51
|
Nickels JD, Poudel S, Chatterjee S, Farmer A, Cordner D, Campagna SR, Giannone RJ, Hettich RL, Myles DAA, Standaert RF, Katsaras J, Elkins JG. Impact of Fatty-Acid Labeling of Bacillus subtilis Membranes on the Cellular Lipidome and Proteome. Front Microbiol 2020; 11:914. [PMID: 32499768 PMCID: PMC7243436 DOI: 10.3389/fmicb.2020.00914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022] Open
Abstract
Developing cultivation methods that yield chemically and isotopically defined fatty acid (FA) compositions within bacterial cytoplasmic membranes establishes an in vivo experimental platform to study membrane biophysics and cell membrane regulation using novel approaches. Yet before fully realizing the potential of this method, it is prudent to understand the systemic changes in cells induced by the labeling procedure itself. In this work, analysis of cellular membrane compositions was paired with proteomics to assess how the proteome changes in response to the directed incorporation of exogenous FAs into the membrane of Bacillus subtilis. Key findings from this analysis include an alteration in lipid headgroup distribution, with an increase in phosphatidylglycerol lipids and decrease in phosphatidylethanolamine lipids, possibly providing a fluidizing effect on the cell membrane in response to the induced change in membrane composition. Changes in the abundance of enzymes involved in FA biosynthesis and degradation are observed; along with changes in abundance of cell wall enzymes and isoprenoid lipid production. The observed changes may influence membrane organization, and indeed the well-known lipid raft-associated protein flotillin was found to be substantially down-regulated in the labeled cells – as was the actin-like protein MreB. Taken as a whole, this study provides a greater depth of understanding for this important cell membrane experimental platform and presents a number of new connections to be explored in regard to modulating cell membrane FA composition and its effects on lipid headgroup and raft/cytoskeletal associated proteins.
Collapse
Affiliation(s)
- Jonathan D Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Suresh Poudel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sneha Chatterjee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Abigail Farmer
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biological and Small Molecule Mass Spectrometry Core, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Destini Cordner
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Shawn R Campagna
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biological and Small Molecule Mass Spectrometry Core, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dean A A Myles
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert F Standaert
- Department of Chemistry, East Tennessee State University, Johnson City, TN, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
52
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
53
|
Aerts JMFG, Artola M, van Eijk M, Ferraz MJ, Boot RG. Glycosphingolipids and Infection. Potential New Therapeutic Avenues. Front Cell Dev Biol 2019; 7:324. [PMID: 31867330 PMCID: PMC6908816 DOI: 10.3389/fcell.2019.00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glycosphingolipids (GSLs), the main topic of this review, are a subclass of sphingolipids. With their glycans exposed to the extracellular space, glycosphingolipids are ubiquitous components of the plasma membrane of cells. GSLs are implicated in a variety of biological processes including specific infections. Several pathogens use GSLs at the surface of host cells as binding receptors. In addition, lipid-rafts in the plasma membrane of host cells may act as platform for signaling the presence of pathogens. Relatively common in man are inherited deficiencies in lysosomal glycosidases involved in the turnover of GSLs. The associated storage disorders (glycosphingolipidoses) show lysosomal accumulation of substrate(s) of the deficient enzyme. In recent years compounds have been identified that allow modulation of GSLs levels in cells. Some of these agents are well tolerated and already used to treat lysosomal glycosphingolipidoses. This review summarizes present knowledge on the role of GSLs in infection and subsequent immune response. It concludes with the thought to apply glycosphingolipid-lowering agents to prevent and/or combat infections.
Collapse
Affiliation(s)
| | - M Artola
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M van Eijk
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M J Ferraz
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - R G Boot
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
54
|
Interactions between carboxypeptidase M and kinin B1 receptor in endothelial cells. Inflamm Res 2019; 68:845-855. [DOI: 10.1007/s00011-019-01264-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022] Open
|
55
|
Ghanemi A, He L, Yan M. New factors influencing G protein coupled receptors’ system functions. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming Yan
- National Drug Screening Laboratory, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
56
|
Elastic compliance as a tool to understand Hofmeister ion specific effect in DMPC liposomes. Biophys Chem 2019; 249:106148. [PMID: 30981138 DOI: 10.1016/j.bpc.2019.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022]
Abstract
Elastic compliance of DMPC liposomes with Hofmeister electrolytes: NaCl, Na2SO4, Na2CO3, NaNO3, KCl and MgCl2 studied using Quartz crystal microbalance with dissipation has been correlated with changes in their lamellar spacing from SAXS. The study suggests that hydration water of the different ions has an effect on the overall packing of the lipid bilayer that results as either a dehydrated liposome or where water smears the surface of the liposomes. Ratio of hydrogen bonded carbonyl and phosphate of polar region of the liposomes from ATR-FTIR spectroscopy, suggests that the polar groups are less hydrated due to the displacement of water by the electrolytes compared to pure DMPC and ordered in the sequence for cations as: K+ < Na+,Mg2+ and for anions as SO42- < CO32- < Cl- < NO3-. These findings show the usefulness of Elastic compliance for structural studies of composite phospholipid bilayers, lipid-protein complexes and lipid systems of reduced dimensionalities.
Collapse
|
57
|
Sabapathy T, Helmerhorst E, Bottomley S, Babaeff S, Munyard K, Newsholme P, Mamotte CD. Use of virus-like particles as a native membrane model to study the interaction of insulin with the insulin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1204-1212. [PMID: 30951702 DOI: 10.1016/j.bbamem.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
There is emerging evidence of the utility of virus-like particles (VLPs) as a novel model for the study of receptor-ligand interactions in a native plasma membrane environment. VLPs consist of a viral core protein encapsulated by portions of the cell membrane with membrane proteins and receptors expressed in their native conformation. VLPs can be generated in mammalian cells by transfection with the retroviral core protein (gag). In this study, we used Chinese hamster ovary (CHO T10) cells stably overexpressing the insulin receptor (IR) to generate IR bearing VLPs. The diameter and size uniformity of VLPs were estimated by dynamic light scattering and morphological features examined by scanning electron microscopy. The presence of high affinity IR on VLPs was demonstrated by competitive binding assays (KD: 2.3 ± 0.4 nM, n = 3), which was similar to that on the parental CHO T10 cells (KD: 2.1 ± 0.4 nM, n = 3). We also report that increases or decreases in membrane cholesterol content by treatment with methyl-β-cyclodextrin (MBCD) or cholesterol pre-loaded methyl-β-cyclodextrin (cMBCD), respectively, substantially decreased insulin binding (> 30%) to both VLPs and cells, and we speculate this is due to a change in receptor disposition. We suggest that this novel finding of decreases in insulin binding in response to changes in membrane cholesterol content may largely account for the unexplained decreases in insulin signalling events previously reported elsewhere. Finally, we propose VLPs as a viable membrane model for the study of insulin-IR interactions in a native membrane environment.
Collapse
Affiliation(s)
- Thiru Sabapathy
- School of Pharmacy and Biomedical Sciences, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley campus, Perth, Western Australia 6102, Australia.
| | - Erik Helmerhorst
- School of Pharmacy and Biomedical Sciences, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley campus, Perth, Western Australia 6102, Australia.
| | | | | | - Kylie Munyard
- School of Pharmacy and Biomedical Sciences, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley campus, Perth, Western Australia 6102, Australia.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley campus, Perth, Western Australia 6102, Australia.
| | - Cyril D Mamotte
- School of Pharmacy and Biomedical Sciences, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley campus, Perth, Western Australia 6102, Australia.
| |
Collapse
|
58
|
Lee MC, Park JC, Yoon DS, Choi H, Kim HJ, Shin KH, Hagiwara A, Han J, Park HG, Lee JS. Genome-wide characterization and expression of the elongation of very long chain fatty acid (Elovl) genes and fatty acid profiles in the alga (Tetraselmis suecica) fed marine rotifer Brachionus koreanus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:179-185. [PMID: 30884356 DOI: 10.1016/j.cbd.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
To understand the lipid metabolism in invertebrate species, identification of the fatty acid (FA) synthesis gene families in invertebrate species is important, since some FA are unable to be synthesized in the organisms by themselves. In the study, to identify the elongation of very long chain fatty acid (Elovl) genes in the marine rotifer Brachionus koreanus, the genome-wide identification and phylogenetic analysis of Elovl genes have been conducted with the expression profile of Elovl genes on the alga Tetraslemis suecica-fed B. koreanus. A total 10 Elovl genes have been identified from the genome of B. koreanus, with conserved HXXHH motif. Synteny analysis showed that tandem duplication event has occurred (Elovl3/6a and b, Elovl9a and b, and Elovl9c and d) in the ancestor. Phylogenetic analysis have clearly revealed that Brachionus spp. has only 2/5 and 3/6 subfamilies, and two novel Elovl classes have been revealed, namely Elovl9 and 10. Transcriptional data showed that the 10 Elovl genes were differently expressed and their expression could be regulated by feeding the alga T. suecica. From fatty acid (FA) profile data of the alga Tetraslemis suecica-fed B. koreanus, we revealed that the marine rotifer B. koreanus may synthesize very long chain fatty acid (VLCFA; >22 carbons) by themselves, as VLCFA was hardly detected in the alga T. suecica. The study provides a better understanding of FA metabolism of the marine rotifer B. koreanus after feeding the T. suecica.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyuntae Choi
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 15588, South Korea
| | - Hee-Jin Kim
- Faculty of Fisheries, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 15588, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
59
|
Fatakia SN, Sarkar P, Chattopadhyay A. A collage of cholesterol interaction motifs in the serotonin 1A receptor: An evolutionary implication for differential cholesterol interaction. Chem Phys Lipids 2019; 221:184-192. [PMID: 30822391 DOI: 10.1016/j.chemphyslip.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
The serotonin1A receptor is a representative member of the G protein-coupled receptor (GPCR) superfamily and acts as an important drug target. In our previous work, we comprehensively demonstrated that membrane cholesterol is necessary in the organization, dynamics and function of the serotonin1A receptor. In this context, analysis of high-resolution GPCR crystal structures in general and in silico studies of the serotonin1A receptor in particular, have suggested the presence of cholesterol interaction sites (hotspots) in various regions of the receptor. In this work, we have identified an evolutionarily conserved collage of four categories of cholesterol interaction motifs associated with transmembrane helix V and the adjacent intracellular loop 3 fragment of the vertebrate serotonin1A receptor. This collage of motifs represents a total of twenty diverse context-dependent cholesterol interaction configurations. We envision that the gamut of cholesterol interaction sites, characterized by sequence plasticity in cholesterol interaction, could be relevant in receptor-cholesterol interaction in membranes of varying cholesterol content and organization, as found in diverse cell types. We conclude that an evolutionarily conserved mechanism of GPCR-cholesterol interaction allows the serotonin1A receptor to adapt to diverse membrane cholesterol levels during natural evolution.
Collapse
Affiliation(s)
- Sarosh N Fatakia
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
60
|
Nickels JD, Smith MD, Alsop RJ, Himbert S, Yahya A, Cordner D, Zolnierczuk P, Stanley CB, Katsaras J, Cheng X, Rheinstädter MC. Lipid Rafts: Buffers of Cell Membrane Physical Properties. J Phys Chem B 2019; 123:2050-2056. [DOI: 10.1021/acs.jpcb.8b12126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jonathan D. Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Micholas Dean Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard J. Alsop
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Ahmad Yahya
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Destini Cordner
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Piotr Zolnierczuk
- Jülich
Center for Neutron Science, Forschungszentrum Juelich GmbH, Outstation
at SNS, Oak Ridge, Tennessee 37830, United States
| | - Christopher B. Stanley
- Large-Scale Structure Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John Katsaras
- Large-Scale Structure Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Shull-Wollen Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaolin Cheng
- College of Pharmacy, Medicinal Chemistry & Pharmacognosy Division, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
61
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
62
|
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018; 592:3921-3942. [PMID: 30320884 DOI: 10.1002/1873-3468.13275] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived β-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan.,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
63
|
Abstract
More than 100 years have passed since Elie Metchnikoff discovered phagocytes. As molecular biological techniques have been developed and improved, we have gained deeper knowledge about the molecular mechanisms of immunological responses to invasion. The innate immune system is the inborn defense mechanism and the first line of defense against all kinds of pathogenic organisms, including bacteria, fungi, viruses, etc. Innate immunity was originally considered to comprise non-specific reactions. However, we now know that innate immune systems develop molecular mechanisms specific to pathogenic microorganisms. In the 1970s, a neutral glycosphingolipid lactosylceramide (LacCer) was found to bind specifically to several kinds of microorganisms. LacCer is highly expressed in phagocytes and epithelial cells. LacCer forms lipid rafts on human neutrophils and is involved in neutrophil migration, phagocytosis, and superoxide generation. In contrast, mouse neutrophils express relatively little LacCer on their cell surfaces. Thus, it is difficult to observe LacCer-mediated innate immunological reactions in mice. Mycobacterium tuberculosis is a typical pathogen for humans but not mice in general. Interestingly, M. tuberculosis can escape killing by neutrophils through regulation of the LacCer-enriched lipid raft-mediated immunological reactions of these cells. These observations indicate that LacCer-enriched lipid rafts play an essential role in human innate immunity. This review describes LacCer-mediated innate immunity in humans.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection-control Nursing, Juntendo University, Graduate School of Health-Care and Nursing.,Institute for Environmental and Gender Specific Medicine, Juntendo University, Graduate School of Medicine
| |
Collapse
|
64
|
Gera P, Salac D. Three-dimensional multicomponent vesicles: dynamics and influence of material properties. SOFT MATTER 2018; 14:7690-7705. [PMID: 30177985 DOI: 10.1039/c8sm01087k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the nonlinear hydrodynamics of a three-dimensional multicomponent vesicle in shear flow are explored. Using a volume- and area-conserving projection method coupled to a gradient-augmented level set and surface phase field method, the dynamics are systematically studied as a function of the membrane bending rigidity difference between the components, the speed of diffusion compared to the underlying shear flow, and the strength of the phase domain energy compared to the bending energy. Using a pre-segregated vesicle, three dynamics are observed: stationary phase, phase-treading, and a new dynamic called vertical banding. These regimes are very sensitive to the strength of the domain line energy, as the vertical banding regime is not observed when the line energy is larger than the bending energy. The findings demonstrate that a complete understanding of multicomponent vesicle dynamics requires that the full three-dimensional system be modeled, and show the complexity obtained when considering heterogeneous material properties.
Collapse
Affiliation(s)
- Prerna Gera
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260-4400, USA.
| | | |
Collapse
|
65
|
Viswanathan G, Jafurulla M, Kumar GA, Raghunand TR, Chattopadhyay A. Macrophage sphingolipids are essential for the entry of mycobacteria. Chem Phys Lipids 2018. [DOI: 10.1016/j.chemphyslip.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
66
|
Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38:27. [PMID: 29784041 PMCID: PMC5993136 DOI: 10.1186/s40880-018-0301-4] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic structure of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
67
|
Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704307. [PMID: 29389049 DOI: 10.1002/adma.201704307] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Indexed: 05/18/2023]
Abstract
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
Collapse
Affiliation(s)
- Joël Bourquin
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roman Lehner
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Fabian Blank
- Respiratory Medicine, Department of Biomedical Research, University of Bern, Murtenstrasse 50, 3008, Bern
| | - Alke Petri-Fink
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
68
|
Moulick RG, Panaitov G, Choi SE, Mayer D, Offenhäusser A. Patterning artificial lipid bilayer on nanostructured surfaces. Int J Nanomedicine 2018; 13:55-58. [PMID: 29593396 PMCID: PMC5863630 DOI: 10.2147/ijn.s125005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Artificial lipid bilayer on solid substrate plays an important role as an interface between nanotechnology and biology. In this study, grid structures were patterned on Au-Nb-glass substrate and artificial bilayer was prepared on these structures. The fluidity was checked using fluorescence recovery after photobleaching (FRAP), and neuronal adhesion was monitored on such structure using EphrinA5-tethered lipid bilayer. EphrinA5 is a ligand that binds to the Eph receptors of rat cortical neurons and influences cellular adhesion. Our result elucidated that influence of these nanopatterned protein-tethered lipid bilayer on cellular guidance and signaling can address many underlying mechanisms of cellular functioning and help us to understand and differentiate the signaling procedure in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gregor Panaitov
- Bioelectronics, ICS8/PGI8, Forschungszentrum Juelich, Juelich, Germany
| | - Sung-Eun Choi
- Bioelectronics, ICS8/PGI8, Forschungszentrum Juelich, Juelich, Germany
| | - Dirk Mayer
- Bioelectronics, ICS8/PGI8, Forschungszentrum Juelich, Juelich, Germany
| | | |
Collapse
|
69
|
Ghosh Moulick R, Panaitov G, Du L, Mayer D, Offenhäusser A. Neuronal adhesion and growth on nanopatterned EA5-POPC synthetic membranes. NANOSCALE 2018; 10:5295-5301. [PMID: 29498734 DOI: 10.1039/c7nr08520f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic membranes create opportunities for various applications, including the possibility of replacing interacting cells in a cell-cell contact. Here we have fractionated synthetic membranes using metal nano-grid structures where EphrinA5 (EA5), a neuronal adhesion promoter, was anchored via its Fc domain (immunoglobulin G (IgG)-domain). FRAP experiments were performed to check the confinement of the synthetic membrane within these nano-structures. Rat cortical primary neurons were cultured and live cell imaging techniques were used to monitor the neuronal interaction with these fractionated synthetic membranes. Computational imaging analysis of the corresponding images elucidated interesting details of the cellular behavior. The phenotypic cellular response on these nano-membrane fractions was found to be similar to that on non-fractionated synthetic membranes indicating that although the number of focal adhesion points was low (due to the reduced EA5 number) in the nano-sized membrane patches perhaps some other factors like metal grid boundaries might be playing a role in rendering the similarity.
Collapse
Affiliation(s)
- Ranjita Ghosh Moulick
- Institute of Complex Systems ICS-8, Bioelectronics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
70
|
Di Vizio D, Solomon KR, Freeman MR. Cholesterol and Cholesterol-Rich Membranes in Prostate Cancer: An Update. TUMORI JOURNAL 2018; 94:633-9. [DOI: 10.1177/030089160809400501] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells maintain normal structure and function by responding appropriately to cues from the surrounding milieu. Extracellular stimuli are transduced from the surface through the plasma membrane by a complex series of interactions between ligands, their receptors and intracellular signaling partners (e.g., kinases, G proteins). Cholesterol-enriched membrane microdomains, generally referred to as “lipid rafts”, exist within the lipid bilayer of all mammalian cells and play an important role in signaling from the cell surface to various subcellular compartments. Lipid rafts have also been implicated in tumor growth and aggressiveness. Epidemiological evidence suggests that the modern Western diet, which contains substantial levels of cholesterol and other fatty substances, promotes prostate cancer progression. Consistent with this idea, prolonged inhibition of the cholesterol synthesis pathway by pharmacologic intervention in men has recently been associated with reduction in risk of advanced prostate cancer. In this review, we discuss the possibility that membrane cholesterol promotes prostate cancer progression by a mechanism that involves dysregulation of lipid raft-resident signaling complexes. This hypothesis provides new avenues for mechanistic studies as well as therapeutic intervention.
Collapse
Affiliation(s)
- Dolores Di Vizio
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Harvard Medical School, Boston, MA (USA)
- Department of Surgery, Harvard Medical School, Boston, MA (USA)
| | - Keith R Solomon
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Harvard Medical School, Boston, MA (USA)
- The Urological Diseases Research Center, Department of Orthopaedic Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA (USA)
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA (USA)
| | - Michael R Freeman
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Harvard Medical School, Boston, MA (USA)
- Department of Surgery, Harvard Medical School, Boston, MA (USA)
| |
Collapse
|
71
|
Segoviano-Mendoza M, Cárdenas-de la Cruz M, Salas-Pacheco J, Vázquez-Alaniz F, La Llave-León O, Castellanos-Juárez F, Méndez-Hernández J, Barraza-Salas M, Miranda-Morales E, Arias-Carrión O, Méndez-Hernández E. Hypocholesterolemia is an independent risk factor for depression disorder and suicide attempt in Northern Mexican population. BMC Psychiatry 2018; 18:7. [PMID: 29334911 PMCID: PMC5769344 DOI: 10.1186/s12888-018-1596-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cholesterol has been associated as a risk factor for cardiovascular disease. Recently, however, there is growing evidence about crucial requirement of neuron membrane cholesterol in the organization and function of the 5-HT1A serotonin receptor. For this, low cholesterol level has been reported to be associated with depression and suicidality. However there have been inconsistent reports about this finding and the exact relationship between these factors remains controversial. Therefore, we investigated the link between serum cholesterol and its fractions with depression disorder and suicide attempt in 467 adult subjects in Mexican mestizo population. METHODS Plasma levels of total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-c) and low density lipoprotein cholesterol (LDL-c) were determined in 261 MDD patients meeting the DSM-5 criteria for major depressive disorder (MDD), 59 of whom had undergone an episode of suicide attempt, and 206 healthy controls. RESULTS A significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol and triglyceride serum levels was observed in the groups of MDD patients and suicide attempt compared to those without suicidal behavior (p < 0.05). After adjusting for covariates, lower cholesterol levels were significantly associated with MDD (OR 4.229 CI 95% 2.555 - 7.000, p<.001) and suicide attempt (OR 5.540 CI 95% 2.825 - 10.866, p<.001) CONCLUSIONS: These results support the hypothesis that lower levels of cholesterol are associated with mood disorders like MDD and suicidal behavior. More mechanistic studies are needed to further explain this association.
Collapse
Affiliation(s)
- Marcela Segoviano-Mendoza
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Manuel Cárdenas-de la Cruz
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - José Salas-Pacheco
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | | | - Osmel La Llave-León
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Francisco Castellanos-Juárez
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Jazmín Méndez-Hernández
- 0000 0001 2157 0393grid.7220.7Departamento de Biotecnología, Universidad Autónoma Metropolitana, Ciudad de México, México Zip Code 09340,
| | - Marcelo Barraza-Salas
- 0000 0000 8724 8383grid.412198.7Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Zip Code 34000, Durango, México
| | - Ernesto Miranda-Morales
- 0000 0000 8724 8383grid.412198.7Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico
| | - Oscar Arias-Carrión
- grid.414754.7Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Zip Code 14080, Ciudad de México, México
| | - Edna Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Universidad S/N esquina Volantín Zona Centro CP 34000, Zip Code 34000 Av., Durango, Mexico. .,Subdirección de Investigación en Salud, Servicios de Salud de Durango, Zip Code 34000., Durango, México.
| |
Collapse
|
72
|
Xu H, Zhou S, Jiang D, Chen HY. Cholesterol Oxidase/Triton X-100 Parked Microelectrodes for the Detection of Cholesterol in Plasma Membrane at Single Cells. Anal Chem 2018; 90:1054-1058. [DOI: 10.1021/acs.analchem.7b03667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Haiyan Xu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shuai Zhou
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
73
|
Iwabuchi K. Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods Mol Biol 2018; 1804:83-95. [PMID: 29926405 DOI: 10.1007/978-1-4939-8552-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although individuals are constantly exposed to infectious agents, these agents are generally resisted by the innate and acquired immune systems. Both the innate and acquired immune systems protect against invading organisms, but they differ functionally in several ways. The innate immune system is the body's inborn defense mechanism and the first line of defense against invading organisms, such as bacteria, fungi, and viruses. Glycosphingolipids (GSLs), which are expressed on the outer leaflet of plasma membranes (Murate et al., J Cell Sci 128(8):1627-1638, 2015), are involved in both innate and acquired immunity (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Nakayama et al., Arch Immunol Ther Exp (Warsz) 61(3):217-228, 2013; Rueda, Br J Nutr 98(Suppl 1):S68-73, 2007; Popa and Portoukalian, Pathol Biol (Paris) 51(5):253-255, 2003).Recent studies have indicated that innate immunity is not a "nonspecific" immune system. Large numbers of viruses, bacteria, and bacterial toxins have been reported to bind to host surface carbohydrates, a number of which are components of GSLs (Schengrund, Biochem Pharmacol 65(5):699-707, 2003). Binding studies have also demonstrated that some glycolipids function as receptors for microorganisms and bacterial toxins (Yates and Rampersaud, Ann N Y Acad Sci 845:57-71, 1998). These findings clearly indicate that GSLs are involved in host-pathogen interactions.GSLs are composed of hydrophobic ceramide and hydrophilic sugar moieties (Hakomori, Annu Rev Biochem 50:733-764, 1980). The ceramide moiety of sphingolipids and the cholesterol sterol-ring system are thought to interact via hydrogen bonds and hydrophobic van der Waal's forces (Mukherjee and Maxfield, Annu Rev Cell Dev Biol 20:839-866, 2004). Additional hydrophilic cis interactions among GSL headgroups have been found to promote their lateral associations with surrounding lipid and protein membrane components. These interactions result in the separation in cell membranes of lipid rafts, which are lipid domains rich in GSLs, cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins and membrane-anchored signaling molecules (Pike, J Lipid Res 47(7):1597-1598, 2006). These GSL-enriched lipid rafts play important roles in immunological functions (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Iwabuchi et al., Mediators Inflamm 2015:120748, 2015; Anderson and Roche, Biochim Biophys Acta 1853(4):775-780, 2015; Zuidscherwoude et al., J Leukoc Biol 95(2):251-263, 2014; Dykstra et al., Annu Rev Immunol 21:457-481, 2003). This introductory chapter describes the roles of GSLs and their lipid rafts in the immune system.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection Control Nursing, Graduate School of Health Care and Nursing, Juntendo University, Chiba, Japan.
- Institute for Environmental and Gender Specific Medicine, Graduate school of Medicine, Juntendo University, Chiba, Japan.
| |
Collapse
|
74
|
Chen YC, Gowda R, Newswanger RK, Leibich P, Fell B, Rosenberg G, Robertson GP. Targeting cholesterol transport in circulating melanoma cells to inhibit metastasis. Pigment Cell Melanoma Res 2017; 30:541-552. [PMID: 28685959 DOI: 10.1111/pcmr.12614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/23/2017] [Indexed: 02/02/2023]
Abstract
Despite recent breakthroughs in targeted- and immune-based therapies, rapid development of drug resistance remains a hurdle for the long-term treatment of patients with melanoma. Targeting metastatically spreading circulating tumor cells (CTCs) may provide an additional approach to manage melanoma. This study investigates whether targeting cholesterol transport in melanoma CTCs can retard metastasis development. Nanolipolee-007, the liposomal form of leelamine, reduced melanoma metastasis in both a novel in vitro flow system mimicking the circulating system and in experimental as well as spontaneous animal metastasis models, irrespective of the BRAF mutational status of the CTCs. Leelamine led to cholesterol trapping in lysosomes, which subsequently shut down receptor-mediated endocytosis, endosome trafficking, and inhibited the major oncogenic signaling cascades important for survival such as the AKT pathway. As pAKT is important in CTC survival, inhibition by targeting cholesterol metabolism led to apoptosis, suggesting this approach might be particularly effective for those CTCs having high levels of pAKT to aid survival in the circulation system.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Raymond K Newswanger
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Patrick Leibich
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Barry Fell
- Thermoplastic Products Corporation, Hummelstown, PA, USA
| | - Gerson Rosenberg
- Department of Surgery, Division of Applied Biomedical Engineering, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Penn State Hershey Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
75
|
Sarangi NK, Ayappa KG, Basu JK. Complex dynamics at the nanoscale in simple biomembranes. Sci Rep 2017; 7:11173. [PMID: 28894156 PMCID: PMC5593986 DOI: 10.1038/s41598-017-11068-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Nature is known to engineer complex compositional and dynamical platforms in biological membranes. Understanding this complex landscape requires techniques to simultaneously detect membrane re-organization and dynamics at the nanoscale. Using super-resolution stimulated emission depletion (STED) microscopy coupled with fluorescence correlation spectroscopy (FCS), we reveal direct experimental evidence of dynamic heterogeneity at the nanoscale in binary phospholipid-cholesterol bilayers. Domain formation on the length scale of ~200–600 nm due to local cholesterol compositional heterogeneity is found to be more prominent at high cholesterol content giving rise to distinct intra-domain lipid dynamics. STED-FCS reveals unique dynamical crossover phenomena at length scales of ~100–150 nm within each of these macroscopic regions. The extent of dynamic heterogeneity due to intra-domain hindered lipid diffusion as reflected from the crossover length scale, is driven by cholesterol packing and organization, uniquely influenced by phospholipid type. These results on simple binary model bilayer systems provide novel insights into pathways leading to the emergence of complex nanodomain substructures with implications for a wide variety of membrane mediated cellular events.
Collapse
Affiliation(s)
- Nirod Kumar Sarangi
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India
| | - K G Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560 012, India. .,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560 012, India.
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
76
|
Profiling of phospholipids molecular species from different mammalian milk powders by using ultra-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
77
|
Mo GCH, Yip CM. Structural templating of J-aggregates: Visualizing bis(monoacylglycero)phosphate domains in live cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1687-1695. [PMID: 28844737 DOI: 10.1016/j.bbapap.2017.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Identifying the key structural and dynamical determinants that drive the association of biomolecules, whether in solution, or perhaps more importantly in a membrane environment, has critical implications for our understanding of cellular dynamics, processes, and signaling. With recent advances in high-resolution imaging techniques, from the development of new molecular labels to technical advances in imaging methodologies and platforms, researchers are now reaping the benefits of being able to directly characterize and quantify local dynamics, structures, and conformations in live cells and tissues. These capabilities are providing unique insights into association stoichiometries, interactions, and structures on sub-micron length scales. We previously examined the role of lipid headgroup chemistry and phase state in guiding the formation of pseudoisocyanine (PIC) dye J-aggregates on supported planar bilayers [Langmuir, 25, 10719]. We describe here how these same J-aggregates can report on the in situ formation of organellar membrane domains in live cells. Live cell hyperspectral confocal microscopy using GFP-conjugated GTPase markers of early (Rab5) and late (Rab7) endosomes revealed that the PIC J-aggregates were confined to domains on either the limiting membrane or intralumenal vesicles (ILV) of late endosomes, known to be enriched in the anionic lipid bis(monoacylglycero)phosphate (BMP). Correlated confocal fluorescence - atomic force microscopy performed on endosomal membrane-mimetic supported planar lipid bilayers confirmed BMP-specific templating of the PIC J-aggregates. These data provide strong evidence for the formation of BMP-rich lipid domains during multivesicular body formation and portend the application of structured dye aggregates as markers of cellular membrane domain structure, size, and formation.
Collapse
Affiliation(s)
- Gary C H Mo
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher M Yip
- Department of Biochemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada; Institute of Biomaterials and Biomedical Engineering, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St., Toronto M5S 3E1, Canada.
| |
Collapse
|
78
|
Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion. Sci Rep 2017; 7:4484. [PMID: 28667339 PMCID: PMC5493612 DOI: 10.1038/s41598-017-04769-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 02/02/2023] Open
Abstract
Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.
Collapse
|
79
|
Tóth EA, Oszvald Á, Péter M, Balogh G, Osteikoetxea-Molnár A, Bozó T, Szabó-Meleg E, Nyitrai M, Derényi I, Kellermayer M, Yamaji T, Hanada K, Vígh L, Matkó J. Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28645851 DOI: 10.1016/j.bbalip.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.
Collapse
Affiliation(s)
- Eszter A Tóth
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Ádám Oszvald
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Imre Derényi
- Department of Biological Physics, Eötvös Lorand University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary.
| |
Collapse
|
80
|
Meher G, Chakraborty H. Organization and dynamics of Trp14 of hemagglutinin fusion peptide in membrane mimetic environment. Chem Phys Lipids 2017; 205:48-54. [DOI: 10.1016/j.chemphyslip.2017.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
|
81
|
Nickels JD, Chatterjee S, Stanley CB, Qian S, Cheng X, Myles DAA, Standaert RF, Elkins JG, Katsaras J. The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biol 2017; 15:e2002214. [PMID: 28542493 PMCID: PMC5441578 DOI: 10.1371/journal.pbio.2002214] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments-performed under biologically relevant conditions-answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.
Collapse
Affiliation(s)
- Jonathan D. Nickels
- Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sneha Chatterjee
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Christopher B. Stanley
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Shuo Qian
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Xiaolin Cheng
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Dean A. A. Myles
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Robert F. Standaert
- Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (RFS); (JGE); (JK)
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (RFS); (JGE); (JK)
| | - John Katsaras
- Shull Wollan Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (RFS); (JGE); (JK)
| |
Collapse
|
82
|
Liu K, Marple GR, Allard J, Li S, Veerapaneni S, Lowengrub J. Dynamics of a multicomponent vesicle in shear flow. SOFT MATTER 2017; 13:3521-3531. [PMID: 28440378 PMCID: PMC5505236 DOI: 10.1039/c6sm02452a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We study the fully nonlinear, nonlocal dynamics of two-dimensional multicomponent vesicles in a shear flow with matched viscosity of the inner and outer fluids. Using a nonstiff, pseudo-spectral boundary integral method, we investigate dynamical patterns induced by inhomogeneous bending for a two phase system. Numerical results reveal that there exist novel phase-treading and tumbling mechanisms that cannot be observed for a homogeneous vesicle. In particular, unlike the well-known steady tank-treading dynamics characterized by a fixed inclination angle, here the phase-treading mechanism leads to unsteady periodic dynamics with an oscillatory inclination angle. When the average phase concentration is around 1/2, we observe tumbling dynamics even for very low shear rate, and the excess length required for tumbling is significantly smaller than the value for the single phase case. We summarize our results in phase diagrams in terms of the excess length, shear rate, and concentration of the soft phase. These findings go beyond the well known dynamical regimes of a homogeneous vesicle and highlight the level of complexity of vesicle dynamics in a fluid due to heterogeneous material properties.
Collapse
Affiliation(s)
- Kai Liu
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA.
| | - Gary R Marple
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA.
| | - Jun Allard
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA. and Department of Physics, University of California at Irvine, Irvine, CA, USA and Center for Complex Biological Systems, University of California at Irvine, Irvine, CA, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, USA.
| | | | - John Lowengrub
- Department of Mathematics, University of California at Irvine, Irvine, CA, USA. and Center for Complex Biological Systems, University of California at Irvine, Irvine, CA, USA and Department of Biomedical Engineering, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
83
|
Hussein F, Antonescu C, Karshafian R. Ultrasound and microbubble induced release from intracellular compartments. BMC Biotechnol 2017; 17:45. [PMID: 28521780 PMCID: PMC5437622 DOI: 10.1186/s12896-017-0364-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ultrasound and microbubbles (USMB) have been shown to enhance the intracellular uptake of molecules, generally thought to occur as a result of sonoporation. The underlying mechanism associated with USMB-enhanced intracellular uptake such as membrane disruption and endocytosis may also be associated with USMB-induced release of cellular materials to the extracellular milieu. This study investigates USMB effects on the molecular release from cells through membrane-disruption and exocytosis. Results USMB induced the release of 19% and 67% of GFP from the cytoplasm in viable and non-viable cells, respectively. Tfn release from early/recycling endosomes increased by 23% in viable cells upon USMB treatment. In addition, the MFI of LAMP-1 antibody increased by 50% in viable cells, suggesting USMB-stimulated lysosome exocytosis. In non-viable cells, labeling of LAMP-1 intracellular structures in the absence of cell permeabilization by detergents suggests that USMB-induced cell death correlates with lysosomal permeabilization. Conclusions In conclusion, USMB enhanced the molecular release from the cytoplasm, lysosomes, and early/recycling endosomes. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0364-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Hussein
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada. .,Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada. .,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
84
|
High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochem Biophys 2017; 75:369-385. [PMID: 28417231 DOI: 10.1007/s12013-017-0792-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.
Collapse
|
85
|
Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proc Natl Acad Sci U S A 2017; 114:3109-3114. [PMID: 28265069 DOI: 10.1073/pnas.1611717114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10-100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions.
Collapse
|
86
|
Lucarelli S, Delos Santos RC, Antonescu CN. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures. Methods Mol Biol 2017; 1652:191-225. [PMID: 28791645 DOI: 10.1007/978-1-4939-7219-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.
Collapse
Affiliation(s)
- Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Ralph Christian Delos Santos
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3. .,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3. .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8.
| |
Collapse
|
87
|
Sethy D, Chakraborty H. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam. Chem Phys Lipids 2016; 200:120-125. [PMID: 27680423 DOI: 10.1016/j.chemphyslip.2016.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy.
Collapse
Affiliation(s)
- Dasaratha Sethy
- School of Chemistry, Sambalpur University, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha 768 019, India.
| |
Collapse
|
88
|
Klaus CJS, Raghunathan K, DiBenedetto E, Kenworthy AK. Analysis of diffusion in curved surfaces and its application to tubular membranes. Mol Biol Cell 2016; 27:3937-3946. [PMID: 27733625 PMCID: PMC5170615 DOI: 10.1091/mbc.e16-06-0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 10/04/2016] [Indexed: 11/11/2022] Open
Abstract
Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model diffusion on curved membrane surfaces based on solutions to Fick's law of diffusion and used this to study the effects of geometry on the entry of surface-bound particles into tubules by diffusion. We show that variations in tubule radius and length can distinctly alter diffusion gradients in tubules over biologically relevant timescales. In addition, we show that tubular structures tend to retain concentration gradients for a longer time compared with a comparable flat surface. These findings indicate that sorting of particles along the surfaces of tubules can arise simply as a geometric consequence of the curvature without any specific contribution from the membrane environment. Our studies provide a framework for modeling diffusion in curved surfaces and suggest that biological regulation can emerge purely from membrane geometry.
Collapse
Affiliation(s)
| | - Krishnan Raghunathan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | | | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
89
|
Van Blerkom J, Zimmermann S. Ganglioside-enriched microdomains define an oolemma that is functionally polarized with respect to fertilizability in the mouse. Reprod Biomed Online 2016; 33:458-475. [DOI: 10.1016/j.rbmo.2016.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
90
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Wahrnehmung der chemischen Prozesse in einzelnen Organellen mit niedermolekularen Fluoreszenzsonden. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510721] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapur
- Laboratory of Bioimaging Probe Development, A*STAR; Singapur
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Volksrepublik China
| |
Collapse
|
91
|
Xu W, Zeng Z, Jiang JH, Chang YT, Yuan L. Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. Angew Chem Int Ed Engl 2016; 55:13658-13699. [DOI: 10.1002/anie.201510721] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
- Department of Chemistry; Stanford University; USA
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| | - Young-Tae Chang
- Department of Chemistry and Medicinal Chemistry Programme; National University of Singapore; Singapore 117543 Singapore
- Laboratory of Bioimaging Probe Development, A*STAR; Singapore
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P.R. China
| |
Collapse
|
92
|
Mystek P, Dutka P, Tworzydło M, Dziedzicka-Wasylewska M, Polit A. The role of cholesterol and sphingolipids in the dopamine D 1 receptor and G protein distribution in the plasma membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1775-1786. [PMID: 27570114 DOI: 10.1016/j.bbalip.2016.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
G proteins are peripheral membrane proteins which interact with the inner side of the plasma membrane and form part of the signalling cascade activated by G protein-coupled receptors (GPCRs). Since many signalling proteins do not appear to be homogeneously distributed on the cell surface, they associate in particular membrane regions containing specific lipids. Therefore, protein-lipid interactions play a pivotal role in cell signalling. Our previous results showed that although Gαs and Gαi3 prefer different types of membrane domains they are both co-localized with the D1 receptor. In the present report we characterize the role of cholesterol and sphingolipids in the membrane localization of Gαs, Gαi3 and their heterotrimers, as well as the D1 receptor. We measured the lateral diffusion and membrane localization of investigated proteins using fluorescence recovery after photobleaching (FRAP) microscopy and fluorescence resonance energy transfer (FRET) detected by lifetime imaging microscopy (FLIM). The treatment with either methyl-β-cyclodextrin or Fumonisin B1 led to the disruption of cholesterol-sphingolipids containing domains and changed the diffusion of Gαi3 and the D1 receptor but not of Gαs. Our results imply a sequestration of Gαs into cholesterol-independent solid-like membrane domains. Gαi3 prefers cholesterol-dependent lipid rafts so it does not bind to those domains and its diffusion is reduced. In turn, the D1 receptor exists in several different membrane localizations, depending on the receptor's conformation. We conclude that the inactive G protein heterotrimers are localized in the low-density membrane phase, from where they displace upon dissociation into the membrane-anchor- and subclass-specific lipid domain.
Collapse
Affiliation(s)
- Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Przemysław Dutka
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Tworzydło
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
93
|
Feng G, Sullivan DP, Han F, Muller WA. Segregation of VE-cadherin from the LBRC depends on the ectodomain sequence required for homophilic adhesion. J Cell Sci 2016; 128:576-88. [PMID: 25501813 DOI: 10.1242/jcs.159053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The lateral border recycling compartment (LBRC) is a reticulum ofperijunctional tubulovesicular membrane that is continuous with the plasmalemma of endothelial cells and is essential for efficient transendothelial migration (TEM) of leukocytes. The LBRC contains molecules involved in TEM, such as PECAM, PVR and CD99, but not VE-cadherin. Despite its importance, how membrane proteins are included in or excluded from the LBRC is not known. Immunoelectronmicroscopy and biochemical approaches demonstrate that inclusion into the LBRC is the default pathway for transmembrane molecules present at endothelial cell borders. A chimeric molecule composed of the extracellular domain of VE-cadherin and cytoplasmic tail of PECAM (VE-CAD/PECAM) did not enter the LBRC, suggesting that VE-cadherin was excluded by a mechanism involving its extracellular domain. Deletion of the homophilic interaction domain EC1 or the homophilic interaction motif RVDAE allowed VE-CAD/PECAM and even native VE-cadherin to enter the LBRC. Similarly, treatment with RVDAE peptide to block homophilic VE-cadherin interactions allowed endogenous VE-cadherin to enter the LBRC. This suggests that homophilic interactions of VE-cadherin stabilize it at cell borders and prevent entry into the LBRC.
Collapse
|
94
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
95
|
Niko Y, Didier P, Mely Y, Konishi GI, Klymchenko AS. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci Rep 2016; 6:18870. [PMID: 26750324 PMCID: PMC4707542 DOI: 10.1038/srep18870] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022] Open
Abstract
Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.
Collapse
Affiliation(s)
- Yosuke Niko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Gen-ichi Konishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| |
Collapse
|
96
|
Sanmartí-Espinal M, Galve R, Iavicoli P, Persuy MA, Pajot-Augy E, Marco MP, Samitier J. Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles. Colloids Surf B Biointerfaces 2015; 139:269-76. [PMID: 26724468 DOI: 10.1016/j.colsurfb.2015.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 10/06/2015] [Accepted: 11/23/2015] [Indexed: 02/01/2023]
Abstract
Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes.
Collapse
Affiliation(s)
- Marta Sanmartí-Espinal
- IBEC-Institute for Bioengineering of Catalonia, Nanobioengineering Group, C/Baldiri Reixac, 15-21, 08028 Barcelona, Spain; Department of Electronics, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Roger Galve
- Nb4D-Nanobiotechnology for Diagnostics, IQAC-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), C/María de Luna 11, Edificio CEEI, 50018 Zaragoza, Spain
| | - Patrizia Iavicoli
- IBEC-Institute for Bioengineering of Catalonia, Nanobioengineering Group, C/Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | | | | | - M-Pilar Marco
- Nb4D-Nanobiotechnology for Diagnostics, IQAC-CSIC, C/Jordi Girona, 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), C/María de Luna 11, Edificio CEEI, 50018 Zaragoza, Spain
| | - Josep Samitier
- IBEC-Institute for Bioengineering of Catalonia, Nanobioengineering Group, C/Baldiri Reixac, 15-21, 08028 Barcelona, Spain; Department of Electronics, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), C/María de Luna 11, Edificio CEEI, 50018 Zaragoza, Spain.
| |
Collapse
|
97
|
Role of Ceramide from Glycosphingolipids and Its Metabolites in Immunological and Inflammatory Responses in Humans. Mediators Inflamm 2015; 2015:120748. [PMID: 26609196 PMCID: PMC4644562 DOI: 10.1155/2015/120748] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/19/2023] Open
Abstract
Glycosphingolipids (GSLs) are composed of hydrophobic ceramide and hydrophilic sugar chains. GSLs cluster to form membrane microdomains (lipid rafts) on plasma membranes, along with several kinds of transducer molecules, including Src family kinases and small G proteins. However, GSL-mediated biological functions remain unclear. Lactosylceramide (LacCer, CDw17) is highly expressed on the plasma membranes of human phagocytes and mediates several immunological and inflammatory reactions, including phagocytosis, chemotaxis, and superoxide generation. LacCer forms membrane microdomains with the Src family tyrosine kinase Lyn and the Gαi subunit of heterotrimeric G proteins. The very long fatty acids C24:0 and C24:1 are the main ceramide components of LacCer in neutrophil plasma membranes and are directly connected with the fatty acids of Lyn and Gαi. These observations suggest that the very long fatty acid chains of ceramide are critical for GSL-mediated outside-in signaling. Sphingosine is another component of ceramide, with the hydrolysis of ceramide by ceramidase producing sphingosine and fatty acids. Sphingosine is phosphorylated by sphingosine kinase to sphingosine-1-phosphate, which is involved in a wide range of cellular functions, including growth, differentiation, survival, chemotaxis, angiogenesis, and embryogenesis, in various types of cells. This review describes the role of ceramide moiety of GSLs and its metabolites in immunological and inflammatory reactions in human.
Collapse
|
98
|
Chakraborty H, Haldar S, Chong PLG, Kombrabail M, Krishnamoorthy G, Chattopadhyay A. Depth-Dependent Organization and Dynamics of Archaeal and Eukaryotic Membranes: Development of Membrane Anisotropy Gradient with Natural Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11591-11597. [PMID: 26445271 DOI: 10.1021/acs.langmuir.5b02760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lipid composition of archaea is unique and has been correlated with increased stability under extreme environmental conditions. In this article, we have focused on the evolution of membrane organization and dynamics with natural evolution. Dynamic anisotropy along the membrane normal (i.e., gradients of mobility, polarity, and heterogeneity) is a hallmark of fluid phase diester or diether phospholipid membranes. We monitored gradients of mobility, polarity, and heterogeneity along the membrane normal in membranes made of a representative archaeal lipid using a series of membrane depth-dependent fluorescent probes, and compared them to membranes prepared from a typical diether lipid from higher organisms (eukaryotes). Our results show that the representative dynamic anisotropy gradient along the membrane normal is absent in membranes made from archaeal lipids. We hypothesize that the dynamic gradient observed in membranes of diester and diether phospholipids is a consequence of natural evolution of membrane lipids in response to the requirement of carrying out complex cellular functions by membrane proteins.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road, Hyderabad 500 007, India
- School of Chemistry, Sambalpur University , Burla, Odisha 768 019, India
| | - Sourav Haldar
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road, Hyderabad 500 007, India
| | - Parkson Lee-Gau Chong
- Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine , Philadelphia, Pennsylvania 19140, United States
| | - Mamata Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400 005, India
| | - G Krishnamoorthy
- Department of Chemical Sciences, Tata Institute of Fundamental Research , Homi Bhabha Road, Mumbai 400 005, India
| | | |
Collapse
|
99
|
Abstract
Sterols are a critical component of cell membranes of eukaryotes. In mammalian cells there is approximately a six-fold range in the cholesterol content in various organelles. The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the physiochemical properties of membranes. Cholesterol trafficking among organelles is highly dynamic and is mediated by both vesicular and non-vesicular processes. Several proteins have been proposed to mediate inter-organelle trafficking of cholesterol. However, several aspects of the mechanisms involved in regulating trafficking and distribution of cholesterol remain to be elucidated. In the present chapter, we discuss the cellular mechanisms involved in cholesterol distribution and the trafficking processes involved in maintaining sterol homoeostasis.
Collapse
|
100
|
Schröter F, Jakop U, Teichmann A, Haralampiev I, Tannert A, Wiesner B, Müller P, Müller K. Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:149-63. [DOI: 10.1007/s00249-015-1084-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 12/23/2022]
|