51
|
Abstract
The intrinsic fluorescence of nucleic acids is extremely weak compared to that of the fluorescent labels used to probe their structural and functional behavior. Thus, for technical reasons, the investigation of the intrinsic DNA fluorescence was limited for a long time. But with the improvement in spectroscopic techniques, the situation started to change around the turn of the century. During the past two decades, various factors modulating the static and dynamic properties of the DNA fluorescence have been determined; it was shown that, under certain conditions, quantum yields may be up 100 times higher than what was known so far. The ensemble of these studies opened up new paths for the development of label-free DNA fluorescence for biochemical applications. In parallel, these studies have shed new light on the primary processes leading to photoreactions that damage DNA when it absorbs UV radiation.We have been studying a variety of DNA systems, ranging from the monomeric nucleobases to double-stranded and four-stranded structures using fluorescence spectroscopy. The specificity of our work resides in the quantitative association of the steady-state fluorescence spectra with time-resolved data recorded from the femtosecond to the nanosecond timescales, made possible by the development of specific methodologies.Among others, our fluorescence studies provide information on the energy and the polarization of electronic transitions. These are valuable indicators for the evolution of electronic excitations in complex systems, where the electronic coupling between chromophores plays a key role. Highlighting collective effects that originate from electronic interactions in DNA multimers is the objective of the present Account.In contrast to the monomeric chromophores, whose fluorescence decays within a few picoseconds, that of DNA multimers persists on the nanosecond timescale. Even if long-lived states represent only a small fraction of electronic excitations, they may be crucial to the DNA photoreactivity because the probability to reach reactive conformations increases over time, owing to the incessant structural dynamics of nucleic acids.Our femtosecond studies have revealed that an ultrafast excitation energy transfer takes place among the nucleobases within duplexes and G-quadruplexes. Such an ultrafast process is possible when collective states are populated directly upon photon absorption. At much longer times, we discovered an unexpected long-lived high-energy emission stemming from what was coined "HELM excitons". These collective states, whose emission increases with the duplex size, could be responsible for the delayed fluorescence of ππ* states observed for genomic DNA.Most studies dealing with excited-state relaxation in DNA were carried out with excitation in the absorption band peaking at around 260 nm. We went beyond this and also performed the first time-resolved study with excitation in the UVA spectral range, where a very weak absorption tail is present. The resulting fluorescence decays are much slower and the fluorescence quantum yields are much higher than for UVC excitation. We showed that the base pairing of DNA strands enhances the UVA fluorescence and, in parallel, increases the photoreactivity because it modifies the nature of the involved collective excited states.
Collapse
Affiliation(s)
- Thomas Gustavsson
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
52
|
Fang YG, Valverde D, Mai S, Canuto S, Borin AC, Cui G, González L. Excited-State Properties and Relaxation Pathways of Selenium-Substituted Guanine Nucleobase in Aqueous Solution and DNA Duplex. J Phys Chem B 2021; 125:1778-1789. [PMID: 33570942 PMCID: PMC8023715 DOI: 10.1021/acs.jpcb.0c10855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The excited-state properties and relaxation mechanisms after light irradiation of 6-selenoguanine (6SeG) in water and in DNA have been investigated using a quantum mechanics/molecular mechanics (QM/MM) approach with the multistate complete active space second-order perturbation theory (MS-CASPT2) method. In both environments, the S1 1(nSeπ5*) and S2 1(πSeπ5*) states are predicted to be the spectroscopically dark and bright states, respectively. Two triplet states, T1 3(πSeπ5*) and T2 3(nSeπ5*), are found energetically below the S2 state. Extending the QM region to include the 6SeG-Cyt base pair slightly stabilizes the S2 state and destabilizes the S1, due to hydrogen-bonding interactions, but it does not affect the order of the states. The optimized minima, conical intersections, and singlet-triplet crossings are very similar in water and in DNA, so that the same general mechanism is found. Additionally, for each excited state geometry optimization in DNA, three kind of structures ("up", "down", and "central") are optimized which differ from each other by the orientation of the C═Se group with respect to the surrounding guanine and thymine nucleobases. After irradiation to the S2 state, 6SeG evolves to the S2 minimum, near to a S2/S1 conical intersection that allows for internal conversion to the S1 state. Linear interpolation in internal coordinates indicate that the "central" orientation is less favorable since extra energy is needed to surmount the high barrier in order to reach the S2/S1 conical intersection. From the S1 state, 6SeG can further decay to the T1 3(πSeπ5*) state via intersystem crossing, where it will be trapped due to the existence of a sizable energy barrier between the T1 minimum and the T1/S0 crossing point. Although this general S2 → T1 mechanism takes place in both media, the presence of DNA induces a steeper S2 potential energy surface, that it is expected to accelerate the S2 → S1 internal conversion.
Collapse
Affiliation(s)
- Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Danillo Valverde
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, SP 05508-090, Brazil
| | - Sebastian Mai
- Photonics Institute, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria.,Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sylvio Canuto
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, SP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP Brazil
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
53
|
Kim SI, Pfeifer GP. The epigenetic DNA modification 5-carboxylcytosine promotes high levels of cyclobutane pyrimidine dimer formation upon UVB irradiation. GENOME INSTABILITY & DISEASE 2021; 2:59-69. [PMID: 34485825 PMCID: PMC8415257 DOI: 10.1007/s42764-020-00030-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
In mammals, DNA methyltransferases create 5-methylcytosines (5mC) predominantly at CpG dinucleotides. 5mC oxidases convert 5mC in three consecutive oxidation steps to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and then 5-carboxylcytosine (5caC). Upon irradiation with UV light, dipyrimidines containing C, 5mC and 5hmC are known to form cyclobutane pyrimidine dimers (CPDs) as major DNA photolesions. However, the photobiology of 5fC and 5caC has remained largely unexplored. Here, we tested a series of oligonucleotides with single or multiple positions carrying cytosine (C), 5mC, 5hmC, 5fC or 5caC and irradiated them with different sources of UV irradiation. While UVC radiation produced CPDs near dipyrimidines containing all types of modified cytosine bases, UVB radiation produced by far the highest levels of CPDs near 5caC-containing sequences. Dipyrimidines one or two nucleotide positions adjacent to 5caC but not always those involving this modified base directly were the major sites for these prominent UVB photoproducts. This selectivity did not depend on whether 5caC was present on one or both DNA strands at CpG sequences. We also observed a tendency of the 5caC-containing DNA strands to undergo apparent covalent crosslinking. This reaction occurred with UVB or UVC but not with UVA irradiation. Our data show that 5-carboxylcytosine, although generally a rare base in the genome, can nonetheless make a strong contribution to sequence-specific DNA damage perhaps by acting as a DNA-intrinsic photosensitizer.
Collapse
Affiliation(s)
- Sang-In Kim
- Beckman Research Institute of the City of Hope, Grand Rapids, MI, USA
| | - Gerd P. Pfeifer
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
54
|
Zuluaga C, Spata VA, Matsika S. Benchmarking Quantum Mechanical Methods for the Description of Charge-Transfer States in π-Stacked Nucleobases. J Chem Theory Comput 2020; 17:376-387. [PMID: 33346637 DOI: 10.1021/acs.jctc.0c00973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge-transfer (CT) states are of special interest in photochemical research because they can facilitate chemical reactions through the rearrangement of electrons and subsequently chemical bonds in a molecular system. Of particular importance to this research is the transfer of electrons between π-stacked nucleobases in DNA because they play an important role in its photophysics and photochemistry. Computational methods are paramount for the study of CT states because of the current inability of experimental methods to easily detect such states. However, many ab-initio wavefunction-based and density functional theory (DFT) methods fail to accurately describe these CT states. Here, we benchmark how 40 different quantum mechanical methods describe the excited states of a guanine-thymine π-stacked nucleobase dimer system, both in 5'-TG-3' and 5'-GT-3' conformations. We find that the distance between the nucleobases plays a major role in the energy of the CT state and in the difference of the dipole moments between the CT and ground state. There is a larger range of values (and errors) for the energies of CT states compared to those of states localized on one nucleobase. Wavefunction-based methods have similar errors for the CT and localized valence states, while DFT methods are very sensitive to the amount of Hartree-Fock exchange. Long-range-corrected functionals with a careful balance of the Hartree-Fock exchange included can predict very accurate CT states and a balanced description with the localized states.
Collapse
Affiliation(s)
- Camilo Zuluaga
- Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, Pennsylvania, United States
| | - Vincent A Spata
- Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, Pennsylvania, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, 1901 N 13th Street, Philadelphia, Pennsylvania, United States
| |
Collapse
|
55
|
A novel spectroscopic window on conical intersections in biomolecules. Proc Natl Acad Sci U S A 2020; 117:26553-26555. [PMID: 33077586 DOI: 10.1073/pnas.2018651117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
56
|
Ibele LM, Sánchez-Murcia PA, Mai S, Nogueira JJ, González L. Excimer Intermediates en Route to Long-Lived Charge-Transfer States in Single-Stranded Adenine DNA as Revealed by Nonadiabatic Dynamics. J Phys Chem Lett 2020; 11:7483-7488. [PMID: 32794719 PMCID: PMC7503858 DOI: 10.1021/acs.jpclett.0c02193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 05/25/2023]
Abstract
The ultrafast time evolution of a single-stranded adenine DNA is studied using a hybrid multiscale quantum mechanics/molecular mechanics (QM/MM) scheme coupled to nonadiabatic surface hopping dynamics. As a model, we use (dA)20 where a stacked adenine tetramer is treated quantum chemically. The dynamical simulations combined with on-the-fly quantitative wave function analysis evidence the nature of the long-lived electronically excited states formed upon absorption of UV light. After a rapid decrease of the initially excited excitons, relaxation to monomer-like states and excimers occurs within 100 fs. The former monomeric states then relax into additional excimer states en route to forming stabilized charge-transfer states on a longer timescale of hundreds of femtoseconds. The different electronic-state characters is reflected on the spatial separation between the adenines: excimers and charge-transfer states show a much smaller spatial separation than the monomer-like states and the initially formed excitons.
Collapse
Affiliation(s)
- Lea M. Ibele
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Pedro A. Sánchez-Murcia
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Juan J. Nogueira
- Chemistry
Department, Universidad Autónoma
de Madridand IADCHEM, Institute for Advanced Research in Chemistry, Calle Francisco Tomás y Valiente
7, 28049 Madrid, Spain
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
57
|
Balanikas E, Banyasz A, Douki T, Baldacchino G, Markovitsi D. Guanine Radicals Induced in DNA by Low-Energy Photoionization. Acc Chem Res 2020; 53:1511-1519. [PMID: 32786340 DOI: 10.1021/acs.accounts.0c00245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guanine (G) radicals are precursors to DNA oxidative damage, correlated with carcinogenesis and aging. During the past few years, we demonstrated clearly an intriguing effect: G radicals can be generated upon direct absorption of UV radiation with energy significantly lower than the G ionization potential. Using nanosecond transient absorption spectroscopy, we studied the primary species, ejected electrons and guanine radicals, which result from photoionization of various DNA systems in aqueous solution.The DNA propensity to undergo electron detachment at low photon energies greatly depends on its secondary structure. Undetected for monomers or unstacked oligomers, this propensity may be 1 order of magnitude higher for G-quadruplexes than for duplexes. The experimental results suggest nonvertical processes, associated with the relaxation of electronic excited states. Theoretical studies are required to validate the mechanism and determine the factors that come into play. Such a mechanism, which may be operative over a broad excitation wavelength range, explains the occurrence of oxidative damage observed upon UVB and UVA irradiation.Quantification of G radical populations and their time evolution questions some widespread views. It appears that G radicals may be generated with the same probability as pyrimidine dimers, which are considered to be the major lesions induced upon absorption of low-energy UV radiation by DNA. As most radical cations undergo deprotonation, the vast majority of the final reaction products is expected to stem from long-lived deprotonated radicals. Consequently, when G radical cations are involved, the widely used oxidation marker 8-oxodG is not representative of the oxidative damage.Beyond the biological consequences, photogeneration of electron holes in G-quadruplexes may inspire applications in nanoelectronics; although four-stranded structures are currently studied as molecular wires, their behavior as photoconductors has not been explored so far.In the present Account, after highlighting some key experimental issues, we first describe the photoionization process, and then, we focus on radicals. We use as show-cases new results obtained for genomic DNA and Oxytricha G-quadruplexes. Generation and reaction dynamics of G radicals in these systems provide a representative picture of the phenomena reported previously for duplexes and G-quadruplexes, respectively.
Collapse
Affiliation(s)
| | - Akos Banyasz
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble France
| | - Gérard Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
58
|
Kufner CL, Zinth W, Bucher DB. UV-Induced Charge-Transfer States in Short Guanosine-Containing DNA Oligonucleotides. Chembiochem 2020; 21:2306-2310. [PMID: 32239789 PMCID: PMC7496882 DOI: 10.1002/cbic.202000103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Indexed: 11/24/2022]
Abstract
Charge transfer has proven to be an important mechanism in DNA photochemistry. In particular, guanine (dG) plays a major role as an electron donor, but the photophysical dynamics of dG-containing charge-transfer states have not been extensively investigated so far. Here, we use UV pump (266 nm) and picosecond IR probe (∼5-7 μm) spectroscopy to study ultrafast dynamics in dG-containing short oligonucleotides as a function of sequence and length. For the pure purine oligomers, we observed lifetimes for the charge-transfer states of the order of several hundreds of picoseconds, regardless of the oligonucleotide length. In contrast, pyrimidine-containing dinucleotides d(GT) and d(GC) show much faster relaxation dynamics in the 10 to 30 ps range. In all studied nucleotides, the charge-transfer states are formed with an efficiency of the order of ∼50 %. These photophysical characteristics will lead to an improved understanding of DNA damage and repair processes.
Collapse
Affiliation(s)
- Corinna L. Kufner
- Biomolecular Optics and Center for Integrated Protein ScienceLudwig-Maximilians-University MunichOettingenstr. 6780538MunichGermany
- present affiliation: Harvard-Smithsonian Center for Astrophysics Department of AstronomyHarvard University60 Garden StreetCambridgeMA 02138USA
| | - Wolfgang Zinth
- Biomolecular Optics and Center for Integrated Protein ScienceLudwig-Maximilians-University MunichOettingenstr. 6780538MunichGermany
| | - Dominik B. Bucher
- Biomolecular Optics and Center for Integrated Protein ScienceLudwig-Maximilians-University MunichOettingenstr. 6780538MunichGermany
- present affiliation: Department of ChemistryTechnical University of MunichLichtenbergstr. 485748MunichGermany
| |
Collapse
|
59
|
Karas LJ, Wu CH, Ottosson H, Wu JI. Electron-driven proton transfer relieves excited-state antiaromaticity in photoexcited DNA base pairs. Chem Sci 2020; 11:10071-10077. [PMID: 34094268 PMCID: PMC8162126 DOI: 10.1039/d0sc02294b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Watson–Crick A·T and G·C base pairs are not only electronically complementary, but also photochemically complementary. Upon UV irradiation, DNA base pairs undergo efficient excited-state deactivation through electron driven proton transfer (EDPT), also known as proton-coupled electron transfer (PCET), at a rate too fast for other reactions to take place. Why this process occurs so efficiently is typically reasoned based on the oxidation and reduction potentials of the bases in their electronic ground states. Here, we show that the occurrence of EDPT can be traced to a reversal in the aromatic/antiaromatic character of the base upon photoexcitation. The Watson–Crick A·T and G·C base pairs are aromatic in the ground state, but the purines become highly antiaromatic and reactive in the first 1ππ* state, and transferring an electron and a proton to the pyrimidine relieves this excited-state antiaromaticity. Even though proton transfer proceeds along the coordinate of breaking a N–H σ-bond, the chromophore is the π-system of the base, and EDPT is driven by the strive to alleviate antiaromaticity in the π-system of the photoexcited base. The presence and absence of alternative excited-state EDPT routes in base pairs also can be explained by sudden changes in their aromatic and antiaromatic character upon photoexcitation. The Watson–Crick A·T and G·C base pairs are not only electronically complementary, but also photochemically complementary.![]()
Collapse
Affiliation(s)
- Lucas J Karas
- Department of Chemistry, University of Houston Houston TX 77004 USA
| | - Chia-Hua Wu
- Department of Chemistry, University of Houston Houston TX 77004 USA
| | - Henrik Ottosson
- Department of Chemistry, Ångström Laboratory, Uppsala University 751 20 Uppsala Sweden
| | - Judy I Wu
- Department of Chemistry, University of Houston Houston TX 77004 USA
| |
Collapse
|
60
|
Yaghoubi Jouybari M, Liu Y, Improta R, Santoro F. Ultrafast Dynamics of the Two Lowest Bright Excited States of Cytosine and 1-Methylcytosine: A Quantum Dynamical Study. J Chem Theory Comput 2020; 16:5792-5808. [PMID: 32687360 DOI: 10.1021/acs.jctc.0c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nonadiabatic quantum dynamics (QD) of cytosine and 1-methylcytosine in the gas phase is simulated for 250 fs after a photoexcitation to one of the first two bright states. The nuclear wavepacket is propagated on the coupled diabatic potential energy surfaces of the lowest seven excited states, including ππ*, nπ*, and Rydberg states along all the vibrational degrees of freedom. We focus in particular on the interplay between the bright and the dark nπ* states, not considering the decay to the ground electronic state. To run these simulations, we implemented an automatic general procedure to parametrize linear vibronic coupling (LVC) models with time-dependent density functional theory (DFT) computations and interfaced it with Gaussian package. The wavepacket was propagated with the multilayer version of the multiconfigurational time dependent Hartree method. Two different density functionals, PBE0 and CAM-B3LYP, which provide a different description of the relative stability of the lowest energy dark states, were used to parametrize the LVC Hamiltonian. Part of the photoexcited population on lowest HOMO-LUMO transition (πHπL*) decays within less than 100 fs to a nπ* state which mainly involves a promotion of an electron from the oxygen lone pair to the LUMO (nOπL*). The population of the second ππ* state decays almost completely, in <100 fs, not only to πHπL* and to nOπL* states but also to another nπL* state involving the nitrogen lone pair. The efficiency of the adopted protocol allowed us to check the accuracy of the predictions by repeating the QD simulations with different LVC Hamiltonians parametrized either at the ground-state minimum or at stationary structures of different relevant excited states.
Collapse
Affiliation(s)
- Martha Yaghoubi Jouybari
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
61
|
Detection of the thietane precursor in the UVA formation of the DNA 6-4 photoadduct. Nat Commun 2020; 11:3599. [PMID: 32680990 PMCID: PMC7368040 DOI: 10.1038/s41467-020-17333-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Notwithstanding the central biological role of the (6-4) photoadduct in the induction of skin cancer by sunlight, crucial mechanistic details about its formation have evaded characterization despite efforts spanning more than half a century. 4-Thiothymidine (4tT) has been widely used as an important model system to study its mechanism of formation, but the excited-state precursor, the intermediate species, and the time scale leading to the formation of the (6-4) photoadduct have remained elusive. Herein, steady-state and time-resolved spectroscopic techniques are combined with new and reported quantum-chemical calculations to demonstrate the excited state leading to the formation of the thietane intermediate, its rate, and the formation of the (6-4) photoadduct using the 5’-TT(4tT)T(4tT)TT-3’ DNA oligonucleotide. Efficient, sub-1 ps intersystem crossing leads to the population of a triplet minimum of the thietane intermediate in as short as 3 ps, which intersystem crosses to its ground state and rearranges to form the (6-4) photoadduct. The mechanisms of formation of the (6-4) photoproducts in DNA damage by sunlight is still debated. Here the authors show, by optical spectroscopies and computations, the details of the formation of a (6-4) photoadduct via the thietane intermediate in a single-stranded DNA oligonucleotide.
Collapse
|
62
|
Arpa EM, Brister MM, Hoehn SJ, Crespo-Hernández CE, Corral I. On the Origin of the Photostability of DNA and RNA Monomers: Excited State Relaxation Mechanism of the Pyrimidine Chromophore. J Phys Chem Lett 2020; 11:5156-5161. [PMID: 32501702 DOI: 10.1021/acs.jpclett.0c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Today's genetic composition is the result of continual refinement processes on primordial heterocycles present in prebiotic Earth and at least partially regulated by ultraviolet radiation. Femtosecond transient absorption spectroscopy and state-of-the-art ab initio calculations are combined to unravel the electronic relaxation mechanism of pyrimidine, the common chromophore of the nucleobases. The excitation of pyrimidine at 268 nm populates the S1(nπ*) state directly. A fraction of the population intersystem crosses to the triplet manifold within 7.8 ps, partially decaying within 1.5 ns, while another fraction recovers the ground state in >3 ns. The pyrimidine chromophore is not responsible for the photostability of the nucleobases. Instead, C2 and C4 amino and/or carbonyl functionalization is essential for shaping the topography of pyrimidine's potential energy surfaces and results in accessible conical intersections between the initially populated electronic excited state and the ground state.
Collapse
Affiliation(s)
| | - Matthew M Brister
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
63
|
Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells. Genes (Basel) 2020; 11:genes11060646. [PMID: 32545288 PMCID: PMC7349664 DOI: 10.3390/genes11060646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Phototherapy using narrowband ultraviolet-B (NB-UVB) has been shown to be more effective than conventional broadband UVB (BB-UVB) in treating a variety of skin diseases. To assess the difference in carcinogenic potential between NB-UVB and BB-UVB, we investigated the cytotoxicity via colony formation assay, genotoxicity via sister chromatid exchange (SCE) assay, mutagenicity via hypoxanthine phosphoribosyltransferase (HPRT) mutation assay, as well as cyclobutane pyrimidine dimer (CPD) formation and reactive oxygen species (ROS) generation in Chinese hamster ovary (CHO) and their NER mutant cells. The radiation dose required to reduce survival to 10% (D10 value) demonstrated BB-UVB was 10 times more cytotoxic than NB-UVB, and revealed that NB-UVB also induces DNA damage repaired by nucleotide excision repair. We also found that BB-UVB more efficiently induced SCEs and HPRT mutations per absorbed energy dosage (J/m2) than NB-UVB. However, SCE and HPRT mutation frequencies were observed to rise in noncytotoxic dosages of NB-UVB exposure. BB-UVB and NB-UVB both produced a significant increase in CPD formation and ROS formation (p < 0.05); however, higher dosages were required for NB-UVB. These results suggest that NB-UVB is less cytotoxic and genotoxic than BB-UVB, but can still produce genotoxic effects even at noncytotoxic doses.
Collapse
|
64
|
Peng Q, Zhu YH, Zhang TS, Liu XY, Fang WH, Cui G. Selenium substitution effects on excited-state properties and photophysics of uracil: a MS-CASPT2 study. Phys Chem Chem Phys 2020; 22:12120-12128. [PMID: 32440669 DOI: 10.1039/d0cp01369b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photophysics of selenium-substituted nucleobases has attracted recent experimental attention because they could serve as potential photosensitizers in photodynamic therapy. Herein, we present a comprehensive MS-CASPT2 study on the spectroscopic and excited-state properties, and photophysics of 2-selenouracil (2SeU), 4-selenouracil (4SeU), and 2,4-selenouracil (24SeU). Relevant minima, conical intersections, crossing points, and excited-state relaxation paths in the lowest five electronic states (i.e., S0, S1, S2, T2, and T1) are explored. On the basis of these results, their photophysical mechanisms are proposed. Upon photoirradiation to the bright S2 state, 2SeU quickly relaxes to its S2 minimum and then moves in an essentially barrierless way to a nearby S2/S1 conical intersection near which the S1 state is populated. Next, the S1 system arrives at an S1/T2/T1 intersection where a large S1/T1 spin-orbit coupling of 430.8 cm-1 makes the T1 state populated. In this state, a barrier of 6.8 kcal mol-1 will trap 2SeU for a while. In parallel, for 4SeU or 24SeU, the system first relaxes to the S2 minimum and then overcomes a small barrier to approach an S2/S1 conical intersection. Once hopping to the S1 state, there exists an extended region with very close S1, T2, and T1 energies. Similarly, a large S1/T1 spin-orbit coupling of 426.8 cm-1 drives the S1→ T1 intersystem crossing process thereby making the T1 state populated. Similarly, an energy barrier heavily suppresses electronic transition to the S0 state. The present work manifests that different selenium substitutions on uracil can lead to a certain extent of different vertical and adiabatic excitation energies, excited-state properties, and relaxation pathways. These insights could help understand the photophysics of selenium-substituted nucleobases.
Collapse
Affiliation(s)
- Qin Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | |
Collapse
|
65
|
Trachsel MA, Blaser S, Lobsiger S, Siffert L, Frey HM, Blancafort L, Leutwyler S. Locating Cytosine Conical Intersections by Laser Experiments and Ab Initio Calculations. J Phys Chem Lett 2020; 11:3203-3210. [PMID: 32251591 DOI: 10.1021/acs.jpclett.0c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The decay mechanism of S0 → S1 excited cytosine (Cyt) and the effect of substitution are studied combining jet-cooled spectroscopy (nanosecond resonant two-photon ionization (R2PI) and picosecond lifetime measurements) with CASPT2//CASSCF computations for eight derivatives. For Cyt and five derivatives substituted at N1, C5, and C6, rapid internal conversion sets in at 250-1200 cm-1 above the 000 bands. The break-off in the spectra correlates with the calculated barriers toward the "C5-C6 twist" conical intersection, which unambiguously establishes the decay mechanism at low S1 state vibrational energies. The barriers increase with substituents that stabilize the charge shifts at C4, C5, and C6 following (1ππ*) excitation. The R2PI spectra of the clamped derivatives 5,6-trimethyleneCyt (TMCyt) and 1-methyl-TMCyt (1M-TMCyt), which decay along an N3 out-of-plane coordinate, extend up to +3500 and +4500 cm-1.
Collapse
Affiliation(s)
- Maria A Trachsel
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Susan Blaser
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Simon Lobsiger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Luca Siffert
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Hans-Martin Frey
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Lluís Blancafort
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, C/M.A. Capmany 69, 17003 Girona, Spain
| | - Samuel Leutwyler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
66
|
Hahn MB, Smales GJ, Seitz H, Solomun T, Sturm H. Ectoine interaction with DNA: influence on ultraviolet radiation damage. Phys Chem Chem Phys 2020; 22:6984-6992. [PMID: 32188961 DOI: 10.1039/d0cp00092b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA.
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany. and Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Harald Seitz
- Universität Potsdam, Institut für Biochemie und Biologie, 14476 Potsdam, Germany and Fraunhofer Institute for Cell Therapy and Immunology, 14476 Potsdam, Germany
| | - Tihomir Solomun
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| |
Collapse
|
67
|
Xu R, Hu Z, Wang X, Liu Y, Zhou Z, Xu J, Sun Z, Sun H, Chen J. Intramolecular Charge Transfer in 5-Halogen Cytidines Revealed by Femtosecond Time-Resolved Spectroscopy. J Phys Chem B 2020; 124:2560-2567. [DOI: 10.1021/acs.jpcb.0c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rui Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yufeng Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
68
|
Jaiswal VK, Segarra-Martí J, Marazzi M, Zvereva E, Assfeld X, Monari A, Garavelli M, Rivalta I. First-principles characterization of the singlet excited state manifold in DNA/RNA nucleobases. Phys Chem Chem Phys 2020; 22:15496-15508. [DOI: 10.1039/d0cp01823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
TD-DFT characterization of the high-energy singlet excited state manifold of the canonical DNA/RNA nucleobasesin vacuumis assessed against RASPT2 reference computations for reliable simulations of linear and non-linear electronic spectra.
Collapse
Affiliation(s)
- Vishal K. Jaiswal
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Javier Segarra-Martí
- Univ Lyon, Ens de Lyon, CNRS
- Université Lyon 1
- Laboratoire de Chimie UMR 5182
- Lyon
- France
| | - Marco Marazzi
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Elena Zvereva
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Xavier Assfeld
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
- CNRS, Laboratoire de Physique et Chimie Théoriques
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- Viale del Risorgimento 4
- I-40136 Bologna
- Italy
| |
Collapse
|
69
|
Gontcharov J, Liu L, Pilles BM, Carell T, Schreier WJ, Zinth W. Triplet-Induced Lesion Formation at CpT and TpC Sites in DNA. Chemistry 2019; 25:15164-15172. [PMID: 31538684 PMCID: PMC6899856 DOI: 10.1002/chem.201903573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/22/2022]
Abstract
UV irradiation induces DNA lesions particularly at dipyrimidine sites. Using time-resolved UV pump (250 nm) and mid-IR probe spectroscopy the triplet pathway of cyclobutane pyrimidine dimer (CPD) formation within TpC and CpT sequences was studied. The triplet state is initially localized at the thymine base but decays with 30 ns under formation of a biradical state extending over both bases of the dipyrimidine. Subsequently this state either decays back to the electronic ground state on the 100 ns time scale or forms a cyclobutane pyrimidine dimer lesion (CPD). Stationary IR spectroscopy and triplet sensitization via 2'-methoxyacetophenone (2-M) in the UVA range shows that the lesions are formed with an efficiency of approximately 1.5 %. Deamination converts the cytosine moiety of the CPD lesions on the time scale of 10 hours into uracil which gives CPD(UpT) and CPD(TpU) lesions in which the coding potential of the initial cytosine base is vanished.
Collapse
Affiliation(s)
- Julia Gontcharov
- Lehrstuhl für BioMolekulare OptikFakultät für Physik and Center for Integrated Protein Science Munich CIPSMLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| | - Lizhe Liu
- Lehrstuhl für BioMolekulare OptikFakultät für Physik and Center for Integrated Protein Science Munich CIPSMLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| | - Bert M. Pilles
- Lehrstuhl für BioMolekulare OptikFakultät für Physik and Center for Integrated Protein Science Munich CIPSMLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| | - Thomas Carell
- Center for Integrated Protein Science am Department ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MünchenGermany
| | - Wolfgang J. Schreier
- Lehrstuhl für BioMolekulare OptikFakultät für Physik and Center for Integrated Protein Science Munich CIPSMLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| | - Wolfgang Zinth
- Lehrstuhl für BioMolekulare OptikFakultät für Physik and Center for Integrated Protein Science Munich CIPSMLudwig-Maximilians-Universität MünchenOettingenstr. 6780538MünchenGermany
| |
Collapse
|
70
|
Abstract
Nanomaterials with intrinsic enzyme-like characteristics exhibit their great potentials as alternatives to natural enzymes. Among various enzymes, the finding of substitutes of DNA photolyases, a family of photoenzymes for repairing the ultraviolet (UV)-induced DNA damage by forming cyclobutane pyrimidine dimers (CPDs) between two adjacent thymines in a DNA strand, is still unsuccessful. CPDs raise significant health concerns in various skin diseases. Essentially, DNA photolyases selectively split dimers into monomers by photoelectrons under visible-light irradiation, and this is a photocatalytic process. However, the majority of semiconductors are unprosperous due to the accompanied photogenerated reactive oxygen species (ROS), which decompose CPDs into fragments and thereby lead to a nonselective photocatalysis. Fortunately, CeO2 as a semiconductor might deliver the selectively photocatalytic repair of UV-induced DNA damages, where the photoelectrons are used for the CPD cleavage, and the photogenerated ROS are locally suppressed for its antioxidant nature. Herein, we reported the defective porous CeO2 delivered the photolyase-like activity by enhancing visible-light absorption, enabling the effective interaction between CPDs and catalysts, and subsequently triggering the selective photocleavage of CPDs into monomers. Further, in vitro cellular and in vivo animal evaluations illustrated its high potentials as alternatives to DNA photolyases.
Collapse
Affiliation(s)
- Zhimin Tian
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710054 , China
| | - Tianzhu Yao
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710054 , China
| | - Chaoyi Qu
- Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine , Xi'an Jiaotong University , Xi'an 710004 , China
| | - Sai Zhang
- School of Chemical Engineering and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Xuhui Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710054 , China
| | - Yongquan Qu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710054 , China
| |
Collapse
|
71
|
Diekmann J, Gontcharov J, Fröbel S, Torres Ziegenbein C, Zinth W, Gilch P. The Photoaddition of a Psoralen to DNA Proceeds via the Triplet State. J Am Chem Soc 2019; 141:13643-13653. [DOI: 10.1021/jacs.9b06521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janina Diekmann
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Julia Gontcharov
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Center for Integrated Protein Science Munich CIPSM, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, 80538 München, Germany
| | - Sascha Fröbel
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christian Torres Ziegenbein
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Wolfgang Zinth
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Center for Integrated Protein Science Munich CIPSM, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, 80538 München, Germany
| | - Peter Gilch
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
72
|
Taccone MI, Cruz-Ortiz AF, Dezalay J, Soorkia S, Broquier M, Grégoire G, Sánchez CG, Pino GA. UV Photofragmentation of Cold Cytosine–M+ Complexes (M+: Na+, K+, Ag+). J Phys Chem A 2019; 123:7744-7750. [DOI: 10.1021/acs.jpca.9b06495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martín I. Taccone
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Andrés F. Cruz-Ortiz
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Jordan Dezalay
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Michel Broquier
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- Centre Laser de I’Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Cristián G. Sánchez
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Gustavo A. Pino
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| |
Collapse
|
73
|
Segarra‐Martí J, Tran T, Bearpark MJ. Computing the Ultrafast and Radiationless Electronic Excited State Decay of Cytosine and 5‐methyl‐cytosine Cations: Uncovering the Role of Dynamic Electron Correlation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Segarra‐Martí
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| | - Thierry Tran
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| | - Michael J. Bearpark
- Department of Chemistry, Molecular Sciences Research HubImperial College London White City Campus, 80 Wood Lane W12 0BZ London UK
| |
Collapse
|
74
|
Xie B, Fang W. Combined Quantum Trajectory Mean‐Field and Molecular Mechanical (QTMF/MM) Nonadiabatic Dynamics Simulations on the Photoinduced Ring‐Opening Reaction of 2(5H)‐Thiophenone. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bin‐Bin Xie
- Hangzhou Institute of Advanced StudiesZhejiang Normal University 1108 Gengwen Road Hangzhou 311231, Zhejiang P. R. China
| | - Wei‐Hai Fang
- Hangzhou Institute of Advanced StudiesZhejiang Normal University 1108 Gengwen Road Hangzhou 311231, Zhejiang P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of ChemistryBeijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
75
|
Brister MM, Crespo-Hernández CE. Excited-State Dynamics in the RNA Nucleotide Uridine 5'-Monophosphate Investigated Using Femtosecond Broadband Transient Absorption Spectroscopy. J Phys Chem Lett 2019; 10:2156-2161. [PMID: 30995048 DOI: 10.1021/acs.jpclett.9b00492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Damage to RNA from ultraviolet radiation induces chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential; however, investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5'-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally excited ground state, a long-lived 1nπ* state, and a receiver triplet state within 200 fs. The receiver state internally converts to the long-lived 3ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.
Collapse
Affiliation(s)
- Matthew M Brister
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Carlos E Crespo-Hernández
- Department of Chemistry , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
76
|
Abstract
Using as a model the single adenine strand (dA)20, we study the ultrafast evolution of electronic excitations in DNA with a time resolution of 30 fs. Our transient absorption spectra in the UV and visible spectral domains show that internal conversion among photogenerated exciton states occurs within 100 fs. Subsequently, the ππ* states acquire progressively charge-transfer character before being completely trapped, within 3 ps, by fully developed charge-transfer states corresponding to transfer of an electron from one adenine moiety to another (A+A-).
Collapse
Affiliation(s)
- Rocio Borrego-Varillas
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS , Université Paris-Saclay , F-91191 Gif-sur-Yvette , France
| |
Collapse
|
77
|
Böhnke H, Röttger K, Ingle RA, Marroux HJB, Bohnsack M, Schwalb NK, Orr-Ewing AJ, Temps F. Electronic Relaxation Dynamics of UV-Photoexcited 2-Aminopurine-Thymine Base Pairs in Watson-Crick and Hoogsteen Conformations. J Phys Chem B 2019; 123:2904-2914. [PMID: 30875228 DOI: 10.1021/acs.jpcb.9b02361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescent analogue 2-aminopurine (2AP) of the canonical nucleobase adenine (6-aminopurine) base-pairs with thymine (T) without disrupting the helical structure of DNA. It therefore finds frequent use in molecular biology for probing DNA and RNA structures and conformational dynamics. However, detailed understanding of the processes responsible for fluorescence quenching remains largely elusive on a fundamental level. Although attempts have been made to ascribe decreased excited-state lifetimes to intrastrand charge-transfer and stacking interactions, possible influences from dynamic interstrand H-bonding have been widely ignored. Here, we investigate the electronic relaxation of UV-excited 2AP·T in Watson-Crick (WC) and Hoogsteen (HS) conformations. Although the WC conformation features slowed-down, monomer-like electronic relaxation in τ ∼ 1.6 ns toward ground-state recovery and triplet formation, the dynamics associated with 2AP·T in the HS motif exhibit faster deactivation in τ ∼ 70 ps. As recent research has revealed abundant transient interstrand H-bonding in the Hoogsteen motif for duplex DNA, the established model for dynamic fluorescence quenching may need to be revised in the light of our results. The underlying supramolecular photophysical mechanisms are discussed in terms of a proposed excited-state double-proton transfer as an efficient deactivation channel for recovery of the HS species in the electronic ground state.
Collapse
Affiliation(s)
- Hendrik Böhnke
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Katharina Röttger
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany.,School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Rebecca A Ingle
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Hugo J B Marroux
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Mats Bohnsack
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Nina K Schwalb
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| | - Andrew J Orr-Ewing
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Friedrich Temps
- Institute of Physical Chemistry , Christian-Albrechts-University Kiel , Olshausenstr. 40 , 24098 Kiel , Germany
| |
Collapse
|
78
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
79
|
Vogel S, Ebel K, Schürmann RM, Heck C, Meiling T, Milosavljevic AR, Giuliani A, Bald I. Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks - Influence of the DNA Sequence and Substrate. Chemphyschem 2019; 20:823-830. [PMID: 30719805 DOI: 10.1002/cphc.201801152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/01/2019] [Indexed: 12/28/2022]
Abstract
DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3×10-16 cm2 . The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.
Collapse
Affiliation(s)
- Stefanie Vogel
- Institute of Chemistry - Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1 - Analytical Chemistry and Reference Materials, BAM Federal Institute of Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Germany
| | - Kenny Ebel
- Institute of Chemistry - Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1 - Analytical Chemistry and Reference Materials, BAM Federal Institute of Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Robin M Schürmann
- Department 1 - Analytical Chemistry and Reference Materials, BAM Federal Institute of Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| | - Christian Heck
- Institute of Chemistry - Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1 - Analytical Chemistry and Reference Materials, BAM Federal Institute of Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Germany
| | - Till Meiling
- Institute of Chemistry - Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | | | - Alexandre Giuliani
- Synchrotron SOLEIL, 91192, Gif-sur-Yvette, France.,UAR 1008 CEPIA, INRA, 44316, Nantes, France
| | - Ilko Bald
- Institute of Chemistry - Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Department 1 - Analytical Chemistry and Reference Materials, BAM Federal Institute of Materials Research and Testing, Richard-Willstätter Str. 11, 12489, Berlin, Germany
| |
Collapse
|
80
|
Hernández FJ, Bonafé FP, Aradi B, Frauenheim T, Sánchez CG. Simulation of Impulsive Vibrational Spectroscopy. J Phys Chem A 2019; 123:2065-2072. [DOI: 10.1021/acs.jpca.9b00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico J. Hernández
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Franco P. Bonafé
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Cristián G. Sánchez
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|
81
|
Segarra-Martí J, Tran T, Bearpark MJ. Ultrafast and radiationless electronic excited state decay of uracil and thymine cations: computing the effects of dynamic electron correlation. Phys Chem Chem Phys 2019; 21:14322-14330. [PMID: 30698175 DOI: 10.1039/c8cp07189f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this article we characterise the radiationless decay of the first few electronic excited states of the cations of DNA/RNA nucleobases uracil and thymine, including the effects of dynamic electron correlation on energies and geometries (optimised with XMS-CASPT2). In both systems, we find that one state of 2n and another two of 2π+ character can be populated following photoionisation, and their different minima and interstate crossings are located. We find strong similarities between uracil and thymine cations: with accessible conical intersections suggesting that depopulation of their electronic excited states takes place on ultrafast timescales in both systems, suggesting that they are photostable in agreement with previous theoretical (uracil+) evidence. We find that dynamic electron correlation separates the energy levels of the "3-state" conical intersection (D2/D1/D0)CI previously located with CASSCF for uracil+, which will therefore have a different geometry and higher energy. Simulating the electronic and vibrational absorptions allows us to characterise spectral fingerprints that could be used to monitor these cation photo-processes experimentally.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| | - Thierry Tran
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| | - Michael J Bearpark
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, W12 0BZ, London, UK.
| |
Collapse
|
82
|
Borrego-Varillas R, Nenov A, Ganzer L, Oriana A, Manzoni C, Tolomelli A, Rivalta I, Mukamel S, Garavelli M, Cerullo G. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem Sci 2019. [DOI: 10.1039/c9sc03871j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional ultraviolet spectroscopy has the potential to deliver rich structural and dynamical information on biomolecules such as DNA and proteins.
Collapse
Affiliation(s)
| | - A. Nenov
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - L. Ganzer
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Oriana
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - C. Manzoni
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| | - A. Tolomelli
- Dipartimento di Chimica
- Universitá degli Studi di Bologna
- I-40126 Bologna
- Italy
| | - I. Rivalta
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - S. Mukamel
- Department of Chemistry
- Department of Physics and Astronomy
- University of California
- Irvine
- USA
| | - M. Garavelli
- Dipartimento di Chimica Industriale
- Universitá degli Studi di Bologna
- I-40136 Bologna
- Italy
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- I-20133 Milano
- Italy
| |
Collapse
|
83
|
Martínez-Fernández L, Arslancan S, Ivashchenko D, Crespo-Hernández CE, Corral I. Tracking the origin of photostability in purine nucleobases: the photophysics of 2-oxopurine. Phys Chem Chem Phys 2019; 21:13467-13473. [DOI: 10.1039/c9cp00879a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molding purine PES through functionalization: whilst purine C2-substitution maintains the features of the spectroscopic PES of the heterocycle, C6-functionalization reshapes its topography leading to photostable systems.
Collapse
Affiliation(s)
| | - Serra Arslancan
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Dmytro Ivashchenko
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Departamento de Química e Bioquímica
| | | | - Inés Corral
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- IADCHEM
| |
Collapse
|
84
|
Pepino AJ, Segarra-Martí J, Nenov A, Rivalta I, Improta R, Garavelli M. UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Phys Chem Chem Phys 2018; 20:6877-6890. [PMID: 29459916 DOI: 10.1039/c7cp08235e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most relevant 'dark' electronic excited states in DNA/RNA pyrimidine nucleosides are mapped in water employing hybrid MS-CASPT2/MM optimisations with explicit solvation and including the sugar. Conical intersections (CIs) between initially accessed bright 1ππ* and the lowest energy dark 1nπ* excited states, involving the lone pair localised on the oxygen and/or nitrogen atoms are characterised. They are found in the vicinities of the Franck-Condon (FC) region and are shown to facilitate non-adiabatic population transfer. The excited state population of the 1nOπ* state, localised in the carbonyl moiety on all pyrimidine nucleosides, is predicted to rapidly evolve to its minimum, displaying non-negligible potential energy barriers along its non-radiative decay, and accounting for the ps signal registered in pump-probe experiments as well as for an efficient population of the triplet state. Cytidine displays an additional 1nNπ* state localised in the N3 atom and that leads to its excited state minimum displaying large potential energy barriers in the pathway connecting to the CI with the ground state. Sugar-to-base hydrogen/proton transfer processes are assessed in solution for the first time, displaying a sizable barrier along its decay and thus being competitive with other slow decay channels in the ps and ns timescales. A unified deactivation scheme for the long-lived channels of pyrimidine nucleosides is delivered, where the 1nOπ* state is found to mediate the long-lived decay in the singlet manifold and act as the doorway for triplet population and thus accounting for the recorded phosphorescence and, more generally, for the transient/photoelectron spectral signals registered up to the ns timescale.
Collapse
Affiliation(s)
- Ana Julieta Pepino
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
85
|
Guo WW, Zhang TS, Fang WH, Cui G. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base. Phys Chem Chem Phys 2018; 20:5067-5073. [PMID: 29388994 DOI: 10.1039/c7cp08696b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S2(1ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T1(3ππ*). In the first one, the S2(1ππ*) system first decays to the S1(1nπ*) state near the S2/S1 conical intersection, which is followed by an efficient S1 → T1 intersystem crossing process at the S1/T1 crossing point; in the second one, an efficient S2 → T2 intersystem crossing takes place first, and then, the T2(3nπ*) system hops to the T1(3ππ*) state through an internal conversion process at the T2/T1 conical intersection. Moreover, an S2/S1/T2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.
Collapse
Affiliation(s)
- Wei-Wei Guo
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | |
Collapse
|
86
|
Menger MFSJ, Plasser F, Mennucci B, González L. Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme. J Chem Theory Comput 2018; 14:6139-6148. [PMID: 30299941 DOI: 10.1021/acs.jctc.8b00763] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development and the implementation of an exciton approach that allows ab initio nonadiabatic dynamics simulations of electronic excitation energy transfer in multichromophoric systems. For the dynamics, a trajectory-based strategy is used within the surface hopping formulation. The approach features a consistent hybrid formulation that allows the construction of potential energy surfaces and gradients by combining quantum mechanics and molecular mechanics within an electrostatic embedding scheme. As an application, the study of a molecular dyad consisting of a covalently bound BODIPY moiety and a tetrathiophene group is presented using time-dependent density functional theory (TDDFT). The results obtained with the exciton model are compared to previously performed full TDDFT dynamics of the same system. Our results show excellent agreement with the full TDDFT results, indicating that the couplings that lead to excitation energy transfer (EET) are dominated by Coulomb interaction terms and that charge-transfer states are not necessary to properly describe the nonadiabatic dynamics of the system. The exciton model also reveals ultrafast coherent oscillations of the excitation between the two units in the dyad, which occur during the first 50 fs.
Collapse
Affiliation(s)
- Maximilian F S J Menger
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria.,Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Felix Plasser
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria.,Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Leticia González
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria
| |
Collapse
|
87
|
Liu Y, Martínez-Fernández L, Cerezo J, Prampolini G, Improta R, Santoro F. Multistate coupled quantum dynamics of photoexcited cytosine in gas-phase: Nonadiabatic absorption spectrum and ultrafast internal conversions. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
88
|
Ma C, Chan CTL, Chan RCT, Wong AKW, Chung BPY, Kwok WM. Photoprotection or photodamage: a direct observation of nonradiative dynamics from 2-ethylhexyl 4-dimethylaminobenzoate sunscreen agent. Phys Chem Chem Phys 2018; 20:24796-24806. [PMID: 30229763 DOI: 10.1039/c8cp04447c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being an analogue of the prototype for photoinduced intramolecular charge transfer (ICT), 2-ethylhexyl 4-dimethylaminobenzoate (EHDMABA) is also one of the earliest patented and most commonly used sunscreen components. There is, however, little documented information about the photophysics and factors affecting the photophysics of this molecule. Such information is of importance for both the understanding of the ICT reaction and assessing the underlying process of photoprotection, especially in view of the "sunscreen controversy" that has arisen from the contrasting in vivo vs. in vitro photobiological results on this and related UV filters. We report herein a femtosecond broadband time-resolved fluorescence (fs-TRF), complemented by transient absorption (fs-TA) to allow a full probe of the excited state cascades for EHDMABA and two of its derivatives in solvents of varied properties. The results provide direct evidence for a nearly solvent independent inner sphere ICT reaction occurring on the sub-picosecond time scale, and an ensuing solvent dictated deactivation of the ICT state. The ICT state in the aprotic solvent acetonitrile decayed solely through the intrinsic intersystem crossing (ISC) to produce a potentially harmful triplet excited state. In the protic solvent, the solvation and formation of ICT-induced solute-solvent hydrogen (H)-bonding opened the originally inaccessible internal conversion (IC) channel of the ICT state, leading to the rapid reformation of the ground state molecule with a unitary efficiency in the aqueous solution. This H-bonding-mediated IC restrained or eliminated the intrinsic ISC, providing a mechanism at the molecular level for the benign dissipation of the electronic excitation. The precise rate of IC was observed to vary with the alkoxy substituent and its efficiency was affected by the H-bonding capacity of the solvent. The findings of this work demonstrate the pivotal role of the microenvironment and the direct participation of solvent molecules through H-bonding in drastically altering the nonradiative dynamics and promoting or inhibiting photostability and photoprotection. This may assist in developing next-generation UV filters and help in improving formulation design for the optimal efficacy of sunscreen products. The pronounced H-bonding-induced fluorescence quenching and variation in the fluorescence wavelength imply that these molecules may also serve as a sensitive fluorescence probe for the H-bonding properties of the microenvironment.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | | | | | | | | | | |
Collapse
|
89
|
Wang X, Zhou Z, Tang Y, Chen J, Zhong D, Jianhua Xu. Excited State Decay Pathways of 2'-Deoxy-5-methylcytidine and Deoxycytidine Revisited in Solution: A Comprehensive Kinetic Study by Femtosecond Transient Absorption. J Phys Chem B 2018; 122:7027-7037. [PMID: 29939745 DOI: 10.1021/acs.jpcb.8b00927] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylated cytosine is proved to have an important role as an epigenetic signal in gene regulation and is often referred to "the fifth base of DNA". A comprehensive understanding of the electronic excited state relaxation in cytosine and its methylated derivatives is crucial for revealing UV-induced photodamage to the biological genome. Because of the existence of multiple closely lying "bright" and "dark" excited states, the decay pathways in these DNA nucleosides are the most complex and the least understood so far. In this study, femtosecond transient absorption with different excitation wavelengths (240-296 nm) was used to study the relaxation of excited electronic states of 5-methylcytosine (5mC) and 2'-deoxy-5-methylcytidine (5mdCyd) in phosphate buffered aqueous solution and in acetonitrile solution. Two distinct nonradiative decay channels were directly observed. The first one is a several picosecond internal conversion channel that involves two bright ππ* states (ππ*2 and ππ*1) when ππ*2 state is initially populated. The second channel contains the lower energy ππ*1 state and a so far experimental unidentified long-lived state which exhibits a several nanosecond lifetime. The long-lived state can only be accessed by the initially excited ππ*1 state. Inspired by this new discovery in 5mC and 5mdCyd, we revisited the decay of excited state of 2'-deoxycytidine (dCyd), revealing very similar decay pathways. Additionally, a well-known dark nOπ* state (carbonyl lone pair) with ∼30 ps lifetime is present in both decay channels in dCyd. With our detailed experimental results, we successfully reconcile the long history debate of cytosine excited state relaxation mechanism by pointing out that the reason for the complex dynamics under traditional 266 nm excitation is mixed signals from the above-mentioned two distinct decay pathways. Our findings lead to a dramatically different and new picture of electronic energy relaxation in 5mdCyd/dCyd and could help to understand photostability as well as UV-induced photodamage of these nucleotides and related DNAs.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China
| | - Yuankai Tang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China.,Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China.,Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
90
|
Mao P, Brown AJ, Esaki S, Lockwood S, Poon GMK, Smerdon MJ, Roberts SA, Wyrick JJ. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nat Commun 2018; 9:2626. [PMID: 29980679 PMCID: PMC6035183 DOI: 10.1038/s41467-018-05064-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/07/2018] [Indexed: 11/12/2022] Open
Abstract
Recurrent mutations are frequently associated with transcription factor (TF) binding sites (TFBS) in melanoma, but the mechanism driving mutagenesis at TFBS is unclear. Here, we use a method called CPD-seq to map the distribution of UV-induced cyclobutane pyrimidine dimers (CPDs) across the human genome at single nucleotide resolution. Our results indicate that CPD lesions are elevated at active TFBS, an effect that is primarily due to E26 transformation-specific (ETS) TFs. We show that ETS TFs induce a unique signature of CPD hotspots that are highly correlated with recurrent mutations in melanomas, despite high repair activity at these sites. ETS1 protein renders its DNA binding targets extremely susceptible to UV damage in vitro, due to binding-induced perturbations in the DNA structure that favor CPD formation. These findings define a mechanism responsible for recurrent mutations in melanoma and reveal that DNA binding by ETS TFs is inherently mutagenic in UV-exposed cells. Many factors contribute to mutation hotspots in cancer cells. Here the authors map UV damage at single-nucleotide resolution across the human genome and find that binding sites of ETS transcription factors are especially prone to forming UV lesions, leading to mutation hotspots in melanoma.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Shingo Esaki
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Svetlana Lockwood
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
91
|
Nogueira JJ, Roßbach S, Ochsenfeld C, González L. Effect of DNA Environment on Electronically Excited States of Methylene Blue Evaluated by a Three-Layered QM/QM/MM ONIOM Scheme. J Chem Theory Comput 2018; 14:4298-4308. [DOI: 10.1021/acs.jctc.8b00185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J. Nogueira
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, A-1090 Wien, Austria
| | - Sven Roßbach
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstrasse 7, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstrasse 7, D-81377 Munich, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, A-1090 Wien, Austria
| |
Collapse
|
92
|
Martínez-Fernández L, Improta R. Sequence dependence on DNA photochemistry: a computational study of photodimerization pathways in TpdC and dCpT dinucleotides. Photochem Photobiol Sci 2018; 17:586-591. [PMID: 29624198 DOI: 10.1039/c8pp00040a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The excited states involved in the main photodimerization paths in TpdC and dCpT are mapped by PCM/TD-M052X calculations, considering different dinucleotide conformers. As for TT steps, a cyclobutane pyrimidine dimer (CPD) is formed on the PES of the lowest energy exciton, delocalized over two stacked pyrimidines; 6-4 pyrimidine-pyrimidone (64-PP) adduct's formation involves instead a 5'-ter → 3'-ter charge transfer state. For dCpT, 64-PP dimerization occurs via a two-step reaction, which proceeds through an oxetane intermediate. For TpdC, instead, the final 64-PP product is obtained in a single step and it is as stable as the CPD photoproduct, explaining the relatively large yield of 64-PP found experimentally for TC steps in DNA.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy. and LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Roberto Improta
- Consiglio Nationale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy. and LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
93
|
Towards Accurate Simulation of Two-Dimensional Electronic Spectroscopy. Top Curr Chem (Cham) 2018; 376:24. [DOI: 10.1007/s41061-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 10/14/2022]
|
94
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
95
|
Pilles BM, Maerz B, Chen J, Bucher DB, Gilch P, Kohler B, Zinth W, Fingerhut BP, Schreier WJ. Decay Pathways of Thymine Revisited. J Phys Chem A 2018; 122:4819-4828. [PMID: 29747505 DOI: 10.1021/acs.jpca.8b02050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The decay of electronically excited states of thymine (Thy) and thymidine 5'-monophosphate (TMP) was studied by time-resolved UV/vis and IR spectroscopy. In addition to the well-established ultrafast internal conversion to the ground state, a so far unidentified UV-induced species is observed. In D2O, this species decays with a time constant of 300 ps for thymine and of 1 ns for TMP. The species coexists with the lowest triplet state and is formed with a comparably high quantum yield of about 10% independent of the solvent. The experimentally determined spectral signatures are discussed in the light of quantum chemical calculations of the singlet and triplet excited states of thymine.
Collapse
Affiliation(s)
- Bert M Pilles
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Munich Center for Integrated Protein Science CIPSM , Ludwig-Maximilians-Universität München , Oettingenstrasse 67 , München 80538 , Germany
| | - Benjamin Maerz
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Munich Center for Integrated Protein Science CIPSM , Ludwig-Maximilians-Universität München , Oettingenstrasse 67 , München 80538 , Germany
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Dominik B Bucher
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Munich Center for Integrated Protein Science CIPSM , Ludwig-Maximilians-Universität München , Oettingenstrasse 67 , München 80538 , Germany
| | - Peter Gilch
- Institut für Physikalische Chemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1 , Düsseldorf 40225 , Germany
| | - Bern Kohler
- Department of Chemistry and Biochemistry , The Ohio State University , 100 West 18th Avenue , Columbus , Ohio 43210 , United States
| | - Wolfgang Zinth
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Munich Center for Integrated Protein Science CIPSM , Ludwig-Maximilians-Universität München , Oettingenstrasse 67 , München 80538 , Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2A , Berlin D-12489 , Germany
| | - Wolfgang J Schreier
- Lehrstuhl für BioMolekulare Optik, Fakultät für Physik and Munich Center for Integrated Protein Science CIPSM , Ludwig-Maximilians-Universität München , Oettingenstrasse 67 , München 80538 , Germany
| |
Collapse
|
96
|
Tang L, Wang Y, Zhu L, Lee C, Fang C. Correlated Molecular Structural Motions for Photoprotection after Deep-UV Irradiation. J Phys Chem Lett 2018; 9:2311-2319. [PMID: 29672054 DOI: 10.1021/acs.jpclett.8b00999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Exposure to ultraviolet (UV) light could cause photodamage to biomolecular systems and degrade optoelectronic devices. To mitigate such detrimental effects from the bottom up, we strategically select a photosensitive molecule pyranine and implement femtosecond electronic and Raman spectroscopies to elucidate its ultrafast photoprotection mechanisms in solution. Our results show that pyranine undergoes excited-state proton transfer in water, while this process is blocked in methanol regardless of excitation wavelengths (267, 400 nm). After 267 nm irradiation, the molecule relaxes from a higher lying electronic state into a lower lying singlet state with a <300 fs time constant, followed by solvation events. Transient Raman marker bands exhibit different patterns of intensity dynamics and frequency shift that elucidate the real-time interplay among conformational motions, photochemical reaction, and vibrational cooling after excitation. More energetic photons are revealed to selectively enhance certain relaxation pathways. These mechanistic findings offer new guidelines to improve the UV tolerance and stability of the engineered functional molecules in materials and life sciences.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Yanli Wang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liangdong Zhu
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Che Lee
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Chong Fang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
97
|
Pollum M, Lam M, Jockusch S, Crespo‐Hernández CE. Dithionated Nucleobases as Effective Photodynamic Agents against Human Epidermoid Carcinoma Cells. ChemMedChem 2018. [DOI: 10.1002/cmdc.201800148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marvin Pollum
- Department of Chemistry Case Western Reserve University Cleveland OH 44106 USA
| | - Minh Lam
- Department of Medicine Case Western Reserve University School of Medicine Cleveland OH 44106 USA
| | - Steffen Jockusch
- Department of Chemistry Columbia University New York NY 10027 USA
| | | |
Collapse
|
98
|
Martínez-Fernández L, Improta R. Novel adenine/thymine photodimerization channels mapped by PCM/TD-DFT calculations on dApT and TpdA dinucleotides. Photochem Photobiol Sci 2018. [PMID: 28640303 DOI: 10.1039/c7pp00154a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the biological relevance of AT-rich DNA sequences, the excited state paths associated with the photochemical reactions involving adenine and thymine stacked pairs have never been characterized, and the structure of the most abundant photoproduct in DNA is unknown. PCM/TD-M052X calculations on dApT and TpdA unveil the paths leading to the main photoproduct in TpdA, provide new insights into the reasons why it is not formed in dApT and show the existence of a new photochemical path, which could produce the precursor of the most abundant genomic AT/TA photoproduct. Our calculations confirm that anti/anti conformers are photochemically active and show that the dynamical solvation effects could significantly modulate the reaction yields.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80134 Naples, Italy
| | | |
Collapse
|
99
|
Gao LH, Xie BB, Fang WH. Theories and Applications of Mixed Quantum-Classical Non-adiabatic Dynamics. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1712234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang-hui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin-bin Xie
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
100
|
Cuquerella MC, Lhiaubet-Vallet V, Miranda MA, Bosca F. Drug-DNA complexation as the key factor in photosensitized thymine dimerization. Phys Chem Chem Phys 2018; 19:4951-4955. [PMID: 28149985 DOI: 10.1039/c6cp08485k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crucial role of photosensitizer@DNA complexation in the formation of cyclobutane pyrimidine dimers (CPDs) has been demonstrated using femtosecond and nanosecond transient absorption and emission measurements in combination with in vitro DNA damage assays. This finding opens the door to re-evaluate the mechanisms involved in CPDs photosensitized by other chemicals.
Collapse
Affiliation(s)
- M Consuelo Cuquerella
- Instituto Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| | - Francisco Bosca
- Instituto Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| |
Collapse
|