51
|
Roy N, Takeuchi KK, Ruggeri JM, Bailey P, Chang D, Li J, Leonhardt L, Puri S, Hoffman MT, Gao S, Halbrook CJ, Song Y, Ljungman M, Malik S, Wright CVE, Dawson DW, Biankin AV, Hebrok M, Crawford HC. PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes Dev 2016; 30:2669-2683. [PMID: 28087712 PMCID: PMC5238727 DOI: 10.1101/gad.291021.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
Aberrant activation of embryonic signaling pathways is frequent in pancreatic ductal adenocarcinoma (PDA), making developmental regulators therapeutically attractive. Here we demonstrate diverse functions for pancreatic and duodenal homeobox 1 (PDX1), a transcription factor indispensable for pancreas development, in the progression from normal exocrine cells to metastatic PDA. We identify a critical role for PDX1 in maintaining acinar cell identity, thus resisting the formation of pancreatic intraepithelial neoplasia (PanIN)-derived PDA. Upon neoplastic transformation, the role of PDX1 changes from tumor-suppressive to oncogenic. Interestingly, subsets of malignant cells lose PDX1 expression while undergoing epithelial-to-mesenchymal transition (EMT), and PDX1 loss is associated with poor outcome. This stage-specific functionality arises from profound shifts in PDX1 chromatin occupancy from acinar cells to PDA. In summary, we report distinct roles of PDX1 at different stages of PDA, suggesting that therapeutic approaches against this potential target need to account for its changing functions at different stages of carcinogenesis. These findings provide insight into the complexity of PDA pathogenesis and advocate a rigorous investigation of therapeutically tractable targets at distinct phases of PDA development and progression.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Kenneth K Takeuchi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jeanine M Ruggeri
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Peter Bailey
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - David Chang
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Joey Li
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Laura Leonhardt
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Sapna Puri
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shan Gao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yan Song
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shivani Malik
- Department of Medicine/ Hematology and Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Center, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
52
|
Drosos Y, Neale G, Ye J, Paul L, Kuliyev E, Maitra A, Means AL, Washington MK, Rehg J, Finkelstein DB, Sosa-Pineda B. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation. Neoplasia 2016; 18:172-84. [PMID: 26992918 PMCID: PMC4796801 DOI: 10.1016/j.neo.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.
Collapse
Affiliation(s)
- Yiannis Drosos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Geoffrey Neale
- Department of Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jianming Ye
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Leena Paul
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Emin Kuliyev
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN
| | - Anirban Maitra
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anna L Means
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jerold Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Beatriz Sosa-Pineda
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
53
|
Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, Figlioli G, Mocci E, Collins I, Chung CC, Hautman C, Arslan AA, Beane-Freeman L, Bracci PM, Buring J, Duell EJ, Gallinger S, Giles GG, Goodman GE, Goodman PJ, Kamineni A, Kolonel LN, Kulke MH, Malats N, Olson SH, Sesso HD, Visvanathan K, White E, Zheng W, Abnet CC, Albanes D, Andreotti G, Brais L, Bueno-de-Mesquita HB, Basso D, Berndt SI, Boutron-Ruault MC, Bijlsma MF, Brenner H, Burdette L, Campa D, Caporaso NE, Capurso G, Cavestro GM, Cotterchio M, Costello E, Elena J, Boggi U, Gaziano JM, Gazouli M, Giovannucci EL, Goggins M, Gross M, Haiman CA, Hassan M, Helzlsouer KJ, Hu N, Hunter DJ, Iskierka-Jazdzewska E, Jenab M, Kaaks R, Key TJ, Khaw KT, Klein EA, Kogevinas M, Krogh V, Kupcinskas J, Kurtz RC, Landi MT, Landi S, Marchand LL, Mambrini A, Mannisto S, Milne RL, Neale RE, Oberg AL, Panico S, Patel AV, Peeters PHM, Peters U, Pezzilli R, Porta M, Purdue M, Quiros JR, Riboli E, Rothman N, Scarpa A, Scelo G, Shu XO, Silverman DT, Soucek P, Strobel O, Sund M, Małecka-Panas E, Taylor PR, Tavano F, Travis RC, Thornquist M, Tjønneland A, Tobias GS, Trichopoulos D, Vashist Y, Vodicka P, Wactawski-Wende J, Wentzensen N, Yu H, Yu K, Zeleniuch-Jacquotte A, Kooperberg C, Risch HA, Jacobs EJ, Li D, Fuchs C, Hoover R, Hartge P, Chanock SJ, Petersen GM, Stolzenberg-Solomon RS, Wolpin BM, Kraft P, Klein AP, Canzian F, Amundadottir LT. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget 2016; 7:66328-66343. [PMID: 27579533 PMCID: PMC5340084 DOI: 10.18632/oncotarget.11041] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 12/31/1969] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erica J. Childs
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gisella Figlioli
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelina Mocci
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles C. Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christopher Hautman
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- New York University Cancer Institute, New York, New York, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Julie Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Gary E. Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Phyllis J. Goodman
- Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Aruna Kamineni
- Group Health Research Institute, Seattle, Washington, USA
| | - Laurence N. Kolonel
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Matthew H. Kulke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Howard D. Sesso
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - H. Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Daniela Basso
- Department of Laboratory Medicine, University Hospital of Padova, Padua, Italy
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie-Christine Boutron-Ruault
- Inserm, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, F-94805, Villejuif, France
- University Paris Sud, UMRS 1018, F-94805, Villejuif, France
- IGR, F-94805, Villejuif, France
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, ‘Sapienza’ University of Rome, Rome, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Eithne Costello
- National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Joanne Elena
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ugo Boggi
- Department of Surgery, Unit of Experimental Surgical Pathology, University Hospital of Pisa, Pisa, Italy
| | - J. Michael Gaziano
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Massachusetts Veteran's Epidemiology, Research, and Information Center, Geriatric Research Education and Clinical Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Michael Goggins
- Department of Pathology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Cancer Center and Johns Hopkins University, Baltimore, Maryland, USA
| | - Myron Gross
- Laboratory of Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher A. Haiman
- Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Manal Hassan
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kathy J. Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David J. Hunter
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Harvard School of Public Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mazda Jenab
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Timothy J. Key
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Manolis Kogevinas
- Centre de Recerca en Epidemiologia Ambiental (CREAL), CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain
- National School of Public Health, Athens, Greece
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Maria T. Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Le Loic Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Andrea Mambrini
- Oncology Department, ASL1 Massa Carrara, Massa Carrara, Italy
| | - Satu Mannisto
- National Institute for Health and Welfare, Department of Chronic Disease Prevention, Helsinki, Finland
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Rachel E. Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Salvatore Panico
- Dipartimento di Medicina Clinica E Chirurgia, Federico II Univeristy, Naples, Italy
| | - Alpa V. Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Petra H. M. Peeters
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive Diseases and Internal Medicine, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Miquel Porta
- Hospital del Mar Institute of Medical Research (IMIM), Barcelona, Spain
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - J. Ramón Quiros
- Public Health and Participation Directorate, Asturias, Spain
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aldo Scarpa
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Xiao-Ou Shu
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel Soucek
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Malin Sund
- Department of Surgical and Peroperative Sciences, Umeå University, Umeå, Sweden
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Łodz, Łodz, Poland
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Ruth C. Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Mark Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anne Tjønneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Geoffrey S. Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
- Hellenic Health Foundation, Athens, Greece
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Hamburg-Eppendorf, Hamburg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jean Wactawski-Wende
- Department of Social and Preventive Medicine, University at Buffalo, Buffalo, New York, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- New York University Cancer Institute, New York, New York, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Charles Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gloria M. Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Rachael S. Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Alison P. Klein
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, the Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
54
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
55
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
56
|
Epidemiology and Inherited Predisposition for Sporadic Pancreatic Adenocarcinoma. Hematol Oncol Clin North Am 2016; 29:619-40. [PMID: 26226901 DOI: 10.1016/j.hoc.2015.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Given the changing demographics of Western populations, the numbers of pancreatic cancer cases are projected to increase during the next decade. Diabetes, recent cigarette smoking, and excess body weight are the cancer's most consistent risk factors. The search for common and rare germline variants that influence risk of pancreatic cancer through genome-wide association studies and high-throughput-sequencing-based studies is underway and holds the promise of increasing the knowledge of variants and genes that play a role in inherited susceptibility of this disease. Research reported in this review has advanced the understanding of pancreatic cancer.
Collapse
|
57
|
Martinelli P, Madriles F, Cañamero M, Pau ECDS, Pozo ND, Guerra C, Real FX. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice. Gut 2016; 65:476-86. [PMID: 25596178 DOI: 10.1136/gutjnl-2014-308042] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Gata6 is required to complete and maintain acinar differentiation in the mouse pancreas. Pancreas-specific Gata6 ablation during development causes extensive and persistent acinar-ductal metaplasia, which is considered an initial step of mutant KRas-driven carcinogenesis. Therefore, the Gata6-null pancreas might represent a tumour-prone environment. We investigated whether Gata6 plays a role during pancreatic tumorigenesis. DESIGN We analysed genetically engineered mouse models and human pancreatic ductal adenocarcinoma (PDAC) cell lines, using a combination of histopathological studies, genome-wide expression and chromatin immunoprecipitation experiments to understand the role of Gata6 in the initiation and progression of KRas(G12V)-driven tumours RESULTS We show that Gata6 maintains the acinar differentiation programme, both directly and indirectly, and it concomitantly suppresses ectopic programmes in the pancreas. Gata6 ablation renders acinar cells more sensitive to KRas(G12V), thereby accelerating tumour development. Gata6 expression is spontaneously lost in a mouse model of KRas(G12V)-driven PDAC, in association with altered cell differentiation. Using a combination of ChIP-Seq and RNA-Seq, we show that Gata6 exerts its tumour-suppressive effect through the promotion of cell differentiation, the suppression of inflammatory pathways, and the direct repression of cancer-related pathways. Among them is the epidermal growth factor receptor (EGFR) pathway, the activity of which is upregulated in the normal and preneoplastic Gata6-null pancreas. Accordingly, GATA6-silencing in human PDAC cells leads to an upregulation of EGFR. CONCLUSIONS We propose that, in the pancreas, Gata6 acts as a tumour suppressor by enforcing acinar cell differentiation, by directly and indirectly repressing ectopic differentiation programmes, and by regulating crucial cancer-related gene expression pathways.
Collapse
Affiliation(s)
- Paola Martinelli
- Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Madriles
- Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Cañamero
- Comparative Pathology Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Enrique Carrillo-de Santa Pau
- Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, BBVA Foundation-Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
58
|
Abstract
Although relatively rare, pancreatic tumors are highly lethal [1]. In the United States, an estimated 48,960 individuals will be diagnosed with pancreatic cancer and 40,560 will die from this disease in 2015 [1]. Globally, 337,872 new pancreatic cancer cases and 330,391 deaths were estimated in 2012 [2]. In contrast to most other cancers, mortality rates for pancreatic cancer are not improving; in the US, it is predicted to become the second leading cause of cancer related deaths by 2030 [3, 4]. The vast majority of tumors arise in the exocrine pancreas, with pancreatic ductal adenocarcinoma (PDAC) accounting for approximately 95% of tumors. Tumors arising in the endocrine pancreas (pancreatic neuroendocrine tumors) represent less than 5% of all pancreatic tumors [5]. Smoking, type 2 diabetes mellitus (T2D), obesity and pancreatitis are the most consistent epidemiological risk factors for pancreatic cancer [5]. Family history is also a risk factor for developing pancreatic cancer with odds ratios (OR) ranging from 1.7-2.3 for first-degree relatives in most studies, indicating that shared genetic factors may play a role in the etiology of this disease [6-9]. This review summarizes the current knowledge of germline pancreatic cancer risk variants with a special emphasis on common susceptibility alleles identified through Genome Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
59
|
BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis. Nat Commun 2016; 7:10153. [PMID: 26729287 PMCID: PMC4728380 DOI: 10.1038/ncomms10153] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
c-MYC oncogene is deregulated in most human tumours. Histone marks associated with transcriptionally active genes define high-affinity c-MYC targets. The mechanisms involved in their recognition by c-MYC are unknown. Here we report that c-MYC interacts with BPTF, a core subunit of the NURF chromatin-remodelling complex. BPTF is required for the activation of the full c-MYC transcriptional programme in fibroblasts. BPTF knockdown leads to decreased c-MYC recruitment to DNA and changes in chromatin accessibility. In Bptf-null MEFs, BPTF is necessary for c-MYC-driven proliferation, G1–S progression and replication stress, but not for c-MYC-driven apoptosis. Bioinformatics analyses unveil that BPTF levels correlate positively with c-MYC-driven transcriptional signatures. In vivo, Bptf inactivation in pre-neoplastic pancreatic acinar cells significantly delays tumour development and extends survival. Our findings uncover BPTF as a crucial c-MYC co-factor required for its biological activity and suggest that the BPTF-c-MYC axis is a potential therapeutic target in cancer. c-MYC genomic distribution is dictated by the epigenetic context but the mechanisms are unknown. Here, the authors show that c-MYC requires the chromatin reader BPTF to activate its transcriptional program and promote tumour development in vivo, suggesting that BPTF is a potential target for cancer therapy.
Collapse
|
60
|
Silencing Mist1 Gene Expression Is Essential for Recovery from Acute Pancreatitis. PLoS One 2015; 10:e0145724. [PMID: 26717480 PMCID: PMC4696804 DOI: 10.1371/journal.pone.0145724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the pancreas is prone to acute pancreatitis (AP), a disease that targets acinar cells, leading to acinar-ductal metaplasia (ADM), inflammation and fibrosis—events that can transition into the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information concerning the broad phenotype associated with pancreatitis, little is understood regarding specific transcriptional regulatory networks that are susceptible to AP and the role these networks play in acinar cell and exocrine pancreas responses. In this study, we examined the importance of the acinar-specific maturation transcription factor MIST1 to AP damage and organ recovery. Analysis of wild-type and Mist1 conditional null mice revealed that Mist1 gene transcription and protein accumulation were dramatically reduced as acinar cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible Mist1 transgene (iMist1) were utilized to determine if sustained MIST1 activity could alleviate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a dramatic increase in organ damage followed by acinar cell death. We conclude that the transient silencing of Mist1 expression is critical for acinar cells to survive an AP episode, providing cells an opportunity to suppress their secretory function and regenerate damaged cells. The importance of MIST1 to these events suggests that modulating key pancreas transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer.
Collapse
|
61
|
Genome-wide association study-identified SNPs (rs3790844, rs3790843) in the NR5A2 gene and risk of pancreatic cancer in Japanese. Sci Rep 2015; 5:17018. [PMID: 26592175 PMCID: PMC4655467 DOI: 10.1038/srep17018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022] Open
Abstract
We genotyped 2 SNPs (rs3790844 T/C and rs3790843 G/A) in the NR5A2 gene that were identified in a genome-wide association study (GWAS) of pancreatic cancer in populations of mainly European ancestry, and we examined their associations with pancreatic cancer risk in a case-control study of 360 patients and 400 control subjects in Japan. Unconditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). The SNPs were in linkage disequilibrium (r2 = 0.80). For rs3790843, the multivariable-adjusted OR was 0.75 (95% CI: 0.41–1.36) and 0.60 (95%CI: 0.33–1.08) for subjects with the AG and AA genotype, respectively, compared to subjects with the GG genotype. The per allele OR was 0.78 (0.62–0.99) (P = 0.046). For rs3790844, the multivariable-adjusted OR was 0.65 (95% CI: 0.37–1.14) and 0.47 (95%CI: 0.27–0.83) for subjects with the CT and CC genotype, respectively, compared to subjects with the TT genotype. The per allele OR was 0.70 (0.56–0.89) (P = 0.003). Our case-control study found that rs3790843 and rs3790844 in the NR5A2 gene are associated with pancreatic cancer risk in Japanese subjects. The direction of association is consistent with the prior findings from GWASs.
Collapse
|
62
|
Developmental Pathways Direct Pancreatic Cancer Initiation from Its Cellular Origin. Stem Cells Int 2015; 2016:9298535. [PMID: 26681957 PMCID: PMC4670687 DOI: 10.1155/2016/9298535] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis, since it is usually diagnosed at advanced stages. In order to employ tools for early detection, a better understanding of the early stages of PDA development from its main precursors, pancreatic intraepithelial neoplasia (PanIN), and intraductal papillary mucinous neoplasm (IPMN) is needed. Recent studies on murine PDA models have identified a different exocrine origin for PanINs and IPMNs. In both processes, developmental pathways direct the initiation of PDA precursors from their cellular ancestors. In this review, the current understanding of early PDA development is summarized.
Collapse
|
63
|
Machiela MJ, Ho BM, Fisher VA, Hua X, Chanock SJ. Limited evidence that cancer susceptibility regions are preferential targets for somatic mutation. Genome Biol 2015; 16:193. [PMID: 26374197 PMCID: PMC4571124 DOI: 10.1186/s13059-015-0755-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/19/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genome wide-association studies have successfully identified several hundred independent loci harboring common cancer susceptibility alleles that are distinct from the more than 110 cancer predisposition genes. The latter are generally characterized by disruptive mutations in coding genes that have been established as 'drivers' of cancer in large somatic sequencing studies. We set out to determine whether, similarly, common cancer susceptibility loci map to genes that have altered frequencies of mutation. RESULTS In our analysis of the intervals defined by the cancer susceptibility markers, we observed that cancer susceptibility regions have gene mutation frequencies comparable to background mutation frequencies. Restricting analyses to genes that have been determined to be pleiotropic across cancer types, genes affected by expression quantitative trait loci, or functional genes indicates that most cancer susceptibility genes classified into these subgroups do not display mutation frequencies that deviate from those expected. We observed limited evidence that cancer susceptibility regions that harbor common alleles with small estimated effect sizes are preferential targets for altered somatic mutation frequencies. CONCLUSIONS Our findings suggest a complex interplay between germline susceptibility and somatic mutation, underscoring the cumulative effect of common variants on redundant pathways as opposed to driver genes. Complex biological pathways and networks likely link these genetic features of carcinogenesis, particularly as they relate to distinct polygenic models for each cancer type.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| | - Brian M Ho
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| | - Victoria A Fisher
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
64
|
Esposito I, Segler A, Steiger K, Klöppel G. Pathology, genetics and precursors of human and experimental pancreatic neoplasms: An update. Pancreatology 2015; 15:598-610. [PMID: 26365060 DOI: 10.1016/j.pan.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
Over the past decade, there have been substantial improvements in our knowledge of pancreatic neoplasms and their precursor lesions. Extensive genetic analyses, recently using high-throughput molecular techniques and next-generation sequencing methodologies, and the development of sophisticated genetically engineered mouse models closely recapitulating human disease, have improved our understanding of the genetic basis of pancreatic neoplasms. These advances are paving the way for refined, molecular-based classifications of pancreatic neoplasms with the potential to better predict prognosis and, possibly, response to therapy. Another major development resides in the identification of subsets of pancreatic exocrine and endocrine neoplasms which occur in the context of hereditary syndromes and whose genetic basis and tumor development have been at least partially defined. However, despite all molecular progress, correct and careful morphological characterization of tissue specimens both in the context of experimental and routine diagnostic pathology represents the basis for any further genetic investigation or clinical decision. This review focuses on the current and new concepts of classification and on the current models of tumor development, both in the field of exocrine and endocrine neoplasms, and underscores the importance of applying standardized terminology to allow adequate data interpretation and promote scientific exchange in the field of pancreas research.
Collapse
Affiliation(s)
- Irene Esposito
- Institute of Pathology, Heinrich-Heine-University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Angela Segler
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Günter Klöppel
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| |
Collapse
|
65
|
Krah NM, De La O JP, Swift GH, Hoang CQ, Willet SG, Chen Pan F, Cash GM, Bronner MP, Wright CV, MacDonald RJ, Murtaugh LC. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. eLife 2015; 4. [PMID: 26151762 PMCID: PMC4536747 DOI: 10.7554/elife.07125] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas.
Collapse
Affiliation(s)
- Nathan M Krah
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Jean-Paul De La O
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Galvin H Swift
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chinh Q Hoang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Spencer G Willet
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Fong Chen Pan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Gabriela M Cash
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Mary P Bronner
- Department of Pathology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, United States
| | - Christopher Ve Wright
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
66
|
Cendrowski J, Lobo VJSA, Sendler M, Salas A, Kühn JP, Molero X, Fukunaga R, Mayerle J, Lerch MM, Real FX. Mnk1 is a novel acinar cell-specific kinase required for exocrine pancreatic secretion and response to pancreatitis in mice. Gut 2015; 64:937-47. [PMID: 25037190 DOI: 10.1136/gutjnl-2013-306068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Pancreatic acinar cell maturation is dependent on the activity of the pancreas transcription factor 1 (PTF1) complex. Induction of pancreatitis leads to MAP kinase activation and transient suppression of the acinar differentiation programme. We investigated the role of MAP kinase-interacting kinase 1 (Mnk1) in mouse exocrine pancreas development and in the response to secretagogue-induced pancreatitis. DESIGN Mnk1 expression was analysed using immunohistochemistry, RT-qPCR and western blotting. Ptf1a binding to Mnk1 was assessed by chromatin immunoprecipitation and qPCR. Acute pancreatitis was induced in wild type and Mnk1(-/-) mice by 7 h intraperitoneal injections of caerulein. In vitro amylase secretion and trypsinogen activation were assessed using freshly isolated acinar cells. In vivo secretion was quantified by secretin-stimulated MRI. RESULTS Mnk1 is expressed at the highest levels in pancreatic acinar cells and is a direct PTF1 target. Mnk1 is activated upon induction of pancreatitis and is indispensable for eIF4E phosphorylation. The pancreas of Mnk1(-/-) mice is histologically normal. Digestive enzyme content is significantly increased and c-Myc and Ccnd1 levels are reduced in Mnk1(-/-) mice. Upon induction of acute pancreatitis, Mnk1(-/-) mice show impaired eIF4E phosphorylation, activation of c-Myc and downregulation of zymogen content. Acinar cells show defective relocalisation of digestive enzymes, polarity defects and impaired secretory response in vitro and in vivo. CONCLUSIONS Mnk1 is a novel pancreatic acinar cell-specific stress response kinase that regulates digestive enzyme abundance and eIF4E phosphorylation. It is required for the physiological secretory response of acinar cells and for the homeostatic response to caerulein administration during acute pancreatitis.
Collapse
Affiliation(s)
- Jaroslaw Cendrowski
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain
| | | | - Matthias Sendler
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Antonio Salas
- Servei d'Anatomia Patològica, Hospital Mútua Terrassa, Barcelona, Spain
| | - Jens-Peter Kühn
- Institute of Radiology, University Medicine, Ernst-Moritz-University, Greifswald, Germany
| | - Xavier Molero
- Exocrine Pancreas Research Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, CIBEREHD, Barcelona, Spain
| | | | - Julia Mayerle
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center-CNIO, Madrid, Spain Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
67
|
Nadolny C, Dong X. Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Cancer Biol Ther 2015; 16:997-1004. [PMID: 25951367 DOI: 10.1080/15384047.2015.1045693] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in various biological processes. This nuclear receptor has critical functions in embryonic development as well as in adult homeostasis. Although the physiological functions of LRH-1 in normal breast, pancreas, and intestine have been widely investigated, the dysregulation that occurs during pathological conditions is not well understood. LRH-1 has been implicated in pancreatic, breast, and gastrointestinal cancer, where it exerts its effect of initiation and progression by promoting cell proliferation and metastasis. In addition to mechanistic studies, LRH-1 agonists and antagonists are being explored. Identification and development of endogenous and synthetic ligands has been pursued using computational-based structural analysis. Through ligand identification and a thorough understanding of the pathological roles of LRH-1, new therapeutic avenues for cancer treatment based upon LRH-1 may be a desirable focus for further research.
Collapse
Affiliation(s)
- Christina Nadolny
- a Department of Biomedical and Pharmaceutical Sciences; University of Rhode Island ; Kingston , RI , USA
| | | |
Collapse
|
68
|
Zhang ZL, Bai ZH, Wang XB, Bai L, Miao F, Pei HH. miR-186 and 326 predict the prognosis of pancreatic ductal adenocarcinoma and affect the proliferation and migration of cancer cells. PLoS One 2015; 10:e0118814. [PMID: 25742499 PMCID: PMC4351009 DOI: 10.1371/journal.pone.0118814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/06/2015] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs can function as key tumor suppressors or oncogenes and act as biomarkers for cancer diagnosis or prognosis. Although high-throughput assays have revealed many miRNA biomarkers for pancreatic ductal adenocarcinoma (PDAC), only a few have been validated in independent populations or investigated for functional significance in PDAC pathogenesis. In this study, we correlated the expression of 36 potentially prognostic miRNAs within PDAC tissue with clinico-pathological features and survival in 151 Chinese patients. We then analyzed the functional roles and target genes of two miRNAs in PDAC development. We found that high expression of miR-186 and miR-326 predict poor and improved survival, respectively. miR-186 was over-expressed in PDAC patients compared with controls, especially in patients with large tumors (>2 cm), lymph node metastasis, or short-term survival (< 24 months). In contrast, miR-326 was down-regulated in patients compared with controls and displayed relatively increased expression in the patients with long-term survival or without venous invasion. Functional experiments revealed that PDAC cell proliferation and migration was decreased following inhibition and enhanced following over-expression of miR-186. In contrast, it was enhanced following inhibition and decreased after over-expression of miR-326. A luciferase assay indicated that miR-186 can bind directly to the 3′-UTR of NR5A2 to repress gene expression. These findings suggest that miR-186 over-expression contributes to the invasive potential of PDAC, likely via suppression of NR5A2, thereby leading to a poor prognosis; high miR-326 expression prolongs survival likely via the decreasing invasive potential of PDAC cells. These two miRNAs can be used as markers for clinical diagnosis and prognosis, and they represent therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Zheng-liang Zhang
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, 710004, Xi’an, Shaan Xi, Peoples’ Republic of China
| | - Zheng-hai Bai
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, 710004, Xi’an, Shaan Xi, Peoples’ Republic of China
| | - Xiao-bo Wang
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, 710004, Xi’an, Shaan Xi, Peoples’ Republic of China
| | - Ling Bai
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, 710004, Xi’an, Shaan Xi, Peoples’ Republic of China
| | - Fei Miao
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, 710004, Xi’an, Shaan Xi, Peoples’ Republic of China
| | - Hong-hong Pei
- Emergency Department, The Second Affiliated Hospital of Xi’an Jiaotong University, 710004, Xi’an, Shaan Xi, Peoples’ Republic of China
- * E-mail:
| |
Collapse
|
69
|
Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 2015; 518:350-354. [PMID: 25693566 PMCID: PMC4449149 DOI: 10.1038/nature14217] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Allelic differences between the two homologous chromosomes can affect the propensity of inheritance in humans; however, the extent of such differences in the human genome has yet to be fully explored. Here, for the first time, we delineate allelic chromatin modifications and transcriptomes amongst a broad set of human tissues, enabled by a chromosome-spanning haplotype reconstruction strategy1. The resulting masses of haplotype-resolved epigenomic maps reveal extensive allelic biases in both chromatin state and transcription, which show considerable variation across tissues and between individuals, and allow us to investigate cis-regulatory relationships between genes and their control sequences. Analyses of histone modification maps also uncover intriguing characteristics of cis-regulatory elements and tissue-restricted activities of repetitive elements. The rich datasets described here will enhance our understanding of the mechanisms of how cis-regulatory elements control gene expression programs.
Collapse
|
70
|
Hoskins JW, Jia J, Flandez M, Parikh H, Xiao W, Collins I, Emmanuel MA, Ibrahim A, Powell J, Zhang L, Malats N, Bamlet WR, Petersen GM, Real FX, Amundadottir LT. Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis 2014; 35:2670-8. [PMID: 25233928 DOI: 10.1093/carcin/bgu193] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is driven by the accumulation of somatic mutations, epigenetic modifications and changes in the micro-environment. New approaches to investigating disruptions of gene expression networks promise to uncover key regulators and pathways in carcinogenesis. We performed messenger RNA-sequencing in pancreatic normal (n = 10) and tumor (n = 8) derived tissue samples, as well as in pancreatic cancer cell lines (n = 9), to determine differential gene expression (DE) patterns. Sub-network enrichment analyses identified HNF1A as the regulator of the most significantly and consistently dysregulated expression sub-network in pancreatic tumor tissues and cells (median P = 7.56×10(-7), median rank = 1, range = 1-25). To explore the effects of HNF1A expression in pancreatic tumor-derived cells, we generated stable HNF1A-inducible clones in two pancreatic cancer cell lines (PANC-1 and MIA PaCa-2) and observed growth inhibition (5.3-fold, P = 4.5×10(-5) for MIA PaCa-2 clones; 7.2-fold, P = 2.2×10(-5) for PANC-1 clones), and a G0/G1 cell cycle arrest and apoptosis upon induction. These effects correlated with HNF1A-induced down-regulation of 51 of 84 cell cycle genes (e.g. E2F1, CDK2, CDK4, MCM2/3/4/5, SKP2 and CCND1), decreased expression of anti-apoptotic genes (e.g. BIRC2/5/6 and AKT) and increased expression of pro-apoptotic genes (e.g. CASP4/9/10 and APAF1). In light of the established role of HNF1A in the regulation of pancreatic development and homeostasis, our data suggest that it also functions as an important tumor suppressor in the pancreas.
Collapse
Affiliation(s)
- Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marta Flandez
- Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Hemang Parikh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Wenming Xiao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Mickey A Emmanuel
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Abdisamad Ibrahim
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - John Powell
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology and
| | - Nuria Malats
- Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - William R Bamlet
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and
| | - Gloria M Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and
| | - Francisco X Real
- Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, E-28029 Madrid, Spain, Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute and Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA, Department of Laboratory Medicine and Pathology and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
71
|
Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 2014; 20:12062-12081. [PMID: 25232244 PMCID: PMC4161795 DOI: 10.3748/wjg.v20.i34.12062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
Collapse
|
72
|
Lin Q, Aihara A, Chung W, Li Y, Chen X, Huang Z, Weng S, Carlson RI, Nadolny C, Wands JR, Dong X. LRH1 promotes pancreatic cancer metastasis. Cancer Lett 2014; 350:15-24. [PMID: 24769073 PMCID: PMC10068836 DOI: 10.1016/j.canlet.2014.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 12/26/2022]
Abstract
The transcriptional factor liver receptor homolog 1 (LRH1) regulates pancreatic development, and may participate in pancreatic oncogenesis through activation of growth factor signaling transduction cascades. We measured transcriptional activity of β-catenin in response to LRH1 stimulation by a Topflash reporter assay. The pancreatic cancer (PC) phenotype was then characterized by cell migration, wound healing, invasion, and sphere formation in vitro, as well as tumor formation and distant metastatic spread in vivo. We compared results between vector control and LRH1-overexpressing stable PC cell lines. In addition, tumor burden, angiogenesis, histologic characteristics, and hepatic spread were assessed in orthotopic and experimental liver metastatic murine models. Expression of downstream LRH1 related genes was evaluated by Western blot and immunohistochemistry in PC cell lines and human tumor specimens. Specific inhibition of LRH1 expression and function was accomplished by shRNAs "knockdown" experiments. It was found that LRH1 enhanced transcriptional activity of β-catenin and the expression of downstream target genes (c-Myc, MMP2/9), as well as promoted migration, wound healing, invasion, and sphere formation of PC cell lines. Specific inhibition of LRH1 by shRNAs reduced cell migration, invasion, sphere formation and expression of c-Myc and MMP2/9 target genes. Mice injected with LRH1 overexpressing stable PC cells developed tumors with increased size and exhibited striking hepatic metastatic spread. More important, LRH1 was overexpressed in PC tumors compared to adjacent normal pancreas. Our findings demonstrate that LRH1 overexpression is associated with increased PC growth and metastatic spread, indicating that LRH1-targeted therapy could inhibit tumor progression.
Collapse
Affiliation(s)
- Qiushi Lin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, United States
| | - Arihiro Aihara
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, United States
| | - Waihong Chung
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, United States
| | - Yu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, United States; Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention, Harbin 150056, Heilongjiang Province, China
| | - Xuesong Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, United States; Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang Province, China
| | - Zheping Huang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, United States
| | - Shaofan Weng
- Department of Occupational Health Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518001, Guangdong Province, China
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, United States
| | - Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, United States
| | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, United States
| | - Xiaoqun Dong
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Pharmacy Building, 7 Greenhouse Road, Kingston, RI 02881, United States.
| |
Collapse
|
73
|
Hale MA, Swift GH, Hoang CQ, Deering TG, Masui T, Lee YK, Xue J, MacDonald RJ. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis. Development 2014; 141:3123-33. [PMID: 25063451 DOI: 10.1242/dev.109405] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.
Collapse
Affiliation(s)
- Michael A Hale
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Galvin H Swift
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Chinh Q Hoang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tye G Deering
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Toshi Masui
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Youn-Kyoung Lee
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | - Jumin Xue
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
74
|
von Figura G, Morris JP, Wright CVE, Hebrok M. Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 2014; 63:656-64. [PMID: 23645620 PMCID: PMC3883808 DOI: 10.1136/gutjnl-2012-304287] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Emerging evidence from mouse models suggests that mutant Kras can drive the development of pancreatic ductal adenocarcinoma (PDA) precursors from acinar cells by enforcing ductal de-differentiation at the expense of acinar identity. Recently, human genome-wide association studies have identified NR5A2, a key regulator of acinar function, as a susceptibility locus for human PDA. We investigated the role of Nr5a2 in exocrine maintenance, regeneration and Kras driven neoplasia. DESIGN To investigate the function of Nr5a2 in the pancreas, we generated mice with conditional pancreatic Nr5a2 deletion (PdxCre(late); Nr5a2(c/c)). Using this model, we evaluated acinar differentiation, regeneration after caerulein pancreatitis and Kras driven pancreatic neoplasia in the setting of Nr5a2 deletion. RESULTS We show that Nr5a2 is not required for the development of the pancreatic acinar lineage but is important for maintenance of acinar identity. Nr5a2 deletion leads to destabilisation of the mature acinar differentiation state, acinar to ductal metaplasia and loss of regenerative capacity following acute caerulein pancreatitis. Loss of Nr5a2 also dramatically accelerates the development of oncogenic Kras driven acinar to ductal metaplasia and PDA precursor lesions. CONCLUSIONS Nr5a2 is a key regulator of acinar plasticity. It is required for maintenance of acinar identity and re-establishing acinar fate during regeneration. Nr5a2 also constrains pancreatic neoplasia driven by oncogenic Kras, providing functional evidence supporting a potential role as a susceptibility gene for human PDA.
Collapse
Affiliation(s)
- Guido von Figura
- Department of Medicine, Diabetes Center, University of California-San Francisco, San Francisco, California, USA
| | - John P Morris
- Department of Medicine, Diabetes Center, University of California-San Francisco, San Francisco, California, USA
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthias Hebrok
- Department of Medicine, Diabetes Center, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
75
|
Bailey JM, DelGiorno KE, Crawford HC. The secret origins and surprising fates of pancreas tumors. Carcinogenesis 2014; 35:1436-40. [PMID: 24583923 DOI: 10.1093/carcin/bgu056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is especially deadly due to its recalcitrance to current therapies. One of the unique qualities of PDA that may contribute to this resistance is a striking plasticity of differentiation states starting at tumor formation and continuing throughout tumor progression, including metastasis. Here, we explore the earliest steps of tumor formation and neoplastic progression and how this results in a fascinating cellular heterogeneity that is probably critical for tumor survival and progression. We hypothesize that reinforcing differentiation pathways run awry or targeting morphologically and molecularly distinct tumor stem-like cells may hold promise for future treatments of this deadly disease.
Collapse
Affiliation(s)
- Jennifer M Bailey
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA, Department of Medicine, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA and Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| | - Kathleen E DelGiorno
- Department of Medicine, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA and
| | - Howard C Crawford
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32224, USA
| |
Collapse
|
76
|
Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet 2013; 93:779-97. [PMID: 24210251 PMCID: PMC3824120 DOI: 10.1016/j.ajhg.2013.10.012] [Citation(s) in RCA: 555] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWASs) have enabled the discovery of common genetic variation contributing to normal and pathological traits and clinical drug responses, but recognizing the precise targets of these associations is now the major challenge. Here, we review recent approaches to the functional follow-up of GWAS loci, including fine mapping of GWAS signal(s), prioritization of putative functional SNPs by the integration of genetic epidemiological and bioinformatic methods, and in vitro and in vivo experimental verification of predicted molecular mechanisms for identifying the targeted genes. The majority of GWAS-identified variants fall in noncoding regions of the genome. Therefore, this review focuses on strategies for assessing likely mechanisms affected by noncoding variants; such mechanisms include transcriptional regulation, noncoding RNA function, and epigenetic regulation. These approaches have already accelerated progress from genetic studies to biological knowledge and might ultimately guide the development of prognostic, preventive, and therapeutic measures.
Collapse
Affiliation(s)
- Stacey L Edwards
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
77
|
Abstract
The past several decades have seen great effort devoted to mimicking the key features of pancreatic ductal adenocarcinoma (PDAC) in animals and have produced 2 robust models of this deadly cancer. Carcinogen-treated Syrian hamsters develop PDAC with genetic lesions, which reproduce those of human, including activation of the Kras oncogene, and early studies in this species validated nongenetic risk factors for PDAC including pancreatitis, obesity, and diabetes. More recently, PDAC research has been invigorated by the development of genetically engineered mouse models based on tissue-specific Kras activation and deletion of tumor suppressor genes. Surprisingly, mouse PDAC appears to arise from exocrine acinar rather than ductal cells, via a process of phenotypic reprogramming that is accelerated by inflammation. Studies in both models have uncovered molecular mechanisms by which inflammation promotes and sustains PDAC and identified targets for chemoprevention to suppress PDAC in high-risk individuals. The mouse model, in particular, has also been instrumental in developing new approaches to early detection as well as treatment of advanced disease. Together, animal models enable diverse approaches to basic and preclinical research on pancreatic cancer, the results of which will accelerate progress against this currently intractable cancer.
Collapse
Affiliation(s)
- L Charles Murtaugh
- 1Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|