51
|
|
52
|
Abstract
Animal models of erythropoiesis have been, and will continue to be, important tools for understanding molecular mechanisms underlying the development of this cell lineage and the pathophysiology associated with various human erythropoietic diseases. In this regard, the mouse is probably the most valuable animal model available to investigators. The physiology and short gestational period of mice make them ideal for studying developmental processes and modeling human diseases. These attributes, coupled with cutting-edge genetic tools such as transgenesis, gene knockouts, conditional gene knockouts, and genome editing, provide a significant resource to the research community to test a plethora of hypotheses. This review summarizes the mouse models available for studying a wide variety of erythroid-related questions, as well as the properties inherent in each one.
Collapse
|
53
|
Distinct mechanisms of regulation of the ITGA6 and ITGB4 genes by RUNX1 in myeloid cells. J Cell Physiol 2017; 233:3439-3453. [DOI: 10.1002/jcp.26197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023]
|
54
|
Duchartre Y, Bachl S, Kim HN, Gang EJ, Lee S, Liu HC, Shung K, Xu R, Kruse A, Tachas G, Bonig H, Kim YM. Effects of CD49d-targeted antisense-oligonucleotide on α4 integrin expression and function of acute lymphoblastic leukemia cells: Results of in vitro and in vivo studies. PLoS One 2017; 12:e0187684. [PMID: 29117236 PMCID: PMC5678723 DOI: 10.1371/journal.pone.0187684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into “clinical” benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.
Collapse
Affiliation(s)
- Yann Duchartre
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Stefanie Bachl
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- Institute for Transfusion Medicine and Immunohematology, Goethe University, and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Eun Ji Gang
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Solah Lee
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Hsiao-chuan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, United States of America
| | - Ruth Xu
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
| | - Aaron Kruse
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- Department of Pathology, University of Southern California, Los Angeles, United States of America
| | - George Tachas
- Antisense Therapeutics Limited, Toorak, Victoria, Australia
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, and German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt, Germany
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, United States of America
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, United States of America
- * E-mail:
| |
Collapse
|
55
|
Prajeeth CK, Kronisch J, Khorooshi R, Knier B, Toft-Hansen H, Gudi V, Floess S, Huehn J, Owens T, Korn T, Stangel M. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J Neuroinflammation 2017; 14:204. [PMID: 29037246 PMCID: PMC5644084 DOI: 10.1186/s12974-017-0978-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
Background Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. Methods To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4+ T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. Results We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Conclusion Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0978-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julius Kronisch
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Henrik Toft-Hansen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Center of Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
56
|
Frederich BJ, Timofeyev V, Thai PN, Haddad MJ, Poe AJ, Lau VC, Moshref M, Knowlton AA, Sirish P, Chiamvimonvat N. Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways. Heart Rhythm 2017; 14:1685-1692. [PMID: 28668623 DOI: 10.1016/j.hrthm.2017.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. OBJECTIVE The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. METHODS Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. RESULTS CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. CONCLUSION The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium.
Collapse
Affiliation(s)
- Bert J Frederich
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Phung N Thai
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Michael J Haddad
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Adam J Poe
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Victor C Lau
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Maryam Moshref
- Division of Cardiovascular Medicine, University of California, Davis, California
| | - Anne A Knowlton
- Division of Cardiovascular Medicine, University of California, Davis, California; US Department of Veterans Affairs, Northern California Health Care System, Mather, California
| | - Padmini Sirish
- Division of Cardiovascular Medicine, University of California, Davis, California.
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, University of California, Davis, California; US Department of Veterans Affairs, Northern California Health Care System, Mather, California.
| |
Collapse
|
57
|
A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nat Immunol 2017; 18:654-664. [PMID: 28414311 PMCID: PMC5436941 DOI: 10.1038/ni.3728] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
In obesity, white adipose tissue (AT) inflammation is associated with reduced beige adipogenesis, a thermogenic and energy-dissipating function mediated by uncoupling protein-1 (UCP1)-expressing beige adipocytes. Here, we dissected an inflammation-driven inhibitory mechanism of beige adipogenesis in obesity that required direct adhesive interactions between macrophages and adipocytes mediated, respectively, by α4 integrin and its counter-receptor VCAM-1, the expression of which was upregulated in obesity. This adhesive interaction reciprocally and concomitantly modulated inflammatory activation in macrophages and Erk–dependent downregulation of UCP1 in adipocytes. Genetic or pharmacologic inactivation of α4 integrin in mice resulted in elevated UCP1 expression and beige adipogenesis of the subcutaneous AT in obesity. Our findings, established in both mouse and human systems, reveal a self-sustained cycle of inflammation-driven impairment of beige adipogenesis in obesity.
Collapse
|
58
|
Sison EAR, Kurre P, Kim YM. Understanding the bone marrow microenvironment in hematologic malignancies: A focus on chemokine, integrin, and extracellular vesicle signaling. Pediatr Hematol Oncol 2017; 34:365-378. [PMID: 29211600 PMCID: PMC6516746 DOI: 10.1080/08880018.2017.1395938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.
Collapse
Affiliation(s)
| | - Peter Kurre
- Doernbecher Children’s Hospital, Oregon Health and Science University, Portland, Oregon
| | - Yong-Mi Kim
- Children’s Hospital of Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
59
|
Khurana S, Schouteden S, Manesia JK, Santamaria-Martínez A, Huelsken J, Lacy-Hulbert A, Verfaillie CM. Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun 2016; 7:13500. [PMID: 27905395 PMCID: PMC5146274 DOI: 10.1038/ncomms13500] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/11/2016] [Indexed: 01/08/2023] Open
Abstract
Integrins play an important role in haematopoietic stem cell (HSC) maintenance in the bone marrow niche. Here, we demonstrate that Periostin (Postn) via interaction with Integrin-αv (Itgav) regulates HSC proliferation. Systemic deletion of Postn results in peripheral blood (PB) anaemia, myelomonocytosis and lymphopenia, while the number of phenotypic HSCs increases in the bone marrow. Postn−/− mice recover faster from radiation injury with concomitant loss of primitive HSCs. HSCs from Postn−/− mice show accumulation of DNA damage generally associated with aged HSCs. Itgav deletion in the haematopoietic system leads to a similar PB phenotype and HSC-intrinsic repopulation defects. Unaffected by Postn, Vav-Itgav−/− HSCs proliferate faster in vitro, illustrating the importance of Postn-Itgav interaction. Finally, the Postn-Itgav interaction inhibits the FAK/PI3K/AKT pathway in HSCs, leading to increase in p27Kip1 expression resulting in improved maintenance of quiescent HSCs. Together, we demonstrate a role for Itgav-mediated outside-in signalling in regulation of HSC proliferation and stemness. Integrins regulate haematopoietic stem cell (HSC) homeostasis and engraftment into the bone marrow (BM) niche upon transplantation. Here, the authors show that HSC quiescence and function in the BM is regulated by the interaction of PERIOSTIN and INTEGRIN αv and subsequent increase in p27Kip1.
Collapse
Affiliation(s)
- Satish Khurana
- Inter-departmental Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Schouteden
- Inter-departmental Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Javed K Manesia
- Inter-departmental Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | |
Collapse
|
60
|
Levesque JP, Winkler IG. Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Front Physiol 2016; 7:349. [PMID: 27594840 PMCID: PMC4990565 DOI: 10.3389/fphys.2016.00349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/02/2016] [Indexed: 01/10/2023] Open
Abstract
Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.
Collapse
Affiliation(s)
- Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social SecurityMexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de MexicoMexico City, Mexico
| | - Hector Mayani
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security Mexico City, Mexico
| |
Collapse
|
62
|
Sudo T, Yokota T, Okuzaki D, Ueda T, Ichii M, Ishibashi T, Isono T, Habuchi Y, Oritani K, Kanakura Y. Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury. PLoS One 2016; 11:e0154189. [PMID: 27111450 PMCID: PMC4844162 DOI: 10.1371/journal.pone.0154189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 02/01/2023] Open
Abstract
Numerous red blood cells are generated every second from proliferative progenitor cells under a homeostatic state. Increased erythropoietic activity is required after myelo-suppression as a result of chemo-radio therapies. Our previous study revealed that the endothelial cell-selective adhesion molecule (ESAM), an authentic hematopoietic stem cell marker, plays essential roles in stress-induced hematopoiesis. To determine the physiological importance of ESAM in erythroid recovery, ESAM-knockout (KO) mice were treated with the anti-cancer drug, 5-fluorouracil (5-FU). ESAM-KO mice experienced severe and prolonged anemia after 5-FU treatment compared to wild-type (WT) mice. Eight days after the 5-FU injection, compared to WT mice, ESAM-KO mice showed reduced numbers of erythroid progenitors in bone marrow (BM) and spleen, and reticulocytes in peripheral blood. Megakaryocyte-erythrocyte progenitors (MEPs) from the BM of 5-FU-treated ESAM-KO mice showed reduced burst forming unit-erythrocyte (BFU-E) capacities than those from WT mice. BM transplantation revealed that hematopoietic stem/progenitor cells from ESAM-KO donors were more sensitive to 5-FU treatment than that from WT donors in the WT host mice. However, hematopoietic cells from WT donors transplanted into ESAM-KO host mice could normally reconstitute the erythroid lineage after a BM injury. These results suggested that ESAM expression in hematopoietic cells, but not environmental cells, is critical for hematopoietic recovery. We also found that 5-FU treatment induces the up-regulation of ESAM in primitive erythroid progenitors and macrophages that do not express ESAM under homeostatic conditions. The phenotypic change seen in macrophages might be functionally involved in the interaction between erythroid progenitors and their niche components during stress-induced acute erythropoiesis. Microarray analyses of primitive erythroid progenitors from 5-FU-treated WT and ESAM-KO mice revealed that various signaling pathways, including the GATA1 system, were impaired in ESAM-KO mice. Thus, our data demonstrate that ESAM expression in hematopoietic progenitors is essential for erythroid recovery after a BM injury.
Collapse
Affiliation(s)
- Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Daisuke Okuzaki
- DNA Chip Development Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiko Ishibashi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomomi Isono
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoko Habuchi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
63
|
Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 2016; 1370:82-96. [PMID: 27015419 DOI: 10.1111/nyas.13016] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
In adult mammals, hematopoietic stem cells (HSCs) are defined by their abilities to self-renew and to differentiate to form all blood cell lineages. These rare multipotent cells occupy specific locations in the bone marrow (BM) microenvironment. The specific microenvironment regulating HSCs, commonly referred to as the niche, comprises multiple cell types whose exact contributions are under active investigation. Understanding cellular cross talk involving HSCs in the BM microenvironment is of fundamental importance for harnessing therapies against benign and malignant blood diseases. In this review, we summarize and evaluate recent advances in our understanding of niche heterogeneity and its influence on HSC function.
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
64
|
Lehmann-Horn K, Sagan SA, Winger RC, Spencer CM, Bernard CCA, Sobel RA, Zamvil SS. CNS accumulation of regulatory B cells is VLA-4-dependent. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e212. [PMID: 27027096 PMCID: PMC4794810 DOI: 10.1212/nxi.0000000000000212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4(f/f)) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35-55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. RESULTS As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. CONCLUSIONS Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity.
Collapse
Affiliation(s)
- Klaus Lehmann-Horn
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sharon A Sagan
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ryan C Winger
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Collin M Spencer
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claude C A Bernard
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Raymond A Sobel
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology (K.L.-H., S.A.S., R.C.W., C.M.S., S.S.Z.), University of California, San Francisco; Multiple Sclerosis Research Group (C.C.A.B.), Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; and Department of Pathology (R.A.S.), Stanford University School of Medicine, CA. Dr. Lehmann-Horn is currently with the Department of Neurology, Klinikum rechts der Isar, Technische Universität München; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
65
|
Gur-Cohen S, Kollet O, Graf C, Esmon CT, Ruf W, Lapidot T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci 2016; 1370:65-81. [PMID: 26928241 DOI: 10.1111/nyas.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NO(low) LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling that overcomes BM EPCR(+) LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudine Graf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Third Medical Department, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Departments of Pathology and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbial Science, the Scripps Research Institute, La Jolla, California
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
66
|
Asri A, Sabour J, Atashi A, Soleimani M. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis. EXCLI JOURNAL 2016; 15:134-43. [PMID: 27092040 PMCID: PMC4827072 DOI: 10.17179/excli2014-585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Amir Asri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sabour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Atashi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
67
|
De Grandis M, Lhoumeau AC, Mancini SJC, Aurrand-Lions M. Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cell Mol Life Sci 2016; 73:687-703. [PMID: 26495446 PMCID: PMC11108274 DOI: 10.1007/s00018-015-2064-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
Abstract
Hematopoiesis takes place in the bone marrow of adult mammals and is the process by which blood cells are replenished every day throughout life. Differentiation of hematopoietic cells occurs in a stepwise manner through intermediates of differentiation that could be phenotypically identified. This has allowed establishing hematopoietic cell classification with hematopoietic stem cells (HSCs) at the top of the hierarchy. HSCs are mostly quiescent and serve as a reservoir for maintenance of lifelong hematopoiesis. Over recent years, it has become increasingly clear that HSC quiescence is not only due to intrinsic properties, but is also mediated by cognate interactions between HSCs and surrounding cells within micro-anatomical sites called “niches”. This hematopoietic/stromal crosstalk model also applies to more mature progenitors such as B cell progenitors, which are thought to reside in distinct “niches”. This prompted many research teams to search for specific molecular mechanisms supporting leuko-stromal crosstalk in the bone marrow and acting at specific stage of differentiation to regulate hematopoietic homeostasis. Here, we review recent data on adhesion mechanisms involved in HSCs and B cell progenitors interactions with surrounding bone marrow stromal cells.
Collapse
Affiliation(s)
- Maria De Grandis
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Catherine Lhoumeau
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Stéphane J. C. Mancini
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Michel Aurrand-Lions
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW The nature and function of macrophages at the center of erythroblastic islands is not fully understood. This review discusses novel findings on the phenotypic and molecular characterization of erythroblastic island macrophages, and their role in regulating normal and pathological erythropoiesis. RECENT FINDINGS The phenotype to prospectively isolate erythroblastic island macrophages from mouse bone marrow has been identified. In-vivo depletion of erythroblastic island macrophages causes blockade of erythroblast maturation and delays erythropoietic recovery following chemical insults. The cytokine granulocyte colony-stimulating factor arrests medullary erythropoiesis by depleting erythroblastic island macrophages from the bone marrow. In-vivo ablation of macrophages improves anemia associated with β-thalassemia and reduces red blood cell counts in the mouse model of polycythemia vera. The role of cell adhesion molecules regulating interactions between erythroblastic island macrophages and erythroblasts has been clarified, and mechanisms of pyrenocyte engulfment by erythroblastic island macrophages have been demonstrated to involve Mer tyrosine kinase receptor. SUMMARY Prospective isolation of mouse erythroblastic island macrophages together with new genetic mouse models to specifically target erythroblastic island macrophages will enable molecular studies to better define their role in controlling erythroblast maturation. These studies have revealed the key role of erythroblastic island macrophages in regulating normal erythropoiesis and could be interesting targets to treat β-thalassemia or polycythemia vera.
Collapse
|
69
|
Zhang RR, Zhu XF. [Relationship between macrophages and erythropoiesis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:94-9. [PMID: 26781420 PMCID: PMC7390087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 08/01/2024]
Abstract
Macrophages have two major roles in regulating the dynamic equilibrium in erythropoiesis, promoting the differentiation and maturation of nucleated red blood cells into reticulocytes and removing old red blood cells. A recent mouse study has demonstrated that the phenotype of macrophages in erythroblastic islands is CD169+ VCAM-1+ ER-HR3+ CD11b+ F4/80+ Ly-6G+. Molecular connections between erythroid progenitor cells and central macrophages help to maintain the function and integrity of erythroblastic islands. New research advances in Kruppel-like factor 1 (KLF1) provide new evidence for the important role of macrophages in erythroblastic islands. Macrophages play an important role in erythropoiesis both in sickness and in health, and provide a potential targeted therapy for diseases such as polycythemia vera and beta-thalassemia in the future.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Diagnosis and Treatment Center of Pediatric Blood Diseases, Institute of Hematology and Blood Disease Hospital, Pecking Union Medical College, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | | |
Collapse
|
70
|
Zhang RR, Zhu XF. [Relationship between macrophages and erythropoiesis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:94-99. [PMID: 26781420 PMCID: PMC7390087 DOI: 10.7499/j.issn.1008-8830.2016.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Macrophages have two major roles in regulating the dynamic equilibrium in erythropoiesis, promoting the differentiation and maturation of nucleated red blood cells into reticulocytes and removing old red blood cells. A recent mouse study has demonstrated that the phenotype of macrophages in erythroblastic islands is CD169+ VCAM-1+ ER-HR3+ CD11b+ F4/80+ Ly-6G+. Molecular connections between erythroid progenitor cells and central macrophages help to maintain the function and integrity of erythroblastic islands. New research advances in Kruppel-like factor 1 (KLF1) provide new evidence for the important role of macrophages in erythroblastic islands. Macrophages play an important role in erythropoiesis both in sickness and in health, and provide a potential targeted therapy for diseases such as polycythemia vera and beta-thalassemia in the future.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Diagnosis and Treatment Center of Pediatric Blood Diseases, Institute of Hematology and Blood Disease Hospital, Pecking Union Medical College, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | | |
Collapse
|
71
|
Banerjee ER. Dissecting asthma pathogenesis through study of patterns of cellular traffic indicative of molecular switches operative in inflammation. ACTA ACUST UNITED AC 2015; 2:1. [PMID: 27512648 PMCID: PMC4959125 DOI: 10.7603/s40855-015-0001-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022]
Abstract
Background: Inflammation and degeneration are the two edged swords that impale a pulmonary system with the maladies like asthma and idiopathic pulmonary fibrosis. To explore critical role players that orchestrate the etiology and pathogenesis of these diseases, we used various lung disease models in mice in specific genetic knockout templates. Materials and methods: Acute and chronic allergic asthma and idiopathic pulmonary fibrosis model in mouse was developed in various genetic knockout templates namely α4Δ/ Δ(α41-/-), β2-/-, and α4-/- β2 mice, and the following parameters were measured to assess development of composite asthma phenotype- (i) airway hyperresponsiveness to methacholine by measuring lung resistance and compliance by invasive and Penh by non-invasive plethysmography as well as lung resistance and compliance using invasive plethysmography, (ii) in situ inflammation status in lung parenchyma and lung interstitium and also resultant airway remodelling measured by histochemical staining namely Masson’s Trichrome staining and Hematoxylin&Eosin staining, (iii) formation of metaplastic goblet cells around lung airways by Alcian blue dye, (iv) measurement of Th1 and Th2 cytokines in serum and bronchoalveolar lavage fluid (BALf), (v) serum allergen-specific IgE. Specifically, ovalbumin-induced acute allergic asthma model in mice was generated in WT (wildtype) and KO (knockout) models and readouts of the composite asthma phenotype viz. airway hypersensitivity, serum OVA-specific IgE and IgG, Th2 cytokine in bronchoalveolar lavage fluid (BALf) and lymphocyte cell subsets viz. T, B cells, monocytes, macrophages, basophils, mast cells and eosinophils (by FACS and morphometry in H&E stained cell smears) were assessed in addition to lung and lymph node histology. Results: We noticed a pattern of cellular traffic between bone marrow (BM)→ peripheral blood (PB) → lung parenchyma (LP) → (BALf) in terms of cellular recruitment of key cell sub-types critical for onset and development of the diseases which is different for maintenance and exacerbations in chronic cyclically occurring asthma that leads to airway remodelling. While inflammation is the central theme of this particular disease, degeneration and shift in cellular profile, subtly modifying the clinical nature of the disease were also noted. In addition we recorded the pattern of cell movement between the secondary lymphoid organs namely, the cervical, axillary, ingunal, and mesenteric lymph nodes vis-à-vis spleen and their sites of poiesis BM, PB and lung tissue. While mechanistic role is the chief domain of the integrins (α4 i.e. VLA-4 or α4β1, VCAM-1; β2 i.e. CD18 or ICAM-1). Concluding remarks: The present paper thoroughly compares and formulates the pattern of cellular traffic among the three nodes of information throughput in allergic asthma immunobiology, namely, primary lymphoid organs (PLO), secondary lymphoid organs (SLO), and tissue spaces and cells where inflammation and degeneration is occurring within the purview of the disease pathophysiological onset and ancillary signals in the above models and reports some interesting findings with respect to adult lung stem cell niches and its resident progenitors and their role in pathogenesis and disease amelioration.
Collapse
Affiliation(s)
- Ena Ray Banerjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, 700019 Kolkata, West Bengal India
| |
Collapse
|
72
|
Functional and Biological Role of Endothelial Precursor Cells in Tumour Progression: A New Potential Therapeutic Target in Haematological Malignancies. Stem Cells Int 2015; 2016:7954580. [PMID: 26788072 PMCID: PMC4691637 DOI: 10.1155/2016/7954580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/19/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
It was believed that vasculogenesis occurred only during embryo life and that postnatal formation of vessels arose from angiogenesis. Recent findings demonstrate the existence of Endothelial Precursor Cells (EPCs), which take partin postnatal vasculogenesis. EPCs are recruited from the bone marrow under the stimulation of growth factors and cytokines and reach the sites of neovascularization in both physiological and pathological conditions such as malignancies where they contribute to the “angiogenic switch” and tumor progression. An implementation of circulating EPCs in the bloodstream of patients with haematological malignancies has been demonstrated. This increase is strictly related to the bone marrow microvessel density and correlated with a poor prognosis. The EPCs characterization is a very complex process and still under investigation. This literature review aims to provide an overview of the functional and biological role of EPCs in haematological malignancies and to investigate their potential as a new cancer therapeutic target.
Collapse
|
73
|
Murakami JL, Xu B, Franco CB, Hu X, Galli SJ, Weissman IL, Chen CC. Evidence that β7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment Through Interaction with MAdCAM-1. Stem Cells Dev 2015; 25:18-26. [PMID: 26422691 DOI: 10.1089/scd.2014.0551] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
α4β7 integrin is a cell adhesion receptor that is crucial for the migration of hematopoietic progenitors and mature effector cells in the periphery, but its role in adult hematopoiesis is controversial. We identified a subset of hematopoietic stem cells (HSCs) in the bone marrow (BM) that expressed β7 integrin. These β7(+) HSCs were capable of multilineage, long-term reconstitution and had an inherent competitive advantage over β7(-) HSCs. On the other hand, HSCs that lacked β7 integrin (β7KO) had reduced engraftment potential. Interestingly, quantitative RT-PCR and flow cytometry revealed that β7KO HSCs expressed lower levels of the chemokine receptor CXCR4. Accordingly, β7KO HSCs exhibited impaired migration abilities in vitro and BM homing capabilities in vivo. Lethal irradiation induced expression of the α4β7 integrin ligand-mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on BM endothelial cells. Moreover, blocking MAdCAM-1 reduced the homing of HSCs and impaired the survival of recipient mice. Altogether, these data indicate that β7 integrin, when expressed by HSCs, interacted with its endothelial ligand MAdCAM-1 in the BM microenvironment, thereby promoting HSC homing and engraftment.
Collapse
Affiliation(s)
- Jodi L Murakami
- 1 Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope , Duarte, California.,2 City of Hope Irell & Manella Graduate School of Biological Sciences , Duarte, California.,3 Gehr Family Center for Leukemia Research at City of Hope , Duarte, California
| | - Baohui Xu
- 4 Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Christopher B Franco
- 5 Department of Pathology, Stanford University School of Medicine , Stanford, California.,6 Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Xingbin Hu
- 1 Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope , Duarte, California.,7 Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University , Xi'an, People's Republic of China
| | - Stephen J Galli
- 5 Department of Pathology, Stanford University School of Medicine , Stanford, California.,8 Department of Microbiology and Immunology, Stanford University School of Medicine , Stanford, California
| | - Irving L Weissman
- 5 Department of Pathology, Stanford University School of Medicine , Stanford, California.,6 Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Ching-Cheng Chen
- 1 Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope , Duarte, California.,2 City of Hope Irell & Manella Graduate School of Biological Sciences , Duarte, California.,3 Gehr Family Center for Leukemia Research at City of Hope , Duarte, California
| |
Collapse
|
74
|
López-Ruano G, Prieto-Bermejo R, Ramos TL, San-Segundo L, Sánchez-Abarca LI, Sánchez-Guijo F, Pérez-Simón JA, Sánchez-Yagüe J, Llanillo M, Hernández-Hernández Á. PTPN13 and β-Catenin Regulate the Quiescence of Hematopoietic Stem Cells and Their Interaction with the Bone Marrow Niche. Stem Cell Reports 2015; 5:516-31. [PMID: 26344907 PMCID: PMC4624939 DOI: 10.1016/j.stemcr.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022] Open
Abstract
The regulation of hematopoietic stem cells (HSCs) depends on the integration of the multiple signals received from the bone marrow niche. We show the relevance of the protein tyrosine phosphatase PTPN13 and β-catenin as intracellular signaling molecules to control HSCs adhesiveness, cell cycling, and quiescence. Lethally irradiated mice transplanted with Lin– bone marrow cells in which PTPN13 or β-catenin had been silenced showed a significant increase of long-term (LT) and short-term (ST) HSCs. A decrease in cycling cells was also found, together with an increase in quiescence. The decreased expression of PTPN13 or β-catenin was linked to the upregulation of several genes coding for integrins and several cadherins, explaining the higher cell adhesiveness. Our data are consistent with the notion that the levels of PTPN13 and β-catenin must be strictly regulated by extracellular signaling to regulate HSC attachment to the niche and the balance between proliferation and quiescence. PTPN13 or β-catenin silencing increases LT-HSCs and ST-HSCs frequency in vivo The cell cycling of HSPCs was decreased by PTPN13 or β-catenin downregulation LT-HSCs and ST-HSCs quiescence was increased by PTPN13 or β-catenin downregulation PTPN13 and β-catenin levels modulate the interaction of HSPCs with the BM niche
Collapse
Affiliation(s)
- Guillermo López-Ruano
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Teresa L Ramos
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Laura San-Segundo
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Luis Ignacio Sánchez-Abarca
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Seville 41013, Spain
| | - Fermín Sánchez-Guijo
- IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - José Antonio Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío/IBIS/CSIC/University of Seville, Seville 41013, Spain
| | - Jesús Sánchez-Yagüe
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Marcial Llanillo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca 37007, Spain.
| |
Collapse
|
75
|
McCabe A, Zhang Y, Thai V, Jones M, Jordan MB, MacNamara KC. Macrophage-Lineage Cells Negatively Regulate the Hematopoietic Stem Cell Pool in Response to Interferon Gamma at Steady State and During Infection. Stem Cells 2015; 33:2294-305. [PMID: 25880153 DOI: 10.1002/stem.2040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/21/2015] [Indexed: 12/31/2022]
Abstract
Bone marrow (BM) resident macrophages (Mϕs) regulate hematopoietic stem cell (HSC) mobilization; however, their impact on HSC function has not been investigated. We demonstrate that depletion of BM resident Mϕs increases HSC proliferation as well as the pool of quiescent HSCs. At the same time, during bacterial infection where BM resident Mϕs are selectively increased we observe a decrease in HSC numbers. Moreover, strategies that deplete or reduce Mϕs during infection prevent HSC loss and rescue HSC function. We previously found that the transient loss of HSCs during infection is interferon-gamma (IFNγ)-dependent. We now demonstrate that IFNγ signaling specifically in Mϕs is critical for both the diminished HSC pool and maintenance of BM resident Mϕs during infection. In addition to the IFNγ-dependent loss of BM HSC and progenitor cells (HSPCs) during infection, IFNγ reduced circulating HSPC numbers. Importantly, under infection conditions AMD3100 or G-CSF-induced stem cell mobilization was impaired. Taken together, our data show that IFNγ acts on Mϕs, which are a negative regulator of the HSC pool, to drive the loss in BM and peripheral HSCs during infection. Our findings demonstrate that modulating BM resident Mϕ numbers can impact HSC function in vivo, which may be therapeutically useful for hematologic conditions and refinement of HSC transplantation protocols.
Collapse
Affiliation(s)
- Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Yubin Zhang
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Vinh Thai
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Maura Jones
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Michael B Jordan
- Division of Cellular and Molecular Immunology, Cincinnati Children's Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine C MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
76
|
Lehmann-Horn K, Sagan SA, Bernard CCA, Sobel RA, Zamvil SS. B-cell very late antigen-4 deficiency reduces leukocyte recruitment and susceptibility to central nervous system autoimmunity. Ann Neurol 2015; 77:902-8. [PMID: 25712734 PMCID: PMC4405474 DOI: 10.1002/ana.24387] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
Abstract
Natalizumab, which binds very late antigen‐4 (VLA‐4), is a potent therapy for multiple sclerosis (MS). Studies have focused primarily upon its capacity to interfere with T‐cell migration into the central nervous system (CNS). B cells are important in MS pathogenesis and express high levels of VLA‐4. Here, we report that the selective inhibition of VLA‐4 expression on B cells impedes CNS accumulation of B cells, and recruitment of Th17 cells and macrophages, and reduces susceptibility to experimental autoimmune encephalomyelitis. These results underscore the importance of B‐cell VLA‐4 expression in the pathogenesis of CNS autoimmunity and provide insight regarding mechanisms that may contribute to the benefit of natalizumab in MS, as well as candidate therapeutics that selectively target B cells. Ann Neurol 2015;77:902–908
Collapse
Affiliation(s)
- Klaus Lehmann-Horn
- Department of Neurology, University of California; Program in Immunology, University of California, San Francisco, San Francisco, CA
| | | | | | | | | |
Collapse
|
77
|
Dutta P, Hoyer FF, Grigoryeva LS, Sager HB, Leuschner F, Courties G, Borodovsky A, Novobrantseva T, Ruda VM, Fitzgerald K, Iwamoto Y, Wojtkiewicz G, Sun Y, Da Silva N, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. ACTA ACUST UNITED AC 2015; 212:497-512. [PMID: 25800955 PMCID: PMC4387283 DOI: 10.1084/jem.20141642] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022]
Abstract
Dutta et al. show that targeting VACM-1 expression in splenic macrophages impairs extramedullary hematopoiesis, thus reducing inflammation in mouse ischemic heart and atherosclerotic plaques. Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)+ macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE−/− mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques.
Collapse
Affiliation(s)
- Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Friedrich Felix Hoyer
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Lubov S Grigoryeva
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Hendrik B Sager
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Florian Leuschner
- Department of Cardiology, Medical University Hospital Heidelberg, D-69120 Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, D-69120 Heidelberg, Germany
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | | | - Vera M Ruda
- Alnylam Pharmaceuticals, Cambridge, MA 02142
| | | | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yuan Sun
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Nicolas Da Silva
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142 Division of Health Science Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
78
|
Bortezomib is a rapid mobilizer of hematopoietic stem cells in mice via modulation of the VCAM-1/VLA-4 axis. Blood 2015; 124:2752-4. [PMID: 25342668 DOI: 10.1182/blood-2014-08-595967] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
79
|
Glatigny S, Duhen R, Arbelaez C, Kumari S, Bettelli E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci Rep 2015; 5:7834. [PMID: 25592296 PMCID: PMC4296287 DOI: 10.1038/srep07834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/12/2014] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), results from an autoimmune attack of the central nervous system (CNS) by effector T helper (Th) 1 and Th17 cells. Regulatory T cells (Treg) can control effector T cells and limit the progression of CNS autoimmunity. Integrin alpha 4 (Itga4) is critical for the entry of Th1 but not Th17 cells into the CNS during EAE. Whether Itga4 controls the homing of Tregs in the CNS and whether Tregs can limit Th17-mediated EAE has, however, not been addressed. Through selective elimination of Itga4 in Foxp3-expressing cells, we show here that Tregs can suppress Th17-mediated EAE and enter into the CNS independently of Itga4. Furthermore, similarly to Th17 cells and in contrast to Th1 cells, Tregs depend on LFA-1 for their entry into the CNS in the absence of Itga4. Therefore, these data suggest that the efficacy of Itga4 neutralization on MS progression may be associated with the prevention of Th1 cells and the maintenance of Tregs migration into the CNS.
Collapse
Affiliation(s)
- Simon Glatigny
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Rebekka Duhen
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Carlos Arbelaez
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Swarnima Kumari
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Estelle Bettelli
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| |
Collapse
|
80
|
HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia 2015; 29:1366-78. [PMID: 25578474 PMCID: PMC4498452 DOI: 10.1038/leu.2015.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
Many patients with hematological neoplasms fail to mobilize sufficient numbers of hematopoietic stem cells (HSCs) in response to granulocyte colony-stimulating factor (G-CSF) precluding subsequent autologous HSC transplantation. Plerixafor, a specific antagonist of the chemokine receptor CXCR4, can rescue some but not all patients who failed to mobilize with G-CSF alone. These refractory poor mobilizers cannot currently benefit from autologous transplantation. To discover alternative targetable pathways to enhance HSC mobilization, we studied the role of hypoxia-inducible factor-1α (HIF-1α) and the effect of HIF-1α pharmacological stabilization on HSC mobilization in mice. We demonstrate in mice with HSC-specific conditional deletion of the Hif1a gene that the oxygen-labile transcription factor HIF-1α is essential for HSC mobilization in response to G-CSF and Plerixafor. Conversely, pharmacological stabilization of HIF-1α with the 4-prolyl hydroxylase inhibitor FG-4497 synergizes with G-CSF and Plerixafor increasing mobilization of reconstituting HSCs 20-fold compared with G-CSF plus Plerixafor, currently the most potent mobilizing combination used in the clinic.
Collapse
|
81
|
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16:532-48. [PMID: 26031306 PMCID: PMC4997955 DOI: 10.2174/1389203716666150515125002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogenesis, migration, and invasion. A number of snake venom proteins have the ability to interact with integrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disintegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research. Furthermore, we also outline several new approaches being created to address problems commonly associated with the clinical application of peptide-based drugs such as instability, immunogenicity, and availability.
Collapse
Affiliation(s)
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, USA.
| | | |
Collapse
|
82
|
Chudziak D, Spohn G, Karpova D, Dauber K, Wiercinska E, Miettinen JA, Papayannopoulou T, Bönig H. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice. Stem Cells Dev 2014; 24:737-46. [PMID: 25316534 DOI: 10.1089/scd.2014.0284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.
Collapse
Affiliation(s)
- Doreen Chudziak
- 1 German Red Cross Blood Service Baden-Württemberg-Hesse , Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Kurmaeva E, Lord JD, Zhang S, Bao JR, Kevil CG, Grisham MB, Ostanin DV. T cell-associated α4β7 but not α4β1 integrin is required for the induction and perpetuation of chronic colitis. Mucosal Immunol 2014; 7:1354-65. [PMID: 24717354 PMCID: PMC4417258 DOI: 10.1038/mi.2014.22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 02/04/2023]
Abstract
Anti-adhesion therapies that target α(4) integrins (e.g., natalizumab) are thought to work by blocking T-cell recruitment to the intestinal tissues in patients with Crohn's disease (CD); however, little direct evidence is available to confirm this contention. We wished to evaluate the importance of T cell-associated α(4) integrins in a chronic colitis model in mice and to determine the effect of natalizumab treatment on intestinal tissue T-cell accumulation in human CD. Adoptive transfer of T cells lacking α(4) (α(4)(-/-)) but not β(1) integrin into immunodeficient mice produced significantly attenuated disease. This was correlated with reduced numbers of colon CD4 T cells compared with the control mice; however, tissue distribution of T helper type 1 (Th1) and T helper type 17 (Th17) cells and regulatory T cells (Tregs) was not affected by the lack of α(4). Furthermore, α(4)(-/-) T cells demonstrated defective homing to the chronically inflamed small intestines and colons. Finally, patients treated with natalizumab showed significant reduction in mucosal CD4 T cells and no skewing in the foxp3(+) Treg or T-bet(+)Th1 fractions thereof. These results demonstrate a direct role for T cell-associated α(4)β(7) but not α(4)β(1) integrins during initiation and perpetuation of chronic colitis. Moreover, our data demonstrated that natalizumab treatment reduced mucosal CD4 T-cell accumulation in CD patients.
Collapse
Affiliation(s)
- E Kurmaeva
- Center of Excellence for Arthritis and Rheumatology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - JD Lord
- Translational Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | - S Zhang
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - JR Bao
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - CG Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - MB Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - DV Ostanin
- Center of Excellence for Arthritis and Rheumatology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
84
|
Jacobsen RN, Forristal CE, Raggatt LJ, Nowlan B, Barbier V, Kaur S, van Rooijen N, Winkler IG, Pettit AR, Levesque JP. Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Exp Hematol 2014; 42:547-61.e4. [DOI: 10.1016/j.exphem.2014.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 01/05/2023]
|
85
|
Shp1 signalling is required to establish the long-lived bone marrow plasma cell pool. Nat Commun 2014; 5:4273. [PMID: 24978161 PMCID: PMC4083441 DOI: 10.1038/ncomms5273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
Germline or B-cell-specific loss of Ptpn6 gene encoding the Shp1 protein tyrosine phosphatase leads to skewed B lymphopoiesis and systemic autoimmunity. Here, to study its role in B-cell terminal differentiation, we generated Ptpn6f/fAicdaCre/+ mice with Shp1 ablated only in activated B cells. We show that Ptpn6f/fAicdaCre/+ mice have normal B-cell development but exhibit defective class-switched primary and recalled antibody response to a T-cell-dependent antigen. Germinal centres are present but do not persist and memory B cells are not formed. Interestingly, Shp1-deficient plasma cells are generated in the spleen but do not contribute to the bone marrow long-lived pool. Plasma cells lacking Shp1 exhibit aberrant α4β1 integrin activation due to dysregulated Src- and PI3-kinase signalling and manifest attenuated migration in vitro and defective bone marrow homing when reconstituted in vivo. Interrupting α4β1–VCAM-1 interaction rectifies this defect. These data suggest that Shp1 signalling is required for the establishment of a life-long protective humoral immunity. SHP-1 signalling is required for the normal development of B lymphocytes but its role in the terminal differentiation of these cells has not been fully established. Here, the authors show that SHP-1 ablation impairs the establishment of long-lived bone marrow-resident plasma cells due to aberrant integrin activation.
Collapse
|
86
|
Nayak RC, Chang KH, Vaitinadin NS, Cancelas JA. Rho GTPases control specific cytoskeleton-dependent functions of hematopoietic stem cells. Immunol Rev 2014; 256:255-68. [PMID: 24117826 DOI: 10.1111/imr.12119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Rho family of guanosine triphosphatases (GTPases) is composed of members of the Ras superfamily of proteins. They are GTP-bound molecules with a modest intrinsic GTPase activity that can be accelerated upon activation/localization of specialized guanine nucleotide exchange factors. Members of this family act as molecular switches and are required for coordinated cytoskeletal rearrangements that are crucial in a set of specialized functions of mammalian stem cells. These functions include self-renewal, adhesion, and migration. Mouse gene-targeting studies have provided convincing evidence of the indispensable and dispensable roles of individual members of the Rho GTPase family and the putative upstream and downstream mediators in stem cell-specific functions. The role of Rho GTPases and related signaling pathways previously seen in other cell types and organisms have been confirmed in mammalian hematopoietic stem cells (HSCs), and new signaling pathways and unexpected functions unique to HSCs have been identified and dissected. This review summarizes our current understanding of the role of Rho family of GTPases on HSC and progenitor activity through cytoskeleton-mediated signaling pathways, providing insight about relevant signaling pathways that regulate mammalian stem cell self-renewal, adhesion, and migration.
Collapse
Affiliation(s)
- Ramesh C Nayak
- Stem Cell Program, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
87
|
Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 2014; 11:777-87. [PMID: 24824789 DOI: 10.4161/rna.28828] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA
| | | | - Peter E Newburger
- Department of Pediatrics; University of Massachusetts Medical School; Worcester, MA USA; Department of Cancer Biology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
88
|
Termini CM, Cotter ML, Marjon KD, Buranda T, Lidke KA, Gillette JM. The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell 2014; 25:1560-73. [PMID: 24623721 PMCID: PMC4019488 DOI: 10.1091/mbc.e13-11-0660] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem/progenitor cell (HSPC) interactions with the bone marrow microenvironment are important for maintaining HSPC self-renewal and differentiation. In recent work, we identified the tetraspanin protein, CD82, as a regulator of HPSC adhesion and homing to the bone marrow, although the mechanism by which CD82 mediated adhesion was unclear. In the present study, we determine that CD82 expression alters cell-matrix adhesion, as well as integrin surface expression. By combining the superresolution microscopy imaging technique, direct stochastic optical reconstruction microscopy, with protein clustering algorithms, we identify a critical role for CD82 in regulating the membrane organization of α4 integrin subunits. Our data demonstrate that CD82 overexpression increases the molecular density of α4 within membrane clusters, thereby increasing cellular adhesion. Furthermore, we find that the tight packing of α4 into membrane clusters depend on CD82 palmitoylation and the presence of α4 integrin ligands. In combination, these results provide unique quantifiable evidence of CD82's contribution to the spatial arrangement of integrins within the plasma membrane and suggest that regulation of integrin density by tetraspanins is a critical component of cell adhesion.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Maura L Cotter
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Kristopher D Marjon
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Tione Buranda
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| |
Collapse
|
89
|
Rothhammer V, Muschaweckh A, Gasteiger G, Petermann F, Heink S, Busch DH, Heikenwälder M, Hemmer B, Drexler I, Korn T. α4-integrins control viral meningoencephalitis through differential recruitment of T helper cell subsets. Acta Neuropathol Commun 2014; 2:27. [PMID: 24606807 PMCID: PMC4029267 DOI: 10.1186/2051-5960-2-27] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Natalizumab blocks α4-integrins and is a prototypic agent for a series of anti-inflammatory drugs that impair trafficking of immune cells into the CNS. However, modulation of the access of immune cells to the CNS is associated with impaired immune surveillance and detrimental viral infections of the CNS. Here, we explored the potency of cellular immune responses within the CNS to protect against viral encephalitis in mice with T cell conditional disruption of VLA-4 integrin (α4β1) expression. Results While VLA-4 expression in virus specific Th1 cells is non-redundant for their ability to access the CNS, α4-integrin deficient Th17 cells enter the CNS compartment and generate an inflammatory milieu upon intrathecal vaccinia virus (VV) infection. However, in contrast to Th1 cells that can adopt direct cytotoxic properties, Th17 cells fail to clear the virus due to insufficient Eomes induced perforin-1 expression. Conclusion The quality of the intrathecal cellular antiviral response under conditions of impaired VLA-4 function jeopardizes host protection. Our functional in vivo data extend our mechanistic understanding of anti-viral immunity in the CNS and help to estimate the risk potential of upcoming therapeutic agents that target the trafficking of immune cells into distinct anatomical compartments.
Collapse
|
90
|
Brachtl G, Piñón Hofbauer J, Greil R, Hartmann TN. The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Ann Hematol 2014; 93:361-74. [PMID: 24288111 PMCID: PMC4032465 DOI: 10.1007/s00277-013-1967-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
The interactions of chronic lymphocytic leukemia cells with the microenvironment in secondary lymphoid tissues and the bone marrow are known to promote CLL cell survival and proliferation. CD38 and CD49d are both independent prognostic risk parameters in CLL with important roles in shaping these interactions. Both are reported to influence CLL cell trafficking between blood and lymphoid organs as well as their survival and proliferation within the lymphoid organs, thereby impacting the pathophysiology of the disease. The expression of CD38 and CD49d is associated in the majority of cases, and they exist as part of macromolecular complexes. Here, we review the current evidence for the individual and associated contributions of these molecules to CLL pathophysiology.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/blood
- ADP-ribosyl Cyclase 1/metabolism
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Movement
- Cell Proliferation
- Cell Survival
- Humans
- Integrin alpha4/blood
- Integrin alpha4/metabolism
- Integrin alpha4beta1/blood
- Integrin alpha4beta1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Membrane Glycoproteins/blood
- Membrane Glycoproteins/metabolism
- Models, Biological
- Neoplasm Proteins/blood
- Neoplasm Proteins/metabolism
- Prognosis
- Tumor Microenvironment
Collapse
Affiliation(s)
- Gabriele Brachtl
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| | - Josefina Piñón Hofbauer
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Oncology, Hemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, Müllner Haupstraße 48, 5020 Salzburg, Austria
| |
Collapse
|
91
|
Ulyanova T, Padilla SM, Papayannopoulou T. Stage-specific functional roles of integrins in murine erythropoiesis. Exp Hematol 2014; 42:404-409.e4. [PMID: 24463276 DOI: 10.1016/j.exphem.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
When the erythroid integrins α5β1 and α4β1 were each deleted previously at the stem cell level, they yielded distinct physiologic responses to stress by affecting erythoid expansion and terminal differentiation or only the latter, respectively. To test at what stage of differentiation the integrin effects were exerted, we created mice with α4- or α5-integrin deletions only in erythroid cells and characterized them at homeostasis and after phenylhydrazine-induced hemolytic stress. Unlike our prior data, the phenotype of mice with α5-erythroid deletions was similar to controls, especially after stress. These outcomes seem to reconcile divergent prior views on the role of α5-integrin in erythropoiesis. By contrast, α4 integrins whether deleted early or late have a dominant effect on bone marrow retention of erythroblasts and on terminal erythroid maturation at homeostasis and after stress.
Collapse
Affiliation(s)
- Tatyana Ulyanova
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven M Padilla
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
92
|
Heazlewood SY, Oteiza A, Cao H, Nilsson SK. Analyzing hematopoietic stem cell homing, lodgment, and engraftment to better understand the bone marrow niche. Ann N Y Acad Sci 2014; 1310:119-28. [PMID: 24428368 DOI: 10.1111/nyas.12329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The existence of a bone marrow (BM) niche--the location in which hematopoietic stem cells (HSCs) reside--was proposed more than 30 years ago. Recent data suggest that the interaction of HSCs with cellular and extracellular components within the BM is critical for HSC regulation. The tracking of immunofluorescently labeled, prospectively isolated HSCs to and within the BM cavity allows the assessment of the regulatory processes involved in (1) homing, which involves transendothelial migration into the BM; (2) lodgment, including transmarrow migration through the extravascular space; and (3) BM reconstitution. Together, such analyses provide a better understanding of the cellular and extracellular components involved in the regulation of HSC quiescence and differentiation. Homing and lodgment of transplanted HSCs, the first critical steps in engraftment, involve multiple interactions between HSCs and the BM microenvironment. Herein, we describe a refined method of analyzing homing efficiency and spatial distribution of HSCs harvested from endosteal and/or central BM regions; we also review alternate methods. Using these techniques, microenvironment modifications within the recipient or surface protein-expression modifications on donor HSCs in animal models provide insights into components influencing the homing, lodgment, and engraftment processes.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), Melbourne, Australia
| | | | | | | |
Collapse
|
93
|
Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 2014; 123:1361-71. [PMID: 24394666 DOI: 10.1182/blood-2013-11-538694] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We investigated adhesion pathways that contribute to engraftment of breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL1)-induced chronic myelogenous leukemia (CML)-like myeloproliferative neoplasia in a mouse retroviral transduction/transplantation model. Compared with normal stem/progenitor cells, BCR-ABL1(+) progenitors had similar expression of very late antigen-4 (VLA4), VLA5, leukocyte functional antigen-1, and CXCR4 but lower expression of P-selectin glycoprotein ligand-1 (PSGL-1) and of L-selectin. Whereas vascular cell adhesion molecule-1 and P-selectin were not required, deficiency of E-selectin in the recipient bone marrow endothelium significantly reduced engraftment by BCR-ABL1-expressing stem cells following intravenous injection, with leukemogenesis restored by direct intrafemoral injection. BCR-ABL1-expressing cells deficient for PSGL-1 or the selectin ligand-synthesizing enzymes core-2 β1,6-N-acetylglucosaminyltransferase or fucosyltransferases IV/VII were impaired for engraftment, and destruction of selectin ligands on leukemic progenitors by neuraminidase reduced engraftment. BCR-ABL1-expressing L-selectin-deficient progenitors were also defective in homing and engraftment, with leukemogenesis rescued by coexpression of chimeric E/L-selectin. Antibody to L-selectin decreased the engraftment of BCR-ABL1-transduced stem cells. These results establish that BCR-ABL1(+) leukemic stem cells rely to a greater extent on selectins and their ligands for homing and engraftment than do normal stem cells. Selectin blockade is a novel strategy to exploit differences between normal and leukemic stem cells that may be beneficial in autologous transplantation for CML and perhaps other leukemias.
Collapse
|
94
|
Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood 2014; 123:992-1001. [PMID: 24385538 DOI: 10.1182/blood-2013-04-498469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell cycle quiescence of stem cells. The actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Our study provided evidence that pfn1 at least partially acts through the axis of pfn1/Gα13/EGR1 to regulate stem cell retention and metabolism in the bone marrow.
Collapse
|
95
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|
96
|
Martynoga B, Mateo JL, Zhou B, Andersen J, Achimastou A, Urbán N, van den Berg D, Georgopoulou D, Hadjur S, Wittbrodt J, Ettwiller L, Piper M, Gronostajski RM, Guillemot F. Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 2013; 27:1769-86. [PMID: 23964093 PMCID: PMC3759694 DOI: 10.1101/gad.216804.113] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/24/2013] [Indexed: 01/03/2023]
Abstract
The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.
Collapse
Affiliation(s)
- Ben Martynoga
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Juan L. Mateo
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Bo Zhou
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, 14203, USA
| | - Jimena Andersen
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Angeliki Achimastou
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Noelia Urbán
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Debbie van den Berg
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Dimitra Georgopoulou
- Research Department of Cancer Biology, University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Suzana Hadjur
- Research Department of Cancer Biology, University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Laurence Ettwiller
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Piper
- The School of Biomedical Sciences, The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, 14203, USA
| | - François Guillemot
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
97
|
Ulyanova T, Jiang Y, Padilla SM, Papayannopoulou T. Erythroid cells generated in the absence of specific β1-integrin heterodimers accumulate reactive oxygen species at homeostasis and are unable to mount effective antioxidant defenses. Haematologica 2013; 98:1769-77. [PMID: 23812936 DOI: 10.3324/haematol.2013.087577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have previously reported that β1(Δ/Δ) mice have a markedly impaired response to hemolytic stress, but the mechanisms of this were unclear. In the present study we explored in detail quantitative, phenotypic and functional aspects of erythropoiesis at homeostasis in a large number of animals for each of 3 murine models with specific β1 heterodimer integrin deficiencies. We found that, at homeostasis, β1-deficient mice have a modest uncompensated anemia with ineffective erythropoiesis and decreased red blood cell survival. Mice lacking only α4 integrins (α4β1/α4β7) do not share this phenotype. There is an increased tendency for reactive oxygen species accumulation in β1(Δ/Δ) erythroid cells with decreased anti-oxidant defenses at homeostasis which are exaggerated after stress. Furthermore, expansion of erythroid cells in spleen post-stress is dependent on α5β1, likely through mechanisms activating focal adhesion kinase complexes that are distinct from α4β1-mediated responses. In vivo inhibition of focal adhesion kinase activation partially recapitulates the β1(Δ/Δ) stress response. Mice lacking all α4 and β1 integrins (double knockouts) had, at homeostasis, the most severe phenotype with selective impairment of erythroid responses. The fact that integrins participate in mitigating stress in erythroid cells through redox activation of distinct signaling pathways by specific integrin heterodimers is a link that has not been appreciated until now.
Collapse
|
98
|
Spring FA, Griffiths RE, Mankelow TJ, Agnew C, Parsons SF, Chasis JA, Anstee DJ. Tetraspanins CD81 and CD82 facilitate α4β1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1. PLoS One 2013; 8:e62654. [PMID: 23704882 PMCID: PMC3660455 DOI: 10.1371/journal.pone.0062654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/25/2013] [Indexed: 11/28/2022] Open
Abstract
The proliferation and terminal differentiation of erythroid progenitors occurs in human bone marrow within erythroblastic islands, specialised structures consisting of a central macrophage surrounded by developing erythroid cells. Many cell-cell and cell-matrix adhesive interactions maintain and regulate the co-ordinated daily production of reticulocytes. Erythroid cells express only one integrin, α4β1, throughout differentiation, and its interactions with both macrophage Vascular Cell Adhesion Molecule-1 and with extracellular matrix fibronectin are critical for erythropoiesis. We observed that proerythroblasts expressed a broad tetraspanin phenotype, and investigated whether any tetraspanin could modulate integrin function. A specific association between α4β1 and CD81, CD82 and CD151 was demonstrated by confocal microscopy and co-immune precipitation. We observed that antibodies to CD81 and CD82 augmented adhesion of proerythroblasts to Vascular Cell Adhesion Molecule-1 but not to the fibronectin spliceoforms FnIII12-IIICS-15 and FnIII12–15. In contrast, different anti-CD151 antibodies augmented or inhibited adhesion of proerythroblasts to Vascular Cell Adhesion Molecule-1 and the fibronectin spliceoform FnIII12-IIICS-15 but not to FnIII12–15. These results strongly suggest that tetraspanins have a functional role in terminal erythropoiesis by modulating interactions of erythroblast α4β1 with both macrophages and extracellular matrix.
Collapse
Affiliation(s)
- Frances A Spring
- Bristol Institute for Transfusion Sciences, Bristol, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
99
|
Boisset JC, Clapes T, Van Der Linden R, Dzierzak E, Robin C. Integrin αIIb (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta. Biol Open 2013; 2:525-32. [PMID: 23789102 PMCID: PMC3654272 DOI: 10.1242/bio.20133715] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/20/2013] [Indexed: 11/20/2022] Open
Abstract
Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41) is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61) also pairs with αv (CD51) to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs) differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta.
Collapse
Affiliation(s)
- Jean-Charles Boisset
- Present address: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
100
|
Abstract
Through their oxygen delivery function, red blood cells are pivotal to the healthy existence of all vertebrate organisms. These cells are required during all stages of life--embryonic, fetal, neonatal, adolescent, and adult. In the adult, red blood cells are the terminally differentiated end-product cells of a complex hierarchy of hematopoietic progenitors that become progressively restricted to the erythroid lineage. During this stepwise differentiation process, erythroid progenitors undergo enormous expansion, so as to fulfill the daily requirement of ~2 × 10(11) new erythrocytes. How the erythroid lineage is made has been a topic of intense research over the last decades. Developmental studies show that there are two types of red blood cells--embryonic and adult. They develop from distinct hemogenic/hematopoietic progenitors in different anatomical sites and show distinct genetic programs. This article highlights the developmental and differentiation events necessary in the production of hemoglobin-producing red blood cells.
Collapse
Affiliation(s)
- Elaine Dzierzak
- Erasmus MC, Erasmus Stem Cell Institute, Department of Cell Biology, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|