSD/PTB-containing complexes are large multiprotein complexes that are most likely preformed in solution and we demonstrate that PTB is associated with the VEGF mRNA in vivo. Complex formation between CSD proteins and PTB has not been reported previously. Analysis of the CSD/PTB RNA binding sites revealed a novel CSD protein RNA recognition site and also demonstrated that CSD proteins may direct the binding of CSD/PTB complexes. We found the same complexes binding to an RNA-stabilizing element of another growth factor gene, suggesting a broader functional role for the CSD/PTB complexes. Finally, as the VEGF gene is also regulated at the transcriptional level by CSD proteins, we propose a combined transcriptional/post-transcriptional role for these proteins in VEGF and other growth factor gene regulation.
Collapse
Affiliation(s)
- Leeanne S Coles
- Division of Human Immunology, The Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Choi K, Kim JH, Li X, Paek KY, Ha SH, Ryu SH, Wimmer E, Jang SK. Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides. Nucleic Acids Res 2004; 32:1308-17. [PMID: 14981151 PMCID: PMC390288 DOI: 10.1093/nar/gkh300] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 01/30/2004] [Accepted: 02/03/2004] [Indexed: 02/05/2023] Open
Abstract
The translation of numerous eukaryotic mRNAs is mediated by internal ribosomal entry sites (IRESs). IRES-dependent translation requires both canonical translation initiation factors and IRES-specific trans-acting factors (ITAFs). Here we report a strategy to identify and characterize ITAFs required for IRES-dependent translation. This process involves steps for identifying oligodeoxynucleotides affecting IRES-dependent translation, purifying proteins interacting with the inhibitory DNA, identifying the specific proteins with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry, and confirming the roles of these proteins in IRES-dependent translation by depletion and repletion of proteins from an in vitro translation system. Using this strategy, we show that poly(rC)-binding proteins 1 and 2 enhance translation through polioviral and rhinoviral IRES elements.
Collapse
Affiliation(s)
- Kobong Choi
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | | | | | | | |
Collapse
|