51
|
Brao KJ, Wille BP, Lieberman J, Ernst RK, Shirtliff ME, Harro JM. Scnn1b-Transgenic BALB/c Mice as a Model of Pseudomonas aeruginosa Infections of the Cystic Fibrosis Lung. Infect Immun 2020; 88:e00237-20. [PMID: 32631918 PMCID: PMC7440770 DOI: 10.1128/iai.00237-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is responsible for much of the morbidity and mortality associated with cystic fibrosis (CF), a condition that predisposes patients to chronic lung infections. P. aeruginosa lung infections are difficult to treat because P. aeruginosa adapts to the CF lung, can develop multidrug resistance, and can form biofilms. Despite the clinical significance of P. aeruginosa, modeling P. aeruginosa infections in CF has been challenging. Here, we characterize Scnn1b-transgenic (Tg) BALB/c mice as P. aeruginosa lung infection models. Scnn1b-Tg mice overexpress the epithelial Na+ channel (ENaC) in their lungs, driving increased sodium absorption that causes lung pathology similar to CF. We intranasally infected Scnn1b-Tg mice and wild-type littermates with the laboratory P. aeruginosa strain PAO1 and CF clinical isolates and then assessed differences in bacterial clearance, cytokine responses, and histological features up to 12 days postinfection. Scnn1b-Tg mice carried higher bacterial burdens when infected with biofilm-grown rather than planktonic PAO1; Scnn1b-Tg mice also cleared infections more slowly than their wild-type littermates. Infection with PAO1 elicited significant increases in proinflammatory and Th17-linked cytokines on day 3. Scnn1b-Tg mice infected with nonmucoid early CF isolates maintained bacterial burdens and mounted immune responses similar to those of PAO1-infected Scnn1b-Tg mice. In contrast, Scnn1b-Tg mice infected with a mucoid CF isolate carried high bacterial burdens, produced significantly more interleukin 1β (IL-1β), IL-13, IL-17, IL-22, and KC, and showed severe immune cell infiltration into the bronchioles. Taken together, these results show the promise of Scnn1b-Tg mice as models of early P. aeruginosa colonization in the CF lung.
Collapse
Affiliation(s)
- Kristen J Brao
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brendan P Wille
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Joshua Lieberman
- Division of Microbiology, Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
52
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
53
|
Cladodionen Is a Potential Quorum Sensing Inhibitor Against Pseudomonas aeruginosa. Mar Drugs 2020; 18:md18040205. [PMID: 32290259 PMCID: PMC7230538 DOI: 10.3390/md18040205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen using virulence factors and biofilm regulated by quorum sensing (QS) systems to infect patients and protect itself from environmental stress and antibiotics. Interfering with QS systems is a novel approach to combat P. aeruginosa infections without killing the bacteria, meaning that it is much harder for bacteria to develop drug resistance. A marine fungus Cladosporium sp. Z148 with anti-QS activity was obtained from Jiaozhou Bay, China. Cladodionen, a novel QS inhibitor, was isolated from the extracts of this fungus. Cladodionen had a better inhibitory effect than pyocyanin on the production of elastase and rhamnolipid. It also inhibited biofilm formation and motilities. The mRNA expressions of QS-related genes, including receptor proteins (lasR, rhlR and pqsR), autoinducer synthases (lasI, rhlI and pqsA) and virulence factors (lasB and rhlA) were down-regulated by cladodionen. Molecular docking analysis showed that cladodionen had better binding affinity to LasR and PqsR than natural ligands. Moreover, the binding affinity of cladodionen to LasR was higher than to PqsR. Cladodionen exhibits potential as a QS inhibitor against P. aeruginosa, and its structure–activity relationships should be further studied to illustrate the mode of action, optimize its structure and improve anti-QS activity.
Collapse
|
54
|
Villeret B, Solhonne B, Straube M, Lemaire F, Cazes A, Garcia-Verdugo I, Sallenave JM. Influenza A Virus Pre-Infection Exacerbates Pseudomonas aeruginosa-Mediated Lung Damage Through Increased MMP-9 Expression, Decreased Elafin Production and Tissue Resilience. Front Immunol 2020; 11:117. [PMID: 32117268 PMCID: PMC7031978 DOI: 10.3389/fimmu.2020.00117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Individuals with impaired immune responses, such as ventilated and cystic fibrosis patients are often infected with Pseudomonas aeruginosa (P.a) bacteria, and a co-infection with the Influenza virus (IAV) is often present. It has been known for many years that infection with IAV predisposes the host to secondary bacterial infections (such as Streptococcus pneumoniae or Staphylococcus aureus), and there is an abundance of mechanistic studies, including those studying the role of desensitization of TLR signaling, type I IFN- mediated impairment of neutrophil chemokines and antimicrobial production, attenuation of IL1β production etc., showing this. However, little is known about the mechanistic events underlying the potential deleterious synergy between Influenza and P.a co-infections. We demonstrate here in vitro in epithelial cells and in vivo in three independent models (two involving mice given IAV +/– P.a, and one involving mice given IAV +/– IL-1β) that IAV promotes secondary P.a-mediated lung disease or augmented IL-1β-mediated inflammation. We show that IAV-P.a-mediated deleterious responses includes increased matrix metalloprotease (MMP) activity, and MMP-9 in particular, and that the use of the MMP inhibitor improves lung resilience. Furthermore, we show that IAV post-transcriptionally inhibits the antimicrobial/anti-protease molecule elafin/trappin-2, which we have shown previously to be anti-inflammatory and to protect the host against maladaptive neutrophilic inflammation in P.a infections. Our work highlights the capacity of IAV to promote further P.a-mediated lung damage, not necessarily through its interference with host resistance to the bacterium, but by down-regulating tissue resilience to lung inflammation instead. Our study therefore suggests that restoring tissue resilience in clinical settings where IAV/P.a co-exists could prove a fruitful strategy.
Collapse
Affiliation(s)
- Berengère Villeret
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Brigitte Solhonne
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Marjolène Straube
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Flora Lemaire
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Aurélie Cazes
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Ignacio Garcia-Verdugo
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Jean-Michel Sallenave
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| |
Collapse
|
55
|
Liu X, Mao Y, Kang Y, He L, Zhu B, Zhang W, Lu Y, Wu Q, Xu D, Shi L. MicroRNA-127 Promotes Anti-microbial Host Defense through Restricting A20-Mediated De-ubiquitination of STAT3. iScience 2020; 23:100763. [PMID: 31958753 PMCID: PMC6992901 DOI: 10.1016/j.isci.2019.100763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The increasing rising of multiple drug-resistant Staphylococcus aureus has become a major public health concern, underscoring a pressing need for developing therapies essentially based on the understanding of host defensive mechanism. In the present study, we showed that microRNA (miR)-127 played a key role in controlling bacterial infection and conferred a profound protection against staphylococcal pneumonia. The protective effect of miR-127 was largely dependent on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17, and anti-microbial peptides (AMPs), the pathway primarily driven by STAT3. Importantly, we revealed that the ubiquitin-editing enzyme A20, a genuine target of miR-127, specifically interacted with and repressed K63-ubiquitination of STAT3, thereby compromising its phosphorylation upon bacterial infection. Thus, our data not only identify miR-127 as a non-coding molecule with anti-bacterial activity but also delineate an unappreciated mechanism whereby A20 regulates STAT3-driven anti-microbial signaling via modulating its ubiquitination.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Mao
- Key Laboratory of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yanhua Kang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Long He
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- Collaborative Innovation Centers of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China.
| |
Collapse
|
56
|
Lampaki D, Diepold A, Glatter T. A Serial Sample Processing Strategy with Improved Performance for in-Depth Quantitative Analysis of Type III Secretion Events in Pseudomonas aeruginosa. J Proteome Res 2020; 19:543-553. [PMID: 31814412 DOI: 10.1021/acs.jproteome.9b00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficient analysis of secretomes is important to study the mechanisms of bacterial secretion. However, secretome analysis of bacteria that rely on rich media for optimal secretion via modern quantitative shotgun proteomics workflows is often hampered by the higher degree of sample impurities. This may be a reason for the low number of quantitative secretome investigations in such cases. We assessed the efficiency and amenability for rich media secretome analysis of different workflows including precipitation, SP3, and a combined, serial workflow. Using the model organism Pseudomonas aeruginosa, we found that the combined TCA-SP3 strategy outperformed the other tested methods on all monitored qualitative and quantitative levels. This method proved to be most efficient in the recovery of proteins secreted by the type III secretion system (T3SS), including all known effector proteins and secretion machinery components. We monitored the compositional changes of secretome samples over time, and observed a strong increase in the secreted protein fraction by the T3SS 2 to 3 h after T3SS induction. Our study conceptually illustrates how the combination of TCA precipitation and SP3 results in orthogonality in depleting sample impurities accompanied by improved chromatographic peptide separation, and more efficient MS detection with improved quantification parameters.
Collapse
Affiliation(s)
- Dimitrios Lampaki
- Core Facility for Mass Spectrometry and Proteomics , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Str. 10 , D-35043 Marburg , Germany.,Department of Ecophysiology , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Str. 10 , D-35043 Marburg , Germany
| | - Andreas Diepold
- Department of Ecophysiology , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Str. 10 , D-35043 Marburg , Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics , Max Planck Institute for Terrestrial Microbiology , Karl-von-Frisch-Str. 10 , D-35043 Marburg , Germany
| |
Collapse
|
57
|
Inflammation in CF: Key Characteristics and Therapeutic Discovery. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
58
|
Aliramezani A, Soleimani M, Fard RMN, Nojoomi F. Virulence determinants and biofilm formation of Acinetobacter baumannii isolated from hospitalized patients. Germs 2019; 9:148-153. [PMID: 31646145 DOI: 10.18683/germs.2019.1171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022]
Abstract
Introduction Acinetobacter baumannii are nosocomial bacteria that are responsible for outbreaks and severe infections in hospitalized patients globally. The major target of this study was the characterization of virulence determinants and biofilm formation of A. baumannii isolates from hospitalized patients. Methods In total, 100 A. baumannii were collected from three hospitals in Tehran, Iran, 2017-2018. The isolates were assessed using phenotypic and genotypic methods and then screened for virulence factor encoding genes such as plcN and lasB using conventional polymerase chain reaction. Furthermore, bacterial biofilm formation, motility and hemolytic and proteolytic activities were assessed. Results Of 100 A. baumannii isolates, 20 isolates included plcN and four isolates included lasB using PCR assay. Overall, 21 isolates were negative for biofilm formation while 45, 20 and 14 of the total isolates were reported as weak, moderate and strong biofilm producers, respectively. All isolates were positive for bap genes using PCR. Moreover, 35 isolates were motile on Luria-Bertani media, 47 isolates were α-hemolytic on Brucella blood agar media and all isolates displayed proteolytic activity. Conclusions Healthcare-associated infections with A. baumannii are a major concern, importantly due to their potency to acquire virulence factor genes. Therefore, shedding light in the discovery of new antimicrobial and/or therapeutic agents against virulent A. baumannii strains seem to be necessary.
Collapse
Affiliation(s)
- Amir Aliramezani
- PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, PO Box: 14117-18541, Iran, Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, PO Box: 14117-18541, Iran
| | - Ramin Mazaheri Nezhad Fard
- PhD, Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, PO Box: 14716-13151, Iran, Food Microbiology Research Centre, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Nojoomi
- PhD, Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, PO Box: 14117-18541, Iran
| |
Collapse
|
59
|
Chai YH, Xu JF. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? Clin Microbiol Infect 2019; 26:313-318. [PMID: 31306794 DOI: 10.1016/j.cmi.2019.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the most common pathogens isolated from respiratory tract specimen in patients with bronchiectasis. It is considered highly responsible for pathogenicity, progression and clinical outcomes of bronchiectasis. AIMS To summarize existing evidence on how different factors of Pseudomonas aeruginosa affect the pathogenicity, progression and clinical outcomes of bronchiectasis, so as to provide possible insights for clinical practice and related research in the future. SOURCES PubMed was searched for studies pertaining to bronchiectasis and P. aeruginosa published to date, with no specific inclusion or exclusion criteria. Reference lists of retrieved reviews were searched for additional articles. CONTENT This review focused on non-cystic fibrosis bronchiectasis and also provided some data on cystic fibrosis when studies in bronchiectasis were limited. We discussed various factors in relation to P. aeruginosa: virulence factors, drug resistance, regulatory systems, genomic diversity and transmission of P. aeruginosa, as well as treatment for P. aeruginosa. Their impacts on bronchiectasis and its management were discussed. IMPLICATIONS The impact of P. aeruginosa on bronchiectasis is definite, although conclusions in some aspects are still vague. Faced with the worrying drug-resistance status and treatment bottleneck, individualized management and novel therapies beyond the classic pathway are most likely to be a future trend. To confirm the independent or integrated impact of various factors of P. aeruginosa on bronchiectasis and to figure out all the problems mentioned, larger randomized control trials are truly needed in the future.
Collapse
Affiliation(s)
- Y-H Chai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - J-F Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
60
|
Jones-Nelson O, Hilliard JJ, DiGiandomenico A, Warrener P, Alfaro A, Cheng L, Stover CK, Cohen TS, Sellman BR. The Neutrophilic Response to Pseudomonas Damages the Airway Barrier, Promoting Infection by Klebsiella pneumoniae. Am J Respir Cell Mol Biol 2019; 59:745-756. [PMID: 30109945 DOI: 10.1165/rcmb.2018-0107oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa and Klebsiella pneumoniae are two common gram-negative pathogens that are associated with bacterial pneumonia and can often be isolated from the same patient. We used a mixed-pathogen pneumonia infection model in which mice were infected with sublethal concentrations of P. aeruginosa and K. pneumoniae, resulting in significant lethality, outgrowth of both bacteria in the lung, and systemic dissemination of K. pneumoniae. Inflammation, induced by P. aeruginosa activation of Toll-like receptor 5, results in prolonged neutrophil recruitment to the lung and increased levels of neutrophil elastase in the airway, resulting in lung damage and epithelial barrier dysfunction. Live P. aeruginosa was not required to potentiate K. pneumoniae infection, and flagellin alone was sufficient to induce lethality when delivered along with Klebsiella. Prophylaxis with an anti-Toll-like receptor 5 antibody or Sivelestat, a neutrophil elastase inhibitor, reduced neutrophil influx, inflammation, and mortality. Furthermore, pathogen-specific monoclonal antibodies targeting P. aeruginosa or K. pneumoniae prevented the outgrowth of both bacteria and reduced host inflammation and lethality. These findings suggest that coinfection with P. aeruginosa may enable the outgrowth and dissemination of K. pneumoniae, and that a pathogen- or host-specific prophylactic approach targeting P. aeruginosa may prevent or limit the severity of such infections by reducing neutrophil-induced lung damage.
Collapse
Affiliation(s)
| | | | | | | | - Alex Alfaro
- 2 Department of Laboratory Animal Research, and
| | - Lily Cheng
- 3 Department of Translational Science, MedImmune, LLC, Gaithersburg, Maryland
| | | | | | | |
Collapse
|
61
|
Revez JA, Bain LM, Watson RM, Towers M, Collins T, Killian KJ, O'Byrne PM, Gauvreau GM, Upham JW, Ferreira MA. Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin Transl Immunology 2019; 8:e1044. [PMID: 31223480 PMCID: PMC6566140 DOI: 10.1002/cti2.1044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Background Interleukin (IL)-6 signalling has been implicated in allergic asthma by animal, genetic association and clinical studies. In this study, we tested the hypothesis that tocilizumab (TCZ), a human monoclonal antibody that blocks IL-6 signalling, can prevent the development of allergen-induced bronchoconstriction in humans. Methods We performed a randomised, double-blind, placebo-controlled study, with eligible participants completing two allergen inhalation challenge tests, conducted before and after treatment with a single dose of TCZ or placebo. The primary efficacy endpoint was the magnitude of the late asthmatic response recorded between 3 and 7 after allergen challenge. The secondary efficacy endpoint was the early asthmatic response, measured 20 min to 2 h after allergen challenge. Results A total of 66 patients enrolled between September 2014 and August 2017, when the trial was stopped for futility based on results from an interim analysis. Eleven patients fulfilled all eligibility criteria assessed at baseline and were subsequently randomised to the TCZ (n = 6) or placebo (n = 5) groups. Both the primary and secondary efficacy endpoints were not significantly different between the two groups. Five patients reported adverse events (AEs), three in the TCZ group (11 AEs) and two in the placebo group (four AEs). Only one AE was TCZ-related (mild neutropenia), and there were no serious AEs. Significant treatment effects were observed for serum levels of C-reactive protein, IL-6 and soluble IL-6R levels. Conclusion In a small proof-of-concept clinical trial, we found no evidence that a single dose of tocilizumab was able to prevent allergen-induced bronchoconstriction. (Trial registered in the Australian New Zealand Clinical Trials Registry, number ACTRN12614000123640).
Collapse
Affiliation(s)
- Joana A Revez
- QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Lisa M Bain
- QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Rick M Watson
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - Michelle Towers
- Diamantina Institute University of Queensland Brisbane QLD Australia
| | - Tina Collins
- Diamantina Institute University of Queensland Brisbane QLD Australia
| | - Kieran J Killian
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - Paul M O'Byrne
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - Gail M Gauvreau
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - John W Upham
- Diamantina Institute University of Queensland Brisbane QLD Australia
| | | |
Collapse
|
62
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
63
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
64
|
Modulation of glucose-related metabolic pathways controls glucose level in airway surface liquid and fight oxidative stress in cystic fibrosis cells. J Bioenerg Biomembr 2019; 51:203-218. [PMID: 31030390 DOI: 10.1007/s10863-019-09797-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Direct and indirect evidences show that elevated glucose concentrations in airway surface liquid (ASL) promote lung infection by pathogens, playing a role in the progression of the Cystic Fibrosis (CF) disease. The joint action of transporter/s for glucose and of the cellular enzymes is essential in order to try to lower ASL glucose level. Inside the cell, the glycolysis and the pentose phosphate pathway (PPP) compete for the utilization of glucose-6-phosphate (G6P), the product in which glucose, after entry within the cell and phosphorylation, is trapped. The study aims to clarify whether, modulating the activity of enzymatic proteins and/or the level of metabolites/cofactors, involved in intracellular glucose utilization, a lowering of the extracellular glucose level in CF occurs. Biochemical approaches have enabled us to understand i) how G6P is shunted between glycolysis and PPP and ii) that mitochondria, more than enzymes/cofactors participating to the two cell glucose utilization pathways, are protagonists of the scene in counteracting the high ASL glucose level as well as oxidative stress in CF.
Collapse
|
65
|
Malhotra S, Hayes D, Wozniak DJ. Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J Cyst Fibros 2019; 18:796-803. [PMID: 31036488 DOI: 10.1016/j.jcf.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is the prominent bacterial pathogen in the cystic fibrosis (CF) lung and contributes to significant morbidity and mortality. Though P. aeruginosa strains initially colonizing the CF lung have a nonmucoid colony morphology, they often mutate into mucoid variants that are associated with clinical deterioration. Both nonmucoid and mucoid P. aeruginosa variants are often co-isolated on microbiological cultures of sputum collected from CF patients. With regional variation in bronchiectasis, tissue damage, inflammation, and microbial colonization, lobar distribution of nonmucoid and mucoid P. aeruginosa variants may impact local microenvironments in the CF lung, but this has not been well-studied. METHODS We prospectively collected lobe-specific bronchoalveolar lavage (BAL) fluid from a CF patient cohort (n = 14) using a standardized bronchoscopic protocol where collection was performed in 6 lobar regions. The lobar BAL specimens were plated on P. aeruginosa-selective media and proinflammatory cytokines (IL-1, TNF, IL-6 and IL-8) were measured via cytokine array. Correlations between infecting P. aeruginosa variants (nonmucoid, mucoid, or mixed-variant populations), the lobar regions in which these variants were found, and regional proinflammatory cytokine concentrations were measured. RESULTS P. aeruginosa mucoid and nonmucoid variants were homogenously distributed throughout the CF lung. However, infection with mucoid variants (found within single- or mixed-variant populations) was associated with significantly greater regional inflammation. The upper and lower lobes of the CF lung did not exhibit differences in inflammatory cytokine concentrations. CONCLUSIONS Mucoid P. aeruginosa infection is a microbial determinant of regional inflammation within the CF lung.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA
| | - Don Hayes
- The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Section. of Pulmonary Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
66
|
Khan F, Manivasagan P, Lee JW, Pham DTN, Oh J, Kim YM. Fucoidan-Stabilized Gold Nanoparticle-Mediated Biofilm Inhibition, Attenuation of Virulence and Motility Properties in Pseudomonas aeruginosa PAO1. Mar Drugs 2019; 17:E208. [PMID: 30987163 PMCID: PMC6520775 DOI: 10.3390/md17040208] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistance in Pseudomonas aeruginosa due to biofilm formation has transformed this opportunistic pathogen into a life-threatening one. Biosynthesized nanoparticles are increasingly being recognized as an effective anti-biofilm strategy to counter P. aeruginosa biofilms. In the present study, gold nanoparticles (AuNPs) were biologically synthesized and stabilized using fucoidan, which is an active compound sourced from brown seaweed. Biosynthesized fucoidan-stabilized AuNPs (F-AuNPs) were subjected to characterization using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission transmission electron microscopy (FE-TEM), dynamic light scattering (DLS), and energy dispersive X-ray diffraction (EDX). The biosynthesized F-AuNPs were then evaluated for their inhibitory effects on P. aeruginosa bacterial growth, biofilm formation, virulence factor production, and bacterial motility. Overall, the activities of F-AuNPs towards P. aeruginosa were varied depending on their concentration. At minimum inhibitory concentration (MIC) (512 µg/mL) and at concentrations above MIC, F-AuNPs exerted antibacterial activity. In contrast, the sub-inhibitory concentration (sub-MIC) levels of F-AuNPs inhibited biofilm formation without affecting bacterial growth, and eradicated matured biofilm. The minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were identified as 128 µg/mL. Furthermore, sub-MICs of F-AuNPs also attenuated the production of several important virulence factors and impaired bacterial swarming, swimming, and twitching motilities. Findings from the present study provide important insights into the potential of F-AuNPs as an effective new drug for controlling P. aeruginosa-biofilm-related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | | | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea.
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
67
|
Li Y, Zhao J, Quan C, Jin L, Xu Y, Chen M. Production, characterization, and powder preparation of quorum quenching acylase AiiO for pathogen control. Prep Biochem Biotechnol 2019; 49:151-157. [PMID: 30712466 DOI: 10.1080/10826068.2018.1550657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acylase AiiO is a novel quorum quenching enzyme with a broad substrate spectrum of acyl-homoserine lactones (AHLs) and has promising prospects in pathogen control. In this work, acylase AiiO production by a recombinant E. coli strain and its characterization were investigated; the acylase powder was further prepared and evaluated for effectiveness. A strategy of auto-induction combined with temperature regulation was developed to improve AiiO production. For the soluble AiiO protein in the cells, maximum production of 214.3 ± 9.4 mg/L was obtained in the fermenter. The purified acylase displayed an obvious AHL-degrading specific activity of 19.2 ± 0.56 U/mg. Sucrose, as the protective agent, maintained good stability of the acylase powder, in which the acylase remained 89.6 and 71.9% of its initial specific activity after storage at 4 °C for 3 and 6 months, respectively. The acylase powder could prominently decrease the expression levels of virulence-related factors of Pseudomonas aeruginosa. Based on the high-yield production and effective powder preparation, the quorum quenching acylase AiiO has the potential to be used in the clinical treatments of pathogenic infections.
Collapse
Affiliation(s)
- Yue Li
- a School of Biological Engineering, Dalian Polytechnic University , Dalian , China
| | - Jing Zhao
- b Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , Dalian , China.,c College of Life Science , Dalian Minzu University , Dalian , China
| | - Chunshan Quan
- b Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , Dalian , China.,c College of Life Science , Dalian Minzu University , Dalian , China
| | - Liming Jin
- b Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , Dalian , China.,c College of Life Science , Dalian Minzu University , Dalian , China
| | - Yongbin Xu
- b Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University) , Ministry of Education , Dalian , China.,c College of Life Science , Dalian Minzu University , Dalian , China
| | - Ming Chen
- a School of Biological Engineering, Dalian Polytechnic University , Dalian , China
| |
Collapse
|
68
|
Koeppen K, Barnaby R, Jackson AA, Gerber SA, Hogan DA, Stanton BA. Tobramycin reduces key virulence determinants in the proteome of Pseudomonas aeruginosa outer membrane vesicles. PLoS One 2019; 14:e0211290. [PMID: 30682135 PMCID: PMC6347270 DOI: 10.1371/journal.pone.0211290] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Tobramycin is commonly used to treat Pseudomonas aeruginosa lung infections in patients with Cystic Fibrosis (CF). Tobramycin treatment leads to increased lung function and fewer clinical exacerbations in CF patients, and modestly reduces the density of P. aeruginosa in the lungs. P. aeruginosa resides primarily in the mucus overlying lung epithelial cells and secretes outer membrane vesicles (OMVs) that diffuse through the mucus and fuse with airway epithelial cells, thus delivering virulence factors into the cytoplasm that modify the innate immune response. The goal of this study was to test the hypothesis that Tobramycin reduces the abundance of virulence factors in OMVs secreted by P. aeruginosa. Characterization of the proteome of OMVs isolated from control or Tobramycin-exposed P. aeruginosa strain PAO1 revealed that Tobramycin reduced several OMV-associated virulence determinants, including AprA, an alkaline protease that enhances P. aeruginosa survival in the lung, and is predicted to contribute to the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion by primary human bronchial epithelial cells. Deletion of the gene encoding AprA reduced the inhibitory effect of P. aeruginosa on Phe508del-CFTR Cl- secretion. Moreover, as predicted by our proteomic analysis, OMVs isolated from Tobramycin treated P. aeruginosa had a diminished inhibitory effect on Phe508del-CFTR Cl- secretion compared to OMVs isolated from control P. aeruginosa. Taken together, our proteomic analysis of OMVs and biological validation suggest that Tobramycin may improve lung function in CF patients infected with P. aeruginosa by reducing several key virulence factors in OMVs that reduce CFTR Cl- secretion, which is essential for bacterial clearance from the lungs.
Collapse
Affiliation(s)
- Katja Koeppen
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Angelyca A. Jackson
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
69
|
Delpiano L, Thomas JJ, Yates AR, Rice SJ, Gray MA, Saint-Criq V. Esomeprazole Increases Airway Surface Liquid pH in Primary Cystic Fibrosis Epithelial Cells. Front Pharmacol 2018; 9:1462. [PMID: 30618754 PMCID: PMC6297391 DOI: 10.3389/fphar.2018.01462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Respiratory failure, driven by airways mucus obstruction, chronic inflammation and bacterial infections, is the main cause of mortality and morbidity in people with cystic fibrosis (CF) due to defects in the Cl- andHCO 3 - transport activity of the CF Transmembrane conductance Regulator (CFTR). Most recent pre-clinical and clinical studies have focused on restoring CFTR function by enhancing its trafficking or transport activity and show promising results. However, there are a significant number of patients that will not benefit from these CFTR-targeted therapies and it is therefore important to identify new non-CFTR targets that will restore lung function, by-passing CFTR dysfunction. The H+/K+-ATPase, ATP12A, has recently been identified as a potential novel target for CF therapies, since its acute inhibition by ouabain was shown to help restore mucus viscosity, mucociliary transport, and antimicrobial activity using in vitro CF airway models, and this effect was linked to an increase in the pH of the airway surface liquid (ASL). Here, we have evaluated the potential therapeutic use of ouabain by investigating the effect of chronically treating fully differentiated CF primary human airway epithelial cells (hAECs) with ouabain, under thin film conditions, resembling the in vivo situation. Our results show that although chronic treatment increased ASL pH, this correlated with a deleterious effect on epithelial integrity as assessed by LDH release, transepithelial electrical resistance, fluorescein flux, and ion transport. Since ATP12A shares approximately 65% identity with the gastric H+/K+-ATPase (ATP4A), we investigated the potential of using clinically approved ATP4A proton pump inhibitors (PPIs) for their ability to restore ASL pH in CF hAECs. We show that, despite not expressing ATP4A transcripts, acute exposure to the PPI esomeprezole, produced changes in intracellular pH that were consistent with the inhibition of H+ secretion, but this response was independent of ATP12A. More importantly, chronic exposure of CF hAECs to esomeprazole alkalinized the ASL without disrupting the epithelial barrier integrity, but this increase in ASL pH was consistent with a decrease in mRNA expression of ATP12A. We conclude that PPIs may offer a new approach to restore ASL pH in CF airways, which is independent of CFTR.
Collapse
Affiliation(s)
- Livia Delpiano
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph J. Thomas
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annabel R. Yates
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah J. Rice
- Skeletal Research Group, Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
70
|
Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front Immunol 2018; 9:2416. [PMID: 30405616 PMCID: PMC6204374 DOI: 10.3389/fimmu.2018.02416] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023] Open
Abstract
Bacteria that readily adapt to different natural environments, can also exploit this versatility upon infection of the host to persist. Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium, is harmless to healthy individuals, and yet a formidable opportunistic pathogen in compromised hosts. When pathogenic, P. aeruginosa causes invasive and highly lethal disease in certain compromised hosts. In others, such as individuals with the genetic disease cystic fibrosis, this pathogen causes chronic lung infections which persist for decades. During chronic lung infections, P. aeruginosa adapts to the host environment by evolving toward a state of reduced bacterial invasiveness that favors bacterial persistence without causing overwhelming host injury. Host responses to chronic P. aeruginosa infections are complex and dynamic, ranging from vigorous activation of innate immune responses that are ineffective at eradicating the infecting bacteria, to relative host tolerance and dampened activation of host immunity. This review will examine how P. aeruginosa subverts host defenses and modulates immune and inflammatory responses during chronic infection. This dynamic interplay between host and pathogen is a major determinant in the pathogenesis of chronic P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Emmanuel Faure
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Kelly Kwong
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Dao Nguyen
- Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
71
|
Bastaert F, Kheir S, Saint-Criq V, Villeret B, Dang PMC, El-Benna J, Sirard JC, Voulhoux R, Sallenave JM. Pseudomonas aeruginosa LasB Subverts Alveolar Macrophage Activity by Interfering With Bacterial Killing Through Downregulation of Innate Immune Defense, Reactive Oxygen Species Generation, and Complement Activation. Front Immunol 2018; 9:1675. [PMID: 30083156 PMCID: PMC6064941 DOI: 10.3389/fimmu.2018.01675] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, in particular, in hospital patients undergoing ventilation and in patients with cystic fibrosis. Among the virulence factors secreted or injected into host cells, the physiopathological relevance of type II secretions system (T2SS) is less studied. Although there is extensive literature on the destructive role of LasB in vitro on secreted innate immune components and on some stromal cell receptors, studies on its direct action on myeloid cells are scant. Using a variety of methods, including the use of bacterial mutants, gene-targeted mice, and proteomics technology, we show here, using non-opsonic conditions (thus mimicking resting and naïve conditions in the alveolar space), that LasB, an important component of the P.a T2SS is highly virulent in vivo, and can subvert alveolar macrophage (AM) activity and bacterial killing, in vitro and in vivo by downregulating important secreted innate immune molecules (complement factors, cytokines, etc.) and receptors (IFNAR, Csf1r, etc.). In particular, we show that LasB downregulates the production of C3 and factor B complement molecules, as well as the activation of reactive oxygen species production by AM. In addition, we showed that purified LasB impaired significantly the ability of AM to clear an unrelated bacterium, namely Streptococcus pneumoniae. These data provide a new mechanism of action for LasB, potentially partly explaining the early onset of P.a, alone, or with other bacteria, within the alveolar lumen in susceptible individuals, such as ventilated, chronic obstructive pulmonary disease and cystic fibrosis patients.
Collapse
Affiliation(s)
- Fabien Bastaert
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Saadé Kheir
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vinciane Saint-Criq
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bérengère Villeret
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pham My-Chan Dang
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, INSERM, U1019, Lille, CNRS, UMR 8204, Université de Lille, Lille, France
| | - Romé Voulhoux
- CNRS & Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Jean-Michel Sallenave
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
72
|
Valera FCP, Ruffin M, Adam D, Maillé É, Ibrahim B, Berube J, Rousseau S, Brochiero E, Desrosiers MY. Staphylococcus aureus impairs sinonasal epithelial repair: Effects in patients with chronic rhinosinusitis with nasal polyps and control subjects. J Allergy Clin Immunol 2018; 143:591-603.e3. [PMID: 29935218 DOI: 10.1016/j.jaci.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effect of Staphylococcus aureus on nasal epithelial repair has never been assessed in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). OBJECTIVE This study aimed to determine whether (1) nasal epithelial cell cultures from patients with CRSwNP and control subjects repair differently; (2) S aureus exoproducts compromise nasal epithelial repair; (3) S aureus alters lamellipodial dynamics; and (4) deleterious effects could be counteracted by the Rho-associated coiled-coil kinase inhibitor Y-27632. METHODS Primary nasal epithelial cells (pNECs) collected during surgeries were cultured and injured under 3 conditions: (1) basal conditions, (2) exposed to S aureus exoproducts, and (3) exposed to S aureus exoproducts and Y-27632. Epithelial repair, lamellipodial dynamics, and cytoskeletal organization were assessed. RESULTS Under basal conditions, pNEC cultures from patients with CRSwNP presented significantly lower repair rates and reduced lamellipodial protrusion length and velocity than those from control subjects. S aureus exoproducts significantly decreased repair rates and protrusion dynamics in both control subjects and patients with CRSwNP; however, the effect of S aureus on cell protrusions was more sustained over time in patients with CRSwNP. Under basal conditions, immunofluorescence assays showed significantly reduced percentages of cells with lamellipodia at the wound edge in patients with CRSwNP compared with control subjects. S aureus altered cell polarity and decreased the percentage of cells with lamellipodia in both groups. Finally, Y-27632 prevented the deleterious effects of S aureus exoproducts on CRSwNP repair rates, as well as on lamellipodial dynamics and formation. CONCLUSIONS S aureus exoproducts significantly alter epithelial repair and lamellipodial dynamics on pNECs, and this impairment was more pronounced in patients with CRSwNP. Importantly, Y-27632 restored epithelial repair and lamellipodial dynamics in the presence of S aureus exoproducts.
Collapse
Affiliation(s)
- Fabiana C P Valera
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Division of Otorhinolaryngology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Badr Ibrahim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Otolaryngology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Y Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Otolaryngology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.
| |
Collapse
|
73
|
Singanayagam A, Woodcock HV, Molyneaux PL, Jenkins G. Review of the British Thoracic Society Winter Meeting 2017, 6-8 December 2017, London, UK. Thorax 2018; 73:872-876. [PMID: 29903754 DOI: 10.1136/thoraxjnl-2018-212012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 11/03/2022]
Abstract
This article reviews the British Thoracic Society Winter Meeting 2017 and summarises the new developments in scientific and clinical research across the breadth of respiratory medicine. The article discusses a number of symposia and selected abstract presentations from the meeting.
Collapse
Affiliation(s)
- Aran Singanayagam
- COPD and Asthma Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah V Woodcock
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London, London, UK
| | - Philip L Molyneaux
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK.,Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gisli Jenkins
- Centre for Respiratory Research, University of Nottingham, Nottingham, UK
| |
Collapse
|
74
|
Adam D, Bilodeau C, Sognigbé L, Maillé É, Ruffin M, Brochiero E. CFTR rescue with VX-809 and VX-770 favors the repair of primary airway epithelial cell cultures from patients with class II mutations in the presence of Pseudomonas aeruginosa exoproducts. J Cyst Fibros 2018; 17:705-714. [PMID: 29661510 DOI: 10.1016/j.jcf.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/08/2018] [Accepted: 03/25/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Progressive airway damage due to bacterial infections, especially with Pseudomonas aeruginosa remains the first cause of morbidity and mortality in CF patients. Our previous work revealed a repair delay in CF airway epithelia compared to non-CF. This delay was partially prevented after CFTR correction (with VRT-325) in the absence of infection. Our goals were now to evaluate the effect of the Orkambi combination (CFTR VX-809 corrector + VX-770 potentiator) on the repair of CF primary airway epithelia, in infectious conditions. METHODS Primary airway epithelial cell cultures from patients with class II mutations were mechanically injured and wound healing rates and transepithelial resistances were monitored after CFTR rescue, in the absence and presence of P. aeruginosa exoproducts. RESULTS Our data revealed that combined treatment with VX-809 and VX-770 elicited a greater beneficial impact on airway epithelial repair than VX-809 alone, in the absence of infection. The treatment with Orkambi was effective not only in airway epithelial cell cultures from patients homozygous for the F508del mutation but also from heterozygous patients carrying F508del and another class II mutation (N1303 K, I507del). The stimulatory effect of the Orkambi treatment was prevented by CFTR inhibition with GlyH101. Finally, Orkambi combination elicited a slight but significant improvement in airway epithelial repair and transepithelial resistance, despite the presence of P. aeruginosa exoproducts. CONCLUSIONS Our findings indicate that Orkambi may favor airway epithelial integrity in CF patients with class II mutations. Complementary approaches would however be needed to further improve CFTR rescue and airway epithelial repair.
Collapse
Affiliation(s)
- Damien Adam
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Claudia Bilodeau
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Laura Sognigbé
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Émilie Maillé
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| | - Manon Ruffin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| | - Emmanuelle Brochiero
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
75
|
Maillé É, Ruffin M, Adam D, Messaoud H, Lafayette SL, McKay G, Nguyen D, Brochiero E. Quorum Sensing Down-Regulation Counteracts the Negative Impact of Pseudomonas aeruginosa on CFTR Channel Expression, Function and Rescue in Human Airway Epithelial Cells. Front Cell Infect Microbiol 2017; 7:470. [PMID: 29177135 PMCID: PMC5686086 DOI: 10.3389/fcimb.2017.00470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/27/2017] [Indexed: 11/13/2022] Open
Abstract
The function of cystic fibrosis transmembrane conductance regulator (CFTR) channels is crucial in human airways. However unfortunately, chronic Pseudomonas aeruginosa infection has been shown to impair CFTR proteins in non-CF airway epithelial cells (AEC) and to alter the efficiency of new treatments with CFTR modulators designed to correct the basic CFTR default in AEC from cystic fibrosis (CF) patients carrying the F508del mutation. Our aim was first to compare the effect of laboratory strains, clinical isolates, engineered and natural mutants to determine the role of the LasR quorum sensing system in CFTR impairment, and second, to test the efficiency of a quorum sensing inhibitor to counteract the deleterious impact of P. aeruginosa both on wt-CFTR and on the rescue of F508del-CFTR by correctors. We first report that exoproducts from either the laboratory PAO1 strain or a clinical ≪Early≫ isolate (from an early stage of infection) altered CFTR expression, localization and function in AEC expressing wt-CFTR. Genetic inactivation of the quorum-sensing LasR in PAO1 (PAO1ΔlasR) or in a natural clinical mutant (≪Late≫ CF-adapted clinical isolate) abolished wt-CFTR impairment. PAO1 exoproducts also dampened F508del-CFTR rescue by VRT-325 or Vx-809 correctors in CF cells, whereas PAO1ΔlasR had no impact. Importantly, treatment of P. aeruginosa cultures with a quorum sensing inhibitor (HDMF) prevented the negative effect of P. aeruginosa exoproducts on wt-CFTR and preserved CFTR rescue by correctors in CF AEC. These findings indicate that LasR-interfering strategies could be of benefits to counteract the deleterious effect of P. aeruginosa in infected patients.
Collapse
Affiliation(s)
- Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Hatem Messaoud
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Shantelle L. Lafayette
- Meakins-Christie Laboratories at the Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Geoffrey McKay
- Meakins-Christie Laboratories at the Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories at the Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|