51
|
Ou WB, Park YD, Zhou HM. Effect of osmolytes as folding aids on creatine kinase refolding pathway. Int J Biochem Cell Biol 2002; 34:136-47. [PMID: 11809416 DOI: 10.1016/s1357-2725(01)00113-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of osmolytes, including dimethysulfoxide, glycine, proline and sucrose, on the refolding and reactivation courses of guanidine-denatured creatine kinase was studied by fluorescence emission spectra, circular dichroism spectra, recovery of enzymatic activity and aggregation. The results showed that low concentrations of dimethysulfoxide (<20%), glycine (<0.5 M), proline (<1 M) and sucrose (<0.75 M) improved the refolding yields of creatine kinase, but high osmolyte concentrations decreased its recovery. Sucrose favored the secondary structural formation of creatine kinase. Proline and sucrose facilitated refolding of the protein to its original conformation, while dimethysulfoxide and proline accelerated the hydrophobic collapse of creatine kinase to a packed protein. During the aggregation of creatine kinase, dimethysulfoxide and sucrose inhibited aggregation of creatine kinase, as did proline, but glycine was unable to inhibit aggregation. These systematic observations further support the suggestion that osmolytes, including low concentrations of dimethysulfoxide, proline or sucrose, possibly play a chaperone role in the refolding of creatine kinase. The results also indicate that sucrose and free amino acids are not only energy substrates and organic components in vivo, but also help correct protein folding.
Collapse
Affiliation(s)
- Wen-Bin Ou
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | |
Collapse
|
52
|
Schlattner U, Dolder M, Wallimann T, Tokarska-Schlattner M. Mitochondrial creatine kinase and mitochondrial outer membrane porin show a direct interaction that is modulated by calcium. J Biol Chem 2001; 276:48027-30. [PMID: 11602586 DOI: 10.1074/jbc.m106524200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial creatine kinase (MtCK) co-localizes with mitochondrial porin (voltage-dependent anion channel) and adenine nucleotide translocator in mitochondrial contact sites. A specific, direct protein-protein interaction between MtCK and mitochondrial porin was demonstrated using surface plasmon resonance spectroscopy. This interaction was independent of the immobilized binding partner (porin reconstituted in liposomes or MtCK) or the analyzed isoform (chicken sarcomeric MtCK or human ubiquitous MtCK, human recombinant porin, or purified bovine porin). Increased ionic strength reduced the binding of MtCK to porin, suggesting predominantly ionic interactions. By contrast, micromolar concentrations of Ca(2+) increased the amount of bound MtCK, indicating a physiological regulation of complex formation. No interaction of MtCK with reconstituted adenine nucleotide translocator was detectable in our experimental setup. The relevance of these findings for structure and function of mitochondrial contact sites is discussed.
Collapse
Affiliation(s)
- U Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), Hönggerberg HPM, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
53
|
Ou WB, Park YD, Zhou HM. Molecular mechanism for osmolyte protection of creatine kinase against guanidine denaturation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5901-11. [PMID: 11722578 DOI: 10.1046/j.0014-2956.2001.02539.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of osmolytes, including dimethysulfoxide, sucrose, glycine and proline, on the unfolding and inactivation of guanidine-denatured creatine kinase were studied by observing the fluorescence emission spectra, the CD spectra and the inactivation of enzymatic activity. The results showed that low concentrations of dimethysulfoxide (< 40%), glycine (< 1.5 m), proline (< 2.5 m) and sucrose (< 1.2 m) reduced the inactivation and unfolding rate constants of creatine kinase, increased the change in transition free energy of inactivation and unfolding (Delta Delta G(u)) and stabilized its active conformation relative to the partially unfolded state with no osmolytes. In the presence of various osmolytes, the inactivation and unfolding dynamics of creatine kinase were related to the protein concentrations. These osmolytes protected creatine kinase against guanidine denaturation in a concentration-dependent manner. The ability of the osmolytes to protect creatine kinase against guanidine denaturation decreased in order from sucrose to glycine to proline. Dimethysulfoxide was considered separately. This study also suggests that osmolytes are not only energy substrates for metabolism and organic components in vivo, but also have an important physiological function for maintaining adequate rates of enzymatic catalysis and for stabilizing the protein secondary and tertiary conformations.
Collapse
Affiliation(s)
- W B Ou
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
54
|
Ou WB, Luo W, Park YD, Zhou HM. Chaperone-like activity of peptidyl-prolyl cis-trans isomerase during creatine kinase refolding. Protein Sci 2001; 10:2346-53. [PMID: 11604540 PMCID: PMC2374073 DOI: 10.1110/ps.23301] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Revised: 08/09/2001] [Accepted: 08/09/2001] [Indexed: 10/14/2022]
Abstract
Porcine kidney 18 kD peptidyl-prolyl cis-trans isomerase (PPIase) belongs to the cyclophilin family that is inhibited by the immunosuppressive drug cyclosporin A. The chaperone activity of PPIase was studied using inactive, active, and alkylated PPIase during rabbit muscle creatine kinase (CK) refolding. The results showed that low concentration inactive or active PPIase was able to improve the refolding yields, while high concentration PPIase decreased the CK reactivation yields. Aggregation was inhibited by inactive or active PPIase, and completely suppressed at 32 or 80 times the CK concentration (2.7 microM). However, alkylated PPIase was not able to prevent CK aggregation. In addition, the ability of inactive PPIase to affect CK reactivation and prevent CK aggregation was weaker than that of active PPIase. These results indicate that PPIase interacted with the early folding intermediates of CK, thus preventing their aggregation in a concentration-dependent manner. PPIase exhibited chaperone-like activity during CK refolding. The results also suggest that the isomerase activity of PPIase was independent of the chaperone activity, and that the proper molar ratio was important for the chaperone activity of PPIase. The cysteine residues of PPIase may be a peptide binding site, and may be an essential group for the chaperone function.
Collapse
Affiliation(s)
- W B Ou
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | |
Collapse
|
55
|
Masuda Y. Suppression of the cardiac performance during recovery after strenuous sympathetic nerve activity. J Cardiovasc Pharmacol 2001; 38 Suppl 1:S33-7. [PMID: 11811356 DOI: 10.1097/00005344-200110001-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To examine whether myocardial contractility is suppressed during recovery from strenuous sympathetic nerve activity, the cardiac sympathetic nerve was stimulated for 1 min at 20 Hz in open-chest anesthetized dogs (n = 6). Myocardial contractility was compared between stimulation at 20 Hz (strenuous) and stimulation at 2 Hz (physiological range). Inotropic activity was assessed as the maximal value of the first derivative of left ventricular pressure. The inotropic activity was significantly below the prestimulation control level at 5 min after the end of the strenuous stimulation (68+/-7% of the control value; p < 0.05). The inotropic activity then increased toward the prestimulation level. In contrast, the inotropic activity with 2-Hz stimulation decreased toward the prestimulation level but never fell below that level during recovery. In another experiment (n = 10), 50% glucose solution was injected 5 min after the end of the strenuous stimulation (20 Hz), i.e. when the inotropic activity reached the nadir. The inotropic activity increased significantly (p < 0.01) above the prestimulation level between 7 and 20 min after stimulation. Maximal response (121+/-7% of the control value) was observed at approximately 10 min. These results suggest that transient myocardial suppression occurs after strenuous sympathetic nerve activity and that high-energy phosphate is substantially consumed during strenuous sympathetic activity, resulting eventually in myocardial suppression.
Collapse
Affiliation(s)
- Y Masuda
- Department of Medicine, Tashirodai Hospital, Yamaguchi, Japan.
| |
Collapse
|
56
|
Kreutzer U, Mekhamer Y, Chung Y, Jue T. Oxygen supply and oxidative phosphorylation limitation in rat myocardium in situ. Am J Physiol Heart Circ Physiol 2001; 280:H2030-7. [PMID: 11299203 DOI: 10.1152/ajpheart.2001.280.5.h2030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 1H-NMR signal of the proximal histidyl-N(delta)H of deoxymyoglobin is detectable in the in situ rat myocardium and can reflect the intracellular PO2. Under basal normoxic conditions, the cellular PO2 is sufficient to saturate myoglobin (Mb). No proximal histidyl signal of Mb is detectable. On ligation of the left anterior descending coronary artery, the Mb signal at 78 parts/million (ppm) appears, along with a peak shoulder assigned to the corresponding signal of Hb. During dopamine infusion up to 80 microg. kg(-1) x min(-1), both the heart rate-pressure product (RPP) and myocardial oxygen consumption (MVO2) increase by about a factor of 2. Coronary flow increases by 84%, and O2 extraction (arteriovenous O2 difference) rises by 31%. Despite the increased respiration and work, no deoxymyoglobin signal is detected, implying that the intracellular O2 level still saturates MbO2, well above the PO2 at 50% saturation of Mb. The phosphocreatine (PCr) level decreases, however, during dopamine stimulation, and the ratio of the change in P(i) over PCr (DeltaP(i)/PCr) increases by 0.19. Infusion of either pyruvate, as the primary substrate, or dichloroacetate, a pyruvate dehydrogenase activator, abolishes the change in DeltaP(i)/PCr. Intracellular O2 supply does not limit MVO2, and the role of ADP in regulating respiration in rat myocardium in vivo remains an open question.
Collapse
Affiliation(s)
- U Kreutzer
- Department of Biological Chemistry, University of California, Davis, California 95616-8635, USA
| | | | | | | |
Collapse
|
57
|
Li S, Bai JH, Park YD, Zhou HM. Aggregation of creatine kinase during refolding and chaperonin-mediated folding of creatine kinase. Int J Biochem Cell Biol 2001; 33:279-86. [PMID: 11311859 DOI: 10.1016/s1357-2725(01)00003-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The course of refolding and reactivation of urea-denatured creatine kinase (ATP; creatine N-phosphotransferase, EC 2.7.3.2) has been studied in the absence and presence of molecular chaperonin GroEL. The enzyme was denatured in Tris--HCl buffer containing 6 M urea for 1 h. In the refolding studies, the denatured enzyme was diluted 60-fold into the same buffer containing GroEL or not for activity, turbidity, fluorescence measurements and polyacrylamide gel electrophoresis. The results show that the reactivation process is dependent of creatine kinase concentration in the concentration range 2.5--4 microM. The levels of activity recovery decrease with increasing enzyme concentration because of the formation of wrong aggregates. The molecular chaperonin GroEL can bind the refolding intermediate of creatine kinase and thus prevent the formation of wrong aggregates. This intermediate is an inactive dimeric form that is in a conformation resembling the 'molten globule' state.
Collapse
Affiliation(s)
- S Li
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 10084, People's Republic of China
| | | | | | | |
Collapse
|
58
|
Tong X, Zeng X, Zhou HM. Effects of zinc on creatine kinase: activity changes, conformational changes, and aggregation. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:553-62. [PMID: 11233168 DOI: 10.1023/a:1007142117037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of zinc on creatine kinase (CK) are very distinctive compared with other bivalent metal ions. Zinc up to 0.1 mM induced increases in CK activity, accompanied by significant hydrophobic surface exposure and increase in alpha-helix content of CK. Zinc over 0.1 mM denatured and inactived CK. In the presence of 0.1 mM zinc, the CK activity was very close to that of the native CK, but its conformation changed greatly. The kinetic courses of CK inactivation and conformational change in the presence of 1 mM zinc were measured to determine apparent rate constants of inactivation and conformational change. Zinc over 0.05 mM induced CK aggregation at 37 degrees C, and the aggregation was dependent on zinc concentration, CK concentration, and temperature. The inactivation and aggregation can be reversed by EDTA. An explanation for CK aggregation induced by zinc is proposed, as well as a mechanism for CK abnormality in Alzheimer's disease.
Collapse
Affiliation(s)
- X Tong
- Department of Biological Science and Biotechnology, School of Life Science and Engineering, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
59
|
Robinson TN, Morrell TD, Pomerantz BJ, Heimbach JK, Cairns CB, Harken AH. Therapeutically accessible clinical cardiac states. J Am Coll Surg 2000; 191:452-63. [PMID: 11030251 DOI: 10.1016/s1072-7515(00)00696-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- T N Robinson
- Department of Surgery, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
60
|
Boehm E, Ventura-Clapier R, Mateo P, Lechène P, Veksler V. Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibres of mice deficient in mitochondrial and cytosolic creatine kinase. J Mol Cell Cardiol 2000; 32:891-902. [PMID: 10888244 DOI: 10.1006/jmcc.2000.1130] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several works have shown the importance of the creatine kinase (CK) system for cardiac energetics and Ca2+ homeostasis. Nevertheless, CK-deficient mice have cardiac function close to normal, at least under conditions of low or moderate workload. To characterize possible adaptive changes of the sarcoplasmic reticulum (SR) and potential role of glycolytic support in cardiac contractility we used the skinned fibre technique to study properties of the SR and myofibrils, in control and muscle-type homodimer (MM-/mitochondrial-CK)-deficient mice. In control fibres, SR Ca2+ loading with ATP and phosphocreatine (solution PL) was significantly better than loading with ATP alone (solution AL), as determined by analysis of caffeine-induced tension transients. Loading in the presence of ATP and glycolytic intermediates (solution GL) was not significantly different from solution PL. These data indicate that Ca2+ uptake by the SR in situ depends on a local ATP:ADP ratio that is controlled by both CK and glycolytic enzymes. In CK-deficient mice, Ca2+ loading was impaired in solution PL due to the absence of CK. In solution GL, loading was significantly increased, such that calculated Ca2+ release parameters were normalized to those in control fibres in solution PL. In CK-deficient mice, fibre kinetic parameters of tension recovery were impaired after quick stretch in solution PL and were not improved in solution GL. These results show that in CK-deficient mice, at least under basal conditions, glycolysis can replace the CK system in fueling the SR Ca2+ ATPase, but not the myosin ATPase, and may in part explain the limited phenotypic alterations seen in the hearts of these mice.
Collapse
Affiliation(s)
- E Boehm
- Laboratoire de Cardiologie Cellulaire et Moleculaire, INSERM U-446, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
61
|
Abstract
Creatine kinase (CK), catalyzing the reversible trans-phosphorylation between ATP and creatine, plays a key role in the energy metabolism of cells with high and fluctuating energy requirements. We have solved the X-ray structure of octameric human ubiquitous mitochondrial CK (uMtCK) at 2.7 A resolution, representing the first human CK structure. The structure is very similar to the previously determined structure of sarcomeric mitochondrial CK (sMtCK). The cuboidal octamer has 422 point group symmetry with four dimers arranged along the fourfold axis and a central channel of approximately 20 A diameter, which extends through the whole octamer. Structural differences with respect to sMtCK are found in isoform-specific regions important for octamer formation and membrane binding. Octameric uMtCK is stabilized by numerous additional polar interactions between the N-termini of neighboring dimers, which extend into the central channel and form clamp-like structures, and by a pair of salt bridges in the hydrophobic interaction patch. The five C-terminal residues of uMtCK, carrying positive charges likely to be involved in phospholipid-binding, are poorly defined by electron density, indicating a more flexible region than the corresponding one in sMtCK. The structural differences between uMtCK and sMtCK are consistent with biochemical studies on octamer stability and membrane binding of the two isoforms.
Collapse
Affiliation(s)
- M Eder
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | | | | | |
Collapse
|
62
|
Chen LH, White CB, Babbitt PC, McLeish MJ, Kenyon GL. A comparative study of human muscle and brain creatine kinases expressed in Escherichia coli. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:59-66. [PMID: 10882173 DOI: 10.1023/a:1007047026691] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the expression of the human muscle (CK-MM) and brain (CK-BB) creatine kinases in Escherichia coli. The proteins have been purified to apparent homogeneity and several of their physical and kinetic properties investigated. In the process, we have conclusively verified the correct DNA sequence of the genes encoding the respective isozymes, and determined the correct primary structure and mass of the gene products. Alignment of the primary sequences of these two enzymes shows 81% sequence identity with each other, and no obvious gross structural differences. However, Western blot analyses demonstrated the general lack of antigenic cross-reactivity between these isozymes. Preliminary kinetic analyses show the K(m) and k(cat) values for the creatine and MgATP substrates are similar to values reported for other isozymes from various tissues and organisms. The human muscle and brain CKs do not, however, exhibit the synergism of substrate binding that is observed, for example, in rabbit muscle creatine kinase.
Collapse
Affiliation(s)
- L H Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
63
|
Yang Y, Park YD, Yu TW, Zhou HM. Reactivation and refolding of a partially folded creatine kinase modified by 5,5'-dithio-bis(2-nitrobenzoic acid). Biochem Biophys Res Commun 1999; 259:450-4. [PMID: 10362528 DOI: 10.1006/bbrc.1999.0622] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Creatine kinase with its thiol groups modified by 5, 5'-dithio-bis(2-nitrobenzoic acid) has been shown to be partially folded in a monomeric state using fluorescence, circular dichroism, proteolysis, and size exclusion chromatography studies. In the presence of DTT, the partially folded modified creatine kinase can be reactivated and refolded following a biphasic course, suggesting the existence of a monomeric intermediate during the refolding of CK. The results provide evidence for our previously suggested model of the refolding pathway of urea-denatured creatine kinase.
Collapse
Affiliation(s)
- Y Yang
- Department of Biological Science and Biotechnology, School of Life Science and Engineering, Beijing, 100084, China
| | | | | | | |
Collapse
|
64
|
Qin W, Khuchua Z, Boero J, Payne RM, Strauss AW. Oxidative myocytes of heart and skeletal muscle express abundant sarcomeric mitochondrial creatine kinase. THE HISTOCHEMICAL JOURNAL 1999; 31:357-65. [PMID: 10462222 DOI: 10.1023/a:1003748108062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sarcomeric mitochondrial creatine kinase catalyzes the reversible transfer of a high energy phosphate between ATP and creatine. To study cellular distribution of the kinase, we performed immunocytochemical studies using a peptide antiserum specific for the kinase protein. Our results demonstrated that the sarcomeric mitochondrial creatine kinase gene is abundantly expressed in heart and skeletal muscle, with no protein detected in other tissues examined, including brain, lung, liver, spleen, kidney, bladder, testis, stomach, intestine, and colon. RNA blot study showed that there is no detectable expression of the kinase mRNA in the thymus gland. In heart and skeletal muscle, the kinase protein is expressed in atrial and ventricular cardiomyocytes and a subpopulation of skeletal myofibres. In skeletal muscle, fast myosin heavy chain co-localization studies demonstrated that the sarcomeric mitochondrial creatine kinase is highly expressed in type 1, slow-oxidative and type 2A, fast-oxidative-glycolytic myofibres. We conclude that the kinase gene is abundantly expressed in oxidative myocytes of heart and skeletal muscle and may contribute to oxidative capacity of these cells.
Collapse
Affiliation(s)
- W Qin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
65
|
DeAtley SM, Aksenov MY, Aksenova MV, Jordan B, Carney JM, Butterfield DA. Adriamycin-induced changes of creatine kinase activity in vivo and in cardiomyocyte culture. Toxicology 1999; 134:51-62. [PMID: 10413188 DOI: 10.1016/s0300-483x(99)00039-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Adriamycin (ADM) is an anthracycline anti-neoplastic agent, whose clinical effectiveness is limited by severe side effects, including cardiotoxicity. The toxic effects of ADM are likely to be the consequence of the generation of free radicals. This study demonstrates that ADM induces significant changes in the activity of the oxidative sensitive enzyme creatine kinase (CK) in the heart in vivo and in a cardiomyocyte culture model. The changes observed are likely to reflect the ability of ADM to damage the plasma membrane of cardiac cells and to induce the direct inactivation of CK. The role for ADM-derived free radicals is one of the possible mechanisms for the CK inactivation observed during the ADM treatment.
Collapse
Affiliation(s)
- S M DeAtley
- Department of Pharmacology, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
This article takes three different approaches to the question of whether the failing heart is in an energy-starved state. A brief historical overview introduces the issue and points out problems in both models and methods. Second, current information regarding the energetic state of the failing heart is examined. Finally, the mechanistic and therapeutic implications of a defect in energy production are described.
Collapse
Affiliation(s)
- A M Katz
- Department of Medicine, University of Connecticut School of Medicine, Farmington, USA.
| |
Collapse
|
67
|
Haseler LJ, Richardson RS, Videen JS, Hogan MC. Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO2. J Appl Physiol (1985) 1998; 85:1457-63. [PMID: 9760341 DOI: 10.1152/jappl.1998.85.4.1457] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence that the concentration of the high-energy phosphate metabolites may be altered during steady-state submaximal exercise by the breathing of different fractions of inspired O2 (FIO2). Whereas it has been suggested that these changes may be the result of differences in time taken to achieve steady-state O2 uptake (V(O2)) at different FIO2 values, we postulated that they are due to a direct effect of O2 tension. We used 31P-magnetic resonance spectroscopy during constant-load, steady-state submaximal exercise to determine 1) whether changes in high-energy phosphates do occur at the same V(O2) with varied FIO2 and 2) that these changes are not due to differences in V(O2) onset kinetics. Six male subjects performed steady-state submaximal plantar flexion exercise [7.2 +/- 0.6 (SE) W] for 10 min while lying supine in a 1.5-T clinical scanner. Magnetic resonance spectroscopy data were collected continuously for 2 min before exercise, 10 min during exercise, and 6 min during recovery. Subjects performed three different exercise bouts at constant load with the FIO2 switched after 5 min of the 10-min exercise bout. The three exercise treatments were 1) FIO2 of 0.1 switched to 0.21, 2) FIO2 of 0.1 switched to 1.00, and 3) FIO2 of 1.00 switched to 0.1. For all three treatments, the FIO2 switch significantly (P </= 0.05) altered phosphocreatine: 1) 55.5 +/- 4.8 to 67.8 +/- 4.9% (%rest); 2) 59.0 +/- 4.3 to 72.3 +/- 5.1%; and 3) 72.6 +/- 3.1 to 64.2 +/- 3.4%, respectively. There were no significant differences in intracellular pH for the three treatments. The results demonstrate that the differences in phosphocreatine concentration with varied FIO2 are not the result of different V(O2) onset kinetics, as this was eliminated by the experimental design. These data also demonstrate that changes in intracellular oxygenation, at the same work intensity, result in significant changes in cell homeostasis and thereby suggest a role for metabolic control by O2 even during submaximal exercise.
Collapse
Affiliation(s)
- L J Haseler
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
68
|
Khuchua ZA, Qin W, Boero J, Cheng J, Payne RM, Saks VA, Strauss AW. Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J Biol Chem 1998; 273:22990-6. [PMID: 9722522 DOI: 10.1074/jbc.273.36.22990] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial creatine kinases form octameric structures composed of four active and stable dimers. Octamer formation has been postulated to occur via interaction of the charged amino acids in the N-terminal peptide of the mature enzyme. We altered codons for charged amino acids in the N-terminal region of mature sarcomeric mitochondrial creatine kinase (sMtCK) to those encoding neutral amino acids. Transfection of normal sMtCK cDNA or those with the mutations R42G, E43G/H45G, and K46G into rat neonatal cardiomyocytes resulted in enzymatically active sMtCK expression in all. After hypoosmotic treatment of isolated mitochondria, mitochondrial inner membrane-associated and soluble sMtCK from the intermembranous space were measured. The R42G and E43G/H45G double mutation caused destabilization of the octameric structure of sMtCK and a profound reduction in binding of sMtCK to the inner mitochondrial membrane. The other mutant sMtCK proteins had modest reductions in binding. Creatine-stimulated respiration was markedly reduced in mitochondria isolated from cells transfected with the R42G mutant cDNA as compared with those transfected with normal sMtCK cDNA. We conclude that neutralization of charges in N-terminal peptide resulted in destabilization of octamer structure of sMtCK. Thus, charged amino acids at the N-terminal moiety of mature sMtCK are essential for octamer formation, binding of sMtCK with inner mitochondrial membrane, and coupling of sMtCK to oxidative phosphorylation.
Collapse
Affiliation(s)
- Z A Khuchua
- Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Chung Y, Sharman R, Carlsen R, Unger SW, Larson D, Jue T. Metabolic fluctuation during a muscle contraction cycle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C846-52. [PMID: 9530118 DOI: 10.1152/ajpcell.1998.274.3.c846] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gated 31P-nuclear magnetic resonance followed the metabolic fluctuation in rat gastrocnemius muscle during a contraction cycle. Within 16 ms after stimulation, the phosphocreatine (PCr) level drops 11.3% from its reference state. The PCr minimum corresponds closely to the time of maximum force contraction. Pi increases stoichiometrically, while ATP remains constant. During a twitch, PCr hydrolysis produces 3.1 mumol ATP/g tissue, which is substantially higher than the reported 0.3 mumol ATP.twitch-1.g tissue-1 derived from steady-state experiments. The results reveal that a substantial energy fluctuation accompanies a muscle twitch.
Collapse
Affiliation(s)
- Y Chung
- Department of Biological Chemistry, University of California, Davis 95616-8635, USA
| | | | | | | | | | | |
Collapse
|
70
|
Miller K, Sharer K, Suhan J, Koretsky AP. Expression of functional mitochondrial creatine kinase in liver of transgenic mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1193-202. [PMID: 9142844 DOI: 10.1152/ajpcell.1997.272.4.c1193] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mitochondrial isoform of creatine kinase (MiCK) is localized to the mitochondrial intermembrane space, and its precise role in vivo is still actively being investigated. Here, we report a transgenic mouse model in which MiCK is expressed in liver, a tissue that does not normally express significant levels of CK. Expression of the genomic clone for human, ubiquitous MiCK was controlled by the promoter/enhancer region of the transthyretin gene. Three of seven founder mice were chosen to establish lines and had MiCK activity values ranging from 13 to 269 micromol x min(-1) x g wet wt(-1). Differential centrifugation and histochemical staining demonstrated that >90% of the CK activity is localized to the mitochondrial intermembrane space. An unusual mitochondrial morphology characterized by an angular nature to the membranes was detected using electron microscopy in the transgenic line expressing the highest levels of MiCK. Increasing hepatic total creatine levels led to a return to normal mitochondrial morphology. 31P-nuclear magnetic resonance spectroscopy demonstrated that the expressed MiCK is capable of producing and utilizing phosphocreatine. These mice will be useful for investigating gain of function effects of MiCK in cellular energetics.
Collapse
Affiliation(s)
- K Miller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
71
|
Functions of Creatine Kinase Isoenzymes in Spermatozoa. ADVANCES IN DEVELOPMENTAL BIOLOGY (1992) 1997. [DOI: 10.1016/s1566-3116(08)60040-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
72
|
Stachowiak O, Dolder M, Wallimann T. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Biochemistry 1996; 35:15522-8. [PMID: 8952506 DOI: 10.1021/bi961838v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondrial creatine kinase (Mi-CK; EC 2.7.3.2) is a positively charged enzyme located between the mitochondrial inner and outer membrane as well as along the cristae membranes. The octameric form of Mi-CK is able to cross-link membranes to form contact sites. The process of Mi-CK membrane binding and Mi-CK-induced cross-linking of model membrane vesicles containing different amounts of cardiolipin (CL) was investigated in vitro. First, the direct binding of octameric Mi-CK to immobilized lipid vesicles containing cardiolipin was monitored by plasmon resonance (BiaCore). The analysis of the pseudo-first-order on- and off-rate constants indicates that there are two binding sites with different affinity for Mi-CK on the membrane. The association equilibrium constants obtained at 25 degrees C were 813.7 (for 100% CL) and 343.6 (for 16% CL), respectively, for the high-affinity binding mode. Second, the Mi-CK-induced vesicle cross-linking kinetics were analyzed by fixed-angle light scattering. Only octameric Mi-CK induced bridged vesicle/protein complexes, whereas dimeric Mi-CK failed to induce vesicle cross-linking. For vesicles containing 100% cardiolipin, the pseudo-first-order association rate constant was 2.55 x 10(-3) s-1, while for membranes containing 16% cardiolipin and 84% PC a constant of 6.25 x 10(-3) s-1 was found. The examined kinetic properties of the system suggest a two-step model for Mi-CK-induced vesicle cross-linking which consists of a fast binding step of the enzyme to the membrane, followed by a remarkably slower cross-linking reaction between Mi-CK-covered vesicles. The data obtained by in vitro biophysical methods agree with earlier experiments done with mitoplasts and isolated mitochondrial membranes and explain the in vivo accumulation of Mi-CK at contact sites between the inner and outer mitochondrial membrane and the formation of Mi-CK-rich intramitochondrial inclusions observed in creatine-depleted animals as well as in patients with mitochondrial cytopathies.
Collapse
Affiliation(s)
- O Stachowiak
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | | | | |
Collapse
|
73
|
Kawasaki N, Lee JD, Shimizu H, Ueda T. Long-term 1-carnitine treatment prolongs the survival in rats with adriamycin-induced heart failure. J Card Fail 1996; 2:293-9. [PMID: 8989644 DOI: 10.1016/s1071-9164(96)80016-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The most serious consequence of heart failure is the shortened life expectancy, which may be associated with myocardial energy starvation. METHODS AND RESULTS Eight-week-old male Sprague-Dawley rats received 6 intraperitoneal injections of adriamycin (group A: total dose; 15 mg/kg body weight) or vehicle (group C) over 2 weeks. Rats then received either 272 mg/kg daily of oral 1-carnitine (A-LC and C-LC groups) or saline (A-S and C-S groups) for 6 weeks. The cumulative mortality rate in the A-LC group was significantly lower than in the A-S group (13 vs 42%, P = .028). Myocardial levels of high-energy phosphate compounds (ATP and creatine phosphate) and fatty acid metabolites (free carnitine, short-chain and long-chain acylcarnitine, and long-chain acyl CoA) in the left ventricle were measured the day after the last dose of drug or vehicle was administered. ATP was decreased by 73%, creatine phosphate by 61%, free carnitine by 52%, short-chain acylcarnitine by 48%, and long-chain acylcarnitine by 56% in the A-S group compared to the C-S group. Long-chain CoA was increased by 168% in the A-S group. Levels of myocardial high-energy phosphate compounds and fatty acid metabolites were near normal in adriamycin- and 1-carnitine-treated rats. CONCLUSIONS Preservation of the myocardial level of carnitine by 1-carnitine treatment prolonged survival of rats with adriamycin-induced failure by improving the myocardial metabolism of fatty acids.
Collapse
Affiliation(s)
- N Kawasaki
- First Department of Internal Medicine, Fukui Medical School, Japan
| | | | | | | |
Collapse
|
74
|
Meyer RA, Foley JM. Cellular Processes Integrating the Metabolic Response to Exercise. Compr Physiol 1996. [DOI: 10.1002/cphy.cp120118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
75
|
Pelouch V, Kolár F, Khuchua ZA, Elizarova GV, Milerová M, Ost'ádal B, Saks VA. Cardiac phosphocreatine deficiency induced by GPA during postnatal development in rat. Mol Cell Biochem 1996; 163-164:67-76. [PMID: 8974041 DOI: 10.1007/bf00408642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of chronic administration of beta-guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1-1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 +/- 5.3 mumoles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for heart function and for the regulation of normal growth of cardiac myocytes.
Collapse
Affiliation(s)
- V Pelouch
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
76
|
O'Gorman E, Beutner G, Wallimann T, Brdiczka D. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:161-70. [PMID: 8816948 DOI: 10.1016/0005-2728(96)00074-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Guanidinopropionic acid (GPA), an analogue of creatine (Cr), is known to inhibit Cr uptake by cells. The metabolic effects of chronic Cr depletion on brain, heart and soleus muscle of rats were studied. In GPA hearts and soleus muscle, total specific creatine kinase (CK) activity was decreased by approx. 40% compared to controls, whereas in brain this same activity was elevated by a factor of two. Immunoblot analysis of soleus mitochondria from GPA rats showed an approximate 4-fold increase in Mi-CK protein and a concomitant 3-fold increase in adenine nucleotide translocator (ANT) protein, when compared to control. In GPA-fed rats, the specific activities of adenylate kinase (ADK) and succinate dehydrogenase were significantly higher in brain and soleus (2-fold), but heart remained the same. However, hexokinase (HK) decreased by approx. 50% both in heart and soleus, indicating that muscle and brain follow different strategies to compensate the energy deficit caused by creatine depletion. Skinned muscle fibres from Cr-depleted soleus attained approx. only 70% maximum state 3 respiration with 0.1 M ADP in the presence of 10 mM Cr compared to 100% in control fibres. This defect in Cr stimulated respiration was also seen in isolated heart mitochondria, but was normal in those from brain. The observed deficit of Cr-stimulated respiration, the significant accumulation of Mib-CK and ANT, concomitant with the formation of Mib-CK rich intra-mitochondrial inclusions shown by electron microscopy, indicate that Mib-CK function and coupling to oxidative phosphorylation (OXPHOS), is impaired in these abnormal mitochondria. In addition, our results show tissue-specific metabolic compensations to Cr depletion.
Collapse
Affiliation(s)
- E O'Gorman
- Institute for Cell Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | |
Collapse
|
77
|
Boehm EA, Radda GK, Tomlin H, Clark JF. The utilisation of creatine and its analogues by cytosolic and mitochondrial creatine kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1274:119-28. [PMID: 8664304 DOI: 10.1016/0005-2728(96)00018-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated the utilisation of four analogues of creatine by cytosolic Creatine Kinase (CK), using 31P-NMR in the porcine carotid artery, and by mitochondrial CK (Mt-CK), using oxygen consumption studies in isolated heart mitochondria and skinned fibers. Porcine carotid arteries were superfused for 12 h with Krebs-Henseleit buffer at 22 degrees C, containing 11 mM glucose as substrate, and supplemented with either 20 mM beta-guanidinopropionic acid (beta-GPA), methyl-guanidinopropionic acid (m-GPA), guanidinoacetic acid (GA) or cyclocreatine (cCr). All four analogues entered the tissue and became phosphorylated by CK as seen by 31 P-NMR, Inhibition of oxidative metabolism by 1 mM cyanide after accumulation of the phosphorylated analogue resulted in the utilisation of PCr, beta-GPA-P, GA-P and GA-P over a similar time course (approximately 2 h), despite very different kinetic properties of these analogues in vitro. cCr-P was utilised at a significantly slower rate, but was rapidly dephosphorylated in the presence of both 1 mM iodoacetate and cyanide (to inhibit both glycolysis and oxidative metabolism respectively). The technique of creatine stimulated respiration was used to investigate the phosphorylation of the analogues by Mt-CK, Isolated mitochondria were subjected to increasing [ATP], whereas skinned fibres received a similar protocol with increasing [ADP]. There was a significant stimulation of respiration by creatine and cCr in isolated mitochondria (decreased K(m) and increased Vmax vs control), but none by GA, mGPA or beta-GPA (also in skinned fibres), indicating that these latter analogues were not utilised by Mt-CK. These results demonstrate differences in the phosphorylation and dephosphorylation of creatine and its analogues by cytosolic CK and Mt-CK in vivo and in vitro.
Collapse
Affiliation(s)
- E A Boehm
- Department of Biochemistry, University of Oxford, UK
| | | | | | | |
Collapse
|
78
|
Dzeja PP, Zeleznikar RJ, Goldberg ND. Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 1996; 271:12847-51. [PMID: 8662747 DOI: 10.1074/jbc.271.22.12847] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The kinetics of creatine kinase (CK) and adenylate kinase (AK) activities were monitored in intact diaphragm muscle by 18O phosphoryl oxygen exchange to assess whether these two phosphotransferases provide an interrelated function integral to high energy phosphoryl metabolism. This possibility was examined by quantitating the net rates of CK- and AK-catalyzed phosphoryl transfer in comparison to the total cellular ATP metabolic rate when CK activity in the intact diaphragm muscle was progressively inhibited by 2,4-dinitrofluorobenzene. In noncontracting muscle from untreated rats, net rates of CK- and AK-catalyzed phosphotransfer were equivalent to 88 and 7%, respectively, of the total ATP metabolic rate. These results were compared with reported 31P NMR analyses of total creatine phosphate flux to estimate that each creatine phosphate molecule produced undergoes about 50 unidirectional CK-catalyzed phosphotransfers in transit to an ATP consumption site in the intact muscles. Graded inhibition by 2,4-dinitrofluorobenzene of intracellular CK activity by up to 98% resulted in a progressive shift in phosphotransferase catalysis from the CK to the AK system; the sum of the net rates of phosphoryl transfer by combining the increasing AK and decreasing CK activities continued to approximate the total cellular ATP metabolic rate. These results indicate that in diaphragm muscle CK and AK operate as interrelated cellular high energy phosphoryl transfer systems through which the majority of newly generated ATP is processed prior to its utilization.
Collapse
Affiliation(s)
- P P Dzeja
- Department of Biochemistry, University of Minnesota, Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
79
|
Veksler VI, Kuznetsov AV, Anflous K, Mateo P, van Deursen J, Wieringa B, Ventura-Clapier R. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J Biol Chem 1995; 270:19921-9. [PMID: 7650007 DOI: 10.1074/jbc.270.34.19921] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Functional properties of in situ mitochondria and of mitochondrial creatine kinase were studied in saponin-skinned fibers taken from normal and M-creatine kinase-deficient mice. In control animals, apparent Km values of mitochondrial respiration for ADP in cardiac (ventricular) and slow-twitch (soleus) muscles (137 +/- 16 microM and 209 +/- 10 microM, respectively) were manyfold higher than that in fast-twitch (gastrocnemius) muscle (7.5 +/- 0.5 microM). Creatine substantially decreased the Km values only in cardiac and slow-twitch muscles (73 +/- 11 microM and 131 +/- 21 microM, respectively). As compared to control, in situ mitochondria in transgenic ventricular and slow-twitch muscles showed two times lower Km values for ADP, and the presence of creatine only slightly decreased the Km values. In mutant fast-twitch muscle, a decrease rather than increase in mitochondrial sensitivity to ADP occurred, but creatine still had no effect. Furthermore, in these muscles, relatively low oxidative capacity was considerably elevated. It is suggested that in the mutant mice, impairment of energy transport function in ventricular and slow-twitch muscles is compensated by a facilitation of adenine nucleotide transportation between mitochondria and cellular ATPases; in fast-twitch muscle, mainly energy buffering function is depressed, and that is overcome by an increase in energy-producing potential.
Collapse
MESH Headings
- Adaptation, Physiological
- Adenosine Diphosphate/pharmacology
- Adenylate Kinase/metabolism
- Animals
- Creatine Kinase/deficiency
- Creatine Kinase/genetics
- Female
- In Vitro Techniques
- Isoenzymes
- Kinetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Models, Biological
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle, Skeletal/enzymology
- Myocardium/enzymology
- Oxygen Consumption
- Tissue Distribution
Collapse
Affiliation(s)
- V I Veksler
- Laboratoire de Cardiologie Cellulaire et Moléculaire, CJF INSERM 92-11, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
80
|
Arai AE, Grauer SE, Anselone CG, Pantely GA, Bristow JD. Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation 1995; 92:244-52. [PMID: 7600657 DOI: 10.1161/01.cir.92.2.244] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Studies during 20% to 50% reductions in regional coronary blood flow have revealed a number of metabolic and functional adaptations that suggest the heart downregulates energy requirements and contractility in response to ischemia. In contrast to prior studies of sudden changes in coronary blood flow, we tested whether the heart could reduce ATP consumption commensurate with a gradual decrease in coronary blood flow or whether transient metabolic abnormalities are a necessary trigger in this process. METHODS AND RESULTS From 0 to 35 minutes, mean left anterior descending coronary artery blood flow was reduced by approximately 1% per minute in 10 acutely anesthetized and instrumented swine. Coronary blood flow then was held constant between 35 and 60 minutes at the resulting 35% net blood flow reduction. Although systemic hemodynamics remained stable, a significant decrease in regional left ventricular systolic wall thickening developed (from control value of 45 +/- 11% to 18 +/- 11% at 60 minutes, P < .001) without a sustained decrease in the phosphorylation potential (as assessed by a < 2% decrease in either the transmural or subendocardial phosphocreatine-to-ATP ratio) and with minimal myocardial lactate production (4 +/- 44 mumol.min-1 x 100 g-1). CONCLUSIONS Metabolic markers of ischemia such as ratio of phosphocreatine to ATP, ATP content, lactate content, and lactate production were blunted during this protocol of gradually worsening ischemia. Thus, contractile abnormalities of mild ischemia can develop with minimal metabolic evidence of ischemia. The downregulation of myocardial energy requirements can almost keep pace with the gradual decline in coronary blood flow.
Collapse
Affiliation(s)
- A E Arai
- Division of Cardiology, Oregon Health Sciences University, Portland, USA
| | | | | | | | | |
Collapse
|
81
|
Boehm EA, Clark JF, Radda GK. Metabolite utilization and compartmentation in porcine carotid artery: a study using beta-guanidinopropionic acid. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C628-35. [PMID: 7900770 DOI: 10.1152/ajpcell.1995.268.3.c628] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The relationship between substrate and metabolism in vascular smooth muscle has been investigated by studying the acute energetic effects caused by the creatine analogue beta-guanidinopropionic acid (beta-GPA) on porcine carotid arteries using 31P-nuclear magnetic resonance (NMR). Porcine carotid arteries were superfused for 12 h with Krebs-Henseleit buffer at 22 degrees C, containing 50 mM beta-GPA, and either 11 mM glucose or 5 mM pyruvate as substrate. beta-GPA enters the cells and becomes phosphorylated by creatine kinase to produce beta-GPA-P. Perfusion with beta-GPA leads to the formation of NMR observable beta-GPA-P (after 2.5 h). The appearance of beta-GPA-P with time was significantly greater when glucose was used as substrate. To differentiate between oxidative and glycolytic metabolism in the phosphorylation of beta-GPA, 1 mM cyanide was included in the perfusion buffer containing 50 mM beta-GPA and 11 mM glucose. No phosphocreatine (PCr) was observed with these conditions, and there was a small but significant decrease in ATP concentration ([ATP]) compared with glucose perfusion without cyanide (0.56 +/- 0.02 to 0.47 +/- 0.02 mumol/g wet wt), that was greater than the concentration with pyruvate as substrate (0.25 +/- 0.03 mumol/g wet wt). Thus the [ATP] during cyanide treatment is maintained with glycolytic metabolism. Despite the relatively high [ATP], accumulation of beta-GPA-P only occurred over a much slower time course ( > 10 h) than without cyanide.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E A Boehm
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
82
|
|
83
|
McFarland EW, Kushmerick MJ, Moerland TS. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys J 1994; 67:1912-24. [PMID: 7858128 PMCID: PMC1225566 DOI: 10.1016/s0006-3495(94)80674-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We investigated whether the creatine kinase-catalyzed phosphate exchange between PCr and gamma ATP in vivo equilibrated with cellular substrates and products as predicted by in vitro kinetic properties of the enzyme, or was a function of ATPase activity as predicted by obligatory "creatine phosphate shuttle" concepts. A transient NMR spin-transfer method was developed, tested, and applied to resting and stimulated ex vivo muscle, the soleus, which is a cellularly homogeneous slow-twitch mammalian muscle, to measure creatine kinase kinetics. The forward and reverse unidirectional CK fluxes were equal, being 1.6 mM.s-1 in unstimulated muscle at 22 degrees C, and 2.7 mM.s-1 at 30 degrees C. The CK fluxes did not differ during steady-state stimulation conditions giving a 10-fold range of ATPase rates in which the ATP/PCr ratio increased from approximately 0.3 to 1.6. The observed kinetic behavior of CK activity in the muscle was that expected from the enzyme in vitro in a homogeneous solution only if account was taken of inhibition by an anion-stabilized quaternary dead-end enzyme complex: E.Cr.MgADP.anion. The CK fluxes in soleus were not a function of ATPase activity as predicted by obligatory phosphocreatine shuttle models for cellular energetics.
Collapse
Affiliation(s)
- E W McFarland
- Department of Chemical Engineering, University of California at Santa Barbara 93106
| | | | | |
Collapse
|
84
|
Fedosov SN. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1208:238-46. [PMID: 7947954 DOI: 10.1016/0167-4838(94)90109-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to characterize ADP-ATP and creatine-creatine phosphate (Cr-CrP) shuttles a minimal mathematical model with two compartments and cyclic turnover of matter was designed. The 'mitochondrial' compartment contained 'ATP-synthase' and 'mitochondrial creatine kinase' (mitCK). The 'cytoplasmic' compartment consisted of 'ATPase', 'cytoplasmic creatine kinase' (cytCK) and an 'ADP-binding structure'. The exchange of metabolites between these compartments was limited. Different levels of cytCK and mitCK expression as well as different exchange rate constants between the compartments were assigned to obtain several different modes. Every steady state obtained in the presence of low ATPase activity ('resting' conditions) was then disturbed by a steep activation of ATPase ('muscle performance') and afterwards the transition to a new steady state was followed in time. The ATP-buffering capacity of the system initially acquired by cytCK expression significantly increased after additional mitCK supplement. Nevertheless, even the complete Cr-CrP shuttle failed to maintain a high [ATP]/[ADP] ratio during long term 'muscle performance' due to the rate limiting CK-transphosphorylation in the mitochondria. The facilitated diffusion of Cr and CrP was not critical, and the model worked with the same efficiency even at equal permeabilities for nucleotides and guanidines. Under 'resting conditions' the main flux of matter went through the Cr-CrP shuttle, resulting in 'pumping' of CrP. This ensured a 40 s delay in the [ATP] decrease at 'work'. The partial systems without mitCK were not as effective, and this delay was 0-10 s. However, the ADP-ATP shuttle was of more importance at the steady state achieved under 'working' conditions.
Collapse
Affiliation(s)
- S N Fedosov
- Department of Chemistry, Aarhus University, Denmark
| |
Collapse
|
85
|
Rauch U, Schulze K, Witzenbichler B, Schultheiss HP. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure. Circ Res 1994; 75:760-9. [PMID: 7923621 DOI: 10.1161/01.res.75.4.760] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Depending on its duration, temporary myocardial ischemia leads to a disturbance of myocardial function before irreversible cellular necrosis is developed. Mechanical, electrical, and metabolic disturbances were suggested to be possible mechanisms accounting for the altered mechanical performance in ischemic hearts. To further investigate the alteration of myocardial energy metabolism on the subcellular level, we determined, by means of nonaqueous fractionation, the cytosolic-mitochondrial distribution of high-energy phosphates and other metabolites (ATP, ADP, phosphocreatine, creatine, and inorganic phosphate) in ischemic (zero-flow) guinea pig hearts after isolated perfused working heart preparation. Additional experiments using 31P nuclear magnetic resonance spectroscopy were performed to determine pHi and [Mg2+]i changes during global ischemia. The total ATP content of myocardial tissue dropped only slowly to 76% of control ATP at 10 minutes and to 51% at 30 minutes and reached almost zero at 60 minutes of ischemia. However, striking differences were observed on the subcellular level: While cytosolic phosphocreatine was almost completely consumed after 3 minutes of ischemia (from 19.1 +/- 1.6 to 3.3 +/- 0.5 mmol/L), ATP concentration in the cytosol decreased within 30 minutes from 8.4 +/- 0.6 to only 5.4 +/- 0.9 mmol/L. Mitochondrial ATP was rapidly and linearly reduced to 60% after 5 minutes of ischemia and was nearly unmeasurable after a further 20 minutes. Thus, in contrast to the breakdown of phosphocreatine in cytosol, the only slight alteration of cytosolic ATP reveals a reduction in cytosolic ATP utilization. Moreover, the unaffected cytosolic-mitochondrial difference in the phosphorylation potential of ATP demonstrates the intact function of the ADP/ATP carrier during early ischemia. These results might indicate a disturbance of the functional coupling between carrier and phosphocreatine kinase (phosphocreatine shuttle), which could be of importance for the early contractile failure in myocardial ischemia.
Collapse
Affiliation(s)
- U Rauch
- Medizinische Klinik B, Heinrich-Heine Universität, Düsseldorf, Germany
| | | | | | | |
Collapse
|
86
|
Brdiczka D. Function of the outer mitochondrial compartment in regulation of energy metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1187:264-9. [PMID: 8075120 DOI: 10.1016/0005-2728(94)90124-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electron microscopy showed the organization of several kinases at the mitochondrial surface as complexes between outer membrane (porin), kinase, and inner membrane (presumably adenine nucleotide translocator?). The complexes were enriched in the isolated contact site fraction. Interaction of porin with the kinases in vitro led to formation of tetramers of hexokinase and active creatine kinase. Kinetic analyses of mitochondria with intact outer compartment showed separate ATP/ADP exchange between kinases and oxidative phosphorylation. Considering these results, we postulate that the mitochondrial metabolism in intact cells is not regulated by free ADP, but induced by substrates wf kinases such as glucose or creatine (Fig 1). Increased ATP turnover in muscle during contraction results in only a small change in the free ADP but causes a larger change of creatine because the equilibrium constant of the creatine kinase reaction at pH 7.2 favours ATP formation (ATP creatine/ADP phosphocreatine = 104.7) [38]. In addition, the level of phosphocreatine is roughly 10-times higher compared to ATP. Considering the higher concentration and the equilibrium constant, it can be calculated that a change of ADP between 40 and 70 microM results in creatine increasing from 8 to 12 mM. Thus creatine can be the signal that stimulates the mitochondrial metabolism transmitted by the mitochondrial creatine kinase [39]. Likewise, increased blood glucose in muscle at rest or in the liver stimulates the mitochondrial metabolism transmitted by the activity of bound hexokinase utilizing external ATP. The mitochondrial metabolism provides the UTP for glycogen synthesis through mitochondrial nucleoside-diphosphate kinase activity (Fig 1).
Collapse
Affiliation(s)
- D Brdiczka
- Faculty of Biology, University of Konstanz, Germany
| |
Collapse
|
87
|
Abstract
This review deals with the following principal concepts: (1) Heart injuries in single severe stress episodes manifested primarily in disturbances of membrane lipid bilayer, sarcolemmal Na, K-pump, and sarcoplasmic Ca-pump with concurrent limited disturbances of the heart energy supply, namely, of the creatine kinase and glycolysis systems. These disturbances cause small focal myocardial lesions and reduce cardiac electrical stability: the fibrillation threshold falls and ectopic activity increases. In repeated stress, this damage, localized mainly in the richly innervated conduction system, accumulates to cause even more pronounced disturbances of electrical stability and severe arrhythmias. (2) Severe stress and beta-adrenergic effects on the heart regularly result in coronary vasodilation and increased coronary blood flow. However, the entire primary complex of stress-induced injuries and disturbances of the heart's electrical stability occurs despite the increased coronary blood flow. Thus, beta-adrenergic stress-induced injuries may indeed develop as primary stress damage to cardiomyocytes without any relation to ischemia. (3) The main factor determining high vulnerability or, on the contrary, resistance of the heart to stress is the state of stress-limiting systems, namely, the opioidergic, GABAergic, cholinergic, adenosinergic, and other systems. Activation of these systems by adaptation to repeated stress or other factors prevents serious injuries to the heart in severe stress. Conversely, genetically determined or acquired dysfunction of these systems predisposes to severe arrhythmias and sudden death. Thus, in stress-induced arrhythmic disease as well as in ischemic heart disease, the main pathogenetic links are outside the heart, but they differ from those observed in ischemia. (4) The clinical picture of stress-induced arrhythmic disease, that is, alterations in electrocardiogram, coronarogram, and patient responses to stress, physical loads, and tranquilizers differ, as do pathologic alterations in the heart. These differences are summarized at the end of this review.
Collapse
Affiliation(s)
- F Z Meerson
- Laboratory of Heart Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
88
|
Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:167-96. [PMID: 8031826 DOI: 10.1016/0304-4157(94)90004-3] [Citation(s) in RCA: 331] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R Benz
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Germany
| |
Collapse
|
89
|
Stadhouders AM, Jap PH, Winkler HP, Eppenberger HM, Wallimann T. Mitochondrial creatine kinase: a major constituent of pathological inclusions seen in mitochondrial myopathies. Proc Natl Acad Sci U S A 1994; 91:5089-93. [PMID: 8197190 PMCID: PMC43937 DOI: 10.1073/pnas.91.11.5089] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Overaccumulation of abnormally organized mitochondria in so-called "ragged-red" skeletal muscle fibers is a morphological hallmark of mitochondrial myopathies, in particular of mitochondrial encephalomyopathies. Characteristic for the abnormal mitochondria is the occurrence of highly ordered crystalline inclusions. Immuno-electron microscopy revealed that these inclusions react heavily with specific antibodies against mitochondrial creatine kinase (Mi-CK). Image processing of selected crystalline inclusions, sectioned along the crystallographic b, c planes, resulted in an averaged picture displaying an arrangement of regular, square-shaped particles with a central cavity. The overall appearance, dimensions, and symmetry of these building blocks are very reminiscent of single isolated Mi-CK octamers. Taking these findings together, it is concluded that Mi-CK octamers indeed represent the major, if not the only, component of these mitochondrial inclusions.
Collapse
Affiliation(s)
- A M Stadhouders
- Department of Cell Biology and Histology, Faculty of Medical Sciences, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
90
|
Lin L, Perryman MB, Friedman D, Roberts R, Ma TS. Determination of the catalytic site of creatine kinase by site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1206:97-104. [PMID: 8186255 DOI: 10.1016/0167-4838(94)90077-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Site-directed mutagenesis was used to alter the amino-acid residues at the presumed catalytic site Cys-283 and ATP binding site Asp-340 of human creatine kinase B cDNA. In addition, a highly conserved arginine residue, Arg-292, was also mutated. Transfection of 0.1 to 1 microgram of recombinant plasmid into COS cells produced increasing creatine kinase activity in the cell lysate. The expression of mutant Cys283-Tyr and Cys283-Ser resulted in complete abolition of homodimer BB isoform enzymatic activity without alteration of the capacity for dimerization. Expression of mutants Arg292-His, Arg292-Leu, and Arg292-Gln produced non-functional homodimers, whereas expression of mutant Arg292-Lys produced a homodimer with enzymatic activity that was 42% of the enzymatic activity of the wild type. Expression of the Asp340-Glu mutant creatine kinase did not alter enzyme activity as compared to the wild type. Following heterodimerization, there was inhibition of the normal subunit by the mutant subunit, for both the BB and the MB dimer. The results showed residues Cys-283 and Arg-292 are essential for enzyme catalysis. The best fit model for the dimer is one in which there is close apposition of the two catalytic sites. The interaction of the individual subunits during dimerization provides a molecular approach for dominant negative modulation of the creatine kinase isozyme system in future genetic manipulative experiments.
Collapse
Affiliation(s)
- L Lin
- Methodist Hospital, Houston, TX
| | | | | | | | | |
Collapse
|
91
|
Clark JF, Khuchua Z, Kuznetsov AV, Vassil'eva E, Boehm E, Radda GK, Saks V. Actions of the creatine analogue beta-guanidinopropionic acid on rat heart mitochondria. Biochem J 1994; 300 ( Pt 1):211-6. [PMID: 8198536 PMCID: PMC1138144 DOI: 10.1042/bj3000211] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The action of the creatine analogue beta-guanidinopropionic acid (beta-GPA) was examined in rat heart mitochondria and in isolated cardiomyocytes or fibres which were permeabilized with the non-ionic detergent saponin to determine the kinetics of mitochondrial creatine kinase for beta-GPA. Fibres and myocytes were subjected to increasing [ADP] in the presence and absence of beta-GPA or creatine, whereas isolated mitochondria received a similar protocol with increasing [ATP]. In isolated mitochondria given ATP, there was a stimulation of respiration by creatine, but no significant stimulation of respiration by beta-GPA. Further studies on fibres from control and beta-GPA-fed rats also found that beta-GPA is not utilized by the mitochondria, as evidenced by a lack of beta-GPA-stimulated respiration (Km for ADP = 142 +/- 23 microM) compared with control (Km for ADP from 161 +/- 23 microM), but no significant change in Vmax. Therefore the rat heart mitochondria are not responsive to beta-GPA as compared with creatine. Interestingly, the fibres from beta-GPA-fed rats had no creatine- or beta-GPA-stimulated respiration (Km for ADP = 57.3 +/- 7.2 microM for control, 54.2 +/- 7.2 microM with creatine, and 53.5 +/- 7.8 microM with beta-GPA). The mitochondria prepared from the hearts of rats exposed for 10 weeks to 1% beta-GPA in their diet had a significant decrease in Vmax. and a significant decrease in Km for ADP. Thus the hearts from beta-GPA-fed animals may be pathologic, due to a disruption of the creatine kinase energy circuit.
Collapse
Affiliation(s)
- J F Clark
- Department of Biochemistry, University of Oxford, U.K
| | | | | | | | | | | | | |
Collapse
|
92
|
Rossini L, Bernardi M, Concettoni C, De Florio L, Deslauriers R, Moretti V, Piantelli F, Pigini P, Re L, Rossini P. Some approaches to the pharmacology of multisubstrate enzyme systems. Pharmacol Res 1994; 29:313-35. [PMID: 7971684 DOI: 10.1016/1043-6618(94)80054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Analytical and exploratory in vitro, in situ and in vivo, physio-pharmacotoxicology, from enzymology to population epidemiology, now embraces those approaches that correlate complex dynamic multisubstrate kinetics through conventional and more recent non-invasive quantitative methodologies. Basically, substrates may be classed as pertaining to fundamental energy turnovers (first-order cellular metabolic pathways or networks) and to iso- vs allosteric modulator systems (second-order metabolic control network). Pairs of substrates and cofactors set-up the third-order multienzyme-receptor patterns, which in intact, native in vivo structures establish and maintain the compartmentalized, dynamically superimposed overall coordination of local redox and phosphate potentials. Perturbations of the various levels of the metabolic hierarchy induced by drugs, as well their relaxations, can be readily submitted to non-invasive kinetic analysis. Both indirect and direct titrations of substrate levels, their modelling and statistical ad hoc evaluations of their interrelations can lead to the identification of the multiple sites involved in drug effects as structured at the different orders/levels of concomitant functional variations. Fractal geometries contribute towards defining the space- and time-related events.
Collapse
Affiliation(s)
- L Rossini
- Institute of Experimental and Clinical Medicine-Pharmacology, University of Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ventura-Clapier R, Veksler V, Hoerter JA. Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 1994; 133-134:125-44. [PMID: 7808450 DOI: 10.1007/bf01267952] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This article is a review on the organization and function of myofibrillar creatine kinase in striated muscle. The first part describes myofibrillar creatine kinase as an integral structural part of the complex organization of myofibrils in striated muscle. The second part considers the intrinsic biochemical and mechanical properties of myofibrils and the functional coupling between myofibrillar CK and myosin ATPase. Skinned fiber studies have been developed to evidence this functional coupling and the consequences for cardiac contraction. The data show that creatine kinase in myofibrils is effective enough to sustain normal tension and relaxation, normal Ca sensitivity and kinetic characteristics. Moreover, the results suggest that myofibrillar creatine kinase is essential in maintaining adequate ATP/ADP ratio in the vicinity of myosin ATPase active site to prevent dysfunctioning of this enzyme. Implications for the physiology and physiopathology of cardiac muscle are discussed.
Collapse
|
94
|
Saks VA, Khuchua ZA, Vasilyeva EV, Kuznetsov AV. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis. Mol Cell Biochem 1994; 133-134:155-92. [PMID: 7808453 DOI: 10.1007/bf01267954] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The published experimental data and existing concepts of cellular regulation of respiration are analyzed. Conventional, simplified considerations of regulatory mechanism by cytoplasmic ADP according to Michaelis-Menten kinetics or by derived parameters such as phosphate potential etc. do not explain relationships between oxygen consumption, workload and metabolic state of the cell. On the other hand, there are abundant data in literature showing microheterogeneity of cytoplasmic space in muscle cells, in particular with respect to ATP (and ADP) due to the structural organization of cell interior, existence of multienzyme complexes and structured water phase. Also very recent experimental data show that the intracellular diffusion of ADP is retarded in cardiomyocytes because of very low permeability of the mitochondrial outer membrane for adenine nucleotides in vivo. Most probably, permeability of the outer mitochondrial membrane porin channels is controlled in the cells in vivo by some intracellular factors which may be connected to cytoskeleton and lost during mitochondrial isolation. All these numerous data show convincingly that cellular metabolism cannot be understood if cell interior is considered as homogenous solution, and it is necessary to use the theories of organized metabolic systems and substrate-product channelling in multienzyme systems to understand metabolic regulation of respiration. One of these systems is the creatine kinase system, which channels high energy phosphates from mitochondria to sites of energy utilization. It is proposed that in muscle cells feed-back signal between contraction and mitochondrial respiration may be conducted by metabolic wave (propagation of oscillations of local concentration of ADP and creatine) through cytoplasmic equilibrium creatine and adenylate kinases and is amplified by coupled creatine kinase reaction in mitochondria. Mitochondrial creatine kinase has experimentally been shown to be a powerful amplifier of regulatory action of weak ADP fluxes due to its coupling to adenine nucleotide translocase. This phenomenon is also carefully analyzed.
Collapse
Affiliation(s)
- V A Saks
- Group of Bioenergetics, Cardiology Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
95
|
Hoerter JA, Ventura-Clapier R, Kuznetsov A. Compartmentation of creatine kinases during perinatal development of mammalian heart. Mol Cell Biochem 1994; 133-134:277-86. [PMID: 7808459 DOI: 10.1007/bf01267960] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maturation of the cardiac cell is characterized by increasing diversity of isozymic expression of creatine kinases. Expression of the M-CK isozyme always precedes that of mitochondrial isozyme (mi-CK), however the expression of an isoform does not inform about its localization or cellular function. The functional role of isozymes binding to sites of energy utilization and production characteristic of the adult myocardium can be evidenced by the functional coupling of M-CK to myofibrillar ATPase and mito-CK to translocase in Triton X-100 and saponin skinned fibers. Functional activity of M-CK and mito-CK were investigated during perinatal development. Both functional activities appear during late fetal life in species mature at birth like guinea pig, and in the first postnatal weeks in immature species like rat or rabbit. Thus, the functional activity of bound CK isozymes is not associated with birth per se but with the general process of cell maturation. Localization of CK in the cytosol appears optimal for the transfer of glycolytic production of ATP to sites of utilization in an immature heart. During cell maturation, the increasing contribution of oxidative phosphorylation to ATP production, the apparition and binding of mi-CK to mitochondria, the binding of M-CK to myofibrils, turn the cell in a compartmentalized system of energy production. This provides the cellular basis for energy transfer by the PCr-Cr-CK system between sites of ATP production and utilization. Compartmentation of both Ca handling and energy turnover leads to a highly structured cell organization and could be essential for the efficiency of heart function.
Collapse
Affiliation(s)
- J A Hoerter
- CJF INSERM 92-11, Université Paris-Sud, Faculté de Pharmacie, Chatenay Malabry, France
| | | | | |
Collapse
|
96
|
Abstract
Over the past years, a concept for creatine kinase function, the 'PCr-circuit' model, has evolved. Based on this concept, multiple functions for the CK/PCr-system have been proposed, such as an energy buffering function, regulatory functions, as well as an energy transport function, mostly based on studies with muscle. While the temporal energy buffering and metabolic regulatory roles of CK are widely accepted, the spatial buffering or energy transport function, that is, the shuttling of PCr and Cr between sites of energy utilization and energy demand, is still being debated. There is, however, much circumstantial evidence, that supports the latter role of CK including the distinct, isoenzyme-specific subcellular localization of CK isoenzymes, the isolation and characterization of functionally coupled in vitro microcompartments of CK with a variety of cellular ATPases, and the observed functional coupling of mitochondrial oxidative phosphorylation with mitochondrial CK. New insight concerning the functions of the CK/PCr-system has been gained from recent M-CK null-mutant transgenic mice and by the investigation of CK localization and function in certain highly specialized non-muscle tissues and cells, such as electrocytes, retina photoreceptor cells, brain cells, kidney, salt glands, myometrium, placenta, pancreas, thymus, thyroid, intestinal brush-border epithelial cells, endothelial cells, cartilage and bone cells, macrophages, blood platelets, tumor and cancer cells. Studies with electric organ, including in vivo 31P-NMR, clearly reveal the buffer function of the CK/PCr-system in electrocytes and additionally corroborate a direct functional coupling of membrane-bound CK to the Na+/K(+)-ATPase. On the other hand, experiments with live sperm and recent in vivo 31P-NMR measurements on brain provide convincing evidence for the transport function of the CK/PCr-system. We report on new findings concerning the isoenzyme-specific cellular localization and subcellular compartmentation of CK isoenzymes in photoreceptor cells, in glial and neuronal cells of the cerebellum and in spermatozoa. Finally, the regulation of CK expression by hormones is discussed, and new developments concerning a connection of CK with malignancy and cancer are illuminated. Most interesting in this respect is the observed upregulation of CK expression by adenoviral oncogenes.
Collapse
Affiliation(s)
- T Wallimann
- Institute for Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich
| | | |
Collapse
|
97
|
Abstract
The phenotype of "gene knockout" mice deficient in a creatine kinase isoform sheds new light on the physiological function of the "phosphocreatine circuit."
Collapse
Affiliation(s)
- T Wallimann
- Institute for Cell Biology, ETH-Hönggerberg, Zurich, Switzerland
| |
Collapse
|
98
|
Saks VA, Vasil'eva E, Kuznetsov AV, Lyapina S, Petrova L, Perov NA. Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:134-48. [PMID: 8396441 DOI: 10.1016/0005-2728(93)90166-d] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Possible reasons for retarded intracellular diffusion of ADP were investigated. The isolated skinned cardiac fibers were used to study apparent kinetic parameters for externally added ADP in control of mitochondrial respiration. Participation of myosin-ATPase in binding of ADP within cells as it was supposed earlier (Saks, V.A., Belikova, Yu.O. and Kuznetsov, A.V. (1991) Biochim. Biophys. Acta 1074, 302-311) was completely excluded, since myosin-deprived skinned cardiac fibers ('ghosts') displayed the same kinetic parameters as intact ones (Kmapp for ADP about 300 microM). Significantly lower apparent Km values were obtained for fibers with osmotically disrupted outer mitochondrial membrane (25-35 microM), which was close to that observed for isolated heart mitochondria. The data obtained are in favor of limitation of ADP movement via anion-selective low-conductance porine channels in the outer membrane of mitochondria. It is proposed that the permeability of this membrane is controlled by some unknown intracellular factor(s). In the presence of saturating concentrations of creatine (25 mM) the apparent Km for ADP significantly decreases due to coupling of creatine kinase and oxidative phosphorylation reactions in mitochondria. This coupling is not observed in KCl medium in which mitochondrial creatine kinase is detached from the membrane. It is concluded that in the cells in-vivo ADP movement between cytoplasm and intramitochondrial space is controlled by low-conductivity anion channels in the outer membrane. Thus, the mitochondrial creatine kinase reaction coupled to the adenine nucleotide translocase is an important mechanism in control of oxidative phosphorylation in vivo due to its ability to manifold amplify these very weak ADP signals from cytoplasm.
Collapse
Affiliation(s)
- V A Saks
- Laboratory of Bioenergetics, Cardiology Research Center, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
99
|
Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): nonperoxidative purine and pyrimidine nucleotide depletion. J Cell Physiol 1993; 155:494-504. [PMID: 8491789 DOI: 10.1002/jcp.1041550308] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen peroxide (H2O2) overload may contribute to cardiac ischemia-reperfusion injury. We report utilization of a previously described cardiomyocyte model (J. Cell. Physiol., 149:347, 1991) to assess the effect of H2O2-induced oxidative stress on heart-muscle purine and pyrimidine nucleotides and high-energy phosphates (ATP, phosphocreatine). Oxidative stress induced by bolus H2O2 elicited the loss of cardiomyocyte purine and pyrimidine nucleotides, leading to eventual de-energization upon total ATP and phosphocreatine depletion. The rate and extent of ATP and phosphocreatine loss were dependent on the degree of oxidative stress within the range of 50 microM to 1.0 mM H2O2. At the highest H2O2 concentration, 5 min was sufficient to elicit appreciable cardiomyocyte high-energy phosphate loss, the extent of which could be limited by prompt elimination of H2O2 from the culture medium. Only H2O2 dismutation completely prevented ATP loss during H2O2-induced oxidative stress, whereas various free-radical scavengers and metal chelators afforded no significant ATP preservation. Exogenously-supplied catabolic substrates and glycolytic or tricarboxylic acid-cycle intermediates did not ameliorate the observed ATP and phosphocreatine depletion, suggesting that cardiomyocyte de-energization during H2O2-induced oxidative stress reflected defects in substrate utilization/energy conservation. Compromise of cardiomyocyte nucleotide and phosphocreatine pools during H2O2-induced oxidative stress was completely dissociated from membrane peroxidative damage and maintenance of cell integrity. Cardiomyocyte de-energization in response to H2O2 overload may constitute a distinct nonperoxidative mode of injury by which cardiomyocyte energy balance could be chronically compromised in the post-ischemic heart.
Collapse
Affiliation(s)
- D R Janero
- Research Department, CIBA-GEIGY Corporation, Summit, New Jersey 07901
| | | | | |
Collapse
|
100
|
Effect of adaptation to repeated stress on cardiac function repair and creatine phosphate level restoration following total ischemia (31P-NMR investigation). Bull Exp Biol Med 1993. [DOI: 10.1007/bf00791141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|