51
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
52
|
de la Calle-Fabregat C, Niemantsverdriet E, Cañete JD, Li T, van der Helm-van Mil AHM, Rodríguez-Ubreva J, Ballestar E. The DNA methylation Profile of Undifferentiated Arthritis Patients Anticipates their Subsequent Differentiation to Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:2229-2239. [PMID: 34105306 DOI: 10.1002/art.41885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Undifferentiated arthritis (UA) is the term used to cover all the cases of arthritis that do not fit a specific diagnosis. A significant percentage of UA patients progress to rheumatoid arthritis (RA), others to a different definite rheumatic disease, and the rest undergo spontaneous remission. Therapeutic intervention in patients with UA can delay or halt disease progression and its long-term consequences. It is therefore of inherent interest to identify those UA patients with a high probability of progressing to RA who would benefit from early appropriate therapy. We hypothesized that alterations in the DNA methylation profiles of immune cells may inform on the genetically- or environmentally-determined status of patients and potentially discriminate between disease subtypes. METHODS In this study, we performed DNA methylation profiling of a UA patient cohort, in which progression into RA occurs for a significant proportion of the patients. RESULTS We find differential DNA methylation in UA patients compared to healthy controls. Most importantly, our analysis identifies a DNA methylation signature characteristic of those UA cases that differentiate to RA. We demonstrate that the methylome of peripheral mononuclear cells can be used to anticipate the evolution of UA to RA, and that this methylome is associated with a number of inflammatory pathways and transcription factors. Finally, we design a machine-learning strategy for DNA methylation-based classification that predicts the differentiation of UA patients towards RA. CONCLUSION DNA methylation profiling provides a good predictor of UA-to-RA progression to anticipate targeted treatments and improve clinical management.
Collapse
Affiliation(s)
| | - Ellis Niemantsverdriet
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands
| | - Juan D Cañete
- Rheumatology Service, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
53
|
Nikopensius T, Niibo P, Haller T, Jagomägi T, Voog-Oras Ü, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Association analysis of juvenile idiopathic arthritis genetic susceptibility factors in Estonian patients. Clin Rheumatol 2021; 40:4157-4165. [PMID: 34101054 PMCID: PMC8463396 DOI: 10.1007/s10067-021-05756-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients.
Key Points • Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition. • Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe. • The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci. • The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-021-05756-x.
Collapse
Affiliation(s)
- Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
| | - Priit Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Triin Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ülle Voog-Oras
- Institute of Dentistry, University of Tartu, Tartu, Estonia.,Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Neeme Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Mare Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Chris Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia.,Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
54
|
Association of methylation level and transcript level in TRAF5 gene with ankylosing spondylitis: a case-control study. Genes Immun 2021; 22:101-107. [PMID: 34021268 DOI: 10.1038/s41435-021-00135-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
To explore the association between methylation level and transcript level of TNF receptor-associated factor 5 (TRAF5) gene with ankylosing spondylitis (AS) in Chinese Han population. Methylation and mRNA expression level of the TRAF5 gene were tested in 98 patients and 98 healthy controls. Among the 21 CpG sites, methylation levels at eight sites were significantly different between AS patients and healthy controls. However, only three sites remained significantly different after the correction by the Benjamini-Hochberg method. Compared with controls, the CpG island of TRAF5 gene promoter was highly methylated in AS patients, and the relative mRNA expression level of TRAF5 was significantly reduced in AS patients. And the mRNA level was negatively correlated with the methylation level of TRAF5 gene in AS patients (rs = -0.453, P < 0.001). Subgroup analyses indicated that there was no significant difference in the level of methylation between groups of different status of HLA-B27 and medications in AS patients. Multiple linear regression showed that disease-modifying antirheumatic drugs could reduce methylation levels of AS patients after adjusting for the effects of other drugs. In conclusion, the hypermethylation of the TRAF5 might contribute to the pathogenesis of AS, but many open questions remain.
Collapse
|
55
|
Abasijiang A, Lin J, Ma T, Zhao J. Evaluation of the Genetic Association and Methylation of Immune Response Pathway Genes with the Risk of Chronic Periodontitis in the Uighur Population. Genet Test Mol Biomarkers 2021; 25:317-324. [PMID: 33945309 DOI: 10.1089/gtmb.2020.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of this study was to explore the possible associations between single nucleotide polymorphisms (SNPs) and DNA methylation levels of seven genes in the inflammatory response pathway with susceptibility to chronic periodontitis (CP) among the Uighur population of the Xinjiang Autonomous Region of China. Methods: A total of 444 eligible subjects (279 CP patients and 165 healthy controls) were enrolled in the study. Genomic DNA was obtained from gingival tissue for genotyping eight SNPs and performing methylation measurements of seven genes. Results: SNP rs2070745 in the formyl peptide receptor 1 (FPR1) gene achieved statistical significance in a standard allelic association analysis for CP (p = 0.02). The frequency of the rs2070745 minor allele G was higher in the cases than in controls (0.367 vs. 0.291). Additionally, rs2070745 was significantly associated with CP under the dominant genetic model (p = 0.03). Using logistic regression analysis, rs2070745 was found to be consistently associated with CP under the additive dominant model, and this association remained significant after covariates were taken into account [odds ratio (OR) = 1.49 (1.09-2.05), p = 0.014; OR = 1.58 (1.04-2.40), p = 0.031, respectively]. No significant gene-gene interactions were identified. Although we did not find a polymorphism in interleukin 6 (IL6) associated with CP in our study, the methylation level of a CpG island region located within the promoter region of IL6 was significantly less in CP patients compared with controls (p < 0.05). Conclusions: The genetic polymorphism rs2070745 in FPR1 and the methylation level of the promoter region of IL6 might be associated with CP in the Uighur population of China.
Collapse
Affiliation(s)
- Aisaiti Abasijiang
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Jing Lin
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Ting Ma
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| | - Jin Zhao
- Department of Endodontics, First Affiliated Hospital of Xinjiang Medical University, and College of Stomatology of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
56
|
Zhang Y, Tan M, Qian X, Li C, Yue L, Liu Y, Shi S. Interaction between early-life pet exposure and methylation pattern of ADAM33 on allergic rhinitis among children aged 3-6 years in China. Allergy Asthma Clin Immunol 2021; 17:44. [PMID: 33933154 PMCID: PMC8088023 DOI: 10.1186/s13223-021-00526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/11/2021] [Indexed: 12/01/2022] Open
Abstract
Background Recent research has pointed out the important roles of epigenetic modifications in the development and persistence of allergic rhinitis (AR), especially in relation to DNA methylation of disease-associated genes. We investigated whether AR susceptibility genes were epigenetically regulated, and whether methylation modulation of these genes in response to early-life environment could be a molecular mechanism underlying the risk for AR onset in a cohort of children aged 3–6 years in China. Methods Peripheral blood mononuclear cell (PBMC) samples were collected from 130 children patients, aged 3–6 years and diagnosed with AR; and 154 matched controls to detect promoter methylation in 25 AR susceptibility genes with the MethylTarget approach. Methylation levels were compared for each CpG site, each amplified region, and each gene. In addition, the relationship among DNA methylation, early-life environmental risk factors and AR onset were assessed. Results Maternal allergic history (P = 0.0390) and pet exposure (P = 0.0339) were significantly associated with increased AR risk. Differential methylation analyses were successfully performed for 507 CpG sites, 34 amplified regions and 17 genes and significant hypomethylation was observed in the promoter region of ADAM33 in AR patients [multiple test-corrected (FDR) P-value < 0.05]. Spearman correlation analysis revealed that the hypomethylation of ADAM33 was significantly associated with higher eosinophil counts (Spearman’s ρ: − 0.187, P-value = 0.037). According to the results of the multiple regression analysis, after adjusting for cofounders, the interaction of early-life pet exposure with methylation level of ADAM33 increased the risk for AR onset 1.423 times more in children (95% CI = 0.0290–4.109, P-value = 0.005). Conclusion This study provides evidence that early-life pet exposure and low methylation level of ADAM33 increase AR risk in children, and the interaction between pet exposure and methylation level of ADAM33 may play an important role in the development of AR.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Meiyu Tan
- Department of Laboratory Diagnosis, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaoqiong Qian
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Cong Li
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lei Yue
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuehong Liu
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Song Shi
- Department of Otorhinolaryngology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
57
|
Epigenome wide association study of response to methotrexate in early rheumatoid arthritis patients. PLoS One 2021; 16:e0247709. [PMID: 33690661 PMCID: PMC7946177 DOI: 10.1371/journal.pone.0247709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/11/2021] [Indexed: 11/21/2022] Open
Abstract
Aim To identify differentially methylated positions (DMPs) and regions (DMRs) that predict response to Methotrexate (MTX) in early rheumatoid arthritis (RA) patients. Materials and methods DNA from baseline peripheral blood mononuclear cells was extracted from 72 RA patients. DNA methylation, quantified using the Infinium MethylationEPIC, was assessed in relation to response to MTX (combination) therapy over the first 3 months. Results Baseline DMPs associated with response were identified; including hits previously described in RA. Additionally, 1309 DMR regions were observed. However, none of these findings were genome-wide significant. Likewise, no specific pathways were related to response, nor could we replicate associations with previously identified DMPs. Conclusion No baseline genome-wide significant differences were identified as biomarker for MTX (combination) therapy response; hence meta-analyses are required.
Collapse
|
58
|
Tian X, Li M, Zeng X. The Current Status and Challenges in the Diagnosis and Treatment of Rheumatoid Arthritis in China: An Annual Report of 2019. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:49-56. [PMID: 36467902 PMCID: PMC9524769 DOI: 10.2478/rir-2021-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 06/17/2023]
Affiliation(s)
- Xinping Tian
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Beijing100730, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Beijing100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Beijing100730, China
| |
Collapse
|
59
|
Wu LF, Mo XB, He JH, He P, Lu X, Deng HW, Deng FY, Lei SF. Integrative lncRNA-mRNA co-expression network analysis identifies novel lncRNA E2F3-IT1 for rheumatoid arthritis. Clin Transl Med 2021; 11:e325. [PMID: 33634971 PMCID: PMC7905107 DOI: 10.1002/ctm2.325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Jia-Hui He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana, USA
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| |
Collapse
|
60
|
Mo XB, Zhang YH, Lei SF. Integrative analysis identifies potential causal methylation-mRNA regulation chains for rheumatoid arthritis. Mol Immunol 2020; 131:89-96. [PMID: 33386149 DOI: 10.1016/j.molimm.2020.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies have identified many genetic loci for rheumatoid arthritis (RA). However, causal factors underlying these loci were largely unknown. The aim of this study was to identify potential causal methylation-mRNA regulation chains for RA. We identified differentially expressed mRNAs and methylations and conducted summary statistic data-based Mendelian randomization (SMR) analysis to detect potential causal mRNAs and methylations for RA. Then causal inference test (CIT) was performed to determine if the methylation-mRNA pairs formed causal chains. We identified 11,170 mRNAs and 24,065 methylations that were nominally associated with RA. Among them, 197 mRNAs and 104 methylations passed the SMR test. According to physical positions, we defined 16 cis methylation-mRNA pairs and inferred 5 chains containing 4 methylations and 4 genes (BACH2, MBP, MX1 and SYNGR1) to be methylation→mRNA→RA causal chains. The effect of SYNGR1 expression in peripheral blood mononuclear cells on RA risk was found to be consistent in both the in-house and public data. The identified methylations located in CpG Islands that overlap promoters in the 5' region of the genes. The promoter regions showed long-range interactions with other enhancers and promoters, suggesting a regulatory potential of these methylations. Therefore, the present study provided a new integrative analysis strategy and highlighted potential causal methylation-mRNA chains for RA. Taking the evidences together, SYNGR1 promoter methylations most probably affect mRNA expressions and then affect RA risk.
Collapse
Affiliation(s)
- Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
61
|
Mo XB, Dong CY, He P, Wu LF, Lu X, Zhang YH, Deng HW, Deng FY, Lei SF. Alteration of circulating microbiome and its associated regulation role in rheumatoid arthritis: Evidence from integration of multiomics data. Clin Transl Med 2020; 10:e229. [PMID: 33252855 PMCID: PMC7668190 DOI: 10.1002/ctm2.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Chen-Yue Dong
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, Louisiana
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
62
|
Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21239067. [PMID: 33260629 PMCID: PMC7731249 DOI: 10.3390/ijms21239067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease primarily affecting the joints, and closely related to specific autoantibodies that mostly target modified self-epitopes. Relevant findings in the field of RA pathogenesis have been described. In particular, new insights come from studies on synovial fibroblasts and cells belonging to the innate and adaptive immune system, which documented the aberrant production of inflammatory mediators, oxidative stress and NETosis, along with relevant alterations of the genome and on the regulatory epigenetic mechanisms. In recent years, the advances in the understanding of RA pathogenesis by identifying key cells and cytokines allowed the development of new targeted disease-modifying antirheumatic drugs (DMARDs). These drugs considerably improved treatment outcomes for the majority of patients. Moreover, numerous studies demonstrated that the pharmacological therapy with biologic DMARDs (bDMARDs) promotes, in parallel to their clinical efficacy, significant improvement in all these altered molecular mechanisms. Thus, continuous updating of the knowledge of molecular processes associated with the pathogenesis of RA, and on the specific effects of bDMARDs in the correction of their dysregulation, are essential in the early and correct approach to the treatment of this complex autoimmune disorder. The present review details basic mechanisms related to the physiopathology of RA, along with the core mechanisms of response to bDMARDs.
Collapse
|
63
|
Latin American Genes: The Great Forgotten in Rheumatoid Arthritis. J Pers Med 2020; 10:jpm10040196. [PMID: 33114702 PMCID: PMC7711650 DOI: 10.3390/jpm10040196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022] Open
Abstract
The successful implementation of personalized medicine will rely on the integration of information obtained at the level of populations with the specific biological, genetic, and clinical characteristics of an individual. However, because genome-wide association studies tend to focus on populations of European descent, there is a wide gap to bridge between Caucasian and non-Caucasian populations before personalized medicine can be fully implemented, and rheumatoid arthritis (RA) is not an exception. In this review, we discuss advances in our understanding of genetic determinants of RA risk among global populations, with a focus on the Latin American population. Geographically restricted genetic diversity may have important implications for health and disease that will remain unknown until genetic association studies have been extended to include Latin American and other currently under-represented ancestries. The next few years will witness many breakthroughs in personalized medicine, including applications for common diseases and risk stratification instruments for targeted prevention/intervention strategies. Not all of these applications may be extrapolated from the Caucasian experience to Latin American or other under-represented populations.
Collapse
|
64
|
Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun Rev 2020; 19:102685. [PMID: 33115633 DOI: 10.1016/j.autrev.2020.102685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
Autoimmune rheumatic diseases (ARDs) are chronic conditions with a striking female predominance, frequently affecting women of childbearing age. Sex hormones and gender dimorphism of immune response are major determinants in the multifactorial pathogenesis of ARDs, with significant implications throughout reproductive life. Particularly, pregnancy represents a challenging condition in the context of autoimmunity, baring profound hormonal and immunologic changes, which are responsible for the bi-directional interaction between ARDs outcome and pregnancy course. In the latest years epigenetics has proven to be an important player in ARDs pathogenesis, finely modulating major immune functions and variably tuning the significant gender effects in autoimmunity. Additionally, epigenetics is a recognised influencer of the physiological dynamic modifications occurring during pregnancy. Still, there is currently little evidence on the pregnancy-related epigenetic modulation of immune response in ARDs patients. This review aims to overview the current knowledge of the role of epigenetics in the context of autoimmunity, as well as during physiologic and pathologic pregnancy, discussing under-regarded aspects in the interplay between ARDs and pregnancy pathology. The outline of a new ongoing European project will be presented.
Collapse
|
65
|
Li J, Zhu J, Ren L, Ma S, Shen B, Yu J, Zhang R, Zhang M, He Y, Peng H. Association between NPPA promoter methylation and hypertension: results from Gusu cohort and replication in an independent sample. Clin Epigenetics 2020; 12:133. [PMID: 32883357 PMCID: PMC7469321 DOI: 10.1186/s13148-020-00927-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Background Atrial natriuretic peptide (ANP), one of the main members of the natriuretic peptides system, has been associated with hypertension and related complications, but the underlying molecular mechanisms are not very clear. Here, we aimed to examine whether DNA methylation, a molecular modification to the genome, of the natriuretic peptide A gene (NPPA), the coding gene of ANP, was associated with hypertension. Methods Peripheral blood DNA methylation of NPPA promoter was quantified by target bisulfite sequencing in 2498 community members (mean aged 53 years, 38% men) as a discovery sample and 1771 independent participants (mean aged 62 years, 54% men) as a replication sample. In both samples, we conducted a single CpG association analysis, followed by a gene-based association analysis, to examine the association between NPPA promoter methylation and hypertension, adjusting for age, sex, education level, cigarette smoking, alcohol consumption, obesity, fasting glucose, and lipids. Multiple testing was controlled by the false discovery rate approach. Results Of the 9 CpG loci assayed, hypermethylation at 5 CpGs (CpG1, CpG3, CpG6, CpG8, and CpG9) was significantly associated with a lower odds of prevalent hypertension in the discovery sample, and one CpG methylation (CpG1 located at Chr1:11908353) was successfully replicated in the replication sample (OR = 0.82, 95%CI 0.74–0.91, q = 0.002) after adjusting for covariates and multiple testing. The gene-based analysis found that DNA methylation of the 9 CpGs at NPPA promoter as a whole was significantly associated with blood pressure and prevalent hypertension in both samples (all P < 0.05). Conclusions DNA methylation levels at NPPA promoter were decreased in Chinese adults with hypertension. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of hypertension.
Collapse
Affiliation(s)
- Jing Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Jinhua Zhu
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Liyun Ren
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Shengqi Ma
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Bin Shen
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Jia Yu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Rongyan Zhang
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Yan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
66
|
Han J, Chen C, Wang C, Qin N, Huang M, Ma Z, Zhu M, Dai J, Jiang Y, Ma H, Jin G, Shen H, Hu Z. Transcriptome-wide association study for persistent hepatitis B virus infection and related hepatocellular carcinoma. Liver Int 2020; 40:2117-2127. [PMID: 32574393 DOI: 10.1111/liv.14577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Previous genome-wide association studies (GWAS) have identified multiple susceptible variants associated with persistent hepatitis B virus (HBV) infection. However, most of these variants are located in the noncoding regions, which make it difficult to determine the effective genes underlying these associations. We performed a two-stage study, in the first stage we integrated RNA sequencing data of liver tissues and high-density genotyping data from the Genotype-Tissue Expression (GTEx) project with our previous GWAS data to conduct a transcriptome-wide association study (TWAS) on HBV infection. Firstly, the cis-heritable genes were screened by a genetic relatedness matrix of genome-wide complex trait analysis (GCTA) from GTEx data. Then, the genetic expression of 2587 cis-heritable genes was predicted by restricted maximum likelihood (REML) of genome-wide efficient mixed-model association (GEMMA) in our GWAS data with 951 HBV carrier cases and 937 HBV cleared controls. Next, we investigated the associations between predictive expression levels and persistent HBV infection risk. Gene set enrichment analysis (GSEA) was applied to infer the function of the identified genes. To identify the causal single nucleotide polymorphisms (SNPs) of HBV infection risk, we conducted the expression quantitative trait loci (eQTL)-based stepwise logistic regression analysis in the regions around 1 Mb of these genes and validated the association between 994 health controls and 994 HBV-persistent infection cases by genotyping experiment. In the second stage, 1538 HBV-related hepatocellular carcinoma (HCC) cases and 1465 persistent HBV infection controls were collected to determine the effect of these variants on HBV-related HCC as well, which were examined by the additive model in logistic regression analysis. We identified seven genes associated with HBV infection. In the classic human leukocyte antigen (HLA) region, three novel genes BAK1, HLA-DOB and C4A (Z range from -3.95 to -3.64, P range from 7.84 × 10-5 to 2.00 × 10-4 ), as well as two genes (HLA-DPA1 and HLA-DPB1) were reported by previous GWAS. In the non-HLA region, immune related at newly identified loci, PARP9 (Z = 3.69, P = 2.20 × 10-4 ) at 3q21.1. At 22q11.21, we identified TMEM191A (Z = 3.55, P = 3.80 × 10-4 ) as a target gene in addition to the reported non-cis-heritable gene UBE2L3. After further stepwise logistic regression analysis and validation, we identified eight variants independently associated with persistent HBV infection. Among those variants, the additive model showed that two SNPs associated with HBV-related HCC risk (rs9272714 and rs9394194, OR range from 1.20 to 1.25, P range from 1.19 × 10-4 to 3.97 × 10-4 ). By integrating transcriptome data, our study not only identified new susceptibility loci of persistent HBV infection but also determined the potential target genes at reported loci, which provided insight into the genetic aetiology of persistent HBV infection and related HCC.
Collapse
Affiliation(s)
- Jing Han
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Congcong Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mingtao Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zijian Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
67
|
Decipher manifestations and Treg /Th17 imbalance in multi-staging rheumatoid arthritis and correlation with TSDR/RORC methylation. Mol Immunol 2020; 127:1-11. [PMID: 32866740 DOI: 10.1016/j.molimm.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/16/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
T regulatory (Treg)/T-helper (Th) 17 imbalance has been shown to integrate with epigenetics to result in the development of autoimmune diseases. We aim to investigate the influence of disease staging on Treg/Th17 cells and whether the aberrant DNA methylation is implicated in the development of rheumatoid arthritis (RA). By recruiting 65 patients with multi-staging RA and 20 healthy controls (HC), we found that patients with active RA exhibited relative lymphopenia and higher WBC, neutrophils, and PLT. Circulating Treg/Th17 in patients with early active RA was significantly decreased. The expression of IL-6 and IL-17A was significantly increased in early active RA, whereas that of IL-10 and TGF-β was on the contrary. Furthermore, the frequency of Treg cells and Treg/Th17 were negatively correlated with DAS28, and the frequency of Th17 cells was on the contrary. Levels of DNA methylation related enzymes had significant difference between early active RA and HC. Relative hypermethylation was observed at the gene level for Treg-specific demethylated region (TSDR) and hypomethylation for retinoic acid-related orphan receptor (ROR)-C in early active RA. Thus, manifestations of RA and Treg/Th17 imbalance vary with disease staging, and the aberrant DNA methylation pattern may contribute to RA disease pathogenesis. Our results highlight the importance of disease staging in clinical research.
Collapse
|
68
|
Zhang D, Li Z, Zhang R, Yang X, Zhang D, Li Q, Wang C, Yang X, Xiong Y. Identification of differentially expressed and methylated genes associated with rheumatoid arthritis based on network. Autoimmunity 2020; 53:303-313. [DOI: 10.1080/08916934.2020.1786069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - ZhaoFang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - RongQiang Zhang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China
| | - XiaoLi Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - DanDan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - Xuena Yang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| | - YongMin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
69
|
Kolarz B, Ciesla M, Dryglewska M, Majdan M. Peptidyl Arginine Deiminase Type 4 Gene Promoter Hypo-Methylation in Rheumatoid Arthritis. J Clin Med 2020; 9:jcm9072049. [PMID: 32629762 PMCID: PMC7408948 DOI: 10.3390/jcm9072049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022] Open
Abstract
Protein citrullination is carried out by peptidylarginine deiminase type 4 (PAD4) enzyme. As a consequence of this process, post-translationally modified proteins are formed that become antigens for anti-citrullinated protein antibodies (ACPA). The study aimed at identifying whether the PADI4 gene is subject to epigenetic regulation through methylation of its promoter region, whether the degree of methylation differs in healthy individuals vs. rheumatoid arthritis (RA) patients and changes in correlation with ACPA, anti-PAD4 and disease activity. A total of 125 RA patients and 30 healthy controls were enrolled. Quantitative real-time methylation-specific PCR was used to analyze the methylation status. ACPA and anti-PAD4 antibodies were determined in serum by enzyme-linked immunosorbent immunoassay. The differences were observed in the degree of PADI4 gene promoter methylation between RA patients and HC, along with an upward trend for the methylation in RA, which was inversely proportional to the disease activity. A weak or modest negative correlation between the degree of PADI4 gene methylation and anti-PAD4, disease activity score (DAS28) and ACPA level has been found. The elevated methylation is associated with lower disease activity, lower levels of ACPA and aPAD4. The methylation degree in this area is growing up during effective treatment and might play a role in the RA pathophysiology and therefore could be a future therapeutic target.
Collapse
Affiliation(s)
- Bogdan Kolarz
- College of Medical Sciences, University of Rzeszow, al. Kopisto 2A/24, 35-359 Rzeszow, Poland;
- Correspondence: ; Tel.: +48-501-549-606
| | - Marek Ciesla
- College of Medical Sciences, University of Rzeszow, al. Kopisto 2A/24, 35-359 Rzeszow, Poland;
| | - Magdalena Dryglewska
- Department of Rheumatology and Connective Tissue Disease, Medical University of Lublin, al. Raclawickie 1, 20-059 Lublin, Poland; (M.D.); (M.M.)
| | - Maria Majdan
- Department of Rheumatology and Connective Tissue Disease, Medical University of Lublin, al. Raclawickie 1, 20-059 Lublin, Poland; (M.D.); (M.M.)
| |
Collapse
|
70
|
Mo X, Guo Y, Qian Q, Fu M, Lei S, Zhang Y, Zhang H. Mendelian randomization analysis revealed potential causal factors for systemic lupus erythematosus. Immunology 2019; 159:279-288. [PMID: 31670388 DOI: 10.1111/imm.13144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/13/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified many loci for systemic lupus erythematosus (SLE). However, identification of functionally relevant genes remains a challenge. The aim of this study was to highlight potential causal genes for SLE in the GWAS loci. By applying Mendelian randomization (MR) methods, such as summary data-based MR (SMR), generalized SMR and MR pleiotropy residual sum and outlier, we identified DNA methylations in 15 loci and mRNA expression of 21 genes that were causally associated with SLE. The identified genes enriched in 14 specific KEGG pathways (e.g. SLE, viral carcinogenesis) and two GO terms (interferon-γ-mediated signaling pathway and innate immune response). Among the identified genes, UBE2L3 and BLK variants were significantly associated with UBE2L3 and BLK methylations and gene expressions, respectively. UBE2L3 was up-regulated in SLE patients in several types of immune cells. Methylations (e.g. cg06850285) and mRNA expression of UBE2L3 were causally associated with SLE. Methylation site cg09528494 and mRNA expression of BLK were causally associated with SLE. BLK single nucleotide polymorphisms that were significantly associated with SLE were strongly associated with plasma cathepsin B level. Deep analysis identified that plasma cathepsin B level was causally associated with SLE. In summary, this study identified hundreds of DNA methylations and genes as potential risk factors for SLE. Genetic variants in UBE2L3 gene might affect SLE by influencing gene expression. Genetic variants in BLK gene might affect SLE by influencing BLK gene expression and plasma cathepsin B protein level.
Collapse
Affiliation(s)
- Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiyu Qian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Mengzhen Fu
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shufeng Lei
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
71
|
He P, Mo XB, Lei SF, Deng FY. Epigenetically regulated co-expression network of genes significant for rheumatoid arthritis. Epigenomics 2019; 11:1601-1612. [PMID: 31693422 DOI: 10.2217/epi-2019-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify epigenetically regulated network of genes in peripheral blood mononuclear cells significant for rheumatoid arthritis (RA). Methods: Differentially expressed genes (DEGs) and their associated differentially expressed miRNAs and differentially methylated positions (DMPs) were identified. Causal inference test (CIT) identified the causal regulation chains. The analyses, for example, weighted gene co-expression network (WGCNA), protein-protein interaction and functional enrichment, evaluated interaction patterns among the DEGs and the associated epigenetic factors. Results: A total of 181 DEGs were identified. The DEGs were significantly regulated by DMPs and/or differentially expressed miRNAs. Causal inference test analyses identified 18 causal chains of DMP-DEG-RA and 16 intermediate DEGs enriched in 'protein kinase inhibitor activity'. BTN2A1 was co-expressed with other 9 intermediate genes and 11 known RA-associated genes and played a pivotal role in the co-expression network. Conclusion: Epigenetically regulated network of genes in peripheral blood mononuclear cells (PBMC) contributed to RA. The causal DMPs and key intermediate genes may serve as potential biomarkers for RA.
Collapse
Affiliation(s)
- Pei He
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology & Genomics, Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China.,Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
72
|
Abuzhalihan J, Wang YT, Ma YT, Fu ZY, Yang YN, Ma X, Li XM, Liu F, Chen BD. SOAT1 methylation is associated with coronary heart disease. Lipids Health Dis 2019; 18:192. [PMID: 31684966 PMCID: PMC6829990 DOI: 10.1186/s12944-019-1138-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background This study was designed to investigate whether differential DNA methylationin of cholesterol absorption candidate genes can function as a biomarker for patients with coronary heart disease (CHD). Methods DNA methylation levels of the candidate genes FLOT1, FLOT2 and SOAT1 were measured in peripheral blood leukocytes (PBLs) from 99 patients diagnosed with CHD and 89 control subjects without CHD. A total of 110 CPG sites around promoter regions of them were examined. Results Compared with groups without CHD, patients with CHD had lower methylation levels of SOAT1 (P<0.001). When each candidate genes were divided into different target segments, patients with CHD also had lower methylation levels of SOAT1 than patients without (P = 0.005). After adjustment of other confounders, methylation levels of SOAT1 were still associated with CHD (P = 0.001, OR = 0.290, 95% CI: 0.150–0.561). Conclusions SOAT1 methylation may be associated with development of CHD. Patients with lower methylation levels in SOAT1 may have increased risks for CHD. Further studies on the specific mechanisms of this relationship are necessary.
Collapse
Affiliation(s)
- Jialin Abuzhalihan
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China.
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China.
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| |
Collapse
|
73
|
Abstract
Autoimmune diseases, such as rheumatoid arthritis, systematic lupus erythematosus and Sjögren's syndrome, are a group of diseases characterized by the activation of immune cells and excessive production of autoantibodies. Although the pathogenesis of these diseases is still not completely understood, studies have shown that multiple factors including genetics, environment and immune responses play important roles in the development and progression of the diseases. In China, there are great achievements in the mechanisms of autoimmune diseases during the last decades. These studies provide new insight to understand the diseases and also shed light on the development of novel therapy.
Collapse
Affiliation(s)
- Ru Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| | - Xing Sun
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yue Yang
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|
74
|
Langie SA, Timms JA, De Boever P, McKay JA. DNA methylation and the hygiene hypothesis: connecting respiratory allergy and childhood acute lymphoblastic leukemia. Epigenomics 2019; 11:1519-1537. [PMID: 31536380 DOI: 10.2217/epi-2019-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: The hygiene hypothesis states that a lack of infection in early-life suppresses immune system development, and is linked to respiratory allergy (RA) and childhood acute lymphoblastic leukemia (ALL) risk. Little is known about underlying mechanisms, but DNA methylation is altered in RA and ALL, and in response to infection. We investigated if aberrant methylation may be in common between these diseases and associated with infection. Materials & methods: RA and ALL disease-associated methylation signatures were compared and related to exposure-to-infection signatures. Results: A significant number of genes overlapped between RA and ALL signatures (p = 0.0019). Significant overlaps were observed between exposure-to-infection signatures and disease-associated signatures. Conclusion: DNA methylation may be a mediating mechanism through which the hygiene hypothesis is associated with RA and ALL risk.
Collapse
Affiliation(s)
- Sabine As Langie
- VITO-Health, 2400 Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Jessica A Timms
- Institute for Health & Society, Human Nutrition Research Centre, Newcastle University, NE2 4HH, UK.,Systems Cancer Immunology Lab, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Research Oncology, King's College London, Guy's Hospital, SE1 9RT, UK
| | - Patrick De Boever
- VITO-Health, 2400 Mol, Belgium.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Jill A McKay
- Institute for Health & Society, Human Nutrition Research Centre, Newcastle University, NE2 4HH, UK.,Faculty of Health & Life Sciences, Department of Applied Sciences, Northumbria University, NE1 8ST, UK
| |
Collapse
|
75
|
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Beloukhova MI, Deviatkin AA, Lukashev AN, Zamyatnin AA. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front Genet 2019; 10:570. [PMID: 31258550 PMCID: PMC6587113 DOI: 10.3389/fgene.2019.00570] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world’s population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry V Zaletaev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina V Bure
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina A Alekseeva
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina I Beloukhova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei A Deviatkin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N Lukashev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
76
|
Ramos PS, Zimmerman KD, Haddad S, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Integrative analysis of DNA methylation in discordant twins unveils distinct architectures of systemic sclerosis subsets. Clin Epigenetics 2019; 11:58. [PMID: 30947741 PMCID: PMC6449959 DOI: 10.1186/s13148-019-0652-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare autoimmune fibrosing disease with an incompletely understood genetic and non-genetic etiology. Defining its etiology is important to allow the development of effective predictive, preventative, and therapeutic strategies. We conducted this epigenomic study to investigate the contributions of DNA methylation to the etiology of SSc while minimizing confounding due to genetic heterogeneity. Methods Genomic methylation in whole blood from 27 twin pairs discordant for SSc was assayed over 450 K CpG sites. In silico integration with reported differentially methylated cytosines, differentially expressed genes, and regulatory annotation was conducted to validate and interpret the results. Results A total of 153 unique cytosines in limited cutaneous SSc (lcSSc) and 266 distinct sites in diffuse cutaneous SSc (dcSSc) showed suggestive differential methylation levels in affected twins. Integration with available data revealed 76 CpGs that were also differentially methylated in blood cells from lupus patients, suggesting their role as potential epigenetic blood biomarkers of autoimmunity. It also revealed 27 genes with concomitant differential expression in blood from SSc patients, including IFI44L and RSAD2. Regulatory annotation revealed that dcSSc-associated CpGs (but not lcSSc) are enriched at Encyclopedia of DNA Elements-, Roadmap-, and BLUEPRINT-derived regulatory regions, supporting their potential role in disease presentation. Notably, the predominant enrichment of regulatory regions in monocytes and macrophages is consistent with the role of these cells in fibrosis, suggesting that the observed cellular dysregulation might be, at least partly, due to altered epigenetic mechanisms of these cells in dcSSc. Conclusions These data implicate epigenetic changes in the pathogenesis of SSc and suggest functional mechanisms in SSc etiology. Electronic supplementary material The online version of this article (10.1186/s13148-019-0652-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kip D Zimmerman
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas A Medsger
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
77
|
He P, Wu LF, Bing PF, Xia W, Wang L, Xie FF, Lu X, Lei SF, Deng FY. SAMD9 is a (epi-) genetically regulated anti-inflammatory factor activated in RA patients. Mol Cell Biochem 2019; 456:135-144. [DOI: 10.1007/s11010-019-03499-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/19/2019] [Indexed: 12/29/2022]
|