51
|
Faure S, Cau J, de Santa Barbara P, Bigou S, Ge Q, Delsert C, Morin N. Xenopus p21-activated kinase 5 regulates blastomeres' adhesive properties during convergent extension movements. Dev Biol 2005; 277:472-92. [PMID: 15617688 DOI: 10.1016/j.ydbio.2004.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/23/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022]
Abstract
The p21-activated kinase (PAK) proteins regulate many cellular events including cell cycle progression, cell death and survival, and cytoskeleton rearrangements. We previously identified X-PAK5 that binds the actin and microtubule networks, and could potentially regulate their coordinated dynamics during cell motility. In this study, we investigated the functional importance of this kinase during gastrulation in Xenopus. X-PAK5 is mainly expressed in regions of the embryo that undergo extensive cell movements during gastrula such as the animal hemisphere and the marginal zone. Expression of a kinase-dead mutant inhibits convergent extension movements in whole embryos and in activin-treated animal cap by modifying behavior of cells. This phenotype is rescued in embryo by adding back X-PAK5 catalytic activity. The active kinase decreases cell adhesiveness when expressed in animal hemisphere and inhibits the calcium-dependent reassociation of cells, while dead X-PAK5 kinase localizes to cell-cell junctions and increases cell adhesion. In addition, endogenous X-PAK5 colocalizes with adherens junction proteins and its activity is regulated by extracellular calcium. Taken together, our results suggest that X-PAK5 regulates convergent extension movements in vivo by modulating the calcium-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Sandrine Faure
- Centre de Recherches en Biochimie Macromoléculaire, FRE 2593 CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
52
|
Fujita-Becker S, Dürrwang U, Erent M, Clark RJ, Geeves MA, Manstein DJ. Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. J Biol Chem 2004; 280:6064-71. [PMID: 15579903 DOI: 10.1074/jbc.m412473200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I myosins are single-headed motor proteins implicated in various motile processes including organelle translocation, ion channel gating, and cytoskeleton reorganization. Dictyostelium discoideum myosin-ID belongs to subclass 1alpha, whose members are thought to be tuned for rapid sliding. The direct analysis of myosin-ID motor activity is made possible by the production of single polypeptide constructs carrying an artificial lever arm. Using these constructs, we show that the motor activity of myosin-ID is activated 80-fold by phosphorylation at the TEDS site. TEDS site phosphorylation acts by stabilizing the actomyosin complex and increasing the coupling between actin binding and the release of hydrolysis products. A surprising effect of Mg(2+) ions on in vitro motility was discovered. Changes in the level of free Mg(2+) ions within the physiological range are shown to modulate motor activity by inhibiting ADP release. Our results indicate that higher concentrations of free Mg(2+) ions stabilize the tension-bearing actin myosin ADP state and shift the system from the production of rapid movement toward the generation of tension.
Collapse
Affiliation(s)
- Setsuko Fujita-Becker
- Department of Biophysics, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Kaur R, Liu X, Gjoerup O, Zhang A, Yuan X, Balk SP, Schneider MC, Lu ML. Activation of p21-activated kinase 6 by MAP kinase kinase 6 and p38 MAP kinase. J Biol Chem 2004; 280:3323-30. [PMID: 15550393 DOI: 10.1074/jbc.m406701200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.
Collapse
Affiliation(s)
- Ramneet Kaur
- Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Sundberg-Smith LJ, Doherty JT, Mack CP, Taylor JM. Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J Biol Chem 2004; 280:2055-64. [PMID: 15542607 DOI: 10.1074/jbc.m406013200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Rac1/Cdc42 effector p21-activated kinase (PAK) is activated by various signaling cascades including receptor-tyrosine kinases and integrins and regulates a number of processes such as cell proliferation and motility. PAK activity has been shown to be required for maximal activation of the canonical Ras/Raf/MEK/ERK Map kinase signaling cascade, likely because of PAK co-activation of Raf and MEK. Herein, we found that adhesion signaling also stimulates an association between PAK1 and ERK1/2. PAK1 and ERK1/2 co-immunoprecipitated from rat aortic smooth muscle cells (SMC) plated on fibronectin, and the two proteins co-localized in membrane ruffles and adhesion complexes following PDGF-BB or sphingosine 1-phosphate treatment, respectively. Far Western analysis demonstrated a direct association between the two proteins, and peptide mapping identified an ERK2 binding site within the autoinhibitory domain of PAK1. Interestingly, deletion of a major ERK binding site in PAK attenuates activation of an ERK-dependent serum-responsive element (SRE)-luciferase reporter gene, indicating that association between PAK and ERK is required to facilitate ERK signaling. We also show that ERK2 phosphorylates PAK1 on Thr(212) in vitro and that Thr(212) is phosphorylated in smooth muscle cells following PDGF-BB treatment in an adhesion- and MEK/ERK-dependent fashion. Expression of a phosphomimic variant, PAK-T212E, does not alter ERK association, but markedly attenuates downstream ERK signaling. Taken together, these data suggest that PAK1 may facilitate ERK signaling by serving as a scaffold to recruit Raf, MEK, and ERK to adhesion complexes, and that subsequent growth factor-stimulated phosphorylation of PAK-Thr(212) by ERK may serve to provide a negative feedback signal to control coordinate activation of ERK by growth factor- and matrix-induced signals.
Collapse
Affiliation(s)
- Liisa J Sundberg-Smith
- Department of Pathology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
55
|
Blumenstein L, Ahmadian MR. Models of the cooperative mechanism for Rho effector recognition: implications for RhoA-mediated effector activation. J Biol Chem 2004; 279:53419-26. [PMID: 15475352 DOI: 10.1074/jbc.m409551200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activated GTPases of the Rho family regulate a spectrum of functionally diverse downstream effectors, initiating a network of signal transduction pathways by interaction and activation of effector proteins. Although effectors are defined as proteins that selectively bind the GTP-bound state of the small GTPases, there have been also several indications for a nucleotide-independent binding mode. By characterizing the molecular mechanism of RhoA interaction with its effectors, we have determined the equilibrium dissociation constants of several Rho-binding domains of three different effector proteins (Rhotekin, ROCKI/ROK beta/p160ROCK, PRK1/PKNalpha where ROK is RhoA-binding kinase) for both RhoA.GDP and RhoA.GTP using fluorescence spectroscopy. In addition, we have identified two novel Rho-interacting domains in ROCKI, which bind RhoA with high affinity but not Cdc42 or Rac1. Our results, together with recent structural data, support the notion of multiple effector-binding sites in RhoA and strongly indicate a cooperative binding mechanism for PRK1 and ROCKI that may be the molecular basis of Rho-mediated effector activation.
Collapse
Affiliation(s)
- Lars Blumenstein
- Max-Planck-Institute for Molecular Physiology, Department of Structural Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | |
Collapse
|
56
|
Chu PC, Wu J, Liao XC, Pardo J, Zhao H, Li C, Mendenhall MK, Pali E, Shen M, Yu S, Taylor VC, Aversa G, Molineaux S, Payan DG, Masuda ES. A novel role for p21-activated protein kinase 2 in T cell activation. THE JOURNAL OF IMMUNOLOGY 2004; 172:7324-34. [PMID: 15187108 DOI: 10.4049/jimmunol.172.12.7324] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify novel components of the TCR signaling pathway, a large-scale retroviral-based functional screen was performed using CD69 expression as a marker for T cell activation. In addition to known regulators, two truncated forms of p21-activated kinase 2 (PAK2), PAK2DeltaL(1-224) and PAK2DeltaS(1-113), both lacking the kinase domain, were isolated in the T cell screen. The PAK2 truncation, PAK2DeltaL, blocked Ag receptor-induced NFAT activation and TCR-mediated calcium flux in Jurkat T cells. However, it had minimal effect on PMA/ionomycin-induced CD69 up-regulation in Jurkat cells, on anti-IgM-mediated CD69 up-regulation in B cells, or on the migratory responses of resting T cells to chemoattractants. We show that PAK2 kinase activity is increased in response to TCR stimulation. Furthermore, a full-length kinase-inactive form of PAK2 blocked both TCR-induced CD69 up-regulation and NFAT activity in Jurkat cells, demonstrating that kinase activity is required for PAK2 function downstream of the TCR. We also generated a GFP-fused PAK2 truncation lacking the Cdc42/Rac interactive binding region domain, GFP-PAK2(83-149). We show that this construct binds directly to the kinase domain of PAK2 and inhibits anti-TCR-stimulated T cell activation. Finally, we demonstrate that, in primary T cells, dominant-negative PAK2 prevented anti-CD3/CD28-induced IL-2 production, and TCR-induced CD40 ligand expression, both key functions of activated T cells. Taken together, these results suggest a novel role for PAK2 as a positive regulator of T cell activation.
Collapse
MESH Headings
- Antigens, CD/analysis
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/analysis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- B-Lymphocytes/metabolism
- Biomarkers/analysis
- Cell Line, Tumor
- DNA-Binding Proteins/metabolism
- Humans
- Lectins, C-Type
- Lymphocyte Activation
- Mutation
- NFATC Transcription Factors
- Nuclear Proteins
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/physiology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription Factors/metabolism
- p21-Activated Kinases
Collapse
Affiliation(s)
- Peter C Chu
- Rigel Inc., 1180 Veterans Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Alahari SK, Reddig PJ, Juliano RL. The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK. EMBO J 2004; 23:2777-88. [PMID: 15229651 PMCID: PMC514951 DOI: 10.1038/sj.emboj.7600291] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 05/26/2004] [Indexed: 12/20/2022] Open
Abstract
Nischarin, a novel intracellular protein, was originally identified as a binding partner for the alpha5beta1 integrin. Here we show that Nischarin also interacts with members of the PAK family of kinases. The amino terminus of Nischarin preferentially binds to the carboxy-terminal domain of PAK1 when the kinase is in its activated conformation. Nischarin binding to PAK1 is enhanced by active Rac, with the three proteins forming a complex, while expression of the alpha5beta1 integrin also increases the Nischarin/PAK1 association. Interaction with Nischarin strongly inhibits the ability of PAK1 to phosphorylate substrates. This effect on PAK kinase activity closely parallels Nischarin's ability to inhibit cell migration. Conversely, reduction of endogenous levels of Nischarin by RNA interference promotes cell migration. In addition, PAK1 and Nischarin colocalize in membrane ruffles, structures known to be involved in cell motility. Thus, Nischarin may regulate cell migration by forming inhibitory complexes with PAK family kinases.
Collapse
Affiliation(s)
- Suresh K Alahari
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Peter J Reddig
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Rudy L Juliano
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA. Tel.: +1 919 966 4583; Fax: +1 919 966 5640; E-mail:
| |
Collapse
|
58
|
Buck M, Xu W, Rosen MK. A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting. J Mol Biol 2004; 338:271-85. [PMID: 15066431 DOI: 10.1016/j.jmb.2004.02.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/09/2004] [Accepted: 02/17/2004] [Indexed: 11/24/2022]
Abstract
Remodeling of the actin cytoskeleton is controlled by signaling pathways that include the Wiskott-Aldrich syndrome protein (WASP). WASP is regulated by autoinhibition, and the intramolecular contacts that inactivate the protein can be relieved through binding to the Rho-family GTPase Cdc42. Here, we show that the allosteric regulation of WASP can be quantitatively described by a two-state equilibrium between an active, largely unfolded conformation that is able to stimulate the Arp2/3 complex, and an inactive, folded conformation. The model is parameterized by the stability of WASP against unfolding and by the Cdc42 affinities of WASP constructs that mimic the unfolded and folded conformations. The model is consistent with NMR spectra of GTPase-bound WASP, and accurately predicts changes of amide hydrogen exchange behavior and Cdc42 affinity as a function of WASP stability. The results provide a thermodynamic rationale for the GTPase-independent recruitment of WASP and other autoinhibited effectors to their sites of activity. They also explain how basal activity is suppressed and confirm that WASP needs to integrate multiple cooperative inputs for maximal activation. Our analysis suggests that, in general, simple modulation of a two-state equilibrium may determine several regulatory functions, allowing the generation of complex signaling behavior in vivo.
Collapse
Affiliation(s)
- Matthias Buck
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
59
|
Krautkrämer E, Giese SI, Gasteier JE, Muranyi W, Fackler OT. Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol 2004; 78:4085-97. [PMID: 15047825 PMCID: PMC374280 DOI: 10.1128/jvi.78.8.4085-4097.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef protein of human immunodeficiency virus type 1 is an important factor in AIDS pathogenesis. In addition to downregulating CD4 and major histocompatibility complex class I molecules from the cell surface, as well as increasing virion infectivity, Nef triggers activation of the T-cell receptor (TCR) cascade to facilitate virus spread. Signaling pathways that are induced by Nef have been identified; however, it is unclear how and in which subcellular compartment Nef triggers signaling. Nef recruits a multiprotein complex to activate the cellular Pak kinase that mediates downstream effector functions. Since a subpopulation of Nef is present in detergent-insoluble microdomains (lipid rafts) from where physiological TCR signaling is initiated, we tested whether lipid rafts are instrumental for Nef-mediated Pak activation. In flotation analysis, Nef-associated Pak activity exclusively fractionated with lipid rafts. Activation of Pak in the presence of Nef coincided with lipid raft recruitment of the kinase, which was otherwise excluded from detergent-insoluble microdomains. Experimental solubilization of lipid rafts interfered with the association of Pak activity with Nef. To analyze the importance of the raft localization for Nef function more rigorously, we generated a palmitoylated Nef (PalmNef). PalmNef was highly enriched in lipid rafts and associated with significantly higher levels of Pak activity than Nef. Notably, activation of Pak by its physiological activators, Cdc42 and Rac, also occurred in lipid rafts and required raft integrity. Together, these data suggest that Nef induces signal transduction via the recruitment of a signaling machinery including Pak into lipid rafts, thereby mimicking a physiological cellular mechanism to initiate the TCR cascade.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Abteilung Virologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
60
|
Bertagnolo V, Brugnoli F, Marchisio M, Celeghini C, Carini C, Capitani S. Association of PI 3-K with tyrosine phosphorylated Vav is essential for its activity in neutrophil-like maturation of myeloid cells. Cell Signal 2004; 16:423-33. [PMID: 14709332 DOI: 10.1016/j.cellsig.2003.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of the Vav family of signal transduction molecules in hematopoietic cells has long been acknowledged, even though its role and its regulatory mechanism are not completely understood. We have previously demonstrated that tyrosine-phosphorylated Vav, also located inside the nucleus of myeloid cells, is up-regulated during maturation of promyelocytic precursors induced by all-trans-retinoic acid (ATRA). Here, we report that the tyrosine phosphorylation of Vav during granulocytic maturation is dependent on the tyrosine kinase Syk and is essential for the morphological changes of the cell nucleus. These ATRA-induced events are independent on the guanine nucleotide exchange activity of Vav. We also found that, in differentiating cells, and in both cytoplasmic and nuclear compartments, tyrosine phosphorylated Vav associates with the regulatory subunit of phosphoinositide 3-kinase (PI 3-K). The Vav/p85 interaction is essential for the ATRA-induced PI 3-K activity and for association of PI 3-K with actin, particularly in the nucleus. Our data indicate an unprecedented crucial function for Vav in modulating the morphological maturation process of myeloid cells in a GDP-GTP exchange factor (GEF)-independent manner and suggest a role of Vav as an adaptor protein responsible of targeting PI 3-K to its intranuclear substrates.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
61
|
Fiegen D, Haeusler LC, Blumenstein L, Herbrand U, Dvorsky R, Vetter IR, Ahmadian MR. Alternative Splicing of Rac1 Generates Rac1b, a Self-activating GTPase. J Biol Chem 2004; 279:4743-9. [PMID: 14625275 DOI: 10.1074/jbc.m310281200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rac1b was recently identified in malignant colorectal tumors as an alternative splice variant of Rac1 containing a 19-amino acid insertion next to the switch II region. The structures of Rac1b in the GDP- and the GppNHp-bound forms, determined at a resolution of 1.75 A, reveal that the insertion induces an open switch I conformation and a highly mobile switch II. As a consequence, Rac1b has an accelerated GEF-independent GDP/GTP exchange and an impaired GTP hydrolysis, which is restored partially by GTPase-activating proteins. Interestingly, Rac1b is able to bind the GTPase-binding domain of PAK but not full-length PAK in a GTP-dependent manner, suggesting that the insertion does not completely abolish effector interaction. The presented study provides insights into the structural and biochemical mechanism of a self-activating GTPase.
Collapse
Affiliation(s)
- Dennis Fiegen
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
The p21-activated kinases (PAKs) 1-3 are serine/threonine protein kinases whose activity is stimulated by the binding of active Rac and Cdc42 GTPases. Our understanding of the regulation and biology of these important signaling proteins has increased tremendously since their discovery in the mid-1990s. PAKs 1-3 are activated by a variety of GTPase-dependent and -independent mechanisms. This complexity reflects the contributions of PAK function in many cellular signaling pathways and the need to carefully control PAK action in a highly localized manner. PAKs serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signaling, and cell-cycle progression. Consequently, PAKs have also been implicated in a number of pathological conditions and in cell transformation. We propose here a key role for PAK action in coordinating the dynamics of the actin and microtubule cytoskeletons during directional motility of cells, as well as in other functions requiring cytoskeletal polarization.
Collapse
Affiliation(s)
- Gary M Bokoch
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
63
|
Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR. Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem 2003; 279:7098-104. [PMID: 14660612 DOI: 10.1074/jbc.m311911200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rho-ROCK pathway modulates the phosphorylation level of a variety of important signaling proteins and is thereby involved in miscellaneous cellular processes including cell migration, neurite outgrowth, and smooth muscle contraction. The observation of the involvement of the Rho-ROCK pathway in tumor invasion and in diseases such as hypertension and bronchial asthma makes it an interesting target for drug development. We herein present the crystal structure of the complex between active RhoA and the Rho-binding domain of ROCKI. The Rho-binding domain structure forms a parallel alpha-helical coiled-coil dimer and, in contrast to the published Rho-protein kinase N structure, binds exclusively to the switch I and II regions of the guanosine 5'-(beta,gamma-imido)triphosphate-bound RhoA. The switch regions of two different RhoA molecules form a predominantly hydrophobic patch, which is complementarily bound by two identical short helices of 13 residues (amino acids 998-1010). The identified ROCK-binding site of RhoA strikingly supports the assumption of a common consensus-binding site for effector recognition.
Collapse
Affiliation(s)
- Radovan Dvorsky
- Max-Planck-Institute fuer Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
64
|
Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T. Merlin, the Product of the Nf2 Tumor Suppressor Gene, Is an Inhibitor of the p21-Activated Kinase, Pak1. Mol Cell 2003; 12:841-9. [PMID: 14580336 DOI: 10.1016/s1097-2765(03)00382-4] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Nf2 tumor suppressor gene codes for merlin, a protein whose function has been elusive. We describe a novel interaction between merlin and p21-activated kinase 1 (Pak1), which is dynamic and facilitated upon increased cellular confluence. Merlin inhibits the activation of Pak1, as the loss of merlin expression results in the inappropriate activation of Pak1 under conditions associated with low basal activity. Conversely, the overexpression of merlin in cells that display a high basal activity of Pak1 resulted in the inhibition of Pak1 activation. This inhibitory function of merlin is mediated through its binding to the Pak1 PBD and by inhibiting Pak1 recruitment to focal adhesions. This link provides a possible mechanism for the effect of loss of merlin expression in tumorigenesis.
Collapse
Affiliation(s)
- Joseph L Kissil
- Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
65
|
Zhan Q, Ge Q, Ohira T, Van Dyke T, Badwey JA. p21-Activated Kinase 2 in Neutrophils Can Be Regulated by Phosphorylation at Multiple Sites and by a Variety of Protein Phosphatases. THE JOURNAL OF IMMUNOLOGY 2003; 171:3785-93. [PMID: 14500679 DOI: 10.4049/jimmunol.171.7.3785] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p21-activated kinase(Pak) 2 undergoes rapid autophosphorylation/activation in neutrophils stimulated with a variety of chemoattractants (e.g., fMLP). Phosphorylation within the activation loop (Thr(402)) and inhibitory domain (Ser(141)) is known to increase the activity of Pak in vitro, whereas phosphorylation within the Nck (Ser(20)) and Pak-interacting guanine nucleotide exchange factor (Ser(192) and Ser(197)) binding sites blocks the interactions of Pak 2 with these proteins. A panel of phosphospecific Abs was used to investigate the phosphorylation of Pak 2 in neutrophils at these sites. Pak 2 underwent rapid (< or =15 s) phosphorylation at Ser(20), Ser(192/197), and Thr(402) in neutrophils stimulated with fMLP. Phosphorylation at Ser(192/197) and Thr(402) were highly transient events, whereas that at Ser(20) was more persistent. In contrast, Pak 2 was constitutively phosphorylated at Ser(141) in unstimulated neutrophils and phosphorylation at this site was less sensitive to cell stimulation than at other residues. Studies with selective inhibitors suggested that a variety of phosphatases might be involved in the rapid dephosphorylation of Pak 2 at Thr(402) in stimulated neutrophils. This was consistent with biochemical studies which showed that the activation loop of GST-Pak 3, which is homologous to that in Pak 2, was a substrate for protein phosphatase 1, 2A, and a Mg(2+)/Mn(2+)-dependent phosphatase(s) which exhibited properties different from those of the conventional isoforms of protein phosphatase 2C. The data indicate that Pak 2 undergoes a complex pattern of phosphorylation in neutrophils and that dephosphorylation at certain sites may involve multiple protein phosphatases that exhibit distinct modes of regulation.
Collapse
Affiliation(s)
- Qian Zhan
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
66
|
Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 2003; 23:3067-78. [PMID: 12697809 PMCID: PMC153186 DOI: 10.1128/mcb.23.9.3067-3078.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic studies have implicated the cytosolic juxtamembrane region of the Kit receptor tyrosine kinase as an autoinhibitory regulatory domain. Mutations in the juxtamembrane domain are associated with cancers, such as gastrointestinal stromal tumors and mastocytosis, and result in constitutive activation of Kit. Here we elucidate the biochemical mechanism of this regulation. A synthetic peptide encompassing the juxtamembrane region demonstrates cooperative thermal denaturation, suggesting that it folds as an autonomous domain. The juxtamembrane peptide directly interacted with the N-terminal ATP-binding lobe of the kinase domain. A mutation in the juxtamembrane region corresponding to an oncogenic form of Kit or a tyrosine-phosphorylated form of the juxtamembrane peptide disrupted the stability of this domain and its interaction with the N-terminal kinase lobe. Kinetic analysis of the Kit kinase harboring oncogenic mutations in the juxtamembrane region displayed faster activation times than the wild-type kinase. Addition of exogenous wild-type juxtamembrane peptide to active forms of Kit inhibited its kinase activity in trans, whereas the mutant peptide and a phosphorylated form of the wild-type peptide were less effective inhibitors. Lastly, expression of the Kit juxtamembrane peptide in cells which harbor an oncogenic form of Kit inhibited cell growth in a Kit-specific manner. Together, these results show the Kit kinase is autoinhibited through an intramolecular interaction with the juxtamembrane domain, and tyrosine phosphorylation and oncogenic mutations relieved the regulatory function of the juxtamembrane domain.
Collapse
Affiliation(s)
- Perry M Chan
- Division of Experimental Therapeutics, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
67
|
Vikis H, Guan KL. Regulation of the Ras-MAPK pathway at the level of Ras and Raf. GENETIC ENGINEERING 2003; 24:49-66. [PMID: 12416300 DOI: 10.1007/978-1-4615-0721-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Haris Vikis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
68
|
Tran NH, Frost JA. Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J Biol Chem 2003; 278:11221-6. [PMID: 12551923 DOI: 10.1074/jbc.m210318200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of cells to mitogens or growth factors stimulates Raf-1 activity through a complex mechanism that involves binding to active Ras, phosphorylation on multiple residues, and protein-protein interactions. Recently it was shown that the amino terminus of Raf-1 contains an autoregulatory domain that can inhibit its activity in Xenopus oocytes. In the present work we show that expression of the Raf-1 autoinhibitory domain blocks extracellular signal-regulated kinase 2 activation by the Raf-1 catalytic domain in mammalian cells. We also show that phosphorylation of Raf-1 on serine 338 by PAK1 and tyrosines 340 and 341 by Src relieves autoinhibition and that this occurs through a specific decrease in the binding of the Raf-1 regulatory domain to its catalytic domain. In addition, we demonstrate that phosphorylation of threonine 491 and serine 494, two phosphorylation sites in the catalytic domain that are required for Raf-1 activation, is unlikely to regulate autoinhibition. These results demonstrate that the autoinhibitory domain of Raf-1 is functional in mammalian cells and that its interaction with the Raf-1 catalytic domain is regulated by phosphorylation of serine 338 and tyrosines 340 and 341.
Collapse
Affiliation(s)
- Nancy H Tran
- Department of Integrative Biology and Pharmacology, University of Texas Houston Health Science Center, Houston, Texas 77030, USA
| | | |
Collapse
|
69
|
Puto LA, Pestonjamasp K, King CC, Bokoch GM. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J Biol Chem 2003; 278:9388-93. [PMID: 12522133 DOI: 10.1074/jbc.m208414200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A variety of intracellular signaling pathways are linked to cell surface receptor signaling through their recruitment by Src homology 2 (SH2)/SH3-containing adapter molecules. p21-activated kinase 1 (PAK1) is an effector of Rac/Cdc42 GTPases that has been implicated in the regulation of cytoskeletal dynamics, proliferation, and cell survival signaling. In this study, we describe the specific interaction of PAK1 with the Grb2 adapter protein both in vitro and in vivo. We identify the site of this interaction as the second proline-rich SH3 binding domain of PAK1. Stimulation of the epidermal growth factor receptor (EGFR) in HaCaT cells enhances the level of EGFR-associated PAK1 and Grb2, although the PAK1-Grb2 association is itself independent of this stimulation. A cell-permeant TAT-tagged peptide encompassing the second proline-rich SH3 binding domain of PAK1 simultaneously blocked Grb2 and activated EGFR association with PAK1, in vitro and in vivo, indicating that Grb2 mediates the interaction of PAK1 with the activated EGFR. Blockade of this interaction decreased the epidermal growth factor-induced extension of membrane lamellae. Thus Grb2 may serve as an important mechanism for linking downstream PAK signaling to various upstream pathways.
Collapse
Affiliation(s)
- Lorena A Puto
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
70
|
Garrard SM, Capaldo CT, Gao L, Rosen MK, Macara IG, Tomchick DR. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J 2003; 22:1125-33. [PMID: 12606577 PMCID: PMC150343 DOI: 10.1093/emboj/cdg110] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cdc42 is a small GTPase that is required for cell polarity establishment in eukaryotes as diverse as budding yeast and mammals. Par6 is also implicated in metazoan cell polarity establishment and asymmetric cell divisions. Cdc42.GTP interacts with proteins that contain a conserved sequence called a CRIB motif. Uniquely, Par6 possesses a semi-CRIB motif that is not sufficient for binding to Cdc42. An adjacent PDZ domain is also necessary and is required for biological effects of Par6. Here we report the crystal structure of a complex between Cdc42 and the Par6 GTPase-binding domain. The semi-CRIB motif forms a beta-strand that inserts between the four strands of Cdc42 and the three strands of the PDZ domain to form a continuous eight-stranded sheet. Cdc42 induces a conformational change in Par6, detectable by fluorescence resonance energy transfer spectroscopy. Nuclear magnetic resonance studies indicate that the semi-CRIB motif of Par6 is at least partially structured by the PDZ domain. The structure highlights a novel role for a PDZ domain as a structural scaffold.
Collapse
Affiliation(s)
| | | | | | - Michael K. Rosen
- Center for Cell Signaling and Department of Microbiology, University of Virginia, Charlottesville, VA 22908 and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA Corresponding author e-mail:
| | - Ian G. Macara
- Center for Cell Signaling and Department of Microbiology, University of Virginia, Charlottesville, VA 22908 and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA Corresponding author e-mail:
| | - Diana R. Tomchick
- Center for Cell Signaling and Department of Microbiology, University of Virginia, Charlottesville, VA 22908 and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA Corresponding author e-mail:
| |
Collapse
|
71
|
Rousseau V, Goupille O, Morin N, Barnier JV. A new constitutively active brain PAK3 isoform displays modified specificities toward Rac and Cdc42 GTPases. J Biol Chem 2003; 278:3912-20. [PMID: 12464619 DOI: 10.1074/jbc.m207251200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p21-activated kinases (PAK) are involved in the control of cytoskeleton dynamics and cell cycle progression. Here we report the characterization of a new mammalian PAK3 mRNA that contains a 45-bp alternatively spliced exon. This exon encodes for 15 amino acids that are inserted in the regulatory domain, inside the autoinhibitory domain but outside the Cdc42 and Rac interactive binding domain. The transcript of the 68-kDa new isoform named PAK3b is expressed in various areas of the adult mouse brain. In contrast to PAK3 without the exon b (PAK3a), whose basal kinase activity is weak in resting cells, PAK3b displays a high kinase activity in starved cells that is not further stimulated by active GTPases. Indeed, we demonstrate that the autoinhibitory domain of PAK3b no longer inhibits the kinase activity of PAK3. Moreover, we show that the 15-amino acid insertion within the autoinhibitory domain impedes the ability of PAK3b to bind to the GTPases Rac and Cdc42 and changes its specificity toward the GTPases. Altogether, our results show that the new PAK3b isoform has unique properties and would signal differently from PAK3a in neurons.
Collapse
Affiliation(s)
- Veronique Rousseau
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
72
|
Schneeberger D, Raabe T. Mbt, a Drosophila PAK protein, combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 2003; 130:427-37. [PMID: 12490550 DOI: 10.1242/dev.00248] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Drosophila gene mushroom bodies tiny (mbt) encodes a putative p21-activated kinase (PAK), a family of proteins that has been implicated in a multitude of cellular processes including regulation of the cytoskeleton, cell polarisation, control of MAPK signalling cascades and apoptosis. The mutant phenotype of mbt is characterised by fewer neurones in the brain and the eye, indicating a role of the protein in cell proliferation, differentiation or survival. We show that mutations in mbt interfere with photoreceptor cell morphogenesis. Mbt specifically localises at adherens junctions of the developing photoreceptor cells. A structure-function analysis of the Mbt protein in vitro and in vivo revealed that the Mbt kinase domain and the GTPase binding domain, which specifically interacts with GTP-loaded Cdc42, are important for Mbt function. Besides regulation of kinase activity, another important function of Cdc42 is to recruit Mbt to adherens junctions. We propose a role for Mbt as a downstream effector of Cdc42 in photoreceptor cell morphogenesis.
Collapse
Affiliation(s)
- Daniela Schneeberger
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Versbacherstr. 5, 97078 Würzburg, Germany
| | | |
Collapse
|
73
|
Endo M, Shirouzu M, Yokoyama S. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. J Biol Chem 2003; 278:843-52. [PMID: 12409291 DOI: 10.1074/jbc.m209714200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein Cdc42, the guanine nucleotide exchange factor Scd1, the p21-activated kinase Shk1, and the adaptor protein Scd2 are involved in the Cdc42-dependent signaling cascade in fission yeast. In the present study, we analyzed the Cdc42 binding and scaffolding activities of Scd2 by co-precipitation assays. We found that two SH3-containing regions, amino acid residues 1-87 (CB1 (Cdc42-binding region 1)) and 110-266 (CB2), of Scd2 can bind to the GTP-bound form of Cdc42. CB2 is cryptic because of the intramolecular binding between the SH3 domain in CB2 (SH3(C)) and the PX domain and binds to Cdc42 only when the Scd2 PB1 domain binds to the PC motif-containing region (residues 760-872) of Scd1. This CB2.Cdc42 association, which would stabilize the open configuration of Scd2, enables the SH3(C) domain to bind to the polyproline motif of Shk1. We also found that the GTP-bound form of Cdc42 binds to the CRIB motif of Shk1 more strongly than to Scd2. Thus, Scd2 functions as a scaffold to form a protein complex, and the GTP-bound Cdc42 might be transferred effectively from the upstream activator Scd1 to the downstream effector Shk1 via Scd2.
Collapse
Affiliation(s)
- Makoto Endo
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
74
|
Brown MC, West KA, Turner CE. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol Biol Cell 2002; 13:1550-65. [PMID: 12006652 PMCID: PMC111126 DOI: 10.1091/mbc.02-02-0015] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The precise temporal-spatial regulation of the p21-activated serine-threonine kinase PAK at the plasma membrane is required for proper cytoskeletal reorganization and cell motility. However, the mechanism by which PAK localizes to focal adhesions has not yet been elucidated. Indirect binding of PAK to the focal adhesion protein paxillin via the Arf-GAP protein paxillin kinase linker (PKL) and PIX/Cool suggested a mechanism. In this report, we demonstrate an essential role for a paxillin-PKL interaction in the recruitment of activated PAK to focal adhesions. Similar to PAK, expression of activated Cdc42 and Rac1, but not RhoA, stimulated the translocation of PKL from a generally diffuse localization to focal adhesions. Expression of the PAK regulatory domain (PAK1-329) or the autoinhibitory domain (AID 83-149) induced PKL, PIX, and PAK localization to focal adhesions, indicating a role for PAK scaffold activation. We show PIX, but not NCK, binding to PAK is necessary for efficient focal adhesion localization of PAK and PKL, consistent with a PAK-PIX-PKL linkage. Although PAK activation is required, it is not sufficient for localization. The PKL amino terminus, containing the PIX-binding site, but lacking paxillin-binding subdomain 2 (PBS2), was unable to localize to focal adhesions and also abrogated PAK localization. An identical result was obtained after PKLDeltaPBS2 expression. Finally, neither PAK nor PKL was capable of localizing to focal adhesions in cells overexpressing paxillinDeltaLD4, confirming a requirement for this motif in recruitment of the PAK-PIX-PKL complex to focal adhesions. These results suggest a GTP-Cdc42/GTP-Rac triggered multistep activation cascade leading to the stimulation of the adaptor function of PAK, which through interaction with PIX provokes a functional PKL PBS2-paxillin LD4 association and consequent recruitment to focal adhesions. This mechanism is probably critical for the correct subcellular positioning of PAK, thereby influencing the ability of PAK to coordinate cytoskeletal reorganization associated with changes in cell shape and motility.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse 13210, USA
| | | | | |
Collapse
|
75
|
Lamson RE, Winters MJ, Pryciak PM. Cdc42 regulation of kinase activity and signaling by the yeast p21-activated kinase Ste20. Mol Cell Biol 2002; 22:2939-51. [PMID: 11940652 PMCID: PMC133773 DOI: 10.1128/mcb.22.9.2939-2951.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.
Collapse
Affiliation(s)
- Rachel E Lamson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
76
|
Vikis HG, Li W, Guan KL. The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev 2002; 16:836-45. [PMID: 11937491 PMCID: PMC186329 DOI: 10.1101/gad.966402] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The small GTPase Rac has been implicated in growth cone guidance mediated by semaphorins and their receptors. Here we demonstrate that plexin-B1, a receptor for Semaphorin4D (Sema4D), and p21-activated kinase (PAK) can compete for the interaction with active Rac and plexin-B1 can inhibit Rac-induced PAK activation. We have also demonstrated that expression of active Rac enhances the ability of plexin-B1 to interact with Sema4D. Active Rac stimulates the localization of plexin-B1 to the cell surface. The enhancement in Sema4D binding depends on the ability of Rac to bind plexin-B1. These observations support a model where signaling between Rac and plexin-B1 is bidirectional; Rac modulates plexin-B1 activity and plexin-B1 modulates Rac function.
Collapse
Affiliation(s)
- Haris G Vikis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
77
|
Abstract
The functionality and efficacy of Rho GTPase signaling is pivotal for a plethora of biological processes. Due to the integral nature of these molecules, the dysregulation of their activities can result in diverse aberrant phenotypes. Dysregulation can, as will be described below, be based on an altered signaling strength on the level of a specific regulator or that of the respective GTPase itself. Alternatively, effector pathways emanating from a specific Rho GTPase may be under- or overactivated. In this review, we address the role of the Rho-type GTPases as a subfamily of the Ras-superfamily of small GTP-binding proteins in the development of various disease phenotypes. The steadily growing list of genetic alterations that specifically impinge on proper Rho GTPase function corresponds to pathological categories such as cancer progression, mental disabilities and a group of quite diverse and unrelated disorders. We will provide an overview of disease-rendering mutations in genes that have been positively correlated with Rho GTPase signaling and will discuss the cellular and molecular mechanisms that may be affected by them.
Collapse
Affiliation(s)
- Benjamin Boettner
- Cold Spring Harbor Laboratories, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
78
|
Zang M, Hayne C, Luo Z. Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 2002; 277:4395-405. [PMID: 11733498 DOI: 10.1074/jbc.m110000200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of Raf-1 is a complex process in which phosphorylation of Ser(338)-Tyr(341) is a critical step. Previous studies have shown that Pak1/2 is implicated in both Ras-dependent and -independent activation of Raf-1 by phosphorylating Raf Ser(338). The present study explores the structural basis of Raf-1 phosphorylation by Pak1. We found that Pak directly associates with Raf-1 under both physiological and overexpressed conditions. The association is greatly stimulated by 4beta-12-O-tetradecanoylphorbol-13-acetate and nocodazole and by expression of the active mutants of Rac and Ras. The active forms of Pak generated by mutation of Thr(423) to Glu or truncation of the amino-terminal moiety exhibit a greater binding to Raf than the wild type, whereas the kinase-dead mutant Pak barely binds Raf. The extent of binding to Raf-1 is correlated with the ability of Pak to phosphorylate Raf and induce mitogen-activated protein kinase activation. Furthermore, the Raf-1 binding site is defined to the carboxyl terminus of the Pak catalytic domain. In addition, our results suggest that the amino-terminal regulatory region of Raf inhibits the interaction. Taken together, the results indicate that the interaction depends on the active conformations of Pak and Raf. They also argue that Pak1 is a physiological candidate for phosphorylation of Raf Ser(338) during the course of Raf activation.
Collapse
Affiliation(s)
- Mengwei Zang
- Diabetes and Metabolism Research Unit, Endocrinology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
79
|
Lim WA. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr Opin Struct Biol 2002; 12:61-8. [PMID: 11839491 DOI: 10.1016/s0959-440x(02)00290-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Many eukaryotic signal transduction proteins have component-based architectures: they are built from combinations of protein interaction domains and catalytic domains. Intact, these proteins display the sophisticated allosteric behavior required for cellular regulation; the protein's output activity is tightly repressed under basal conditions, but can be robustly activated by a specific set of input effector ligands. A combination of structural, biophysical and computational studies is beginning to shed light on the fundamental principles governing this type of modular allostery.
Collapse
Affiliation(s)
- Wendell A Lim
- Department of Cellular and Molecular Pharmacology, Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0450, USA.
| |
Collapse
|
80
|
Parrini MC, Lei M, Harrison SC, Mayer BJ. Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 2002; 9:73-83. [PMID: 11804587 DOI: 10.1016/s1097-2765(01)00428-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pak1, a serine/threonine kinase that regulates the actin cytoskeleton, is an effector of the Rho family GTPases Cdc42 and Rac1. The crystal structure of Pak1 revealed an autoinhibited dimer that must dissociate upon GTPase binding. We show that Pak1 forms homodimers in vivo and that its dimerization is regulated by the intracellular level of GTP-Cdc42 or GTP-Rac1. The dimerized Pak1 adopts a trans-inhibited conformation: the N-terminal inhibitory portion of one Pak1 molecule in the dimer binds and inhibits the catalytic domain of the other. One GTPase interaction can result in activation of both partners. Another ligand, betaPIX, can stably associate with dimerized Pak1. Dimerization does not facilitate Pak1 trans-phosphorylation. We conclude that the functional significance of dimerization is to allow trans-inhibition.
Collapse
|