51
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
52
|
Jin Y, Bai Y, Li Q, Bhugul PA, Huang X, Liu L, Pan L, Ni H, Chen B, Sun H, Zhang Q, Hehir M, Zhou M. Reduced Pancreatic Exocrine Function and Organellar Disarray in a Canine Model of Acute Pancreatitis. PLoS One 2016; 11:e0148458. [PMID: 26895040 PMCID: PMC4760769 DOI: 10.1371/journal.pone.0148458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate the pancreatic exocrine function in a canine model and to analyze the changes in organelles of pancreatic acinar cells during the early stage of acute pancreatitis (AP). AP was induced by retrograde injection of 5% sodium taurocholate (0.5 ml/kg) into the main pancreatic duct of dogs. The induction of AP resulted in serum hyperamylasemia and a marked reduction of amylase activity in the pancreatic fluid (PF). The pancreatic exocrine function was markedly decreased in subjects with AP compared with the control group. After the induction of AP, histological examination showed acinar cell edema, cytoplasmic vacuolization, fibroblasts infiltration, and inflammatory cell infiltration in the interstitium. Electron micrographs after the induction of AP revealed that most of the rough endoplasmic reticulum (RER) were dilated and that some of the ribosomes were no longer located on the RER. The mitochondria were swollen, with shortened and broken cristae. The present study demonstrated, in a canine model, a reduced volume of PF secretion with decreased enzyme secretion during the early stage of AP. Injury of mitochondria and dilatation and degranulation of RER may be responsible for the reduced exocrine function in AP. Furthermore, the present model and results may be useful for researching novel therapeutic measures in AP.
Collapse
Affiliation(s)
- Yuepeng Jin
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yongyu Bai
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiang Li
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | | | - Xince Huang
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lewei Liu
- YueQing Affiliated Hospital of Wenzhou Medical University, YueQing People’s Hospital, Yueqing, Zhejiang Province, China
| | - Liangliang Pan
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haizhen Ni
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bicheng Chen
- Zhejiang Provincial Top Key Discipline in surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiyu Zhang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Michael Hehir
- Ningbo University Medical School, Ningbo, Zhejiang Province, China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
53
|
Affiliation(s)
- Stephen J Pandol
- Cedars-Sinai Medical Center, University of California and Department of Veterans Affairs, Los Angeles, CA, USA.
| | | | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
54
|
Shamoon M, Deng Y, Chen YQ, Bhatia M, Sun J. Therapeutic implications of innate immune system in acute pancreatitis. Expert Opin Ther Targets 2015; 20:73-87. [PMID: 26565751 DOI: 10.1517/14728222.2015.1077227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acute pancreatitis (AP) is an inflammatory disorder of the pancreas encompassing a cascade of cellular and molecular events. It starts from premature activation of zymogens with the involvement of innate immune system to a potential systemic inflammatory response and multiple organ failure. Leukocytes are the major cell population that participate in the propagation of the disease. Current understanding of the course of AP is still far from complete, limiting treatment options mostly to conservative supportive care. Emerging evidence has pointed to modulation of the immune system for strategic therapeutic development, by mitigating the inflammatory response and severity of AP. In the current review, we have focused on the role of innate immunity in the condition and highlighted therapeutics targeting it for treatment of this challenging disease. AREAS COVERED The current review has aimed to elaborate in-depth understanding of specific roles of innate immune cells, derived mediators and inflammatory pathways that are involved in AP. Summarizing the recent therapeutics and approaches applied experimentally that target immune responses to attenuate AP. EXPERT OPINION The current state of knowledge on AP, limitations of presently available therapeutic approaches and the promise of therapeutic implications of innate immune system in AP are discussed.
Collapse
Affiliation(s)
- Muhammad Shamoon
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yuanyuan Deng
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yong Q Chen
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Madhav Bhatia
- b 2 University of Otago, Inflammation Research Group, Department of Pathology , Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| |
Collapse
|
55
|
Abstract
The human exocrine pancreas consists of 2 main cell types: acinar and ductal cells. These exocrine cells interact closely to contribute to the secretion of pancreatic juice. The most important ion in terms of the pancreatic ductal secretion is HCO3. In fact, duct cells produce an alkaline fluid that may contain up to 140 mM NaHCO3, which is essential for normal digestion. This article provides an overview of the basics of pancreatic ductal physiology and pathophysiology. In the first part of the article, we discuss the ductal electrolyte and fluid transporters and their regulation. The central role of cystic fibrosis transmembrane conductance regulator (CFTR) is highlighted, which is much more than just a Cl channel. We also review the role of pancreatic ducts in severe debilitating diseases such as cystic fibrosis (caused by various genetic defects of cftr), pancreatitis, and diabetes mellitus. Stimulation of ductal secretion in cystic fibrosis and pancreatitis may have beneficial effects in their treatment.
Collapse
|
56
|
Abstract
The early phase of both acute and chronic pancreatitis can be characterized by disrupt level and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, decreased bicarbonate secretion, intraductal acidosis, decrease of fluid secretion and elevation of mucoprotein levels. It is almost needless to say that these intrapancreatic changes are very similar to the pathophysiological changes observed in cystic fibrosis. The aim of this mini review is to describe the development of the above mentioned pathological observations in details, moreover highlight some future therapeutic opportunities in pancreatitis.
Collapse
Affiliation(s)
- Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary; MTA-SZTE Momentum Translational Gastroenterology Research Group, Szeged, Hungary.
| |
Collapse
|
57
|
Hegyi P, Rakonczay Z. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. Pancreatology 2015; 15:S13-7. [PMID: 25921231 DOI: 10.1016/j.pan.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Pancreatic ducts secrete 2.5 l of alkaline, HCO3(-)-rich fluid daily which greatly contributes to the homeostasis of the pancreas. Ducts are also important in the pathophysiology of the pancreas; alteration of ductal function can lead to severe diseases such as cystic fibrosis and chronic pancreatitis. The role of pancreatic ducts in the development of acute pancreatitis has only been uncovered recently. Pancreatitis inducing agents like bile acids and ethanol dose-dependently affect pancreatic ductal secretion; low concentrations stimulate, whereas high concentrations inhibit secretion. The majority of the review will focus on the central role of cystic fibrosis transmembrane conductance regulator (CFTR), a critical protein in the regulation of ductal secretion, in the pathogenesis of acute pancreatitis which is highlighted by numerous investigations. Downregulation of CFTR expression results in increased severity of acute pancreatitis in mice. Furthermore, human genetic studies have demonstrated statistically significant association of CFTR mutations with acute recurrent pancreatitis. Overall, the data support the involvement of pancreatic ducts in the pathogenesis of acute pancreatitis.
Collapse
Affiliation(s)
- Peter Hegyi
- University of Szeged, First Department of Medicine, Szeged, Hungary; MTA-SZTE Lendület Translational Gastroenterology Research Group, Szeged, Hungary
| | - Zoltan Rakonczay
- University of Szeged, First Department of Medicine, Szeged, Hungary.
| |
Collapse
|
58
|
Dubravcsik Z, Madácsy L, Gyökeres T, Vincze Á, Szepes Z, Hegyi P, Hritz I, Szepes A. Preventive pancreatic stents in the management of acute biliary pancreatitis (PREPAST trial): pre-study protocol for a multicenter, prospective, randomized, interventional, controlled trial. Pancreatology 2015; 15:115-23. [PMID: 25754525 DOI: 10.1016/j.pan.2015.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/10/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The outcome of the most common biliary form of acute pancreatitis has not changed even with the better described indications for early endoscopic intervention. It may be due to the fact that this intrevention theoretically can cause further pancreatic injury or cannot always relieve the pancreatic duct obstruction. We hypothesize that maintaining the outflow of the pancreatic duct with preventive pancreatic stents at the early ERCP improves the outcome of acute biliary pancreatitis. METHODS/DESIGN PREPAST is a prospective, randomized, controlled, multicenter trial. Patients with acute biliary pancreatitis with coexisting cholangitis are randomized to undergo urgent endoscopic intervention with or without pancreatic stenting within 48 h from the onset of pain, and in addition patients without signs of cholangitis but cholestasis are randomly allocated to recieve conservative treatment or early endoscopic intervention with or without pancreatic stenting within 48 h from the onset of pain. Patients without acute cholangitis and signs of cholestasis recieve conservative treatment. 230 patients are planned to be enrolled during a 48 months period from different centers. The primary endpoint is the outcome of acute biliary pancreatitis as described by the latest guidelines. Secondary endpoints include mortality data, and other variables not analyzed as a primary endpoint but related to the pancreatitis or the pancreatic stenting. DISCUSSION The PREPAST trial is designed to show whether early endoscopic intervention with the usage of preventive pancreatic stenting improves the outcome of acute biliary pancreatitis. The study has been registered at the International Standard Randomised Controlled Trial Number (ISRCTN) Register (trial ID: ISRCTN13517695).
Collapse
Affiliation(s)
- Zsolt Dubravcsik
- Department of Gastroenterology and Endoscopy, Bács-Kiskun County Hospital, Nyíri út 38, 6000 Kecskemét, Hungary.
| | - László Madácsy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi u. 46, 1088 Budapest, Hungary
| | - Tibor Gyökeres
- Department of Gastroenterology, State Health Centre, Podmaniczky u. 111, 1062 Budapest, Hungary
| | - Áron Vincze
- 1st Department of Internal Medicine, University of Pécs, Rákóczi út 2, 7622 Pécs, Hungary
| | - Zoltán Szepes
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary
| | - Péter Hegyi
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary; MTA-SZTE Lendület Translational Gastroenterology Research Group, Korányi fasor 8-10, 6720 Szeged, Hungary
| | - István Hritz
- Department of Gastroenterology and Endoscopy, Bács-Kiskun County Hospital, Nyíri út 38, 6000 Kecskemét, Hungary; 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary
| | - Attila Szepes
- Department of Gastroenterology and Endoscopy, Bács-Kiskun County Hospital, Nyíri út 38, 6000 Kecskemét, Hungary
| | | |
Collapse
|
59
|
Vashisht K, Nady SL, Engler RD, Kelsch BK, Lynk SN, Cape BR, Hoffmann G, Meseck EK, Johnson RC. Extraparenchymal Bile/Pancreatic Ducts and Duodenal Papillae: Pathologic Evaluation in Nonclinical Species--A Brief Review. Toxicol Pathol 2015; 43:651-61. [PMID: 25633421 DOI: 10.1177/0192623314560612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review focuses on the anatomy, histologic preparation, and pathologic evaluation of extraparenchymal bile and pancreatic ducts (BPDs) and their openings at the duodenal papillae in the cynomolgus macaque (Macaca fascicularis), the Beagle dog (Canis familiaris), the Wistar Hanover rat (Rattus norvegicus), and the CD1 mouse (Mus musculus). In nonclinical safety assessment, intraparenchymal BPDs (with sections of liver and pancreas, respectively) are evaluated routinely. However, detailed evaluation of the extraparenchymal BPDs or the duodenal papillae is not included. In the context of nonclinical safety assessment studies, this review describes situations in which evaluation of extraparenchymal ductal structures and duodenal papillae may be useful in characterizing test article-related changes; elucidates anatomic similarities between human, macaque, and dog and notable differences in rats and mice; and consolidates the information required for the histopathologic evaluation of these tissues.
Collapse
Affiliation(s)
- Kapil Vashisht
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Sherry L Nady
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Rita D Engler
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Brian K Kelsch
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | | | | | | | - Emily K Meseck
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Robert C Johnson
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| |
Collapse
|
60
|
Jaworek J, Konturek SJ. Hormonal protection in acute pancreatitis by ghrelin, leptin and melatonin. World J Gastroenterol 2014; 20:16902-16912. [PMID: 25493003 PMCID: PMC4258559 DOI: 10.3748/wjg.v20.i45.16902] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/15/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is a nonbacterial disease of the pancreas. The severe form of this ailment is characterized by high mortality. Whether acute pancreatitis develops as the severe type or resolves depends on the intensity of the inflammatory process which is counteracted by the recruitment of innate defense mechanisms. It has been shown that the hormones ghrelin, leptin and melatonin are able to modulate the immune function of the organism and to protect the pancreas against inflammatory damage. Experimental studies have demonstrated that the application of these substances prior to the induction of acute pancreatitis significantly attenuated the intensity of the inflammation and reduced pancreatic tissue damage. The pancreatic protective mechanisms of the above hormones have been related to the mobilization of non-specific immune defense, to the inhibition of nuclear factor kappa B and modulation of cytokine production, to the stimulation of heat shock proteins and changes of apoptotic processes in the acinar cells, as well as to the activation of antioxidant system of the pancreatic tissue. The protective effect of ghrelin seems to be indirect and perhaps dependent on the release of growth hormone and insulin-like growth factor 1. Leptin and ghrelin, but not melatonin, employ sensory nerves in their beneficial action on acute pancreatitis. It is very likely that ghrelin, leptin and melatonin could be implicated in the natural protection of the pancreatic gland against inflammatory damage because the blood levels of these substances increase in the initial phase of pancreatic inflammation. The above hormones could be a part of the innate resistance system which might remove noxious factors and could suppress or attenuate the inflammatory process in the pancreas.
Collapse
|
61
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
62
|
Venglovecz V, Rakonczay Z, Gray MA, Hegyi P. Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 2014; 467:625-40. [PMID: 25074489 DOI: 10.1007/s00424-014-1585-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal epithelial cells play a fundamental role in HCO3 (-) secretion, a process which is essential for maintaining the integrity of the pancreas. Although several studies have implicated impaired HCO3 (-) and fluid secretion as a triggering factor in the development of pancreatitis, the mechanism and regulation of HCO3 (-) secretion is still not completely understood. To date, most studies on the ion transporters that orchestrate ductal HCO3 (-) secretion have focussed on the role of Cl(-)/HCO3 (-) exchangers and Cl(-) channels, whereas much less is known about the role of K(+) channels. However, there is growing evidence that many types of K(+) channels are present in ductal cells where they have an essential role in establishing and maintaining the electrochemical driving force for anion secretion. For this reason, strategies that increase K(+) channel function may help to restore impaired HCO3 (-) and fluid secretion, such as in pancreatitis, and therefore provide novel directions for future pancreatic therapy. In this review, our aims are to summarize the types of K(+) channels found in pancreatic ductal cells and to discuss their individual roles in ductal HCO3 (-) secretion. We will also describe how K(+) channels are involved in pathophysiological conditions and discuss how they could act as new molecular targets for the development of therapeutic approaches to treat pancreatic diseases.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary,
| | | | | | | |
Collapse
|
63
|
The role of pancreatic ductal secretion in protection against acute pancreatitis in mice*. Crit Care Med 2014; 42:e177-88. [PMID: 24368347 DOI: 10.1097/ccm.0000000000000101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES A common potentially fatal disease of the pancreas is acute pancreatitis, for which there is no treatment. Most studies of this disorder focus on the damage to acinar cells since they are assumed to be the primary target of multiple stressors affecting the pancreas. However, increasing evidence suggests that the ducts may also have a crucial role in induction of the disease. To test this hypothesis, we sought to determine the specific role of the duct in the induction of acute pancreatitis using well-established disease models and mice with deletion of the Na/H exchanger regulatory factor-1 that have selectively impaired ductal function. DESIGN Randomized animal study. SETTING Animal research laboratory. SUBJECTS Wild-type and Na/H exchanger regulatory factor-1 knockout mice. INTERVENTIONS Acute necrotizing pancreatitis was induced by i.p. administration of cerulein or by intraductal administration of sodium taurocholate. The pancreatic expression of Na/H exchanger regulatory factor-1 and cystic fibrosis transmembrane conductance regulator (a key player in the control of ductal secretion) was analyzed by immunohistochemistry. In vivo pancreatic ductal secretion was studied in anesthetized mice. Functions of pancreatic acinar and ductal cells as well as inflammatory cells were analyzed in vitro. MEASUREMENTS AND MAIN RESULTS Deletion of Na/H exchanger regulatory factor-1 resulted in gross mislocalization of cystic fibrosis transmembrane conductance regulator, causing marked reduction in pancreatic ductal fluid and bicarbonate secretion. Importantly, deletion of Na/H exchanger regulatory factor-1 had no deleterious effect on functions of acinar and inflammatory cells. Deletion of Na/H exchanger regulatory factor-1, which specifically impaired ductal function, increased the severity of acute pancreatitis in the two mouse models tested. CONCLUSIONS Our findings provide the first direct evidence for the crucial role of ductal secretion in protecting the pancreas from acute pancreatitis and strongly suggest that improved ductal function should be an important modality in prevention and treatment of the disease.
Collapse
|
64
|
Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, Bansal P, Billiar TR, Tsung A, Wang Q, Bartlett DL, Whitcomb DC, Chang EB, Zhu X, Wang H, Lu B, Tracey KJ, Cao L, Fan XG, Lotze MT, Zeh HJ, Tang D. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 2014; 146:1097-107. [PMID: 24361123 PMCID: PMC3965592 DOI: 10.1053/j.gastro.2013.12.015] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS High mobility group box 1 (HMGB1) is an abundant protein that regulates chromosome architecture and also functions as a damage-associated molecular pattern molecule. Little is known about its intracellular roles in response to tissue injury or during subsequent local and systemic inflammatory responses. We investigated the function of Hmgb1 in mice after induction of acute pancreatitis. METHODS We utilized a Cre/LoxP system to create mice with pancreas-specific disruption in Hmbg1 (Pdx1-Cre; HMGB1(flox/flox) mice). Acute pancreatitis was induced in these mice (HMGB1(flox/flox) mice served as controls) after injection of l-arginine or cerulein. Pancreatic tissues and acinar cells were collected and analyzed by histologic, immunoblot, and immunohistochemical analyses. RESULTS After injection of l-arginine or cerulein, Pdx1-Cre; HMGB1(flox/flox) mice developed acute pancreatitis more rapidly than controls, with increased mortality. Pancreatic tissues of these mice also had higher levels of serum amylase, acinar cell death, leukocyte infiltration, and interstitial edema than controls. Pancreatic tissues and acinar cells collected from the Pdx1-Cre; HMGB1(flox/flox) mice after l-arginine or cerulein injection demonstrated nuclear catastrophe with greater nucleosome release when compared with controls, along with increased phosphorylation/activation of RELA nuclear factor κB, degradation of inhibitor of κB, and phosphorylation of mitogen-activated protein kinase. Inhibitors of reactive oxygen species (N-acetyl-l-cysteine) blocked l-arginine-induced DNA damage, necrosis, apoptosis, release of nucleosomes, and activation of nuclear factor κB in pancreatic tissues and acinar cells from Pdx1-Cre; HMGB1(flox/flox) and control mice. Exogenous genomic DNA and recombinant histone H3 proteins significantly induced release of HMGB1 from mouse macrophages; administration of antibodies against H3 to mice reduced serum levels of HMGB1 and increased survival after l-arginine injection. CONCLUSIONS In 2 mouse models of acute pancreatitis, intracellular HMGB1 appeared to prevent nuclear catastrophe and release of inflammatory nucleosomes to block inflammation. These findings indicate a role for the innate immune response in tissue damage.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Qiuhong Zhang
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wen Hou
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zhenwen Yan
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA, Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ruochan Chen
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jillian Bonaroti
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Preeti Bansal
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Timothy R. Billiar
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allan Tsung
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Qingde Wang
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David L. Bartlett
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eugene B. Chang
- Department of Medicine, University of Chicago; Chicago, IL 60637, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago; Chicago, IL 60637, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York 11030, USA
| | - Ben Lu
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J. Tracey
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Lizhi Cao
- Department of Pediatrics Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael T. Lotze
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA,Correspondence should be directed to Dr. Daolin Tang (), Dr. Rui Kang (), Dr. Michael T. Lotze (), or Dr. Herbert J. Zeh ()
| | - Herbert J. Zeh
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA,Correspondence should be directed to Dr. Daolin Tang (), Dr. Rui Kang (), Dr. Michael T. Lotze (), or Dr. Herbert J. Zeh ()
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
65
|
Novak I, Haanes KA, Wang J. Acid-base transport in pancreas-new challenges. Front Physiol 2013; 4:380. [PMID: 24391597 PMCID: PMC3868914 DOI: 10.3389/fphys.2013.00380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H(+)) and base (HCO(-) 3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO(-) 3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H(+)-K(+)-ATPases), as well as the calcium-activated K(+) and Cl(-) channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | | | - Jing Wang
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
66
|
Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflugers Arch 2013; 466:549-62. [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption is a major cause of acute pancreatitis, but the mechanism involved is not well understood. Recent investigations suggest that pancreatic ductal epithelial cells (PDECs) help defend the pancreas from noxious agents such as alcohol. Because the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel plays a major role in PDEC physiology and mutated CFTR is often associated with pancreatitis, we tested the hypothesis that ethanol affects CFTR to impair ductal function. Electrophysiological studies on native PDECs showed that ethanol (10 and 100 mM) increased basal, but reversibly blocked, forskolin-stimulated CFTR currents. The inhibitory effect of ethanol was mimicked by its non-oxidative metabolites, palmitoleic acid ethyl ester (POAEE) and palmitoleic acid (POA), but not by the oxidative metabolite, acetaldehyde. Ethanol, POAEE and POA markedly reduced intracellular ATP (ATPi) which was linked to CFTR inhibition since the inhibitory effects were almost completely abolished if ATPi depletion was prevented. We propose that ethanol causes functional damage of CFTR through an ATPi-dependent mechanism, which compromises ductal fluid secretion and likely contributes to the pathogenesis of acute pancreatitis. We suggest that the maintenance of ATPi may represent a therapeutic option in the treatment of the disease.
Collapse
Affiliation(s)
- L Judák
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
67
|
Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A 2013; 110:13186-91. [PMID: 23878235 DOI: 10.1073/pnas.1300910110] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca(2+) concentration inside pancreatic acinar cells ([Ca(2+)]i), due to excessive release of Ca(2+) stored inside the cells followed by Ca(2+) entry from the interstitial fluid. The sustained [Ca(2+)]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca(2+) release-activated Ca(2+) channels (CRAC) would prevent sustained elevation of [Ca(2+)]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca(2+) ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca(2+). Ca(2+) entry then occurred upon admission of Ca(2+) to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca(2+) entry in a concentration-dependent manner within the range of 1 to 50 μM (IC50 = 3.4 μM), but had little or no effect on the physiological Ca(2+) spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 μM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca(2+)]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca(2+)]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.
Collapse
|
68
|
Wen Z, Liao Q, Hu Y, Liu S, You L, Zhao Y. Human adipose-derived stromal/stem cells: A novel approach to inhibiting acute pancreatitis. Med Hypotheses 2013; 80:598-600. [DOI: 10.1016/j.mehy.2013.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/27/2013] [Indexed: 11/24/2022]
|
69
|
Fétaud-Lapierre V, Pastor CM, Jorge-Costa M, Hochstrasser DF, Morel DR, Frossard JL, Lescuyer P. Time-course proteomic analysis of taurocholate-induced necrotizing acute pancreatitis. J Proteomics 2013; 85:12-27. [PMID: 23624238 DOI: 10.1016/j.jprot.2013.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/28/2013] [Accepted: 04/14/2013] [Indexed: 01/29/2023]
Abstract
UNLABELLED Acute pancreatitis is an inflammatory disease of the pancreas, which varies greatly in course and severity. Severe forms are associated with serious local and/or systemic complications, and eventually death. The pathobiology of acute pancreatitis is complex. Animal models have been developed to investigate pathobiological processes and identify factors determining disease course. We performed a time-course proteomic analysis using a rat model of severe necrotizing acute pancreatitis induced by taurocholate perfusion in the pancreatic ducts. Results showed that levels of proteins associated to a given biological process changed in a coordinated fashion after disease onset. It was possible to follow the response of a particular pathobiological process to pancreatitis induction and to compare the course of protein pathways. Proteins involved in acinar cell secretion were found to follow a different kinetics than other cellular processes. After an initial decrease, secretory pathway-associated proteins raised again at 18 h post-induction. This phenomenon coincided with a burst in the expression of pancreatitis-associated protein (REG3A), an acute phase protein produced by the exocrine pancreas, and with the decrease of classical markers of pancreatic injury, suggesting that the expression of proteins associated to the secretory pathway may be a modulating factor of pancreas injury. BIOLOGICAL SIGNIFICANCE Acute pancreatitis (AP) is a complex inflammatory disease, the pathobiology of which is not yet fully understood. Various animal models, relying on different mechanisms of disease induction, have been developed in order to investigate pathobiological processes of AP. In this study, we performed a time-course proteomic analysis to investigate changes of the pancreas proteome occurring in an experimental model of AP induced by perfusion of taurocholate, a bile acid, into the pancreatic duct. This experimental model is characterized by a severe disease with pancreatic necrosis and systemic inflammation. The objectives of this study were to determine the kinetics of functionally related proteins in the early steps of the experimental disease in order to identify protein pathways playing key roles in AP pathobiology and to correlate these data with parameters classically used to assess disease severity. The present work provides for the first time an overview of protein expression in the pancreas during the course of taurocholate-induced necrotizing AP. We believe that correlation of these results with data obtained using proteomic or biochemical approaches in various experimental models of AP will help in highlighting new features, generating hypotheses and constitute therefore a strong and reliable basis for further targeted investigations.
Collapse
Affiliation(s)
- Vanessa Fétaud-Lapierre
- Biomedical Proteomics Research Group, Department of Human Protein Science, Geneva Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
70
|
Acute and chronic pancreatic inflammation. Int J Inflam 2013; 2012:481658. [PMID: 23346459 PMCID: PMC3549349 DOI: 10.1155/2012/481658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 11/25/2022] Open
|
71
|
Muili KA, Wang D, Orabi AI, Sarwar S, Luo Y, Javed TA, Eisses JF, Mahmood SM, Jin S, Singh VP, Ananthanaravanan M, Perides G, Williams JA, Molkentin JD, Husain SZ. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem 2013; 288:570-80. [PMID: 23148215 PMCID: PMC3537054 DOI: 10.1074/jbc.m112.428896] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/08/2012] [Indexed: 12/29/2022] Open
Abstract
Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca(2+). Thus, it would be clinically relevant to know the targets of this aberrant Ca(2+) signal. We hypothesized that the Ca(2+)-activated phosphatase calcineurin is such a Ca(2+) target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca(2+). Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aβ (CnAβ) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca(2+) generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.
Collapse
Affiliation(s)
| | - Dong Wang
- From the Department of Pediatrics and
- the Department of Chemistry, Fudan University, Shanghai 200433, China
- the Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | - Vijay P. Singh
- Internal Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Meena Ananthanaravanan
- the Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06519
| | - George Perides
- the Department of Surgery, Tufts University Medical Center, Boston, Massachusetts 02111
| | - John A. Williams
- the Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Jeffery D. Molkentin
- the Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229
| | | |
Collapse
|
72
|
The Exocrine Pancreas: The Acinar-Ductal Tango in Physiology and Pathophysiology. Rev Physiol Biochem Pharmacol 2013; 165:1-30. [DOI: 10.1007/112_2013_14] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
73
|
Abstract
PURPOSE OF REVIEW In this article, recent advances in the pathogenesis of acute pancreatitis have been reviewed. RECENT FINDINGS Pathologic intra-acinar trypsinogen activation had been hypothesized to be the central mechanism of pancreatitis for over a century. This hypothesis could be explored for the first time with the development of a novel mouse model lacking pathologic intra-acinar trypsinogen activation. It became clear that intra-acinar trypsinogen activation contributes to early acinar injury, but local and systemic inflammation progress independently during pancreatitis. Early intra-acinar nuclear factor kappa B (NFκB) activation, which occurs parallel to but independent of trypsinogen activation, may be crucial in pancreatitis. Although the mechanism of NFκB and trypsinogen activation is not entirely clear, further insights have been made into key pathogenic cellular events such as calcium signaling, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, autophagy and impaired trafficking, and lysosomal and secretory responses. Cellular intrinsic damage-sensing mechanisms that lead to activation of the inflammatory response aimed at repair, but lead to disease when overwhelmed, are beginning to be understood. SUMMARY New findings necessitate a paradigm shift in our understanding of acute pancreatitis. Intra-acinar trypsinogen activation leads to early pancreatic injury, but the inflammatory response of acute pancreatitis develops independently, driven by early activation of inflammatory pathways.
Collapse
|
74
|
Lunova M, Zizer E, Kucukoglu O, Schwarz C, Dillmann WH, Wagner M, Strnad P. Hsp72 overexpression accelerates the recovery from caerulein-induced pancreatitis. PLoS One 2012; 7:e39972. [PMID: 22792201 PMCID: PMC3390337 DOI: 10.1371/journal.pone.0039972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022] Open
Abstract
Background and Aims Heat shock protein (Hsp) 72 is a molecular chaperone which is upregulated in response to a variety of stress situations and has a general cytoprotective function. Increased Hsp72 levels were implicated in protection from acute pancreatitis; a hypothesis which was not tested in a transgenic mouse model yet. Methods To analyze the role of Hsp72 during acute pancreatitis, well-characterized transgenic animals overexpressing rat Hsp72 (Hsp72 mice) under the control of the ß-actin promoter were subjected to caerulein- and L-arginine-induced acute pancreatitis. The severity of experimental pancreatitis was determined via serum lipase levels, morphometric evaluation and quantification of pancreatic edema/inflammation. Results Hsp72 mice displayed ∼100-times Hsp72 overexpression, but no changes in the remaining chaperones. Robust Hsp72 signal was observed in pancreatic acini, but not in islets or ductal cells. In both models, elevated Hsp72 did not protect from development of acute pancreatitis and the pancreatitis-associated lung injury, but accelerated recovery from caerulein-induced tissue injury (lower lipase levels, edema, inflammation and necrosis 36 h after caerulein administration). The observed protective function of Hsp72 in caerulein-induced pancreatitis is likely due to an attenuated NF-κB signalling. Conclusions Hsp72 overexpression accelerates the recovery from acute pancreatitis and may represent a potential treatment strategy.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
- * E-mail: (ML); (PS)
| | - Eugen Zizer
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Ozlem Kucukoglu
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Carolin Schwarz
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Wolfgang H. Dillmann
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, San Diego, California, United States of America
| | - Martin Wagner
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Pavel Strnad
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
- * E-mail: (ML); (PS)
| |
Collapse
|
75
|
Abstract
Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.
Collapse
Affiliation(s)
- G Burnstock
- University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
76
|
Morrison JD. Prolonged stimulation of pancreatic serous secretions by bile and sodium taurocholate in anaesthetized rats. J Physiol Biochem 2012; 68:503-20. [PMID: 22538870 DOI: 10.1007/s13105-012-0165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/13/2012] [Indexed: 11/27/2022]
Abstract
There have been numerous reports that infusion of either natural bile or bile salts into the duodenum evokes a rapid increase in pancreatic secretion through the release of the hormone secretin from the duodenal mucosa. We have extended this observation by the demonstration of an additional late increase in secretion which persisted for many hours and have sought to identify the processes underlying this increase. In anaesthetised rats, infusion of 20 mM taurocholate into the duodenum caused a staircase-like increase in the weight of pancreatic secretion which extended over many hours during which, the HCO[Formula: see text] and protein output of the secretion showed only minimal changes. This effect was also reproduced with intra-duodenal infusion of natural bile which was inferred to act though its taurocholate content. Since the stimulatory action was also obtained with superfusion of taurocholate or natural bile onto the small intestine and by intravenous injection of taurocholate, it was concluded that taurocholate acted by being absorbed into the bloodstream and then by exerting a stimulatory action on the exocrine pancreas. This action was inhibited by puromycin (a protein synthesis inhibitor), by furosemide (a Na( + )/K( + )/2Cl(-) cotransporter inhibitor), though not by SITS (an inhibitor of Cl(-)/HCO[Formula: see text] exchange). The long lasting increase in pancreatic serous secretion would be consistent with the possible activation of gene transcription by taurocholate leading to increased activity of the Na( + )/K( + )/2Cl(-) cotransporter through which the acinar cells increased their secretions.
Collapse
Affiliation(s)
- James D Morrison
- School of Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
77
|
Wan MH, Huang W, Latawiec D, Jiang K, Booth DM, Elliott V, Mukherjee R, Xia Q. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford) 2012; 14:73-81. [PMID: 22221567 PMCID: PMC3277048 DOI: 10.1111/j.1477-2574.2011.00408.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute pancreatitis (AP) is a formidable disease, which, in severe forms, causes significant mortality. Biliary AP, or gallstone obstruction-associated AP, accounts for 30-50% of all clinical cases of AP. In biliary AP, pancreatic acinar cell (PAC) death (the initiating event in the disease) is believed to occur as acinar cells make contact with bile salts when bile refluxes into the pancreatic duct. Recent advances have unveiled an important receptor responsible for the major function of bile acids on acinar cells, namely, the cell surface G-protein-coupled bile acid receptor-1 (Gpbar1), located in the apical pole of the PAC. High concentrations of bile acids induce cytosolic Ca(2+) overload and inhibit mitochondrial adenosine triphosphate (ATP) production, resulting in cell injury to both PACs and pancreatic ductal epithelial cells. Various bile salts are employed to induce experimental AP, most commonly sodium taurocholate. Recent characterization of taurolithocholic acid 3-sulphate on PACs has led researchers to focus on this bile salt because of its potency in causing acinar cell injury at relatively low, sub-detergent concentrations, which strongly implicates action via the receptor Gpbar1. Improved surgical techniques have enabled the infusion of bile salts into the pancreatic duct to induce experimental biliary AP in mice, which allows the use of these transgenic animals as powerful tools. This review summarizes recent findings using transgenic mice in experimental biliary AP.
Collapse
Affiliation(s)
- Mei H Wan
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China
| | - Wei Huang
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China,Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Diane Latawiec
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Kun Jiang
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China
| | - David M Booth
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Victoria Elliott
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Rajarshi Mukherjee
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Qing Xia
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China
| |
Collapse
|
78
|
Pallagi P, Venglovecz V, Rakonczay Z, Borka K, Korompay A, Ózsvári B, Judák L, Sahin-Tóth M, Geisz A, Schnúr A, Maléth J, Takács T, Gray MA, Argent BE, Mayerle J, Lerch MM, Wittmann T, Hegyi P. Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl⁻ channels and luminal anion exchangers. Gastroenterology 2011; 141:2228-2239.e6. [PMID: 21893120 PMCID: PMC3273991 DOI: 10.1053/j.gastro.2011.08.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 07/14/2011] [Accepted: 08/05/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The effects of trypsin on pancreatic ductal epithelial cells (PDECs) vary among species and depend on the localization of proteinase-activated receptor 2 (PAR-2). We compared PAR-2 localization in human and guinea-pig PDECs, and used isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on bicarbonate secretion. METHODS PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease). Functionally, guinea pig PDECs were studied by microperfusion of isolated ducts, measurements of intracellular pH and intracellular Ca(2+) concentration, and patch clamp analysis. The effect of pH on trypsinogen autoactivation was assessed using recombinant human cationic trypsinogen. RESULTS PAR-2 localized to the apical membrane of human and guinea pig PDECs. Trypsin increased intracellular Ca(2+) concentration and intracellular pH and inhibited secretion of bicarbonate by the luminal anion exchanger and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. Autoactivation of human cationic trypsinogen accelerated when the pH was reduced from 8.5 to 6.0. PAR-2 expression was strongly down-regulated, at transcriptional and protein levels, in the ducts of patients with chronic pancreatitis, consistent with increased activity of intraductal trypsin. Importantly, in PAR-2 knockout mice, the effects of trypsin were markedly reduced. CONCLUSIONS Trypsin reduces pancreatic ductal bicarbonate secretion via PAR-2-dependent inhibition of the apical anion exchanger and the CFTR Cl(-) channel. This could contribute to the development of chronic pancreatitis by decreasing luminal pH and promoting premature activation of trypsinogen in the pancreatic ducts.
Collapse
Affiliation(s)
- Petra Pallagi
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| | | | | | - Katalin Borka
- 2nd Dept. of Pathology, Semmelweis University, Budapest, Hungary
| | - Anna Korompay
- 2nd Dept. of Pathology, Semmelweis University, Budapest, Hungary
| | - Béla Ózsvári
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| | - Linda Judák
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Sahin-Tóth
- Dept. of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Andrea Geisz
- First Dept. of Medicine, University of Szeged, Szeged, Hungary,Dept. of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Andrea Schnúr
- First Dept. of Medicine, University of Szeged, Szeged, Hungary,Dept. of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - József Maléth
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Takács
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| | - Mike A. Gray
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Barry E. Argent
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Mayerle
- Department of Medicine A, Greifswald University Hospital, Greifswald, Germany
| | - Markus M. Lerch
- Department of Medicine A, Greifswald University Hospital, Greifswald, Germany
| | - Tibor Wittmann
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Dept. of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
79
|
Alexandre M, Pandol SJ, Gorelick FS, Thrower EC. The emerging role of smoking in the development of pancreatitis. Pancreatology 2011; 11:469-74. [PMID: 21986098 PMCID: PMC3222114 DOI: 10.1159/000332196] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Cigarette smoking has been linked to many diseases, including pancreatic cancer and more recently, pancreatitis. METHODS Electronic searches of primarily PubMed from 1990 to August 2011 were conducted and only articles published in English were reviewed. Original articles and reviews were selected based on screening of article abstracts and their relevance to tobacco smoking, its components, nicotine and its metabolites, and their effects particularly on the pancreas. RESULTS Smoking may affect the risk of developing chronic pancreatitis or its progression. Smoking may also affect the risk for developing acute pancreatitis. Its effects in pancreatitis appear to be dose dependent and its effects may be alcohol independent but synergize with alcohol. CONCLUSION Specific constituents of cigarette smoke, including nicotine and its metabolites, could mediate effects on the pancreas.
Collapse
Affiliation(s)
- Martine Alexandre
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Conn., USA,Veterans Administration Connecticut Healthcare, West Haven, Conn., USA
| | - Stephen J. Pandol
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, Calif., USA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Conn., USA,Department of Cell Biology, Yale University School of Medicine, New Haven, Conn., USA,Veterans Administration Connecticut Healthcare, West Haven, Conn., USA
| | - Edwin C. Thrower
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Conn., USA,Veterans Administration Connecticut Healthcare, West Haven, Conn., USA,*Edwin C. Thrower, GI Research Laboratory, Building 4, VA Healthcare System Connecticut, 950 Campbell Ave, West Haven, CT 06516 (USA), Tel. +1 203 932 5711, ext. 3284, E-Mail
| |
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW Despite being a subject of much scientific scrutiny, the pathogenesis of acute pancreatitis is still not well understood. This article reviews recent advances in our understanding of acute pancreatitis. RECENT FINDINGS Zymogen activation, observed within acini early during acute pancreatitis for a long time, was shown to be sufficient to induce acute pancreatitis. Another key early event, NFκB activation, has previously been shown to induce acute pancreatitis. The relationship between these two key early steps is beginning to be clarified. Mechanisms of zymogen activation - pathologic calcium signaling, pH changes, colocalization and autophagy, and of NFκB activation have been investigated intensively along with potential therapeutic targets both upstream and downstream of these key events. Additional key findings have been elucidation of the role of bioenergetics and the dual role of oxidative stress in acute pancreatitis, recognition of endoplasmic reticulum stress as an early step and the status of duct cells as important entities in pancreatic injury. SUMMARY Current findings have provided further insight into the roles and mechanisms of zymogen activation and inflammatory pathways in pancreatic injury. Future studies, which will be of great importance in identifying therapeutic targets, are being undertaken to establish the relative contributions of these pathways during acute pancreatitis.
Collapse
|
81
|
Hegyi P, Maléth J, Venglovecz V, Rakonczay Z. Pancreatic ductal bicarbonate secretion: challenge of the acinar Acid load. Front Physiol 2011; 2:36. [PMID: 21808623 PMCID: PMC3139102 DOI: 10.3389/fphys.2011.00036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/22/2011] [Indexed: 02/03/2023] Open
Abstract
Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel), however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.
Collapse
Affiliation(s)
- Péter Hegyi
- First Department of Medicine, University of Szeged Szeged, Hungary
| | | | | | | |
Collapse
|