51
|
Ryan T, Ling S, Trinh A, Segal JP. The role of the microbiome in immune checkpoint inhibitor colitis and hepatitis. Best Pract Res Clin Gastroenterol 2024; 72:101945. [PMID: 39645281 DOI: 10.1016/j.bpg.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 12/09/2024]
Abstract
Immune checkpoint inhibitors have revolutionised management for a variety of different types of malignancies. However, gastrointestinal adverse effects, in particular colitis and hepatitis, are relatively common with up to 30 % of patients being affected. The gut microbiome has emerged as a potential contributor to both the effectiveness of immune checkpoint inhibitors and their side effects. This review will attempt to examine the impact the microbiome has on adverse effects as a result of immune checkpoint inhibitors as well as the potential for manipulation of the microbiome as a form of management for immune mediated colitis.
Collapse
Affiliation(s)
- Thomas Ryan
- Faculty of Medicine, University of Melbourne, Melbourne, Australia.
| | - Sophia Ling
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Andrew Trinh
- Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jonathan P Segal
- Faculty of Medicine, University of Melbourne, Melbourne, Australia; Department of Gastroenterology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
52
|
Xu Y, Le J, Qin J, Zhang Y, Yang J, Chen Z, Li C, Qian X, Zhang A. Decoding the microbiota metabolome in hepatobiliary and pancreatic cancers: Pathways to precision diagnostics and targeted therapeutics. Pharmacol Res 2024; 208:107364. [PMID: 39181345 DOI: 10.1016/j.phrs.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yuemiao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiahan Le
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaying Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Changyu Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| | - Aiqin Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
53
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
54
|
Thiele M, Villesen IF, Niu L, Johansen S, Sulek K, Nishijima S, Espen LV, Keller M, Israelsen M, Suvitaival T, Zawadzki AD, Juel HB, Brol MJ, Stinson SE, Huang Y, Silva MCA, Kuhn M, Anastasiadou E, Leeming DJ, Karsdal M, Matthijnssens J, Arumugam M, Dalgaard LT, Legido-Quigley C, Mann M, Trebicka J, Bork P, Jensen LJ, Hansen T, Krag A. Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases. J Hepatol 2024; 81:345-359. [PMID: 38552880 DOI: 10.1016/j.jhep.2024.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 07/26/2024]
Abstract
The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.
Collapse
Affiliation(s)
- Maja Thiele
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ida Falk Villesen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stine Johansen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Suguru Nishijima
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Marisa Keller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mads Israelsen
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Joseph Brol
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Sara Elizabeth Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria Camilla Alvarez Silva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Diana Julie Leeming
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Morten Karsdal
- Fibrosis, Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonel Trebicka
- Medizinische Klinik B (Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie), Universitätsklinikum Münster Westfälische, Wilhelms-Universität Münster, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Krag
- Center for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark; Department for Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
55
|
Goggins M. The role of biomarkers in the early detection of pancreatic cancer. Fam Cancer 2024; 23:309-322. [PMID: 38662265 PMCID: PMC11309746 DOI: 10.1007/s10689-024-00381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic surveillance can detect early-stage pancreatic cancer and achieve long-term survival, but currently involves annual endoscopic ultrasound and MRI/MRCP, and is recommended only for individuals who meet familial/genetic risk criteria. To improve upon current approaches to pancreatic cancer early detection and to expand access, more accurate, inexpensive, and safe biomarkers are needed, but finding them has remained elusive. Newer approaches to early detection, such as using gene tests to personalize biomarker interpretation, and the increasing application of artificial intelligence approaches to integrate complex biomarker data, offer promise that clinically useful biomarkers for early pancreatic cancer detection are on the horizon.
Collapse
Affiliation(s)
- Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
56
|
Lei L, Zhao LY, Cheng R, Zhang H, Xia M, Chen XL, Kudriashov V, Liu K, Zhang WH, Jiang H, Chen Y, Zhu L, Zhou H, Yang K, Hu T, Hu JK. Distinct oral-associated gastric microbiota and Helicobacter pylori communities for spatial microbial heterogeneity in gastric cancer. mSystems 2024; 9:e0008924. [PMID: 38940519 PMCID: PMC11265414 DOI: 10.1128/msystems.00089-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
The gastric microbial community plays a fundamental role in gastric cancer (GC), and the two main anatomical subtypes of GC, non-cardia and cardia GC, are associated with different risk factors (Helicobacter pylori for non-cardia GC). To decipher the different microbial spatial communities of GC, we performed a multicenter retrospective analysis to characterize the gastric microbiota in 223 GC patients, including H. pylori-positive or -negative patients, with tumors and paired adjacent normal tissues, using third-generation sequencing. In the independent validation cohort, both dental plaque and GC tumoral tissue samples were collected and sequenced. The prevalence of H. pylori and oral-associated bacteria was verified using fluorescence in situ hybridization (FISH) assays in GC tumoral tissues and matched nontumoral tissues. We found that the vertical distribution of the gastric microbiota, at the upper, middle, and lower third sites of GC, was likely an important factor causing microbial diversity in GC tumor tissues. The oral-associated microbiota cluster, which included Veillonella parvula, Streptococcus oralis, and Prevotella intermedia, was more abundant in the upper third of the GC. However, H. pylori was more abundant in the lower third of the GC and exhibited a significantly high degree of microbial correlation. The oral-associated microbiota module was co-exclusive with H. pylori in the lower third site of the GC tumoral tissue. Importantly, H. pylori-negative GC patients with oral-associated gastric microbiota showed worse overall survival, while the increase in microbial abundance in H. pylori-positive GC patients showed no difference in overall survival. The prevalence of V. parvula in both the dental plaque and GC tissue samples was concordant in the independent validation phase. We showed that the oral-associated species V. parvula and S. oralis were correlated with overall survival. Our study highlights the roles of the oral-associated microbiota in the upper third of the GC. In addition, oral-associated species may serve as noninvasive screening tools for the management of GC and an independent prognostic factor for H. pylori-negative GCs. IMPORTANCE Our study highlights the roles of the oral-associated microbiota in the upper third of gastric cancer (GC).We showed that the oral-associated species Veillonella parvula and Streptococcus oralis were correlated with overall survival. In addition, oral-associated species may serve as noninvasive screening tools for the management of GC and an independent prognostic factor for Helicobacter pylori-negative GCs.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin-Yong Zhao
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Valentin Kudriashov
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kai Liu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Han Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Zhu
- Nuffield Department of Medicine, University of Oxford, Target Discovery Institute, Center for Medicines Discovery, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Oxford, United Kingdom
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
57
|
Nicoletti A, Paratore M, Vitale F, Negri M, Quero G, Esposto G, Mignini I, Alfieri S, Gasbarrini A, Zocco MA, Zileri Dal Verme L. Understanding the Conundrum of Pancreatic Cancer in the Omics Sciences Era. Int J Mol Sci 2024; 25:7623. [PMID: 39062863 PMCID: PMC11276793 DOI: 10.3390/ijms25147623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is an increasing cause of cancer-related death, with a dismal prognosis caused by its aggressive biology, the lack of clinical symptoms in the early phases of the disease, and the inefficacy of treatments. PC is characterized by a complex tumor microenvironment. The interaction of its cellular components plays a crucial role in tumor development and progression, contributing to the alteration of metabolism and cellular hyperproliferation, as well as to metastatic evolution and abnormal tumor-associated immunity. Furthermore, in response to intrinsic oncogenic alterations and the influence of the tumor microenvironment, cancer cells undergo a complex oncogene-directed metabolic reprogramming that includes changes in glucose utilization, lipid and amino acid metabolism, redox balance, and activation of recycling and scavenging pathways. The advent of omics sciences is revolutionizing the comprehension of the pathogenetic conundrum of pancreatic carcinogenesis. In particular, metabolomics and genomics has led to a more precise classification of PC into subtypes that show different biological behaviors and responses to treatments. The identification of molecular targets through the pharmacogenomic approach may help to personalize treatments. Novel specific biomarkers have been discovered using proteomics and metabolomics analyses. Radiomics allows for an earlier diagnosis through the computational analysis of imaging. However, the complexity, high expertise required, and costs of the omics approach are the main limitations for its use in clinical practice at present. In addition, the studies of extracellular vesicles (EVs), the use of organoids, the understanding of host-microbiota interactions, and more recently the advent of artificial intelligence are helping to make further steps towards precision and personalized medicine. This present review summarizes the main evidence for the application of omics sciences to the study of PC and the identification of future perspectives.
Collapse
Affiliation(s)
- Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Giuseppe Quero
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (G.Q.); (S.A.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (G.Q.); (S.A.)
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| |
Collapse
|
58
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
59
|
Lehr K, Lange UG, Hipler NM, Vilchez-Vargas R, Hoffmeister A, Feisthammel J, Buchloh D, Schanze D, Zenker M, Gockel I, Link A, Jansen-Winkeln B. Prediction of anastomotic insufficiency based on the mucosal microbiome prior to colorectal surgery: a proof-of-principle study. Sci Rep 2024; 14:15335. [PMID: 38961176 PMCID: PMC11222535 DOI: 10.1038/s41598-024-65320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Anastomotic leakage (AL) is a potentially life-threatening complication following colorectal cancer (CRC) resection. In this study, we aimed to unravel longitudinal changes in microbial structure before, during, and after surgery and to determine if microbial alterations may be predictive for risk assessment between sufficient anastomotic healing (AS) and AL prior surgery. We analysed the microbiota of 134 colon mucosal biopsies with 16S rRNA V1-V2 gene sequencing. Samples were collected from three location sites before, during, and after surgery, and patients received antibiotics after the initial collection and during surgery. The microbial structure showed dynamic surgery-related changes at different time points. Overall bacterial diversity and the abundance of some genera such as Faecalibacterium or Alistipes decreased over time, while the genera Enterococcus and Escherichia_Shigella increased. The distribution of taxa between AS and AL revealed significant differences in the abundance of genera such as Prevotella, Faecalibacterium and Phocaeicola. In addition to Phocaeicola, Ruminococcus2 and Blautia showed significant differences in abundance between preoperative sample types. ROC analysis of the predictive value of these genera for AL revealed an AUC of 0.802 (p = 0.0013). In summary, microbial composition was associated with postoperative outcomes, and the abundance of certain genera may be predictive of postoperative complications.
Collapse
Affiliation(s)
- Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Undine Gabriele Lange
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Noam Mathias Hipler
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Albrecht Hoffmeister
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology and Pneumology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jürgen Feisthammel
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology and Pneumology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Dorina Buchloh
- Clinic for General and Visceral Surgery, Protestant Deaconess House Leipzig, Leipzig, Germany
| | - Denny Schanze
- Institute of Human Genetics, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Ines Gockel
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto Von Guericke University Magdeburg, Magdeburg, Germany.
| | - Boris Jansen-Winkeln
- Clinic and Polyclinic for Visceral, Transplant, Thoracic and Vascular Surgery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Clinic for General, Visceral, Thoracic and Vascular Surgery, Clinic St. Georg Leipzig, Leipzig, Germany.
| |
Collapse
|
60
|
Wang X, Ding B, Liu W, Qi L, Li J, Zheng X, Song Y, Li Q, Wu J, Zhang M, Chen H, Wang Y, Li Y, Sun B, Ma P. Dual Starvations Induce Pyroptosis for Orthotopic Pancreatic Cancer Therapy through Simultaneous Deprivation of Glucose and Glutamine. J Am Chem Soc 2024; 146:17854-17865. [PMID: 38776361 DOI: 10.1021/jacs.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pancreatic cancer is a highly fatal disease, and existing treatment methods are ineffective, so it is urgent to develop new effective treatment strategies. The high dependence of pancreatic cancer cells on glucose and glutamine suggests that disrupting this dependency could serve as an alternative strategy for pancreatic cancer therapy. We identified the vital genes glucose transporter 1 (GLUT1) and alanine-serine-cysteine transporter 2 (ASCT2) through bioinformatics analysis, which regulate glucose and glutamine metabolism in pancreatic cancer, respectively. Human serum albumin nanoparticles (HSA NPs) for delivery of GLUT1 and ASCT2 inhibitors, BAY-876/V-9302@HSA NPs, were prepared by a self-assembly process. This nanodrug inhibits glucose and glutamine uptake of pancreatic cancer cells through the released BAY-876 and V-9302, leading to nutrition deprivation and oxidative stress. The inhibition of glutamine leads to the inhibition of the synthesis of the glutathione, which further aggravates oxidative stress. Both of them lead to a significant increase in reactive oxygen species, activating caspase 1 and GSDMD and finally inducing pyroptosis. This study provides a new effective strategy for orthotopic pancreatic cancer treatment by dual starvation-induced pyroptosis. The study for screening metabolic targets using bioinformatics analysis followed by constructing nanodrugs loaded with inhibitors will inspire future targeted metabolic therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Jiating Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Zheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yiqin Song
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qiyuan Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiawen Wu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Meng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
61
|
Zhang P, Shi H, Guo R, Li L, Guo X, Yang H, Chang D, Cheng Y, Zhao G, Li S, Zhong Q, Zhang H, Zhao P, Fu C, Song Y, Yang L, Wang Y, Zhang Y, Jiang J, Wang T, Zhao J, Li Y, Wang B, Chen F, Zhao H, Wang Y, Wang J, Ma S. Metagenomic analysis reveals altered gut virome and diagnostic potential in pancreatic cancer. J Med Virol 2024; 96:e29809. [PMID: 39016466 DOI: 10.1002/jmv.29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis, making early diagnosis crucial for improving patient outcomes. While the gut microbiome, including bacteria and viruses, is believed to be essential in cancer pathogenicity, the potential contribution of the gut virome to PC remains largely unexplored. In this study, we conducted a comparative analysis of the gut viral compositional and functional profiles between PC patients and healthy controls, based on fecal metagenomes from two publicly available data sets comprising a total of 101 patients and 82 healthy controls. Our results revealed a decreasing trend in the gut virome diversity of PC patients with disease severity. We identified significant alterations in the overall viral structure of PC patients, with a meta-analysis revealing 219 viral operational taxonomic units (vOTUs) showing significant differences in relative abundance between patients and healthy controls. Among these, 65 vOTUs were enriched in PC patients, and 154 were reduced. Host prediction revealed that PC-enriched vOTUs preferentially infected bacterial members of Veillonellaceae, Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae, while PC-reduced vOTUs were more likely to infect Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Oscillospiraceae, and Peptostreptococcaceae. Furthermore, we constructed random forest models based on the PC-associated vOTUs, achieving an optimal average area under the curve (AUC) of up to 0.879 for distinguishing patients from controls. Through additional 10 public cohorts, we demonstrated the reproducibility and high specificity of these viral signatures. Our study suggests that the gut virome may play a role in PC development and could serve as a promising target for PC diagnosis and therapeutic intervention. Future studies should further explore the underlying mechanisms of gut virus-bacteria interactions and validate the diagnostic models in larger and more diverse populations.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, Hubei, China
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Danyan Chang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, Hubei, China
| | - Qingling Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Huan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ping Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Cui Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yahua Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, Hubei, China
| | - Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Juhui Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Biyuan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Fenrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hongli Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yonghua Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| | - Shiyang Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Xi'an, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, Shaanxi, China
| |
Collapse
|
62
|
Li M, Shao D, Fan Z, Qin J, Xu J, Huang Q, Li X, Hua Z, Li J, Hao C, Wei W, Abnet CC. Non-invasive early detection on esophageal squamous cell carcinoma and precancerous lesions by microbial biomarkers combining epidemiological factors in China. J Gastroenterol 2024; 59:531-542. [PMID: 38819499 DOI: 10.1007/s00535-024-02117-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Microbiota may be associated with esophageal squamous cell carcinoma (ESCC) development. However, it is not known the predictive value of microbial biomarkers combining epidemiological factors for the early detection of ESCC and precancerous lesions. METHODS A total of 449 specimens (esophageal swabs and saliva) were collected from 349 participants with different esophageal statuses in China to explore and validate ESCC-associated microbial biomarkers from genes level to species level by 16S rRNA sequencing, metagenomic sequencing and real-time quantitative polymerase chain reaction. RESULTS A bacterial biomarker panel including Actinomyces graevenitzii (A.g_1, A.g_2, A.g_3, A.g_4), Fusobacteria nucleatum (F.n_1, F.n_2, F.n_3), Haemophilus haemolyticus (H.h_1), Porphyromonas gingivalis (P.g_1, P.g_2, P.g_3) and Streptococcus australis (S.a_1) was explored by metagenomic sequencing to early detect the participants in Need group (low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia and ESCC) vs participants without these lesions as the Noneed group. Significant quantitative differences existed for each microbial target in which the detection efficiency rate was higher in saliva than esophageal swab. In saliva, the area under the curve (AUC) based on the microbial biomarkers (A.g_4 ∩ P.g_3 ∩ H.h_1 ∩ S.a_1 ∩ F.n_2) was 0.722 (95% CI 0.621-0.823) in the exploration cohort. Combining epidemiological factors (age, smoking, drinking, intake of high-temperature food and toothache), the AUC improved to 0.869 (95% CI 0.802-0.937) in the exploration cohort, which was validated with AUC of 0.757 (95% CI 0.663-0.852) in the validation cohort. CONCLUSIONS It is feasible to combine microbial biomarkers in saliva and epidemiological factors to early detect ESCC and precancerous lesions in China.
Collapse
Affiliation(s)
- Minjuan Li
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dantong Shao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Fan
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | - Xinqing Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaolai Hua
- Cancer Institute of Yangzhong City, People's Hospital of Yangzhong City, Yangzhong, China
| | - Jun Li
- Cancer Prevention and Treatment Office, Yanting Cancer Hospital, Mianyang, China
| | - Changqing Hao
- Department of Endoscopy, Cancer Institute/Hospital of Linzhou, Linzhou, China
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
63
|
Massier L, Musat N, Stumvoll M, Tremaroli V, Chakaroun R, Kovacs P. Tissue-resident bacteria in metabolic diseases: emerging evidence and challenges. Nat Metab 2024; 6:1209-1224. [PMID: 38898236 DOI: 10.1038/s42255-024-01065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Although the impact of the gut microbiome on health and disease is well established, there is controversy regarding the presence of microorganisms such as bacteria and their products in organs and tissues. However, recent contamination-aware findings of tissue-resident microbial signatures provide accumulating evidence in support of bacterial translocation in cardiometabolic disease. The latter provides a distinct paradigm for the link between microbial colonizers of mucosal surfaces and host metabolism. In this Perspective, we re-evaluate the concept of tissue-resident bacteria including their role in metabolic low-grade tissue and systemic inflammation. We examine the limitations and challenges associated with studying low bacterial biomass samples and propose experimental and analytical strategies to overcome these issues. Our Perspective aims to encourage further investigation of the mechanisms linking tissue-resident bacteria to host metabolism and their potentially actionable health implications for prevention and treatment.
Collapse
Affiliation(s)
- Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Aarhus University, Department of Biology, Section for Microbiology, Århus, Denmark
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
64
|
Jiang H, Tian Y, Xu L, Chen X, Huang Y, Wu J, Wang T, Liu T, Wu X, Ye C, Wu H, Ye W, Fang L, Zhang Y. Alterations of the bile microbiome is associated with progression-free survival in pancreatic ductal adenocarcinoma patients. BMC Microbiol 2024; 24:235. [PMID: 38956452 PMCID: PMC11218221 DOI: 10.1186/s12866-024-03371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) display an altered oral, gastrointestinal, and intra-pancreatic microbiome compared to healthy individuals. However, knowledge regarding the bile microbiome and its potential impact on progression-free survival in PDACs remains limited. METHODS Patients with PDAC (n = 45), including 20 matched pairs before and after surgery, and benign controls (n = 16) were included prospectively. The characteristics of the microbiomes of the total 81 bile were revealed by 16 S-rRNA gene sequencing. PDAC patients were divided into distinct groups based on tumor marker levels, disease staging, before and after surgery, as well as progression free survival (PFS) for further analysis. Disease diagnostic model was formulated utilizing the random forest algorithm. RESULTS PDAC patients harbor a unique and diverse bile microbiome (PCoA, weighted Unifrac, p = 0.038), and the increasing microbial diversity is correlated with dysbiosis according to key microbes and microbial functions. Aliihoeflea emerged as the genus displaying the most significant alteration among two groups (p < 0.01). Significant differences were found in beta diversity of the bile microbiome between long-term PFS and short-term PFS groups (PCoA, weighted Unifrac, p = 0.005). Bacillota and Actinomycetota were identified as altered phylum between two groups associated with progression-free survival in all PDAC patients. Additionally, we identified three biomarkers as the most suitable set for the random forest model, which indicated a significantly elevated likelihood of disease occurrence in the PDAC group (p < 0.0001). The area under the receiver operating characteristic (ROC) curve reached 80.8% with a 95% confidence interval ranging from 55.0 to 100%. Due to the scarcity of bile samples, we were unable to conduct further external verification. CONCLUSION PDAC is characterized by an altered microbiome of bile ducts. Biliary dysbiosis is linked with progression-free survival in all PDACs. This study revealed the alteration of the bile microbiome in PDACs and successfully developed a diagnostic model for PDAC.
Collapse
Affiliation(s)
- Hang Jiang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yitong Tian
- Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Linwei Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Xing Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Yurun Huang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jia Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Tingting Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Xitian Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Ye
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hao Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenkai Ye
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
65
|
Teixeira M, Silva F, Ferreira RM, Pereira T, Figueiredo C, Oliveira HP. A review of machine learning methods for cancer characterization from microbiome data. NPJ Precis Oncol 2024; 8:123. [PMID: 38816569 PMCID: PMC11139966 DOI: 10.1038/s41698-024-00617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Recent studies have shown that the microbiome can impact cancer development, progression, and response to therapies suggesting microbiome-based approaches for cancer characterization. As cancer-related signatures are complex and implicate many taxa, their discovery often requires Machine Learning approaches. This review discusses Machine Learning methods for cancer characterization from microbiome data. It focuses on the implications of choices undertaken during sample collection, feature selection and pre-processing. It also discusses ML model selection, guiding how to choose an ML model, and model validation. Finally, it enumerates current limitations and how these may be surpassed. Proposed methods, often based on Random Forests, show promising results, however insufficient for widespread clinical usage. Studies often report conflicting results mainly due to ML models with poor generalizability. We expect that evaluating models with expanded, hold-out datasets, removing technical artifacts, exploring representations of the microbiome other than taxonomical profiles, leveraging advances in deep learning, and developing ML models better adapted to the characteristics of microbiome data will improve the performance and generalizability of models and enable their usage in the clinic.
Collapse
Affiliation(s)
- Marco Teixeira
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
- Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Francisco Silva
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Science, University of Porto, Porto, Portugal
| | - Rui M Ferreira
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Tania Pereira
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ceu Figueiredo
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Hélder P Oliveira
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
- Faculty of Science, University of Porto, Porto, Portugal
| |
Collapse
|
66
|
Ku PY, Cheng SB, Chen YJ, Lai CY, Liu HT, Chen WH. Surgical Outcomes of Pancreatic Solid Pseudopapillary Neoplasm: Experiences of 24 Patients in a Single Institute. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:889. [PMID: 38929506 PMCID: PMC11205590 DOI: 10.3390/medicina60060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: The pancreatic solid pseudopapillary neoplasm (SPN), a rare tumor predominantly affecting young women, has seen an increased incidence due to improved imaging and epidemiological knowledge. This study aimed to understand the outcomes of different interventions, possible complications, and associated risk factors. Materials and Methods: This study retrospectively analyzed 24 patients who underwent pancreatic surgery for SPNs between September 1998 and July 2020. Results: Surgical intervention, typically required for symptomatic cases or pathological confirmation, yielded favorable outcomes with a 5-year survival rate of up to 97%. Despite challenges in standardizing preoperative evaluation and follow-up protocols, aggressive complete resection showed promising long-term survival and good oncological outcomes. Notably, no significant differences were found between conventional and minimally invasive (MI) surgery in perioperative outcomes. Histopathological correlations were lacking in prognosis and locations. Among the patients, one developed diffuse liver metastases 41 months postoperatively but responded well to chemotherapy and transcatheter arterial chemoembolization, with disease stability observed at 159 postoperative months. Another patient developed nonalcoholic steatohepatitis after surgery and underwent liver transplantation, succumbing to poor medication adherence 115 months after surgery. Conclusions: These findings underscore the importance of surgical intervention in managing SPNs and suggest the MI approach as a viable option with comparable outcomes to conventional surgery.
Collapse
Affiliation(s)
- Peng-Yu Ku
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (P.-Y.K.)
| | - Shao-Bin Cheng
- Division of General Surgery, Department of Surgery, Taichung Tzu Chi Hospital, Taichung 427213, Taiwan
| | - Yi-Ju Chen
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (P.-Y.K.)
| | - Chia-Yu Lai
- Division of General Surgery, Department of Surgery, Taichung Tzu Chi Hospital, Taichung 427213, Taiwan
| | - Hsiao-Tien Liu
- Division of General Surgery, Department of Surgery, Taichung Tzu Chi Hospital, Taichung 427213, Taiwan
| | - Wei-Hsin Chen
- Division of General Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (P.-Y.K.)
| |
Collapse
|
67
|
Sidiropoulos T, Dovrolis N, Katifelis H, Michalopoulos NV, Kokoropoulos P, Arkadopoulos N, Gazouli M. Dysbiosis Signature of Fecal Microbiota in Patients with Pancreatic Adenocarcinoma and Pancreatic Intraductal Papillary Mucinous Neoplasms. Biomedicines 2024; 12:1040. [PMID: 38791002 PMCID: PMC11117863 DOI: 10.3390/biomedicines12051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer (PC) ranks as the seventh leading cause of cancer-related deaths, with approximately 500,000 new cases reported in 2020. Existing strategies for early PC detection primarily target individuals at high risk of developing the disease. Nevertheless, there is a pressing need to identify innovative clinical approaches and personalized treatments for effective PC management. This study aimed to explore the dysbiosis signature of the fecal microbiota in PC and potential distinctions between its Intraductal papillary mucinous neoplasm (IPMN) and pancreatic ductal adenocarcinoma (PDAC) phenotypes, which could carry diagnostic significance. The study enrolled 33 participants, including 22 diagnosed with PDAC, 11 with IPMN, and 24 healthy controls. Fecal samples were collected and subjected to microbial diversity analysis across various taxonomic levels. The findings revealed elevated abundances of Firmicutes and Proteobacteria in PC patients, whereas healthy controls exhibited higher proportions of Bacteroidota. Both LEfSe and Random Forest analyses indicated the microbiome's potential to effectively distinguish between PC and healthy control samples but fell short of differentiating between IPMN and PDAC samples. These results contribute to the current understanding of this challenging cancer type and highlight the applications of microbiome research. In essence, the study provides clear evidence of the gut microbiome's capability to serve as a biomarker for PC detection, emphasizing the steps required for further differentiation among its diverse phenotypes.
Collapse
Affiliation(s)
- Theodoros Sidiropoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| | - Nikolaos V. Michalopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Panagiotis Kokoropoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| |
Collapse
|
68
|
Yang X, Xu H, Liang X, Yuan G, Gao Q, Tan X, Yang Y, Xiao Y, Huang Z, Dai W, Liu X. Exploring the casual association between gut microbiome, circulating inflammatory cytokines and chronic pancreatitis: A Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e37959. [PMID: 38701270 PMCID: PMC11062735 DOI: 10.1097/md.0000000000037959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
It has been established that gut dysbiosis contributed to the pathogenesis of digestive disorders. We aimed to explore the causal relationships between intestinal microbiota, circulating inflammatory cytokines and chronic pancreatitis (CP). Summary statistics of genome-wide association studies (GWAS) of intestinal microbiome was retrieved from the MiBioGen study and the GWAS data of 91 circulating inflammatory cytokines and CP were obtained from the GWAS catalog. The 2-sample bidirectional Mendelian randomization (MR) analysis was performed between gut microbiota, circulating inflammatory cytokines and CP, in which the inverse variance weighted (IVW) method was regarded as the primary analysis approach. To prove the reliability of the causal estimations, multiple sensitivity analyses were utilized. IVW results revealed that genetically predicted 2 genera, including Sellimonas and Eubacteriumventriosumgroup, and plasm C-C motif chemokine 23 (CCL23) level were positively associated with CP risk, while genus Escherichia Shigella, Eubacteriumruminantiumgroup and Prevotella9, and plasma Caspase 8, Adenosine Deaminase (ADA), and SIR2-like protein 2 (SIRT2) level, demonstrated an ameliorative effect on CP. Leave-one-out analysis confirmed the robustness of the aforementioned causal effects and no significant horizontal pleiotropy or heterogeneity of the instrumental variables was detected. However, no association was found from the identified genera to the CP-related circulating inflammatory cytokines. Besides, the reverse MR analysis demonstrated no causal relationship from CP to the identified genera and circulating inflammatory cytokines. Taken together, our comprehensive analyses offer evidence in favor of the estimated causal connections from the 5 genus-level microbial taxa and 4 circulating inflammatory cytokines to CP risk, which may help to reveal the underlying pathogenesis of CP.
Collapse
Affiliation(s)
- Xiaoqiu Yang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Guojia Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Qiaoping Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaoyu Tan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Yongguang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Yi Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Zhanren Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xiaoguang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| |
Collapse
|
69
|
Boicean A, Ichim C, Todor SB, Anderco P, Popa ML. The Importance of Microbiota and Fecal Microbiota Transplantation in Pancreatic Disorders. Diagnostics (Basel) 2024; 14:861. [PMID: 38732276 PMCID: PMC11082979 DOI: 10.3390/diagnostics14090861] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The role of the intestinal microbiota in the diagnosis and treatment of pancreatic diseases is increasingly significant. Consequently, fecal microbiota transplantation (FMT) is emerging as a promising therapeutic avenue for various pancreatic disorders, including cancer, pancreatitis, and type 1 diabetes (T1D). This innovative procedure entails transferring gut microbiota from healthy donors to individuals affected by pancreatic ailments with the potential to restore intestinal balance and alleviate associated symptoms. FMT represents a pioneering approach to improve patient outcomes in pancreatic diseases, offering tailored treatments customized to individual microbiomes and specific conditions. Recent research highlights the therapeutic benefits of targeting the gut microbiota for personalized interventions in pancreatic disorders. However, a comprehensive understanding of the intricate interplay between gut microbiota and pancreatic physiology warrants further investigation. The necessity for additional studies and research endeavors remains crucial, especially in elucidating both adult and pediatric cases affected by pathological pancreatic conditions.
Collapse
Affiliation(s)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.B.T.); (P.A.); (M.L.P.)
| | | | | | | |
Collapse
|
70
|
Zhao F, Chen A, Wu X, Deng X, Yang J, Xue J. Heterogeneous changes in gut and tumor microbiota in patients with pancreatic cancer: insights from clinical evidence. BMC Cancer 2024; 24:478. [PMID: 38622651 PMCID: PMC11020926 DOI: 10.1186/s12885-024-12202-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Pancreatic cancer is the foremost contributor to cancer-related deaths globally, and its prevalence continues to rise annually. Nevertheless, the underlying mechanisms behind its development remain unclear and necessitate comprehensive investigation. METHODS In this study, a total of 29 fresh stool samples were collected from patients diagnosed with pancreatic cancer. The gut microbial data of healthy controls were obtained from the SRA database (SRA data number: SRP150089). Additionally, 28 serum samples and diseased tissues were collected from 14 patients with confirmed pancreatic cancer and 14 patients with chronic pancreatitis. Informed consent was obtained from both groups of patients. Microbial sequencing was performed using 16s rRNA. RESULTS The results showed that compared with healthy controls, the species abundance index of intestinal flora in patients with pancreatic cancer was increased (P < 0.05), and the number of beneficial bacteria at the genus level was reduced (P < 0.05). Compared with patients with chronic pancreatitis, the expression levels of CA242 and CA199 in the serum of patients with pancreatic cancer were increased (P < 0.05). The bacterial richness index of tumor microorganisms in patients with pancreatic cancer increased, while the diversity index decreased(P < 0.05). Furthermore, there was a change in the species composition at the genus level. Additionally, the expression level of CA242 was found to be significantly positively correlated with the relative abundance of Acinetobacter(P < 0.05). CONCLUSION Over all, the expression levels of serum tumor markers CA242 and CA19-9 in patients with pancreatic cancer are increased, while the beneficial bacteria in the intestine and tumor microenvironment are reduced and pathogenic bacteria are increased. Acinetobacter is a specific bacterial genus highly expressed in pancreatic cancer tissue.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 55, Daxuecheng Middle Road, ShaPingBa District, 400016, Chongqing, People's Republic of China
| | - Anli Chen
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, People's Republic of China
| | - Xiaotian Wu
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, People's Republic of China
| | - Xiangyu Deng
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, People's Republic of China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, 401147, Chongqing, People's Republic of China.
| | - Jianjiang Xue
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 55, Daxuecheng Middle Road, ShaPingBa District, 400016, Chongqing, People's Republic of China.
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, People's Republic of China.
| |
Collapse
|
71
|
Saba E, Farhat M, Daoud A, Khashan A, Forkush E, Menahem NH, Makkawi H, Pandi K, Angabo S, Kawasaki H, Plaschkes I, Parnas O, Zamir G, Atlan K, Elkin M, Katz L, Nussbaum G. Oral bacteria accelerate pancreatic cancer development in mice. Gut 2024; 73:770-786. [PMID: 38233197 DOI: 10.1136/gutjnl-2023-330941] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.
Collapse
Affiliation(s)
- Elias Saba
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Alaa Daoud
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Arin Khashan
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Esther Forkush
- Gastroenterology, Hadassah Medical Center, Jerusalem, Israel
| | - Noam Hallel Menahem
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co Ltd, Koda-cho, Akitakata-shi, Hiroshima, Japan
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Parnas
- Immunology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Experimental Surgery, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Michael Elkin
- Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lior Katz
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah, Jerusalem, Israel
| |
Collapse
|
72
|
Dai JH, Tan XR, Qiao H, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell 2024; 15:239-260. [PMID: 37946397 PMCID: PMC10984626 DOI: 10.1093/procel/pwad052] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The profound influence of microbiota in cancer initiation and progression has been under the spotlight for years, leading to numerous researches on cancer microbiome entering clinical evaluation. As promising biomarkers and therapeutic targets, the critical involvement of microbiota in cancer clinical practice has been increasingly appreciated. Here, recent progress in this field is reviewed. We describe the potential of tumor-associated microbiota as effective diagnostic and prognostic biomarkers, respectively. In addition, we highlight the relationship between microbiota and the therapeutic efficacy, toxicity, or side effects of commonly utilized treatments for cancer, including chemotherapy, radiotherapy, and immunotherapy. Given that microbial factors influence the cancer treatment outcome, we further summarize some dominating microbial interventions and discuss the hidden risks of these strategies. This review aims to provide an overview of the applications and advancements of microbes in cancer clinical relevance.
Collapse
Affiliation(s)
- Jia-Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| |
Collapse
|
73
|
Asnicar F, Thomas AM, Passerini A, Waldron L, Segata N. Machine learning for microbiologists. Nat Rev Microbiol 2024; 22:191-205. [PMID: 37968359 PMCID: PMC11980903 DOI: 10.1038/s41579-023-00984-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
Collapse
Affiliation(s)
- Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrew Maltez Thomas
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrea Passerini
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Levi Waldron
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA.
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
74
|
Li X, Liang Z. Causal effect of gut microbiota on pancreatic cancer: A Mendelian randomization and colocalization study. J Cell Mol Med 2024; 28:e18255. [PMID: 38526030 PMCID: PMC10962122 DOI: 10.1111/jcmm.18255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
The causal relationship between gut microbiota (GM) and pancreatic cancer (PC) remains unclear. This study aimed to investigate the potential genes underlying this mechanism. GM Genome-wide association study (GWAS) summary data were from the MiBioGen consortium. PC GWAS data were from the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS Catalogue. To detect the causal relationship between GM and PC, we implemented three complementary Mendelian randomization (MR) methods: Inverse Variance Weighting (IVW), MR-Egger and Weighted Median, followed by sensitivity analyses. Furthermore, we integrated GM GWAS data with blood cis-expression quantitative trait loci (eQTLs) and blood cis-DNA methylation QTL (mQTLs) using Summary data-based Mendelian Randomization (SMR) methods. This integration aimed to prioritize potential GM-affecting genes through SMR analysis of two molecular traits. PC cis-eQTLs and cis-mQTLs were summarized from The Cancer Genome Atlas (TCGA) data. Through colocalization analysis of GM cis-QTLs and PC cis-QTLs data, we identified common genes that influence both GM and PC. Our study found a causal association between GM and PC, including four protective and five risk-associated GM [Inverse Variance Weighted (IVW), p < 0.05]. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. The gene SVBP was identified as a GM-affecting gene using SMR analysis of two molecular traits (FDR<0.05, P_HEIDI>0.05). Additionally, two genes, MCM6 and RPS26, were implicated in the interaction between GM and PC based on colocalization analysis (PPH4>0.5). In summary, this study provides evidence for future research aimed at developing suitable therapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated HospitalGuangxi Medical UniversityNanningChina
| |
Collapse
|
75
|
Arif T, Nazir F, Aurangzeb RF, Hussain M, Aurangzeb RI, Rehman A, Kumar K, Islam R, Islam H, Khalid Q, Arrey Agbor DB, Munir K, Bokhari SFH, Shehryar A, Ibrahim M. The Potential of Fecal and Urinary Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cureus 2024; 16:e59248. [PMID: 38813271 PMCID: PMC11134185 DOI: 10.7759/cureus.59248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/31/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer often diagnosed at advanced stages, highlighting the urgent need for early detection strategies. This systematic review explores the potential of fecal and urinary biomarkers for early PDAC detection. A comprehensive search identified eight relevant studies investigating various biomarkers, including proteins, metabolites, microbial profiles, DNA mutations, and non-coding RNAs. Promising findings suggest that urinary biomarkers related to metabolic alterations, inflammatory processes, fecal microbiome profiles, and fecal miRNAs hold diagnostic potential even at early stages of PDAC. Combining biomarkers into panels may enhance diagnostic accuracy. Challenges such as validation in larger cohorts, standardization of protocols, and regulatory approval must be addressed for clinical translation. Despite these hurdles, non-invasive urinary and fecal biomarkers represent a promising avenue for improving PDAC outcomes through early detection.
Collapse
Affiliation(s)
- Talha Arif
- Accident and Emergency, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Faran Nazir
- Internal Medicine, Faisalabad Medical University, Deer Park, USA
| | | | | | | | | | - Kabeer Kumar
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | - Rabia Islam
- Research, Faisalabad Medical University, Faisalabad, PAK
| | - Hamza Islam
- Internal Medicine, Punjab Medical College, Faisalabad, PAK
| | - Qais Khalid
- Internal Medicine, Khyber Medical University, Peshawar, PAK
| | | | - Kashaf Munir
- Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | | | | | | |
Collapse
|
76
|
Liu Q, Yang Y, Pan M, Yang F, Yu Y, Qian Z. Role of the gut microbiota in tumorigenesis and treatment. Theranostics 2024; 14:2304-2328. [PMID: 38646653 PMCID: PMC11024857 DOI: 10.7150/thno.91700] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024] Open
Abstract
The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
77
|
Zhang Y, Zhang H, Liu B, Ning K. Highly accurate diagnosis of pancreatic cancer by integrative modeling using gut microbiome and exposome data. iScience 2024; 27:109294. [PMID: 38450156 PMCID: PMC10915599 DOI: 10.1016/j.isci.2024.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The noninvasive detection of pancreatic ductal adenocarcinoma (PDAC) remains an immense challenge. In this study, we proposed a robust, accurate, and noninvasive classifier, namely Multi-Omics Co-training Graph Convolutional Networks (MOCO-GCN). It achieved high accuracy (0.9 ± 0.06), F1 score (0.9± 0.07), and AUROC (0.89± 0.08), surpassing contemporary approaches. The performance of model was validated on an external cohort of German PDAC patients. Additionally, we discovered that the exposome may impact PDAC development through its complex interplay with gut microbiome by mediation analysis. For example, Fusobacterium hwasookii nucleatum, known for its ability to induce inflammatory responses, may serve as a mediator for the impact of rheumatoid arthritis on PDAC. Overall, our study sheds light on how exposome and microbiome in concert could contribute to PDAC development, and enable PDAC diagnosis with high fidelity and interpretability.
Collapse
Affiliation(s)
- Yuli Zhang
- School of Mathematics, Shandong University, Jinan 250200, Shandong, China
| | - Haohong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan 250200, Shandong, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
78
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
79
|
Jin D, Jin S, Zhou T, Cui Z, Guo B, Li G, Zhang C. Quantitative evaluation of gut microbiota composition in pancreatic cancer: A pooled study. Medicine (Baltimore) 2024; 103:e36907. [PMID: 38457538 PMCID: PMC10919531 DOI: 10.1097/md.0000000000036907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Prior research has demonstrated a positive association between the composition of gut microbiota and the incidence of pancreatic cancer. Nevertheless, a thorough quantitative and systematic evaluation of the distinct properties of gut microbiota in individuals diagnosed with pancreatic cancer has yet to be conducted. The objective of this study is to examine alterations in the diversity of intestinal microbiota in individuals diagnosed with pancreatic cancer. METHODS Search for relevant literature published before July 2023 in 4 databases: PubMed, Embase, Web of Science, and Cochrane Library, without any language restrictions. RESULTS A total of 12 studies were included, including 535 patients with pancreatic cancer and 677 healthy controls. Analysis was conducted on 6 phyla, 16 genera, and 6 species. The study found significant and distinctive changes in the α-diversity of gut microbiota, as well as in the relative abundance of multiple gut bacterial groups at the phylum, genus, and species levels in pancreatic cancer patients. CONCLUSION Overall, there are certain characteristic changes in the gut microbiota of pancreatic cancer patients. However, further research is warranted to elucidate the specific mechanism of action and the potential for treatment.
Collapse
Affiliation(s)
- Dachuan Jin
- Department of Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| | - Shunqin Jin
- Department of Radiology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Tao Zhou
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong University, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Zhongfeng Cui
- Department of Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| | - Baoqiang Guo
- Faculty of Science and Engineering, Department of Life Sciences, Manchester Metropolitan University, Manchester, U.K
| | - Guangming Li
- Department of Liver Disease, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| | - Chunming Zhang
- Department of General Surgery, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| |
Collapse
|
80
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
81
|
Chung IY, Kim J, Koh A. The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses. J Microbiol 2024; 62:137-152. [PMID: 38587593 DOI: 10.1007/s12275-024-00110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 04/09/2024]
Abstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confined to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specific microbial taxa within different cancer types underscore their pivotal roles in driving tumorigenesis and influencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse effects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
82
|
Scherübl H. [Early detection of sporadic pancreatic cancer]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:412-419. [PMID: 37827502 DOI: 10.1055/a-2114-9847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The incidence of pancreatic cancer is rising. At present, pancreatic cancer is the third most common cancer-causing death in Germany, but it is expected to become the second in 2030 and finally the leading cause of cancer death in 2050. Pancreatic ductal adenocarcinoma (PC) is generally diagnosed at advanced stages, and 5-year-survival has remained poor. Early detection of sporadic PC at stage IA, however, can yield a 5-year-survival rate of about 80%. Early detection initiatives aim at identifying persons at high risk. People with new-onset diabetes at age 50 or older have attracted much interest. Novel strategies regarding how to detect sporadic PC at an early stage are being discussed.
Collapse
Affiliation(s)
- Hans Scherübl
- Klinik für Innere Medizin; Gastroenterol., GI Onkol. u. Infektiol., Vivantes Klinikum Am Urban, Berlin, Germany
- Akademisches Lehrkrankenhaus der Charité, Berlin, Germany
| |
Collapse
|
83
|
Halle-Smith JM, Pearce H, Nicol S, Hall LA, Powell-Brett SF, Beggs AD, Iqbal T, Moss P, Roberts KJ. Involvement of the Gut Microbiome in the Local and Systemic Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:996. [PMID: 38473357 DOI: 10.3390/cancers16050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The systemic and local immunosuppression exhibited by pancreatic ductal adenocarcinoma (PDAC) contributes significantly to its aggressive nature. There is a need for a greater understanding of the mechanisms behind this profound immune evasion, which makes it one of the most challenging malignancies to treat and thus one of the leading causes of cancer death worldwide. The gut microbiome is now thought to be the largest immune organ in the body and has been shown to play an important role in multiple immune-mediated diseases. By summarizing the current literature, this review examines the mechanisms by which the gut microbiome may modulate the immune response to PDAC. Evidence suggests that the gut microbiome can alter immune cell populations both in the peripheral blood and within the tumour itself in PDAC patients. In addition, evidence suggests that the gut microbiome influences the composition of the PDAC tumour microbiome, which exerts a local effect on PDAC tumour immune infiltration. Put together, this promotes the gut microbiome as a promising route for future therapies to improve immune responses in PDAC patients.
Collapse
Affiliation(s)
- James M Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lewis A Hall
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah F Powell-Brett
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tariq Iqbal
- Department of Gastroenterology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Microbiome Treatment Centre, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Keith J Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
84
|
Liu X, Li K, Yang Y, Cao D, Xu X, He Z, Wu W. Gut resistome profiling reveals high diversity and fluctuations in pancreatic cancer cohorts. Front Cell Infect Microbiol 2024; 14:1354234. [PMID: 38384305 PMCID: PMC10879602 DOI: 10.3389/fcimb.2024.1354234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Background Pancreatic cancer is one of the deadliest cancer, with a 5-year overall survival rate of 11%. Unfortunately, most patients are diagnosed with advanced stage by the time they present with symptoms. In the past decade, microbiome studies have explored the association of pancreatic cancer with the human oral and gut microbiomes. However, the gut microbial antibiotic resistance genes profiling of pancreatic cancer patients was never reported compared to that of the healthy cohort. Results In this study, we addressed the gut microbial antibiotic resistance genes profile using the metagenomic data from two online public pancreatic cancer cohorts. We found a high degree of data concordance between the two cohorts, which can therefore be used for cross-sectional comparisons. Meanwhile, we used two strategies to predict antibiotic resistance genes and compared the advantages and disadvantages of these two approaches. We also constructed microbe-antibiotic resistance gene networks and found that most of the hub nodes in the networks were antibiotic resistance genes. Conclusions In summary, we describe the panorama of antibiotic resistance genes in the gut microbes of patients with pancreatic cancer. We hope that our study will provide new perspectives on treatment options for the disease.
Collapse
Affiliation(s)
- Xudong Liu
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Kexin Li
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knöll Institute, Jena, Germany
| | - Yun Yang
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Dingyan Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xinjie Xu
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Wenming Wu
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
85
|
Luan F, Zhou Y, Ma X, Li Y, Peng Y, Jia X, Li N, Wang X, Luo Y, Man M, Zhang Q, Wang C, Yu K, Zhao M, Wang C. Gut microbiota composition and changes in patients with sepsis: potential markers for predicting survival. BMC Microbiol 2024; 24:45. [PMID: 38302899 PMCID: PMC10832068 DOI: 10.1186/s12866-024-03188-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Sepsis can cause immune dysregulation and multiple organ failure in patients and eventually lead to death. The gut microbiota has demonstrated its precise therapeutic potential in the treatment of various diseases. This study aimed to discuss the structural changes of the gut microbiota in patients with sepsis and to analyze the differences in the gut microbiota of patients with different prognoses. METHODS We conducted a multicenter study in which rectal swab specimens were collected on the first and third days of sepsis diagnosis. A total of 70 specimens were collected, and gut microbiota information was obtained by 16S rRNA analysis. RESULTS The relative abundance of Enterococcus decreased in rectal swab specimens during the first three days of diagnosis in patients with sepsis, while the relative abundance of inflammation-associated Bacillus species such as Escherichia coli, Enterobacteriaceae, and Bacteroidetes increased. By comparing the differences in the flora of the survival group and the death group, we found that the abundance of Veillonella and Ruminococcus in the death group showed an increasing trend (p < 0.05), while the abundance of Prevotella_6 and Prevotella_sp_S4_BM14 was increased in surviving patients (p < 0.05). CONCLUSIONS The Firmicutes/Bacteroidetes ratio, reflecting overall gut microbial composition, was significantly lower on day three of sepsis diagnosis. Changes in the abundance of specific gut microbiota may serve as prognostic markers in patients with sepsis.
Collapse
Affiliation(s)
- Feiyu Luan
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yang Zhou
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiaohui Ma
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yue Li
- Departments of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yahui Peng
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xiaonan Jia
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Nana Li
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xibo Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yinghao Luo
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Mingyin Man
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Qianqian Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chunying Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Kaijiang Yu
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Mingyan Zhao
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Changsong Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
86
|
Yoshida T, Dbouk M, Hirose K, Abou Diwan E, Saba H, Dbouk A, Goggins M. Duodenal and pancreatic tissue microbiome profiles of PPI users and non-users. Pancreatology 2024; 24:188-195. [PMID: 38161092 PMCID: PMC10842342 DOI: 10.1016/j.pan.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Factors that influence the pancreas microbiome are not well understood. Regular proton pump inhibitor (PPI) use induces significant alterations in the gut microbiome, including an increase in the abundance of Streptococcus, and may be associated with pancreatic cancer risk. The aim of this study was to examine whether PPI use is associated with pancreatic and duodenal tissue microbiomes. We compared 16S rRNA microbiome profiles of normal pancreatic and duodenal tissue from 103 patients undergoing pancreatic surgery for non-malignant indications, including 34 patients on PPIs, accounting for factors including age, smoking, body mass index and the presence of main pancreatic duct dilation. Histologically normal tissue from the pancreatic head had higher alpha diversity and enrichment of Firmicutes by phylum-level analysis and Streptococcus species compared to normal pancreas body/tail tissues (16.8 % vs 8.8 %, P = .02, and 5.9 % vs 1.4 %, P = .03, respectively). Measures of beta diversity differed significantly between the pancreas and the duodenum, but in subjects with main pancreatic duct dilation, beta diversity of pancreatic head tissue was more similar to normal duodenal tissue than those without pancreatic duct dilation. Duodenal tissue of PPI users had significant enrichment of Firmicute phyla (34.7 % vs. 14.1 %, P = .01) and Streptococcus genera (19.5 % vs. 5.2 %, P = .01) compared to non-users; these differences were not evident in pancreas tissues. By multivariate analysis, PPI use was associated with alpha diversity in the duodenum, but not in the pancreas. However, some differences in pancreas tissue beta diversity were observed between PPI users and non-users. In summary, we find differences in the microbiome profiles of the pancreas head versus the pancreatic body/tail and we find PPI use is associated with alterations in duodenal and pancreatic tissue microbiome profiles.
Collapse
Affiliation(s)
- Takeichi Yoshida
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mohamad Dbouk
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Katsuya Hirose
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elizabeth Abou Diwan
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Helena Saba
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ali Dbouk
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Goggins
- Departments of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Departments of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Departments of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
87
|
Guo X, Wang P, Li Y, Chang Y, Wang X. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol 2024; 194:104262. [PMID: 38199428 DOI: 10.1016/j.critrevonc.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Recently, several investigations have linked the microbiome to pancreatic cancer progression. It is critical to reveal the role of different microbiomes in the occurrence, development, and treatment of pancreatic cancer. The current review summarizes the various microbiota types in pancreatic cancer while updating and supplementing the mechanisms of the representative gut, pancreatic, and oral microbiota, and their metabolites during its pathogenesis and therapeutic intervention. Several novel strategies have been introduced based on the tumor-associated microbiome to optimize the early diagnosis and prognosis of pancreatic cancer. The pros and cons involving different microbiomes in treating pancreatic cancer are discussed. The microbiome-related clinical trials for pancreatic cancer theranostics are outlined. This convergence of cutting-edge knowledge will provide feasible ideas for developing innovative therapies against pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Guo
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuan Li
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yawei Chang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
88
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
89
|
Li X, Li Y, He C, Zhu Y. Bibliometric analysis of pancreatic diseases and gut microbiota research from 2002 to 2022. Heliyon 2024; 10:e23483. [PMID: 38187305 PMCID: PMC10767372 DOI: 10.1016/j.heliyon.2023.e23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background An increasing number of studies have indicated that pancreatic diseases are associated with the structure of the gut microbiota. We aimed to assess the research hotspots and trends in this field through a quantitative method. Materials and methods Articles related to pancreatic diseases and the gut microbiota published from 2002 to 2022 were retrieved from the Web of Science database. We visualized the countries/regions, institutions, authors, journals, and keywords using VOSviewer and CiteSpace software. The interplay between pancreatic diseases and the gut microbiota was also analysed. Results A total of 129 publications were finally identified. The number of papers increased gradually, and China held the dominant position with respect to publication output. Shanghai Jiao Tong University was the most influential institution. Zeng Yue ranked highest in the number of papers, and Scientific Reports was the most productive journal. The keywords "gut", "bacterial translocation", and "acute pancreatitis" appeared early for the first time, and "gut microbiota", "community", and "diversity" have been increasingly focused on. The predominant pancreatic disease correlated with the gut microbiota was pancreatic inflammatory disease (50.39%). Pancreatic diseases are associated with alterations in the gut microbiota, characterized by a decrease in beneficial bacteria and an increase in harmful bacteria. Conclusion This is the first comprehensive bibliometric analysis of all pancreatic diseases and the gut microbiota. The research on the relationship between them is still in the preliminary stage, and the trend is toward a gradual deepening of the research and precise treatment development. The interaction between the gut microbiota and pancreatic diseases will be of increasing concern in the future.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
90
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
91
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
92
|
Luan J, Zhang F, Suo L, Zhang W, Li Y, Yu X, Liu B, Cao H. Analyzing lung cancer risks in patients with impaired pulmonary function through characterization of gut microbiome and metabolites. BMC Pulm Med 2024; 24:1. [PMID: 38166904 PMCID: PMC10759599 DOI: 10.1186/s12890-023-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is one of the most devastating diseases worldwide, there is growing studies confirm the role of impaired lung function in LC susceptibility. Moreover, gut microbiota dysbiosis is associated with LC severity. Whether alterations in gut microbiota and metabolites are associated with long-term lung dysfunction in LC patients remain unclear. Our study aimed to analyze the risk factors in LC patients with impaired pulmonary function based on the characteristics of the gut microbiome and metabolites. METHODS Fecal samples from 55 LC patients and 28 benign pulmonary nodules patients were collected. Pulmonary ventilation function was graded according to the American Thoracic Society/ European Respiratory Society (ATS/ERS) method. LC patients were divided into 3 groups, including 20 patients with normal lung ventilation, 23 patients with mild pulmonary ventilation dysfunction and 12 patients with moderate or above pulmonary ventilation dysfunction. The fecal samples were analyzed using 16 S rRNA gene amplicon sequencing and metabolomics. RESULTS The gut microbiome composition between LC patients and benign pulmonary nodules patients presented clearly differences based on Partial Least Squares Discriminant Analysis (PLS-DA). Pulmonary ventilation function was positively correlated with LC tumor stage, the richness and diversity of the gut microbiota in LC patients with moderate or above pulmonary ventilation dysfunction increased significantly, characterized by increased abundance of Subdoligranulum and Romboutsia. The metabolomics analysis revealed 69 differential metabolites, which were mainly enriched in beta-Alanine metabolism, styrene degradation and pyrimidine metabolism pathway. The area under the curve (AUC) combining the gut microbiome and metabolites was 90% (95% CI: 79-100%), indicating that the two species and four metabolites might regarded as biomarkers to assess the prediction of LC patients with impaired pulmonary function. CONCLUSIONS Our results showed that microbiome and metabolomics analyses provide important candidate to be used as clinically diagnostic biomarkers and therapeutic targets related to lung cancer with impaired pulmonary function.
Collapse
Affiliation(s)
- Jiahui Luan
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Fuxin Zhang
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Lijun Suo
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Wei Zhang
- Department of General Thoracic Surgery, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Yige Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaofeng Yu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Bo Liu
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Department of Pulmonary and Critical Care Medicine, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Hongyun Cao
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
| |
Collapse
|
93
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
94
|
Mulders MCF, Audhoe AS, Van Koetsveld PM, Feelders RA, Hofland LJ, de Herder WW, Kraaij R, Hofland J. Midgut neuroendocrine tumor patients have a depleted gut microbiome with a discriminative signature. Eur J Cancer 2024; 197:113472. [PMID: 38100919 DOI: 10.1016/j.ejca.2023.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
RATIONALE When compared to other types of cancer, the prevalence of midgut neuroendocrine tumors (NET) has disproportionally increased over the past decades. To date, there has been very little progress in discovering (epi)genetic drivers and treatment options for these tumors. Recent microbiome research has revealed that enteroendocrine cells communicate with the intestinal microbiome and has provided novel treatment targets for various other cancer types. Hence, our aim was to analyze the role of the gut microbiome in midgut NET patients. METHODS Fecal samples, prospectively collected from patients and control subjects, were analyzed with next generation 16S sequencing. Patients with neuroendocrine carcinomas and recent antibiotics use were excluded. Relevant variables were extracted from questionnaires and electronic health records. Microbial composition was compared between patients and controls as well as between groups within the patient cohort. RESULTS 87 midgut NET patients and 95 controls were included. Midgut NET patients had a less rich and diverse gut microbiome than controls (p < 0.001). Moreover, we identified 31 differentially abundant species and a gut microbial signature consisting of 17 species that was predictive of midgut NET presence with an area under the receiver operating characteristic curve of 0.863. Gut microbial composition was not directly associated with the presence of the carcinoid syndrome, tumor grade or multifocality. Nonetheless, we did observe a potential link between microbial diversity and the presence of carcinoid syndrome symptoms within the subset of patients with elevated 5-hydroxyindolacetic acid levels. CONCLUSION Midgut NET patients have an altered gut microbiome which suggests a role in NET development and could provide novel targets for microbiome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- M C F Mulders
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands.
| | - A S Audhoe
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - P M Van Koetsveld
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - R A Feelders
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - L J Hofland
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - W W de Herder
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - R Kraaij
- Laboratory of Population Genomics, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - J Hofland
- ENETS Center of Excellence, Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center and Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
95
|
Martin A, Jauvain M, Bergsten E, Demontant V, Lehours P, Barau C, Levy M, Rodriguez C, Sobhani I, Amiot A. Gastric microbiota in patients with gastric MALT lymphoma according to Helicobacter pylori infection. Clin Res Hepatol Gastroenterol 2024; 48:102247. [PMID: 37981222 DOI: 10.1016/j.clinre.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Gastric Mucosa Associated Lymphoid Tissue lymphoma (GML) development is triggered by Helicobacter pylori (H. pylori) infection. Little is known about the impact of H. pylori infection on gastric microbiota. METHODS The gastric microbiota was retrospectively investigated using 16S rRNA gene sequencing in 32 patients with untreated GML (10 H. pylori-positive and 22 H. pylori-negative), 23 with remitted and 18 refractory GML and 35 controls. Differences in microbial diversity, bacterial composition and taxonomic repartition were assessed. RESULTS There was no change in diversity and bacterial composition between GML and control patients taking into account H. pylori status. Differential taxa analysis identified specific changes associated with H. pylori-negative GML: the abundances of Actinobacillus, Lactobacillus and Chryseobacterium were increased while the abundances of Veillonella, Atopobium, Leptotrichia, Catonella, Filifactor and Escherichia_Shigella were increased in control patients. In patients with remitted GML, the genera Haemophilus and Moraxella were significantly more abundant than in refractory patients, while Atopobium and Actinomyces were significantly more abundant in refractory patients. CONCLUSION Detailed analysis of the gastric microbiota revealed significant changes in the bacterial composition of the gastric mucosa in patients with GML that may have a role in gastric lymphomagenesis but not any new pathobionts.
Collapse
Affiliation(s)
- Antoine Martin
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Marine Jauvain
- UMR1312 Bordeaux Institute of Cancer, BRIC, Université de Bordeaux, Bordeaux 33076, France; French National Reference Center for Campylobacters and Helicobacters, Bordeaux Hospital University Center, Bordeaux, France
| | - Emma Bergsten
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Vanessa Demontant
- Genomics Platform and Virology Unit, Henri-Mondor University Hospital, AP-HP, Institut Mondor de Recherche Biomédicale, Universite Paris Est Creteil, INSERM U955, Créteil F-94010 France
| | - Philippe Lehours
- UMR1312 Bordeaux Institute of Cancer, BRIC, Université de Bordeaux, Bordeaux 33076, France; French National Reference Center for Campylobacters and Helicobacters, Bordeaux Hospital University Center, Bordeaux, France
| | - Caroline Barau
- Plateforme de Ressources Biologique, Henri-Mondor University Hospital, AP-HP, University Paris Est Creteil, F-94010, France
| | - Michael Levy
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Christophe Rodriguez
- Genomics Platform and Virology Unit, Henri-Mondor University Hospital, AP-HP, Institut Mondor de Recherche Biomédicale, Universite Paris Est Creteil, INSERM U955, Créteil F-94010 France
| | - Iradj Sobhani
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Aurelien Amiot
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France.
| |
Collapse
|
96
|
Ansari D, Ibrahim H, Andersson R. Microbiome alterations in pancreatic cancer: new insights and potential clinical implications. Scand J Gastroenterol 2024; 59:202-203. [PMID: 37752856 DOI: 10.1080/00365521.2023.2261062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Affiliation(s)
- Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Helen Ibrahim
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
97
|
McGuinness AJ, Stinson LF, Snelson M, Loughman A, Stringer A, Hannan AJ, Cowan CSM, Jama HA, Caparros-Martin JA, West ML, Wardill HR. From hype to hope: Considerations in conducting robust microbiome science. Brain Behav Immun 2024; 115:120-130. [PMID: 37806533 DOI: 10.1016/j.bbi.2023.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Microbiome science has been one of the most exciting and rapidly evolving research fields in the past two decades. Breakthroughs in technologies including DNA sequencing have meant that the trillions of microbes (particularly bacteria) inhabiting human biological niches (particularly the gut) can be profiled and analysed in exquisite detail. This microbiome profiling has profound impacts across many fields of research, especially biomedical science, with implications for how we understand and ultimately treat a wide range of human disorders. However, like many great scientific frontiers in human history, the pioneering nature of microbiome research comes with a multitude of challenges and potential pitfalls. These include the reproducibility and robustness of microbiome science, especially in its applications to human health outcomes. In this article, we address the enormous promise of microbiome science and its many challenges, proposing constructive solutions to enhance the reproducibility and robustness of research in this nascent field. The optimisation of microbiome science spans research design, implementation and analysis, and we discuss specific aspects such as the importance of ecological principals and functionality, challenges with microbiome-modulating therapies and the consideration of confounding, alternative options for microbiome sequencing, and the potential of machine learning and computational science to advance the field. The power of microbiome science promises to revolutionise our understanding of many diseases and provide new approaches to prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Amelia J McGuinness
- Deakin University, Geelong, Australia, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Geelong, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Matthew Snelson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia.
| | - Amy Loughman
- Deakin University, Geelong, Australia, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Geelong, Australia
| | - Andrea Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | | | - Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | | | - Madeline L West
- Deakin University, Geelong, Australia, the Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Geelong, Australia
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
98
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
99
|
Mokhtari P, Holzhausen EA, Chalifour BN, Schmidt KA, Babaei M, Machle CJ, Adise S, Alderete TL, Goran MI. Associations between Dietary Sugar and Fiber with Infant Gut Microbiome Colonization at 6 Mo of Age. J Nutr 2024; 154:152-162. [PMID: 37717629 PMCID: PMC10808822 DOI: 10.1016/j.tjnut.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The taxonomic composition of the gut microbiome undergoes rapid development during the first 2-3 y of life. Poor diet during complementary feeding has been associated with alterations in infant growth and compromised bone, immune system, and neurodevelopment, but how it may affect gut microbial composition is unknown. OBJECTIVES This cross-sectional study aimed to examine the associations between early-life nutrition and the developing infant gut microbiota at 6 mo of age. METHODS Latino mother-infant pairs from the Mother's Milk Study (n = 105) were included. Infant gut microbiota and dietary intake were analyzed at 6 mo of age using 16S ribosomal RNA amplicon sequencing and 24-h dietary recalls, respectively. Poisson generalized linear regression analysis was performed to examine associations between dietary nutrients and microbial community abundance while adjusting for infants' mode of delivery, antibiotics, infant feeding type, time of introduction of solid foods, energy intake, and body weight. A P value of <0.05 was used to determine the statistical significance in the study. RESULTS Infants with higher consumption of total sugar exhibited a lower relative abundance of the genera Bacteroides (β = -0.01; 95% CI: -0.02, -0.00; P = 0.03) and genus Clostridium belonging to the Lachnospiraceae family (β = -0.02; 95% CI: -0.03, -0.00; P = 0.01). In addition, a higher intake of free sugar (which excludes sugar from milk, dairy, and whole fruit) was associated with several bacteria at the genus level, including Parabacteroides genus (β = 0.03; 95% CI: 0.01, 0.05; P = 0.001). Total insoluble fiber intake was associated with favorable bacteria at the genus level such as Faecalibacterium (β = 0.28; 95% CI: 0.03, 0.52; P = 0.02) and Coprococcus (β = 0.28; 95% CI: 0.02, 0.52; P = 0.03). CONCLUSION These findings demonstrate that early-life dietary intake at 6 mo impacts the developing gut microbiome associated with the presence of both unfavorable gut microbes and dietary fiber-associated commensal microbes.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
100
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|