51
|
Nakazono K, Le MNT, Kawada-Matsuo M, Kimheang N, Hisatsune J, Oogai Y, Nakata M, Nakamura N, Sugai M, Komatsuzawa H. Complete sequences of epidermin and nukacin encoding plasmids from oral-derived Staphylococcus epidermidis and their antibacterial activity. PLoS One 2022; 17:e0258283. [PMID: 35041663 PMCID: PMC8765612 DOI: 10.1371/journal.pone.0258283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus epidermidis is a commensal bacterium in humans. To persist in the bacterial flora of the host, some bacteria produce antibacterial factors such as the antimicrobial peptides known as bacteriocins. In this study, we tried to isolate bacteriocin-producing S. epidermidis strains. Among 150 S. epidermidis isolates from the oral cavities of 287 volunteers, we detected two bacteriocin-producing strains, KSE56 and KSE650. Complete genome sequences of the two strains confirmed that they carried the epidermin-harboring plasmid pEpi56 and the nukacin IVK45-like-harboring plasmid pNuk650. The amino acid sequence of epidermin from KSE56 was identical to the previously reported sequence, but the epidermin synthesis-related genes were partially different. The prepeptide amino acid sequences of nukacin KSE650 and nukacin IVK45 showed one mismatch, but both mature peptides were entirely similar. pNuk650 was larger and had an additional seven ORFs compared to pIVK45. We then investigated the antibacterial activity of the two strains against several skin and oral bacteria and found their different activity patterns. In conclusion, we report the complete sequences of 2 plasmids coding for bacteriocins from S. epidermidis, which were partially different from those previously reported. Furthermore, this is the first report to show the complete sequence of an epidermin-carrying plasmid, pEpi56.
Collapse
Affiliation(s)
- Kenta Nakazono
- Department of Oral and Maxillofacial surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Noy Kimheang
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial surgery, Field of Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Motoyuki Sugai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
52
|
Potential Replacements for Antibiotic Growth Promoters in Poultry: Interactions at the Gut Level and Their Impact on Host Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:145-159. [PMID: 34807441 DOI: 10.1007/978-3-030-85686-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota. Manipulating the microbiota is a therapeutic option, and the concept of adding beneficial bacteria to the intestine has led to probiotic and prebiotic development. The gut microbiome is readily changeable by diet, antibiotics, pathogenic infections, and host- and environmental-dependent events. The intestine performs key roles of nutrient absorption, tolerance of beneficial microbiota, yet responding to undesirable microbes or microbial products and preventing translocation to sterile body compartments. During homeostasis, the immune system is actively preventing or modulating the response to known or innocuous antigens. Manipulating the microbiota through nutrition, modulating host immunity, preventing pathogen colonization, or improving intestinal barrier function has led to novel methods to prevent disease, but also resulted in improved body weight, feed conversion, and carcass yield in poultry. This review highlights the importance of adding different feed additives to the diets of poultry in order to manipulate and enhance health and productivity of flocks.
Collapse
|
53
|
Selection of Bacteriocinogenic Bacillus spp. from Traditional Fermented Korean Food Products with Additional Beneficial Properties. FERMENTATION 2021. [DOI: 10.3390/fermentation7040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two Bacillus spp. isolated from kimchi, Bacillus tequilensis ST816CD and Bacillus subtilis ST830CD, were characterized for their antimicrobial properties and safety. The proteinaceous nature of their inhibitory metabolites was confirmed after exposure to proteolytic enzymes, resulting in partial loss of the antimicrobial effect. This indicated that different non-proteinaceous antimicrobial substances may also be produced by these strains. This hypothesis was later confirmed when genes associated with the production of surfactants were detected in their DNA. The expressed antimicrobial metabolites were not affected by treatment at different temperatures and pH levels, including exposure to selected chemicals. Their strong adherence to susceptible pathogens was not significantly affected by different temperatures, chemicals, or pH values. Both Bacillus strains showed inhibitory activity against clinical and food-associated pathogens, including Listeria monocytogenes ATCC 15313, and some Staphylococcus species. Several genes associated with the production of antimicrobial metabolites were detected, but key virulence and beneficial genes were not present in these strains. Even though only B. tequilensis ST816CD displayed γ-hemolysin production, both selected strains were found to produce gelatinase and biogenic amines, which are considered as either potential virulence- or health-related factors. Moreover, the strains were susceptible to a variety of antibiotics except for the penicillin G [1 IU/disc] resistance of B. tequilensis ST816CD. Both strains showed proteolytic activity. Additionally, both strains showed low hydrophobicity based on bacterial adherence measured by hydrocarbons (n-hexadecane).
Collapse
|
54
|
Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin. Microorganisms 2021; 9:microorganisms9112276. [PMID: 34835402 PMCID: PMC8620827 DOI: 10.3390/microorganisms9112276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
Enterocin F4-9 belongs to the glycocin family having post-translational modifications by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. In this study, the biosynthetic gene cluster of enterocin F4-9 was cloned and expressed in Enterococcus faecalis JH2-2. Production of glycocin by the JH2-2 expression strain was confirmed by expression of the five genes. The molecular weight was greater than glycocin secreted by the wild strain, E. faecalis F4-9, because eight amino acids from the N-terminal leader sequence remained attached. This N-terminal extension was eliminated after treatment with the culture supernatant of strain F4-9, implying an extracellular protease from E. faecalis F4-9 cleaves the N-terminal sequence. Thus, leader sequences cleavage requires two steps: the first via the EnfT protease domain and the second via extracellular proteases. Interestingly, the long peptide, with N-terminal extension, demonstrated advanced antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, enfC was responsible for glycosylation, a necessary step prior to secretion and cleavage of the leader peptide. In addition, enfI was found to grant self-immunity to producer cells against enterocin F4-9. This report demonstrates specifications of the minimal gene set responsible for production of enterocin F4-9, as well as a new biosynthetic mechanism of glycocins.
Collapse
|
55
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
56
|
DI ONOFRIO VALERIA, MAIONE ANGELA, GUIDA MARCO, DE CASTRO OLGA, LIGUORI RENATO, CARRATURO FEDERICA, GALDIERO EMILIA. Screening and isolation of microbes from a Mud Community of Ischia Island Thermal Springs: preliminary analysis of a bioactive compound. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E479-E488. [PMID: 34604589 PMCID: PMC8451329 DOI: 10.15167/2421-4248/jpmh2021.62.2.1792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Introduction Balneotherapy centers of Ischia island (Italy) offer treatments for different dermatological diseases (psoriasis, acne, atopic dermatitis) and upper respiratory tract infections. In this study, we integrated morphological and molecular approaches to give a focus on isolation and screening of extremophile bacteria from Ischia thermal mud for potential antimicrobial applications. Methods Samples were collected during 2019 at four sites. Some bacterial strains ATCC for antibacterial and antibiofilm activity were tested. After morphological characterization, screening for antagonistic isolates was made. The colonies isolated from thermal mud samples were submitted to molecular characterization. Susceptibility testing by dilution spotting was carried out and antibacterial efficacies of most active isolate were evaluated with a Minimal inhibition concentration assay. Biofilm formation, inhibition, eradication were examined. Statistical analyses were carried out utilizing Microsoft® Excel 2016/XLSTAT©-Pro. Results We isolated a natural compound with antimicrobial and antibiofilm activities. Conclusions The results obtained in this study are discussed in the context of how hydrothermal systems are important environmental source of uncharted antimicrobial and antibiofilm compounds. In conclusion, to the most effective of our knowledge, this work presents the primary report on the preliminary investigation of thermophile microbial diversity and their antimicrobial and antibiofilm activities for future biotechnological interest.
Collapse
Affiliation(s)
- VALERIA DI ONOFRIO
- Department of Sciences and Technologies, University of Naples “Parthenope”, Naples, Italy
| | - ANGELA MAIONE
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - MARCO GUIDA
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - OLGA DE CASTRO
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - RENATO LIGUORI
- Department of Sciences and Technologies, University of Naples “Parthenope”, Naples, Italy
| | - FEDERICA CARRATURO
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - EMILIA GALDIERO
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Correspondence: Emilia Galdiero, Department of Biology, University of Naples “Federico II”, via Cinthia, 80126 Naples, Italy - Tel.: +39 081 679182 - E-mail:
| |
Collapse
|
57
|
Petrillo C, Castaldi S, Lanzilli M, Selci M, Cordone A, Giovannelli D, Isticato R. Genomic and Physiological Characterization of Bacilli Isolated From Salt-Pans With Plant Growth Promoting Features. Front Microbiol 2021; 12:715678. [PMID: 34589073 PMCID: PMC8475271 DOI: 10.3389/fmicb.2021.715678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Massive application of chemical fertilizers and pesticides has been the main strategy used to cope with the rising crop demands in the last decades. The indiscriminate use of chemicals while providing a temporary solution to food demand has led to a decrease in crop productivity and an increase in the environmental impact of modern agriculture. A sustainable alternative to the use of agrochemicals is the use of microorganisms naturally capable of enhancing plant growth and protecting crops from pests known as Plant-Growth-Promoting Bacteria (PGPB). Aim of the present study was to isolate and characterize PGPB from salt-pans sand samples with activities associated to plant fitness increase. To survive high salinity, salt-tolerant microbes produce a broad range of compounds with heterogeneous biological activities that are potentially beneficial for plant growth. A total of 20 halophilic spore-forming bacteria have been screened in vitro for phyto-beneficial traits and compared with other two members of Bacillus genus recently isolated from the rhizosphere of the same collection site and characterized as potential biocontrol agents. Whole-genome analysis on seven selected strains confirmed the presence of numerous gene clusters with PGP and biocontrol functions and of novel secondary-metabolite biosynthetic genes, which could exert beneficial impacts on plant growth and protection. The predicted biocontrol potential was confirmed in dual culture assays against several phytopathogenic fungi and bacteria. Interestingly, the presence of predicted gene clusters with known biocontrol functions in some of the isolates was not predictive of the in vitro results, supporting the need of combining laboratory assays and genome mining in PGPB identification for future applications.
Collapse
Affiliation(s)
- Claudia Petrillo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy.,National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), Ancona, Italy.,Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States.,Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| |
Collapse
|
58
|
Kawada-Matsuo M, Le MNT, Komatsuzawa H. Antibacterial Peptides Resistance in Staphylococcus aureus: Various Mechanisms and the Association with Pathogenicity. Genes (Basel) 2021; 12:genes12101527. [PMID: 34680923 PMCID: PMC8535901 DOI: 10.3390/genes12101527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a bacterium that mainly colonizes the nasal cavity and skin. To colonize the host, it is necessary for S. aureus to resist many antibacterial factors derived from human and commensal bacteria. Among them are the bacteria-derived antimicrobial peptides (AMPs) called bacteriocins. It was reported that some two-component systems (TCSs), which are signal transduction systems specific to bacteria, are involved in the resistance to several bacteriocins in S. aureus. However, the TCS-mediated resistance is limited to relatively low concentrations of bacteriocins, while high concentrations of bacteriocins still exhibit antibacterial activity against S. aureus. To determine whether we could obtain highly bacteriocin-resistant mutants, we tried to isolate highly nisin A-resistant mutants by exposing the cells to sub-minimum inhibitory concentrations (MICs) of nisin A. Nisin A is one of the bacteriocins produced by Lactococcus lactis and is utilized as a food preservative worldwide. Finally, we obtained highly nisin A-resistant mutants with mutations in one TCS, BraRS, and in PmtR, which is involved in the expression of pmtABCD. Notably, some highly resistant strains also showed increased pathogenicity. Based on our findings, this review provides up-to-date information on the role of TCSs in the susceptibility to antibacterial peptides. Additionally, the mechanism for high antimicrobial peptides resistance and its association with pathogenicity in S. aureus is elucidated.
Collapse
|
59
|
The Biology of Colicin M and Its Orthologs. Antibiotics (Basel) 2021; 10:antibiotics10091109. [PMID: 34572691 PMCID: PMC8469651 DOI: 10.3390/antibiotics10091109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The misuse of antibiotics during the last decades led to the emergence of multidrug resistant pathogenic bacteria. This phenomenon constitutes a major public health issue. Consequently, the discovery of new antibacterials in the short term is crucial. Colicins, due to their antibacterial properties, thus constitute good candidates. These toxin proteins, produced by E. coli to kill enteric relative competitors, exhibit cytotoxicity through ionophoric activity or essential macromolecule degradation. Among the 25 colicin types known to date, colicin M (ColM) is the only one colicin interfering with peptidoglycan biosynthesis. Accordingly, ColM develops its lethal activity in E. coli periplasm by hydrolyzing the last peptidoglycan precursor, lipid II, into two dead-end products, thereby leading to cell lysis. Since the discovery of its unusual mode of action, several ColM orthologs have also been identified based on sequence alignments; all of the characterized ColM-like proteins display the same enzymatic activity of lipid II degradation and narrow antibacterial spectra. This publication aims at being an exhaustive review of the current knowledge on this new family of antibacterial enzymes as well as on their potential use as food preservatives or therapeutic agents.
Collapse
|
60
|
Chen X, Liu Y, Jin J, Liu H, Hao Y, Zhang H, Xie Y. YbfA Regulates the Sensitivity of Escherichia coli K12 to Plantaricin BM-1 via the BasS/BasR Two-Component Regulatory System. Front Microbiol 2021; 12:659198. [PMID: 34484135 PMCID: PMC8415914 DOI: 10.3389/fmicb.2021.659198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Plantaricin BM-1, a class IIa bacteriocin produced by Lactobacillus plantarum BM-1, shows obvious antibacterial activity against Escherichia coli. However, the mechanism underlying the action of class IIa bacteriocins against gram-negative bacteria remains to be explored. The purpose of this study was to investigate the role of YbfA, a DUF2517 domain-containing protein, in the response of Escherichia coli K12 to plantaricin BM-1. The growth curve experiment and MIC experiment showed that the sensitivity of E. coli to plantaricin BM-1 was decreased by a ybfA null mutation. Electron microscopy showed that the ybfA null mutation reduced the surface rupture and contraction caused by plantaricin BM-1, and mitigated the effect of plantaricin BM-1 on the morphology of the E. coli cell membrane. Proteomics analysis showed that 323 proteins were differentially expressed in E. coli lacking the ybfA gene (P < 0.05); 118 proteins were downregulated, and 205 proteins were upregulated. The metabolic pathways containing the upregulated proteins mainly included outer membrane proteins, integral components of the plasma membrane, regulation of cell motility, and regulation of locomotion. The metabolic pathways involving the downregulated proteins mainly included outer membrane protein glycine betaine transport, amino-acid betaine transport, and transmembrane signaling receptor activity. The results of the proteomics analysis showed that the protein expression of the BasS/BasR two-component system was significantly increased (P < 0.05). Moreover, the expression levels of downstream proteins regulated by this two-component system were also significantly increased, including DgkA, FliC, and MlaE, which are involved in cell membrane structure and function, and RT-qPCR also confirmed this result. The growth curve showed that the sensitivity of E. coli to plantaricin BM-1 was significantly increased due to deletion of the BasS/BasR two-component system. Thus, deletion of ybfA in E. coli can increase the expression of the BasS/BasR two-component system and positively regulate the structure and function of the cell membrane to reduce the sensitivity to plantaricin BM-1. This will help to explore the mechanism of action of class IIa bacteriocins against gram-negative bacteria.
Collapse
Affiliation(s)
- Xinyue Chen
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yifei Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Hui Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
61
|
Fathizadeh H, Pakdel F, Saffari M, Esmaeili DD, Momen-Heravi M, Dao S, Ganbarov K, Kafil HS. Bacteriocins: Recent advances in application as an antimicrobial alternative. Curr Pharm Biotechnol 2021; 23:1028-1040. [PMID: 34493194 DOI: 10.2174/1389201022666210907121254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022]
Abstract
Due to the emergence and development of antibiotic resistance in the treatment of bacterial infections, efforts to discover new antimicrobial agents have increased. One of these antimicrobial agents is a compound produced by a large number of bacteria called bacteriocin. Bacteriocins are small ribosomal polypeptides that can exert their antibacterial effects against bacteria close to their producer strain or even non-closely strains. Adequate knowledge of the structure and functional mechanisms of bacteriocins and their spectrum of activity, as well as knowledge of the mechanisms of possible resistance to these compounds will lead to further development of their use as an alternative to antibiotics. Furthermore, most bacteria that live in the gastrointestinal tract (GIT) have the ability to produce bacteriocins, which spread throughout the GIT. Despite antimicrobial studies in vitro, our knowledge of bacteriocins in the GIT and the migration of these bacteriocins from the epithelial barrier is low. Hence, in this study, we reviewed general information about bacteriocins, such as classification, mechanism of action and resistance, emphasizing their presence, stability, and spectrum of activity in the GIT.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan. Iran
| | - Farzaneh Pakdel
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan. Iran
| | - Davoud Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran. Iran
| | - Mansooreh Momen-Heravi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan. Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako. Mali
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, IR. Iran
| |
Collapse
|
62
|
Purification, molecular characterization of Lactocin 63 produced by Lactobacillus coryniformis FZU63 and its antimicrobial mode of action against Shewanella putrefaciens. Appl Microbiol Biotechnol 2021; 105:6921-6930. [PMID: 34476515 DOI: 10.1007/s00253-021-11503-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Bacteriocins derived from lactic acid bacteria (LAB) are well recognized as promising food preservative due to high safety and potent antibacterial activity against foodborne pathogens and spoilage bacteria. In this study, an antimicrobial agent-producing strain FZU63 from Chinese sauerkraut was identified as Lactobacillus coryniformis based on physio-biochemical characterization and 16S rDNA sequence analysis. In addition, a bacteriocin was purified from the culture supernatant of L. coryniformis FZU63, and its molecular mass was determined as 1493.709 Da. Moreover, the amino acid sequence of the bacteriocin was predicted to be RQQPMTLDYRW-NH2 using nanoliter/microliter liquid chromatography combined with triple quadrupole-linear ion trap tandem mass spectrometry and was named as Lactocin 63. Furthermore, Lactocin 63 displays potent antimicrobial activity against the tested Gram-positive and negative bacteria based on the results of determining MICs. Subsequently, the action mode of Lactocin 63 against Shewanella putrefaciens was investigated. The results demonstrated that Lactocin 63 targets and is adsorbed onto the bacterial cell wall and membrane and then disrupts cytoplasmic membrane, which is leading to leakage of cytoplasm according to the results of flow cytometry analysis and the observation of cellular ultra-structure using confocal laser microscopy and atomic force microscopy. Collectively, these results are helpful and providing the theoretical base for developing and applying LAB-derived bacteriocins as promising bio-preservatives to combat foodborne pathogens and spoilage bacteria in seafood industries.Key points• A bacteriocin-producing strain Lactobacillus coryniformis was isolated.• A novel bacteriocin produced by Lactobacillus coryniformis FZU63 was characterized.• Action mechanism of the bacteriocin against S. putrefaciens was elucidated in vitro.
Collapse
|
63
|
Farias FM, Teixeira LM, Vallim DC, Bastos MDCDF, Miguel MAL, Bonelli RR. Characterization of Enterococcus faecium E86 bacteriocins and their inhibition properties against Listeria monocytogenes and vancomycin-resistant Enterococcus. Braz J Microbiol 2021; 52:1513-1522. [PMID: 33900613 PMCID: PMC8324726 DOI: 10.1007/s42770-021-00494-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022] Open
Abstract
In the present scenario of a major demand for new compounds with antimicrobial activity, bacteriocin and bacteriocin-like inhibitory substances (BLIS) are promising tools against deteriorating and pathogenic microorganisms, thus having potential applications in both the food industry and infectious disease control. In the present report, we describe the genetic and phenotypic characteristics of BLIS produced by Enterococcus faecium E86, a strain previously isolated and sequenced by our group, focusing on the structural genes of two bacteriocins identified: enterocin TW21 and enterocin P. Transcription of all four genes associated with the biosynthesis and immunity of enterocin P and enterocin TW21 were confirmed by RT-PCR. However, Sanger sequencing confirmed a truncation of the structural gene of enterocin TW21 due to one base pair deletion (A/T). Thus, although E. faecium E86 was shown to carry two bacteriocinogenic gene clusters, only one cluster encodes a functional bacteriocin, enterocin P. Enterocin P was able to inhibit different strains of Listeria monocytogenes and vancomycin-resistant enterococci (both Enterococcus faecalis and Enterococcus faecium), showing intense bacteriolytic activity, in most cases.
Collapse
Affiliation(s)
- Felipe Miceli Farias
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcia Martins Teixeira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deyse Christina Vallim
- Laboratório de Zoonoses Bacterianas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Maria do Carmo de Freire Bastos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Antônio Lemos Miguel
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Regina Bonelli
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
64
|
Laws GL, Hale JDF, Kemp RA. Human Systemic Immune Response to Ingestion of the Oral Probiotic Streptococcus salivarius BLIS K12. Probiotics Antimicrob Proteins 2021; 13:1521-1529. [PMID: 34282568 DOI: 10.1007/s12602-021-09822-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Streptococcus salivarius K12 is an oral probiotic known to contribute to protection against oral pathogenic bacteria in humans. Studies of immune responses to S. salivarius K12 have focused on the oral cavity, and systemic immune responses have not yet been reported. The aim of this study was to identify acute systemic immune responses to the commercial product, S. salivarius BLIS K12, in a double-blinded, placebo-controlled human clinical trial. It was hypothesised that consumption of S. salivarius BLIS K12 would induce an anti-inflammatory response and a decrease in pro-inflammatory cytokines. Blood samples were obtained from participants prior to a single dose of S. salivarius BLIS K12 or a placebo and then secondary blood samples were obtained 24 h and 7 days post-consumption. Samples were analysed using multi-parametric flow cytometry, to quantify immune cell frequency changes, and by a LEGENDplex assay of human inflammatory cytokines. Consumption of S. salivarius BLIS K12 was associated with increased levels of IL-8 at 24 h. The frequency of Tregs increased in samples taken 7 days after probiotic consumption, and IL-10 concentrations were higher at 7 days than 24 h after consumption. There was no difference in the frequency and/or activation of CD4+ T cells, CD8+ T cells, B cells and NK cells. Interestingly, there was an increase in IL-12, 7 days after the consumption of S. salivarius BLIS K12. Collectively, this research demonstrates that ingestion of the probiotic S. salivarius K12 can induce changes in the systemic immune response. The implications of the generation and type of immune response warrant further study to determine potential health benefits.
Collapse
Affiliation(s)
- Gemma L Laws
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
65
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
66
|
Watanabe A, Kawada-Matsuo M, Le MNT, Hisatsune J, Oogai Y, Nakano Y, Nakata M, Miyawaki S, Sugai M, Komatsuzawa H. Comprehensive analysis of bacteriocins in Streptococcus mutans. Sci Rep 2021; 11:12963. [PMID: 34155274 PMCID: PMC8217173 DOI: 10.1038/s41598-021-92370-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Streptococcus mutans produces bacteriocins that show antibacterial activity against several bacteria. However, comprehensive analysis of these bacteriocins has not been well done. In this study, we isolated 125 S. mutans strains from volunteers and determined their whole genome sequence. Based on the genome analysis, the distribution of each bacteriocin gene (mutacins I-IV, K8 and Smb) was investigated. We found 17, 5, and 2 strains showing 100% matches with mutacin I, mutacin II and mutacin III, respectively. Five mutacin III-positive strains had 2 mismatches compared to mature mutacin III. In 67 mutacin IV-positive strains, 38 strains showed 100% match with mutacin IV, while 29 strains showed some variations. In 23 mutacin K8- and 32 mutacin Smb-positive strains, all except one mutacin K8-positive strain showed 100% match with the mature peptides. Among 125 strains, 84 (65.1%), 26 (20.2%), and 5 (3.9%) strains were positive for one, two and three bacteriocin genes, respectively. Then, the antibacterial activity against oral streptococci and other oral bacterial species was investigated by using bacteriocin gene single-positive strains. Each bacteriocin gene-positive strain showed a different pattern of antibacterial activity. These results speculate that individual S. mutans strains may affect the bacterial composition of dental plaques.
Collapse
Affiliation(s)
- Atsuko Watanabe
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima, 734-8551, Japan.,Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima, 734-8551, Japan.,Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan.,Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshio Nakano
- Department of Chemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Motoyuki Sugai
- Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan.,Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Kasumi 1-2-3, Hiroshima City, Hiroshima, 734-8551, Japan. .,Project Research Centre for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
67
|
Benabbou R, Subirade M, Desbiens M, Fliss I. Divergicin M35-Chitosan Film: Development and Characterization. Probiotics Antimicrob Proteins 2021; 12:1562-1570. [PMID: 32430585 DOI: 10.1007/s12602-020-09660-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chitosan films loaded with bacteriocin were examined by FTIR spectroscopy, tested for color, puncture strength, water vapor permeability, and as antimicrobials of Listeria innocua HPB13. Divergicin M35, a bacteriocin produced by Carnobacterium divergens, was incorporated into films made with chitosan of molecular mass 2 kDa, 20 kDa, or 100 kDa and de-acetylated either 87% or 95%. Only 100 kDa chitosan yielded films that could be peeled and handled easily. The higher degree of de-acetylation increased the total color factor (ΔE) of bacteriocin-loaded films, their permeability, and puncture strength. Incorporation of divergicin M35 into the films increased amide I peak intensity but otherwise did not induce significant structural change. The FTIR spectra of divergicin M35 shed from the films did not differ from those of the original free bacteriocin, except in overall peak intensity. The release of active divergicin M35 from the film was faster into the buffer than into tryptic soy broth and peaked at 10-12 h in both cases. Chitosan 95% de-acetylated and loaded with divergicin M35 was the most active, producing a six-log drop in Listeria innocua HPB13 viable count within 24 h. These results suggest that the biocompatible and biodegradable films developed here have the potential for application as antimicrobials of Listeria spp. in foods, especially ready-to-eat, minimally processed products.
Collapse
Affiliation(s)
- Rajaa Benabbou
- Department of Food Science, Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
- Laboratory Engineering Research-OSIL Team Optimization of Industrial and Logistics Systems, University Hassan II, Casablanca, Morocco
| | - Muriel Subirade
- Department of Food Science, Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada
| | - Michel Desbiens
- Centre Technologique des Produits aquatiques, Ministère de l'Agriculture des Pêcheries et de l'Alimentation, Gaspé, Québec, Canada
| | - Ismail Fliss
- Department of Food Science, Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
68
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
69
|
Hassan H, St-Gelais D, Gomaa A, Fliss I. Impact of Nisin and Nisin-Producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and Bacterial Ecosystem of Cheese Matrices. Foods 2021; 10:898. [PMID: 33921812 PMCID: PMC8073774 DOI: 10.3390/foods10040898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Clostridium tyrobutyricum spores survive milk pasteurization and cause late blowing of cheeses and significant economic loss. The effectiveness of nisin-producing Lactococcus lactis ssp. lactis 32 as a protective strain for control the C. tyrobutyricum growth in Cheddar cheese slurry was compared to that of encapsulated nisin-A. The encapsulated nisin was more effective, with 1.0 log10 reductions of viable spores after one week at 30 °C and 4 °C. Spores were not detected for three weeks at 4 °C in cheese slurry made with 1.3% salt, or during week 2 with 2% salt. Gas production was observed after one week at 30 °C only in the control slurry made with 1.3% salt. In slurry made with the protective strain, the reduction in C. tyrobutyricum count was 0.6 log10 in the second week at 4 °C with both salt concentration. At 4 °C, nisin production started in week 2 and reached 97 µg/g after four weeks. Metabarcoding analysis targeting the sequencing of 16S rRNA revealed that the genus Lactococcus dominated for four weeks at 4 °C. In cheese slurry made with 2% salt, the relative abundance of the genus Clostridium decreased significantly in the presence of nisin or the protective strain. The results indicated that both strategies are able to control the growth of Clostridium development in Cheddar cheese slurries.
Collapse
Affiliation(s)
- Hebatoallah Hassan
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
- Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Daniel St-Gelais
- Food Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Hyacinthe, QC J2S 8E3, Canada;
| | - Ahmed Gomaa
- National Research Center, Nutrition and Food Science Department, Cairo 12622, Egypt;
| | - Ismail Fliss
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
70
|
Inactivation of GalU Leads to a Cell Wall-Associated Polysaccharide Defect That Reduces the Susceptibility of Enterococcus faecalis to Bacteriolytic Agents. Appl Environ Microbiol 2021; 87:AEM.02875-20. [PMID: 33483312 DOI: 10.1128/aem.02875-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Enterococcal plasmid-encoded bacteriolysin Bac41 is a selective antimicrobial system that is considered to provide a competitive advantage to Enterococcus faecalis cells that carry the Bac41-coding plasmid. The Bac41 effector consists of the secreted proteins BacL1 and BacA, which attack the cell wall of the target E. faecalis cell to induce bacteriolysis. Here, we demonstrated that galU, which encodes UTP-glucose-1-phosphate uridylyltransferase, is involved in susceptibility to the Bac41 system in E. faecalis Spontaneous mutants that developed resistance to the antimicrobial effects of BacL1 and BacA were revealed to carry a truncation deletion of the C-terminal amino acid (aa) region 288 to 298 of the translated GalU protein. This truncation resulted in the depletion of UDP-glucose, leading to a failure to utilize galactose and produce the enterococcal polysaccharide antigen (EPA), which is expressed abundantly on the cell surface of E. faecalis This cell surface composition defect that resulted from galU or EPA-specific genes caused an abnormal cell morphology, with impaired polarity during cell division and alterations of the limited localization of BacL1 Interestingly, these mutants had reduced susceptibility to beta-lactams besides Bac41, despite their increased susceptibility to other bacteriostatic antimicrobial agents and chemical detergents. These data suggest that a complex mechanism of action underlies lytic killing, as exogenous bacteriolysis induced by lytic bacteriocins or beta-lactams requires an intact cell physiology in E. faecalis IMPORTANCE Cell wall-associated polysaccharides of bacteria are involved in various physiological characteristics. Recent studies demonstrated that the cell wall-associated polysaccharide of Enterococcus faecalis is required for susceptibility to bactericidal antibiotic agents. Here, we demonstrated that a galU mutation resulted in resistance to the enterococcal lytic bacteriocin Bac41. The galU homologue is reported to be essential for the biosynthesis of species-specific cell wall-associated polysaccharides in other Firmicutes In E. faecalis, the galU mutant lost the E. faecalis-specific cell wall-associated polysaccharide EPA (enterococcal polysaccharide antigen). The mutant also displayed reduced susceptibility to antibacterial agents and an abnormal cell morphology. We demonstrated here that galU was essential for EPA biosynthesis in E. faecalis, and EPA production might underlie susceptibility to lytic bacteriocin and antibiotic agents by undefined mechanisms.
Collapse
|
71
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
72
|
Pachla A, Ptaszyńska AA, Wicha M, Kunat M, Wydrych J, Oleńska E, Małek W. Insight into probiotic properties of lactic acid bacterial endosymbionts of Apis mellifera L. derived from the Polish apiary. Saudi J Biol Sci 2021; 28:1890-1899. [PMID: 33732075 PMCID: PMC7938192 DOI: 10.1016/j.sjbs.2020.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Taking into account that fructophilic lactic acid bacteria (FLAB) can play an important role in the health of honey bees and can be used as probiotics, phenotypic properties of probiotic interest of Lactobacillus kunkeei (12 strains) and Fructobacillus fructossus bacteria (2 strains), isolated from Apis mellifera gastrointestinal tract, have been studied. We have evaluated survival of tested FLAB in honey bee gut, their susceptibility to antibiotics (ampicillin, erythromycin, tylosin), cell surface hydrophobicity, auto-aggregation ability, co-aggregation with model pathogenic bacteria, biofilm formation capacity, and effect of studied FLAB, added to sucrose syrup bee diet, on longevity of honey bees. The tested FLAB exhibited good gastrointestinal tract tolerance and high antibiotic susceptibility, which are important criteria in the screening of probiotic candidates. It was also found that all FLAB studied have high cell surface hydrophobicity and fulfil next selection criterion for their use as probiotics. Symbionts of A. mellifera showed also auto- and co-aggregation capacities regarded as valuable features for biofilm formation and inhibition of pathogens adhesion to the bee gut cells. Biofilm-development ability is a desired characteristic of probiotic lactic acid bacteria. As indicated by quantitative crystal violet-stained microplate assay and confocal laser scanning microscopy imaging, all studied A. mellifera gut isolates exhibit a biofilm positive phenotype. Moreover, it was also documented, on honey bees kept in cages, that supplementation of A. mellifera sucrose diet with FLAB decreases mortality and improves significantly longevity of honey bees. Presented research showed that A. mellifera FLAB symbionts are good candidates for application as probiotics.
Collapse
Affiliation(s)
- Artur Pachla
- Research and Development Center, Biowet Puławy, 2 H. Arciucha st., 24–100 Puławy, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, 19 Akademicka st., 20–033 Lublin, Poland
| | - Magdalena Wicha
- Research and Development Center, Biowet Puławy, 2 H. Arciucha st., 24–100 Puławy, Poland
| | - Magdalena Kunat
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie–Skłodowska University, 19 Akademicka st., 20–033 Lublin, Poland
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, M. Curie–Skłodowska University, Akademicka 19, 20–033 Lublin, Poland
| | - Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, M. Curie–Skłodowska University, Akademicka 19, 20–033 Lublin, Poland
| |
Collapse
|
73
|
Lee K, Kaspar JR, Rojas-Carreño G, Walker AR, Burne RA. A single system detects and protects the beneficial oral bacterium Streptococcus sp. A12 from a spectrum of antimicrobial peptides. Mol Microbiol 2021; 116:211-230. [PMID: 33590560 DOI: 10.1111/mmi.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The commensal bacterium Streptococcus sp. A12 has multiple properties that may promote the stability of health-associated oral biofilms, including overt antagonism of the dental caries pathogen Streptococcus mutans. A LanFEG-type ABC transporter, PcfFEG, confers tolerance to the lantibiotic nisin and enhances the ability of A12 to compete against S. mutans. Here, we investigated the regulation of pcfFEG and adjacent genes for a two-component system, pcfRK, to better understand antimicrobial peptide resistance by A12. Induction of pcfFEG-pcfRK was the primary mechanism to respond rapidly to nisin. In addition to nisin, PcfFEG conferred tolerance by A12 to a spectrum of lantibiotic and non-lantibiotic antimicrobial peptides produced by a diverse collection of S. mutans isolates. Loss of PcfFEG resulted in the altered spatio-temporal arrangement of A12 and S. mutans in a dual-species biofilm model. Deletion of PcfFEG or PcfK resulted in constitutive activation of pcfFEG and expression of pcfFEG was inhibited by small peptides in the pcfK mutant. Transcriptional profiling of pcfR or pcfK mutants combined with functional genomics revealed peculiarities in PcfK function and a novel panel of genes responsive to nisin. Collectively, the results provide fundamental insights that strengthen the foundation for the design of microbial-based therapeutics to control oral infectious diseases.
Collapse
Affiliation(s)
- Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Gisela Rojas-Carreño
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
74
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
75
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
76
|
D. Goldenberg S, Merrick B. The role of faecal microbiota transplantation: looking beyond Clostridioides difficile infection. Ther Adv Infect Dis 2021; 8:2049936120981526. [PMID: 33614028 PMCID: PMC7841662 DOI: 10.1177/2049936120981526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Faecal microbiota transplantation (FMT) is the transfer of screened and minimally processed faecal material from a 'healthy' donor to 'diseased' recipient. It has an established role, and is recommended as a therapeutic strategy, in the management of recurrent Clostridioides difficile infection (CDI). Recognition that gut dysbiosis is associated with, and may contribute to, numerous disease states has led to interest in exploiting FMT to 'correct' this microbial imbalance. Conditions for which it is proposed to be beneficial include inflammatory bowel disease, irritable bowel syndrome, liver disease and hepatic encephalopathy, neuropsychiatric conditions such as depression and anxiety, systemic inflammatory states like sepsis, and even coronavirus disease 2019. To understand what role, if any, FMT may play in the management of these conditions, it is important to consider the potential risks and benefits of the therapy. Regardless, there are several barriers to its more widespread adoption, which include incompletely understood mechanism of action (especially outside of CDI), inability to standardise treatment, disagreement on its active ingredients and how it should be regulated, and lack of long-term outcome and safety data. Whilst the transfer of faecal material from one individual to another to treat ailments or improve health has a history dating back thousands of years, there are fewer than 10 randomised controlled trials supporting its use. Moving forward, it will be imperative to gather as much data from FMT donors and recipients over as long a timeframe as possible, and for trials to be conducted with rigorous methodology, including appropriate control groups, in order to best understand the utility of FMT for indications beyond CDI. This review discusses the history of FMT, its appreciable mechanisms of action with reference to CDI, indications for FMT with an emerging evidence base above and beyond CDI, and future perspectives on the field.
Collapse
Affiliation(s)
- Simon D. Goldenberg
- Centre for Clinical Infection & Diagnostics Research, King’s College London and Guy’s & St. Thomas’ NHS Foundation Trust, 5th floor, North Wing, St Thomas’ hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Blair Merrick
- Centre for Clinical Infection & Diagnostics Research, King’s College London and Guy’s & St. Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
77
|
Lee M, Chung JY, Kim KY, Im W, Kim M. Two-weeks repeated-dose oral toxicity study of Pediococcus acidilactici J9 in a mice model. BMC Microbiol 2020; 20:372. [PMID: 33297964 PMCID: PMC7727177 DOI: 10.1186/s12866-020-02055-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is an important pathogen that causes chronic gastritis and peptic ulcer, and is related to the development of gastric carcinoma. Several chemicals, including antibiotics, have been used to eradicate H.pylori. However, more studies are yet requred to accomplish a sufficient therapy. Pediococcus acidilactici (P. acidilactici) J9 were studied for inhibition of binding of H.pylori binding to human gastric cell lines. This study was performed in order to investigate the repeated-dose toxicity of P. acidilactici J9 in male and female mice. RESULTS C57BL/6 male and female Mus musculus were divided into four groups (n = 10 in each group). P. acidilactici J9 was administered daily by oral injection of vehicle control at dosage levels to a low-dose group (500 mg/kg/day), middle-dose group (1000 mg/kg/day), and high-dose group (2000 mg/kg/day) for 2 weeks. After 14 days of exposure, the blood biochemistry and hematology were investigated, along with a histopathology exam. There were no bacterial-related deaths or abnormal clinical signs in either gender of mouse. The data was observed during the period in terms of body weight, food intake, and water consumption. Also, no alterations in organ weights upon administration of P. acidilactici J9 alone were observed. The adhesion and growth of H. pylori were inhibited by a 24 h treatment of H. pylori and P. acidilactici J9 on adenocarcinoma gastric (AGS) cells, which are gastric cancer cells. Compared to the control group (AGS cell and H. pylori), the number of H. pylori analyzed by FACS significantly (p < 0.01) decreased after incubation of AGS cell with P. acidilactici J9 for 24 h. CONCLUSIONS These results suggest that the oral application of P. acidilactici J9, up to a dosage level of 2000 mg/kg/day, causes no adverse effects in both male and female mice. P. acidilactici J9 inhibits the adhesion of H.pylori to AGS cancer cells. When used as probiotics, P. acidilactici J9 may help decrease the occurrence of gastritis and reduce the risk of H.pylori infection with promising safety issues.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Gangwon-do, South Korea
| | - Ka Yeun Kim
- Department of Psychology, Fordham University, New York, NY, USA
| | - Wooseok Im
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea. .,Protein Metabolism Medical Research Center, College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
78
|
Su F, Tian R, Yang Y, Li H, Sun G, Li Y, Han B, Xu X, Chen X, Zhao G, Cui H, Xu H. Comparative Genome Analysis Reveals the Molecular Basis of Niche Adaptation of Staphylococcus epidermidis Strains. Front Genet 2020; 11:566080. [PMID: 33240320 PMCID: PMC7680996 DOI: 10.3389/fgene.2020.566080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022] Open
Abstract
Staphylococcus epidermidis is one of the most commonly isolated species from human skin and the second leading cause of bloodstream infections. Here, we performed a large-scale comparative study without any pre-assigned reference to identify genomic determinants associated with the diversity and adaptation of S. epidermidis strains to various environments. Pan-genome of S. epidermidis was open with 435 core proteins and had a pan-genome size of 8,034 proteins. Genome-wide phylogenetic tree showed high heterogeneity and suggested that routine whole genome sequencing was a powerful tool for analyzing the complex evolution of S. epidermidis and for investigating the infection sources. Comparative genome analyses demonstrated a range of antimicrobial resistance (AMR) genes, especially those within mobile genetic elements. The complicated host-bacterium and bacterium-bacterium relationships help S. epidermidis to play a vital role in balancing the epithelial microflora. The highly variable and dynamic nature of the S. epidermidis genome may contribute to its success in adapting to broad habitats. Genes related to biofilm formation and cell toxicity were significantly enriched in the blood and skin, demonstrating their potentials in identifying risk genotypes. This study gave a general landscape of S. epidermidis pan-genome and provided valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible species.
Collapse
Affiliation(s)
- Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Tian
- Department of Cardiovascular Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yi Yang
- Department of Otorhinolaryngology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Li
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingqing Han
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaomao Xu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Chen
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Zhao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyuan Cui
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
79
|
de Azevedo POS, Mendonça CMN, Seibert L, Domínguez JM, Converti A, Gierus M, Oliveira RPS. Bacteriocin-like inhibitory substance of Pediococcus pentosaceus as a biopreservative for Listeria sp. control in ready-to-eat pork ham. Braz J Microbiol 2020; 51:949-956. [PMID: 32144691 PMCID: PMC7455651 DOI: 10.1007/s42770-020-00245-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/10/2020] [Indexed: 10/24/2022] Open
Abstract
The growing demand of consumers for synthetic chemical-free foods has increased the search for natural preservatives such as bacteriocins and bacteriocin-like inhibitory substances (BLIS) to give them adequate microbiological safety, sensory characteristics, and shelf life. In this study, the antimicrobial activity of BLIS produced by Pediococcus pentosaceus ATCC 43200 was compared with that of nisin. Lactobacillus sakei ATCC 15521, Listeria seeligeri NCTC 11289, Enterococcus En2052 and En2865, and Listeria monocytogenes CECT 934 and NADC 2045 exhibited larger inhibition halos in BLIS-treated than in Nisaplin-treated samples, unlike Listeria innocua NCTC 11288. In artificially contaminated ready-to-eat pork ham, BLIS was effective in inhibiting the growth of L. seeligeri NCTC 11289 for 6 days (counts from 1.74 to 0.00 log CFU/g) and ensured lower weight loss (2.7%) and lipid peroxidation (0.63 mg MDA/kg) of samples compared with the control (3.0%; 1.25 mg MDA/kg). At the same time, coloration of ham samples in terms of luminosity, redness, and yellowness as well as discoloration throughout cold storage was not influenced by BLIS or Nisaplin taken as a control. These results suggest the potential use of P. pentosaceus BLIS as a biopreservative in meat and other food processing industries.
Collapse
Affiliation(s)
- Pamela O S de Azevedo
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos M N Mendonça
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil
| | - Liane Seibert
- Department of Animal Science, Laboratory of Ecology and Natural Grassland, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - José M Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas s/n, 32004, Ourense, Spain
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Via Opera Pia 15, 16145, Genoa, Italy
| | - Martin Gierus
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE), IFA-Tulln, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Ricardo P S Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
80
|
Wang JW, Derilo RC, Lagitnay RBJS, Wu HP, Chen KI, Chuang DY. Identification and characterization of the bacteriocin Carocin S3 from the multiple bacteriocin producing strain of Pectobacterium carotovorum subsp. carotovorum. BMC Microbiol 2020; 20:273. [PMID: 32867691 PMCID: PMC7461348 DOI: 10.1186/s12866-020-01955-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/23/2020] [Indexed: 01/01/2023] Open
Abstract
Background Pectobacterium carotovorum subsp. carotovorum belongs to the Enterobacteriaceae family, which causes soft-rot disease in numerous plants worldwide resulting in significant economic losses. Results from our previous studies showed that the strain H-rif-8-6 produces low-molecular-weight bacteriocin (LMWB) Carocin S1. Interestingly, TH22–10, the caroS1K:Tn5 insertional mutant in H-rif-8-6, loses Carocin S1 producing ability, but still produces other LMWBs which the indicator strain SP33 can detect. The SP33 is one of the many strains that are sensitive toward the cytotoxic effects of Carocin S3K, but not Carocin S1. The result revealed that H-rif-8-6 is a multiple-bacteriocin producing strain. Results In this study, a 4.1-kb DNA fragment was isolated from the chromosomal DNA of Pcc strain, H-rif-8-6, by a DNA probe using the caroS1K gene as the template. DNA sequencing and analysis by GenBank revealed two complete open reading frames (ORFs), designated ORF1 and ORF2, which were identified within the sequence fragment. ORF1 and ORF2, similar to the identified carocin S2 genes, encode the killer (Carocin S3K) and the immunity (Carocin S3I) proteins, respectively, which were homologous to the colicin E3 gene. Carocin S3K and Carocin S3I were expressed, isolated, and purified in Escherichia coli BL21 after subcloning of the expression plasmid pGS3KI or pGSK3I. SDS-PAGE analysis showed that the relative masses of Carocin S3K and Carocin S3I were 95.6 kDa and 10.2 kDa, respectively. The results reveal that Carocin S3K has higher antimicrobial and specific antimicrobial activities for Pcc along with a nuclease activity than Carocin S3I. However, Carocin S3I inhibits the activity of Carocin S3K. Interestingly, a high concentration of Carocin S3I protein is also a DNA nuclease, and Carocin S3K also inhibits its activity. Conclusion This study showed that another type of bacteriocin was found in Pectobacterium carotovorum. This new type of bacteriocin, Carocin S3, has the killer protein, Carocin S3K, and the immunity protein, Carocin S3I.
Collapse
Affiliation(s)
- Jyun-Wei Wang
- Depertment of Gastroenterology, Chang Bing Show Chwan Memorial Hospital, 6 Lukon Road, Lukong Town, Changhua, 505, Taiwan
| | - Reymund C Derilo
- Department of Chemistry, National Chung-Hsing University, 250, Kuokuang Rd, Taichung City, 402, Taiwan
| | | | - Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-In Chen
- Department of Chemistry, National Chung-Hsing University, 250, Kuokuang Rd, Taichung City, 402, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung-Hsing University, 250, Kuokuang Rd, Taichung City, 402, Taiwan.
| |
Collapse
|
81
|
Abdelhamid AG, El-Dougdoug NK. Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies. Heliyon 2020; 6:e05020. [PMID: 32995651 PMCID: PMC7511826 DOI: 10.1016/j.heliyon.2020.e05020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases represent a global health threat besides the great economic losses encountered by the food industry. These hazards necessitate the implementation of food preservation methods to control foodborne pathogens, the causal agents of human illnesses. Until now, most control methods rely on inhibiting the microbial growth or eliminating the pathogens by applying lethal treatments. Natural antimicrobials, which inhibit microbial growth, include traditional chemicals, naturally occurring antimicrobials, or biological preservation (e.g. beneficial microbes, bacteriocins, or bacteriophages). Although having great antimicrobial effectiveness, challenges due to the adaptation of foodborne pathogens to such control methods are becoming apparent. Such adaptation enables the survival of the pathogens in foods or food-contact environments. This imperative concern inspires contemporary research and food industry sector to develop technologies which do not target microbial growth but disarming microbial virulence factors. These technologies, referred to as "antivirulence", render the microbe non-capable of causing the disease with very limited or no opportunities for the pathogenic microorganisms to develop resistance. For the sake of safer and fresh-like foods, with no effect on the sensory properties of foods, a combination of two or more natural antimicrobials or with other stressors, is now widespread, to preserve foods. This review introduces and critically describes the traditional versus the emerging uses of natural antimicrobials for controlling foodborne pathogens in foods. Development of biological control strategies using natural antimicrobials proved to be effective in inhibiting microbial growth in foods and allowing improved food safety. In the meanwhile, discovery of new antivirulence agents could be a transformative strategy in food preservation in the far future.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
82
|
Salustiano Marques-Bastos SL, Varella Coelho ML, Ceotto-Vigoder H, Carlin Fagundes P, Silva Almeida G, Brede DA, Nes IF, Vasconcelos de Paiva Brito MA, de Freire Bastos MDC. Molecular characterization of aureocin 4181: a natural N-formylated aureocin A70 variant with a broad spectrum of activity. Braz J Microbiol 2020; 51:1527-1538. [PMID: 32542423 DOI: 10.1007/s42770-020-00315-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 11/27/2022] Open
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by prokaryotes. Here, the molecular characterization of aureocin 4181, a bacteriocin produced by Staphylococcus aureus 4181, a strain involved in bovine mastitis, is presented. Aureocin 4181 gene cluster (aurRID1CBAT) was mined from scaffold 15 of the draft genome of its producer strain. Three (AurABC) out of the four structural peptides of aureocin 4181 are identical to those of aureocin A70, except for AurD1 of aureocin 4181, which showed a conservative substitution of Leu29 to Phe29 when compared to AurD of aureocin A70. According to molecular mass determination and peptide sequencing, combined with genome sequencing data, aureocin 4181 is an N-formylated variant of aureocin A70. The analysis of its antimicrobial spectrum was extended to include strains of the two major contagious pathogens involved in bovine mastitis, S. aureus and Streptococcus agalactiae. Aureocin 4181 exhibited a striking activity against S. aureus, inhibiting most strains tested. Besides having a broader spectrum of activity, aureocin 4181 exhibited a stronger bacteriolytic action against the target strains and proved to be from two- to fourfold more active than aureocin A70 against S. aureus. Aureocin 4181 has potential to become an alternative drug for prevention and control of mastitic staphylococci, a pathogen that imposes a huge economic burden to dairy industry worldwide. It also represents the third four-component bacteriocin described in the literature, the second in staphylococci.
Collapse
Affiliation(s)
| | - Marcus Lívio Varella Coelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional da Propriedade Industrial, Rio de Janeiro, RJ, Brazil
| | - Hilana Ceotto-Vigoder
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Carlin Fagundes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gabriela Silva Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Dag A Brede
- Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ingolf F Nes
- Laboratory of Microbial Gene Technology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Maria do Carmo de Freire Bastos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil. .,Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Av. Carlos Chagas Filho, 373, CCS, Bloco I, room I-1-059, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
83
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
84
|
Saraiva MAF, Birri DJ, Brede DA, Baracat-Pereira MC, de Queiroz MV, Nes IF, de Moraes CA. Nisin Z Production by Wild Strains of Lactococcus lactis Isolated from Brazilian (Italian Type) Fermented Sausage. Int J Microbiol 2020; 2020:9309628. [PMID: 32351575 PMCID: PMC7178509 DOI: 10.1155/2020/9309628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, five bacteriocin-producing Lactococcus lactis strains were identified from different naturally fermented Brazilian sausages. Ion exchange and reversed-phase chromatographies were used to purify the bacteriocins from culture supernatant of the five strains. Mass spectrometry (MALDI-TOF/TOF) showed that the molecular masses of the bactericoins from L. lactis ID1.5, ID3.1, ID8.5, PD4.7, and PR3.1 were 3330.567 Da, 3330.514 Da, 3329.985 Da, 3329.561 Da, and 3329.591 Da, respectively. PCR product sequence analysis confirmed that the structural genes of bacteriocins produced by the five isolates are identical to the lantibiotic nisin Z. Optimal nisin Z production was achieved in tryptone and casein peptone, at pH 6.0 or 6.5. The most favorable temperatures for nisin Z production were 25°C and 30°C, and its production was better under aerobic than anaerobic condition. The type of carbon source appeared to be an important factor for nisin Z production. While sucrose was found to be the most efficient carbon source for nisin Z production by four L. lactis isolates, fructose was the best for one isolate. Lactose was also a good energy source for nisin Z production. Surprisingly, glucose was clearly the poorest carbon source for nisin Z production. The five isolates produced different amounts of the bacteriocin, L. lactis ID1.5 and ID8.5 isolates being the best nisin Z producers. DNA sequence analysis did not reveal any sequence differences in the nisZ and nisF promoter regions that could explain the differences in nisin Z production, suggesting that there should be other factors responsible for differential nisin Z production by the isolates.
Collapse
Affiliation(s)
| | - Dagim Jirata Birri
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dag Anders Brede
- Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Ingolf F Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
85
|
Kaur H, Merchant M, Haque MM, Mande SS. Crosstalk Between Female Gonadal Hormones and Vaginal Microbiota Across Various Phases of Women's Gynecological Lifecycle. Front Microbiol 2020; 11:551. [PMID: 32296412 PMCID: PMC7136476 DOI: 10.3389/fmicb.2020.00551] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/13/2020] [Indexed: 01/02/2023] Open
Abstract
Functional equilibrium between vaginal microbiota and the host is important for maintaining gynecological and reproductive health. Apart from host genetics, infections, changes in diet, life-style and hygiene status are known to affect this delicate state of equilibrium. More importantly, the gonadal hormones strongly influence the overall structure and function of vaginal microbiota. Several studies have attempted to understand (a) the composition of vaginal microbiota in specific stages of women's reproductive cycle as well as in menopause (b) their association with gonadal hormones, and their potential role in manifestation of specific health conditions (from the perspective of cause/consequence). However, a single study that places, in context, the structural variations of the vaginal microbiome across the entire life-span of women's reproductive cycle and during various stages of menopause is currently lacking. With the objective to obtain a holistic overview of the community dynamics of vaginal micro-environment 'across' various stages of women's reproductive and post-reproductive life-cycle, we have performed a meta-analysis of approximately 1,000 vaginal microbiome samples representing various stages of the reproductive cycle and menopausal states. Objectives of this analysis included (a) understanding temporal changes in vaginal community taxonomic structure and composition as women pass through various reproductive and menopausal stages (b) exploring correlations between the levels of female sex hormones with vaginal microbiome diversity (c) analyzing changes in the pattern of community diversity in cases of dysbiotic conditions such as bacterial vaginosis, and viewing the analyzed changes in the context of a healthy state. Results reveal interesting temporal trends with respect to vaginal microbial community diversity and its pattern of correlation with host physiology. Results indicate significant differences in alpha-diversity and overall vaginal microbial community members in various reproductive and post-reproductive phases. In addition to reinforcing the known influence/role of gonadal hormones in maintaining gynecological health, results indicate how hormonal level perturbations cause/contribute to imbalances in vaginal microbiota. The nature of resulting dysbiotic state and its influence on vaginal health is also analyzed and discussed. Results also suggest that elevated vaginal microbial diversity in pregnancy does not necessarily indicate a state of bacterial infection. The study puts forward a hormone-level driven microbiome diversity hypothesis for explaining temporal patterns in vaginal microbial diversity during various stages of women's reproductive cycle and at menopause.
Collapse
Affiliation(s)
| | | | | | - Sharmila S. Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services, Pune, India
| |
Collapse
|
86
|
Pérez-Sánchez T, Mora-Sánchez B, Vargas A, Balcázar JL. Changes in intestinal microbiota and disease resistance following dietary postbiotic supplementation in rainbow trout (Oncorhynchus mykiss). Microb Pathog 2020; 142:104060. [PMID: 32058028 DOI: 10.1016/j.micpath.2020.104060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
This experimental study was aimed to investigate whether the dietary supplementation of a postbiotic obtained as a food product fermented with two lactic acid bacteria could induce changes in the intestinal microbiota and prevent the development of Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). After 30 days of dietary postbiotic supplementation, bacterial community composition and structure was significantly different between the treated and control groups. A higher bacterial diversity and richness in the intestinal samples was found in treated fish, as compared to those samples from untreated fish. Dietary postbiotic supplementation also conferred increased protection against L. garvieae infection. These findings suggest that the establishment of a beneficial microbiota is essential to prevent diseases or protect the host from foreign agents.
Collapse
Affiliation(s)
- Tania Pérez-Sánchez
- Navarran European Business Innovation Center (CEIN), 31110, Noáin (Navarra), Spain; Pentabiol S.L., 31191, Esquíroz (Navarra), Spain
| | - Brenda Mora-Sánchez
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, 50013, Zaragoza, Spain; Department of Animal Health, Centro Veterinario de Diagnóstico e Investigación (CEVEDI), School of Veterinary Medicine, Universidad Nacional Autónoma de Nicaragua-León, Nicaragua
| | - Augusto Vargas
- Laboratory of Biotechnology and Aquatic Pathology, Faculty of Veterinary Sciences, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain.
| |
Collapse
|
87
|
Shayesteh F, Ahmad A, Usup G. In vitro anti-biofilm activity of bacteriocin from a marine Bacillus sp. strain Sh10 against Proteus mirabilis. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:52-61. [PMID: 32322380 PMCID: PMC7163041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Biofilm formed by Proteus mirabilis strains is one of the most important medical problems especially in the case of device-related urinary tract infections. This study was conducted to evaluate the bacteriocin produced by a marine isolate of Bacillus sp. Sh10, for it's in vitro inhibitory activity against pre-formed biofilm and in interference with the biofilm-forming of two biofilm-producing bacteria (P. mirabilis UCa4 and P. mirabilis UCe1). MATERIALS AND METHODS Sensitivity of two biofilm-producing bacteria (P. mirabilis UCa4 and P. mirabilis UCe1) to bacteriocin, was investigated in planktonic and biofilm states by cell viability and crystal violet assay, respectively. Scanning electron microscopy (SEM) was also performed to determine the effect of bacteriocin on the morphology of the cells associated with biofilm. RESULTS It was found that bacteriocin possessed bactericidal activity to biofilm-forming isolates in the planktonic state. However, bacteriocin interferes with the formation of biofilms and disrupts established biofilms. Bacteriocin reduced biofilm formation in the isolates of P. mirabilis UCa4 and P. mirabilis UCe1 with SMIC50 of 32 and 128 μg/mL, desirable SMIC50 of bacteriocin for biofilm disruption were 128 and 256 μg/mL, respectively. The SEM results indicated that bacteriocin affected the cell morphology of biofilm-associated cells. CONCLUSION The present findings indicated that bacteriocin from Bacillus sp. Sh10 has bactericidal properties against biofilm-forming isolates of P. mirabilis UCa4 and P. mirabilis UCe1 and has the ability to inhibit the formation of biofilm and disrupt established biofilm.
Collapse
Affiliation(s)
- Fatemeh Shayesteh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran,Corresponding author: Fatemeh Shayesteh, PhD, Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran. Tel: +98-763-3711000-13, Fax: +98-763-3711018,
| | - Asmat Ahmad
- Department of Bioscience and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| | - Gires Usup
- Department of Environmental Science and Natural Resources, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
88
|
Newstead LL, Varjonen K, Nuttall T, Paterson GK. Staphylococcal-Produced Bacteriocins and Antimicrobial Peptides: Their Potential as Alternative Treatments for Staphylococcus aureus Infections. Antibiotics (Basel) 2020; 9:antibiotics9020040. [PMID: 31973108 PMCID: PMC7168290 DOI: 10.3390/antibiotics9020040] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/05/2022] Open
Abstract
Staphylococcus aureus is an important pathogen of both humans and animals, implicated in a wide range of infections. The emergence of antibiotic resistance has resulted in S. aureus strains that are resistant to almost all available antibiotics, making treatment a clinical challenge. Development of novel antimicrobial approaches is now a priority worldwide. Bacteria produce a range of antimicrobial peptides; the most diverse of these being bacteriocins. Bacteriocins are ribosomally synthesised peptides, displaying potent antimicrobial activity usually against bacteria phylogenetically related to the producer strain. Several bacteriocins have been isolated from commensal coagulase-negative staphylococci, many of which display inhibitory activity against S. aureus in vitro and in vivo. The ability of these bacteriocins to target biofilm formation and their novel mechanisms of action with efficacy against antibiotic-resistant bacteria make them strong candidates as novel therapeutic antimicrobials. The use of genome-mining tools will help to advance identification and classification of bacteriocins. This review discusses the staphylococcal-derived antimicrobial peptides displaying promise as novel treatments for S. aureus infections.
Collapse
Affiliation(s)
- Logan L. Newstead
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Katarina Varjonen
- AniCura Djursjukhuset Albano, Rinkebyvägen 21A, 182 36 Danderyd, Sweden;
| | - Tim Nuttall
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; (L.L.N.); (T.N.)
- Correspondence:
| |
Collapse
|
89
|
Ibarra-Sánchez LA, El-Haddad N, Mahmoud D, Miller MJ, Karam L. Invited review: Advances in nisin use for preservation of dairy products. J Dairy Sci 2020; 103:2041-2052. [PMID: 31928749 DOI: 10.3168/jds.2019-17498] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Dairy product safety is a global public health issue that demands new approaches and technologies to control foodborne pathogenic microorganisms. Natural antimicrobial agents such as nisin can be added to control the growth of pathogens of concern in dairy foods, namely Listeria monocytogenes and Staphylococcus aureus. However, several factors affect the antimicrobial efficacy of nisin when directly added into the food matrix such as lack of stability at neutral pH, interaction with fat globules, casein, and divalent cations. To overcome these limitations, new and advanced strategies are discussed including nisin encapsulation technology, addition to active packaging, bioengineering, and combination with other antimicrobials. This review highlights advanced technologies with potential to expand and improve the use of nisin as a dairy preservative.
Collapse
Affiliation(s)
- Luis A Ibarra-Sánchez
- Department of Food Science and Human Nutrition, University of Illinois, Urbana 61801
| | - Nancy El-Haddad
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon PO Box: 72, Zouk Mikael, Lebanon
| | - Darine Mahmoud
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon PO Box: 72, Zouk Mikael, Lebanon
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois, Urbana 61801
| | - Layal Karam
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon PO Box: 72, Zouk Mikael, Lebanon.
| |
Collapse
|
90
|
Riabinin G, Abd El-Aty AM, Blumberga D, Baranenko D. Alternative “Green” Antimicrobial Agents Obtained by Selective Sorption from Lactobacillus plantarum Culture. ENVIRONMENTAL AND CLIMATE TECHNOLOGIES 2020; 24:740-754. [DOI: 10.2478/rtuect-2020-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
According to the world health organization report from September 2016, the development of pathogenic bacteria resistance to antimicrobial drugs is one of the most important problems of the modern medicine. In this regard, the urgent task is the search for alternative antibiotics for the treatment of bacterial infections. One approach to solving this problem is obtaining antimicrobial compounds synthesized by probiotic lactic acid bacteria. The probiotic strain of Lactobacillus plantarum 8P-A3, was chosen to study its antimicrobial action. This strain produces at least two bacteriocins – plantaricin EF and plantaricin NC8. The chromatographic isolation of peptide fractions from the supernatant was carried out using a polymer sorbent based on methacrylic acid and ethyleneglycol dimethacrylate. Optimal parameters for chromatographic process were determined. It is shown that all the target biologically active substances were bound with the sorbent in sorption at acidic pH values. Elution was performed in isocratic mode. The antimicrobial activity of the obtained peptide fractions against indicator culture was determined by turbidimetric method. During incubation process, the turbidity of the microbial suspension was determined by measuring the optical density at λ = 600 nm. It is revealed that the fraction obtained at rinse by eluent with pH 8 has the maximum inhibitory ability. Сhromatomass-spectrometry analysis of the peptide fraction was carried out using Shimadzu LCMS-8040.The antimicrobial activity of the fraction is comparable to the action of ampicillin against gram-negative bacteria Escherichia coli. To confirm the peptide nature of the antimicrobial activity of the fraction, an indicator culture was incubated with the fraction treated with proteolytic enzymes (trypsin). It is determined the fraction can be stored at −18 °C and saves antimicrobial properties after defrosting.
Collapse
Affiliation(s)
- Georgii Riabinin
- International research centre “Biotechnologies of the Third Millennium” , ITMO University , Lomonosova street 9, Saint Petersburg, Russia
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine , Cairo University , 12211 - Giza , Egypt
| | - Dagnija Blumberga
- Institute of Energy Systems and Environment , Riga Technical University , Azenes iela 12/1, LV-1048 , Riga , Latvia
| | - Denis Baranenko
- International research centre “Biotechnologies of the Third Millennium” , ITMO University , Lomonosova street 9, Saint Petersburg, Russia
| |
Collapse
|
91
|
O'Sullivan JN, Rea MC, O'Connor PM, Hill C, Ross RP. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol 2019; 95:5259109. [PMID: 30590567 PMCID: PMC6340406 DOI: 10.1093/femsec/fiy241] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022] Open
Abstract
The demand for novel antimicrobial therapies due to the threat posed by antimicrobial resistance has resulted in a growing interest in the protective role of our skin bacteria and the importance of competition among bacteria on the skin. A survey of the cultivable bacteria on human skin was undertaken to identify the capacity of the skin microbiota to produce bacteriocins with activity against skin pathogens. Twenty-one bacteriocins produced by bacteria isolated from seven sites on the human body of each subject exhibited inhibition spectra ranging from broad to narrow range, inhibiting many Gram-positive bacteria, including opportunistic skin pathogens such as Propionibacterium acnes (recently renamed Cutibacterium acnes), Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus (MRSA). Sequencing indicated that the antimicrobial-producing isolates were predominately species/strains of the Staphylococcus genus. Colony mass spectrometry revealed peptide masses that do not correspond to known bacteriocins. In an era where antibiotic resistance is of major concern, the inhibitory effect of novel bacteriocins from the bacteria of skin origin demonstrates the antimicrobial potential that could be harnessed from within the human skin microbiota.
Collapse
Affiliation(s)
- Julie N O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,School of Microbiology, Food Science & Technology Building, University College Cork, College road, Cork, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Colin Hill
- School of Microbiology, Food Science & Technology Building, University College Cork, College road, Cork, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - R Paul Ross
- School of Microbiology, Food Science & Technology Building, University College Cork, College road, Cork, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| |
Collapse
|
92
|
Knobloch S, Jóhannsson R, Marteinsson VÞ. Genome analysis of sponge symbiont 'Candidatus Halichondribacter symbioticus' shows genomic adaptation to a host-dependent lifestyle. Environ Microbiol 2019; 22:483-498. [PMID: 31747724 DOI: 10.1111/1462-2920.14869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
The marine sponge Halichondria panicea inhabits coastal areas around the globe and is a widely studied sponge species in terms of its biology, yet the ecological functions of its dominant bacterial symbiont 'Candidatus Halichondribacter symbioticus' remain unknown. Here, we present the draft genome of 'Ca. H. symbioticus' HS1 (2.8 Mbp, ca. 87.6% genome coverage) recovered from the sponge metagenome of H. panicea in order to study functions and symbiotic interactions at the genome level. Functional genome comparison of HS1 against closely related free-living seawater bacteria revealed a reduction of genes associated with carbohydrate transport and transcription regulation, pointing towards a limited carbohydrate metabolism, and static transcriptional dynamics reminiscent of other bacterial symbionts. In addition, HS1 was enriched in sponge symbiont specific gene families related to host-symbiont interactions and defence. Similarity in the functional gene repertoire between HS1 and a phylogenetically more distant symbiont in the marine sponge Aplysina aerophoba, based on COG category distribution, suggest a convergent evolution of symbiont specific traits and general metabolic features. This warrants further investigation into convergent genomic evolution of symbionts across different sponge species and habitats.
Collapse
Affiliation(s)
- Stephen Knobloch
- Microbiology Group, Department of Research and Innovation, Matís ohf, 113, Reykjavik, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, 101, Reykjavík, Iceland
| | - Ragnar Jóhannsson
- Marine and Freshwater Research Institute, Hafrannsóknastofnun, 101, Reykjavik, Iceland
| | - Viggó Þór Marteinsson
- Microbiology Group, Department of Research and Innovation, Matís ohf, 113, Reykjavik, Iceland.,Faculty of Food Science and Nutrition, University of Iceland, 101, Reykjavik, Iceland
| |
Collapse
|
93
|
Draft genome sequence of Staphylococcus agnetis 3682, the producing strain of the broad-spectrum lantibiotic agneticin 3682. J Glob Antimicrob Resist 2019; 19:50-52. [DOI: 10.1016/j.jgar.2019.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
|
94
|
Baptista RC, Horita CN, Sant'Ana AS. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res Int 2019; 127:108762. [PMID: 31882098 DOI: 10.1016/j.foodres.2019.108762] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Seafood is highly perishable, presenting a rapid loss of its quality soon after capture. Temperature is the critical parameter that impacts on seafood shelf-life reduction, allowing the growth of foodborne pathogens and spoilage microorganisms. In recent years, the search by additional methods of preserving seafood has increased, able to ensure quality and safety. Several natural preservatives have highlighted and gained considerable attention from the scientific community, consumers, industry, and health sectors as a method with broad action antimicrobial and generally economical. Natural preservatives, from different sources, have been widely studied, such as chitosan from animal sources, essential oils, and plant extracts from a plant source, lactic acid bacteria, and bacteriocins from microbiological sources and organic acid from different sources, all with great potential for use in seafood systems. This review focuses on the natural preservatives studied in seafood matrices, their forms of application, concentrations usually employed, their mechanisms of action, factors that interfere in their use and the synergistic effect of the interactions among the natural preservatives, with a focus for maintenance of quality and ensure of food safety.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Claudia N Horita
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
95
|
Anti-Listeria monocytogenes effect of bacteriocin-incorporated agar edible coatings applied on cheese. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
96
|
Liu G, Wang Y, Li X, Hao X, Xu D, Zhou Y, Mehmood A, Wang C. Genetic and Biochemical Evidence That Enterococcus faecalis Gr17 Produces a Novel and Sec-Dependent Bacteriocin, Enterocin Gr17. Front Microbiol 2019; 10:1806. [PMID: 31456764 PMCID: PMC6700250 DOI: 10.3389/fmicb.2019.01806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bacteriocins are ribosomally synthesized antibacterial peptides or proteins from microorganisms. We report a novel bacteriocin producing strain, Enterococcus faecalis Gr17, that was isolated from the Chinese traditional low-salt fermented whole fish product Suan yu. E. faecalis Gr17 displayed potent antibacterial activity against foodborne pathogenic and spoilage bacteria. The complete genome of E. faecalis Gr17 contained one circular chromosome and plasmid. The gene cluster of a novel bacteriocin designated enterocin Gr17 was identified. The enterocin Gr17 structural gene encodes a precursor of the bacteriocin. Two other transporter genes and an immunity gene within two divergent operons were identified as being associated with enterocin Gr17 secretion and protection. The novel enterocin Gr17 was purified by ammonium sulfate precipitation, cation exchange, gel filtration, and reverse-phase high-performance liquid chromatography. The molecular weight of enterocin Gr17 was 4,531.01 Da as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its mature amino acid sequence of enterocin Gr17 was RSYGNGVYCNNSKCWVNWGEAKENIIGIVISGWATGLAGMGR. Sequence alignment revealed that enterocin Gr17 is a class IIa bacteriocin with similarities to enterocin P. The merits of bactericidal activity, sensitivity to enzymes, and pronounced stability to chemicals, temperature (60°C, 30 min and 121°C, 15 min), and pH (2-10) indicated practicality and safety of enterocin Gr17 in the food industry. The complete genome information of E. faecalis Gr17 will improve the understanding of the biosynthetic mechanism of enterocin Gr17, which has potential value as a food biopreservative.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yao Wang
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xue Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xu Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yingning Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
97
|
Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial Proteinaceous Compounds With Multiple Activities Toward Cancers and Microbial Infection. Front Microbiol 2019; 10:1690. [PMID: 31447795 PMCID: PMC6691048 DOI: 10.3389/fmicb.2019.01690] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
In recent decades, cancer and multidrug resistance have become a worldwide problem, resulting in high morbidity and mortality. Some infectious agents like Streptococcus pneumoniae, Stomatococcus mucilaginous, Staphylococcus spp., E. coli. Klebsiella spp., Pseudomonas aeruginosa, Candida spp., Helicobacter pylori, hepatitis B and C, and human papillomaviruses (HPV) have been associated with the development of cancer. Chemotherapy, radiotherapy and antibiotics are the conventional treatment for cancer and infectious disease. This treatment causes damage in healthy cells and tissues, and usually triggers systemic side-effects, as well as drug resistance. Therefore, the search for new treatments is urgent, in order to improve efficacy and also reduce side-effects. Proteins and peptides originating from bacteria can thus be a promising alternative to conventional treatments used nowadays against cancer and infectious disease. These molecules have demonstrated specific activity against cancer cells and bacterial infection; indeed, proteins and peptides can be considered as future antimicrobial and anticancer drugs. In this context, this review will focus on the desirable characteristics of proteins and peptides from bacterial sources that demonstrated activity against microbial infections and cancer, as well as their efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Pós-Graduação em Biologia Animal, Universidade de Brasilia, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
98
|
Choyam S, Srivastava AK, Shin JH, Kammara R. Ocins for Food Safety. Front Microbiol 2019; 10:1736. [PMID: 31428063 PMCID: PMC6687839 DOI: 10.3389/fmicb.2019.01736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The food industry produces highly perishable products. Food spoilage represents a severe problem for food manufacturers. Therefore, it is important to identify effective preservation solutions to prevent food spoilage. Ocins (e.g., bacteriocins, lactocins, and enterocins) are antibacterial proteins synthesized by bacteria that destroy or suppress the growth of related or unrelated bacterial strains. Ocins represent a promising strategy for food preservation, because of their antagonist effects toward food spoilage microorganisms, high potency, and low toxicity. Additionally, they can be bioengineered. The most common and commercially available ocins are nisin, plantaracin, sakacin P, and pediocin. Several ocins have been characterized and studied biochemically and genetically; however, their structure-function relationship, biosynthesis, and mechanism of action are not understood. This narrative review focuses primarily on ocins and their relevance to the food industry to help prevent food spoilage. In particular, the applications and limitations of ocins in the food industry are highlighted.
Collapse
Affiliation(s)
- Shilja Choyam
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| | | | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Rajagopal Kammara
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| |
Collapse
|
99
|
Mishra BK, Hati S, Das S. Bio-nutritional aspects of Tungrymbai, an ethnic functional fermented soy food of Khasi Hills, Meghalaya, India. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
100
|
Heyer R, Schallert K, Siewert C, Kohrs F, Greve J, Maus I, Klang J, Klocke M, Heiermann M, Hoffmann M, Püttker S, Calusinska M, Zoun R, Saake G, Benndorf D, Reichl U. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. MICROBIOME 2019; 7:69. [PMID: 31029164 PMCID: PMC6486700 DOI: 10.1186/s40168-019-0673-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/26/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline. RESULTS Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells. CONCLUSION Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients.
Collapse
Affiliation(s)
- R. Heyer
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - K. Schallert
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - C. Siewert
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - F. Kohrs
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - J. Greve
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - I. Maus
- Center for Biotechnology (CeBiTec), University Bielefeld, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - J. Klang
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - M. Klocke
- Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - M. Heiermann
- Department Technology Assessment and Substance Cycles, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - M. Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - S. Püttker
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - M. Calusinska
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - R. Zoun
- Otto von Guericke University, Institute for Databases and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - G. Saake
- Otto von Guericke University, Institute for Databases and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - D. Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - U. Reichl
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106 Magdeburg, Germany
| |
Collapse
|