51
|
Depue RA, Fu Y. Neurogenetic and experiential processes underlying major personality traits: implications for modelling personality disorders. Int Rev Psychiatry 2011; 23:258-81. [PMID: 21923227 DOI: 10.3109/09540261.2011.599315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract The association of personality traits to personality disorders (PDs) is assumed by many to fit a dimensional model, where PDs emerge at the extremes of personality dimensions. Nevertheless, attempts to demonstrate such an association have been empirically disappointing and conceptually unilluminating. In this article we attempt to extend such models by outlining the neurobehavioural systems that underlie major personality traits, and highlight the evidence that they are subject to experience-dependent modification that can be enduring through effects on genetic expression, mainly through processes known as epigenetics. It is through such processes that risk for personality disorder may be modified by experience at any point in development, but perhaps especially during early critical periods of development. We conclude by presenting a novel multidimensional model of PDs that relies on the concepts developed earlier in the article. Our goal is to provide a guide for research on the psychobiological nature and pharmacological treatment of PDs.
Collapse
Affiliation(s)
- Richard A Depue
- Laboratory of Neurobiology of Personality, Department of Human Development, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
52
|
Lillesaar C. The serotonergic system in fish. J Chem Neuroanat 2011; 41:294-308. [PMID: 21635948 DOI: 10.1016/j.jchemneu.2011.05.009] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/07/2011] [Accepted: 05/16/2011] [Indexed: 01/20/2023]
Abstract
Neurons using serotonin (5-HT) as neurotransmitter and/or modulator have been identified in the central nervous system in representatives from all vertebrate clades, including jawless, cartilaginous and ray-finned fishes. The aim of this review is to summarize our current knowledge about the anatomical organization of the central serotonergic system in fishes. Furthermore, selected key functions of 5-HT will be described. The main focus will be the adult brain of teleosts, in particular zebrafish, which is increasingly used as a model organism. It is used to answer not only genetic and developmental biology questions, but also issues concerning physiology, behavior and the underlying neuronal networks. The many evolutionary conserved features of zebrafish combined with the ever increasing number of genetic tools and its practical advantages promise great possibilities to increase our understanding of the serotonergic system. Further, comparative studies including several vertebrate species will provide us with interesting insights into the evolution of this important neurotransmitter system.
Collapse
Affiliation(s)
- Christina Lillesaar
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development (NED), Institute of Neurobiology Albert Fessard, Gif-sur-Yvette, France.
| |
Collapse
|
53
|
Lampis V, Maziade M, Battaglia M. Animal models of human anxiety disorders: reappraisal from a developmental psychopathology vantage point. Pediatr Res 2011; 69:77R-84R. [PMID: 21289543 DOI: 10.1203/pdr.0b013e318212b42e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We are witnessing a tremendous expansion of strategies and techniques that derive from basic and preclinical science to study the fine genetic, epigenetic, and proteomic regulation of behavior in the laboratory animal. In this endeavor, animal models of psychiatric illness are becoming the almost exclusive domain of basic researchers, with lesser involvement of clinician researchers in their conceptual design, and transfer into practice of new paradigms. From the side of human behavioral research, the growing interest in gene-environment interplay and the fostering of valid endophenotypes are among the few substantial innovations in the effort of linking common mental disorders to cutting-edge clinical research questions. We argue that it is time for cross-fertilization between these camps. In this article, we a) observe that the "translational divide" can-and should-be crossed by having investigators from both the basic and the clinical sides cowork on simpler, valid "endophenotypes" of neurodevelopmental relevance; b) emphasize the importance of unambiguous physiological readouts, more than behavioral equivalents of human symptoms/syndromes, for animal research; c) indicate and discuss how this could be fostered and implemented in a developmental framework of reference for some common anxiety disorders and ultimately lead to better animal models of human mental disorders.
Collapse
Affiliation(s)
- Valentina Lampis
- Academic Centre for Study of Behavioral Plasticity, Vita-Salute San Raffaele University, 20127 Milan, Italy
| | | | | |
Collapse
|
54
|
Lyche P, Jonassen R, Stiles TC, Ulleberg P, Landrø NI. Verbal Memory Functions in Unipolar Major Depression With and Without Co-Morbid Anxiety. Clin Neuropsychol 2011; 25:359-75. [DOI: 10.1080/13854046.2010.547518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P. Lyche
- a Department of Psychology , University of Oslo , Oslo , Norway
| | - R. Jonassen
- a Department of Psychology , University of Oslo , Oslo , Norway
- c Akershus University Hospital Health Authority , Oslo , Norway
| | - T. C. Stiles
- b Department of Psychology , Norwegian University of Science and Technology , Trondheim , Norway
| | - P. Ulleberg
- a Department of Psychology , University of Oslo , Oslo , Norway
| | - N. I. Landrø
- a Department of Psychology , University of Oslo , Oslo , Norway
| |
Collapse
|
55
|
Modeling treatment-resistant depression. Neuropharmacology 2011; 61:408-13. [PMID: 21356220 DOI: 10.1016/j.neuropharm.2011.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/31/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Depression is a polygenic and highly complex psychiatric disorder that is currently a major burden on society. Depression is highly heterogeneous in presentation and frequently exhibits high comorbidity with other psychiatric and somatic disorders. Commonly used treatments, such as selective serotonin reuptake inhibitors (SSRIs), are not ideal since only a subset of patients achieve remission. In addition, the reason why some individuals respond to SSRIs while others don't are unknown. Here we begin to ask what the basis of treatment resistance is, and propose new strategies to model this phenomenon in animals. We focus specifically on animal models that offer the appropriate framework to study treatment resistance with face, construct and predictive validity.
Collapse
|
56
|
Kim SS, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ, Zhuo M. Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain 2011; 4:6. [PMID: 21247477 PMCID: PMC3037880 DOI: 10.1186/1756-6606-4-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/19/2011] [Indexed: 12/11/2022] Open
Abstract
Affective disorders, which include anxiety and depression, are highly prevalent and have overwhelming emotional and physical symptoms. Despite human brain imaging studies, which have implicated the prefrontal cortex including the anterior cingulate cortex (ACC), little is known about the ACC in anxiety disorders. Here we show that the ACC does modulate anxiety-like behavior in adult mice, and have identified a protein that is critical for this modulation. Absence of neurabin, a cytoskeletal protein, resulted in reduced anxiety-like behavior and increased depression-like behavior. Selective inhibition of neurabin in the ACC reproduced the anxiety but not the depression phenotype. Furthermore, loss of neurabin increased the presynaptic release of glutamate and cingulate neuronal excitability. These findings reveal novel roles of the ACC in anxiety disorders, and provide a new therapeutic target for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Susan S Kim
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
57
|
O'Kane CJ. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:37-60. [PMID: 21225410 DOI: 10.1007/7854_2010_110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fruitfly Drosophila offers a model system in which powerful genetic tools can be applied to understanding the neurobiological bases of a range of complex behaviors. The Drosophila and human lineages diverged several hundred million years ago, and despite their obvious differences, flies and humans share many fundamental cellular and neurobiological processes. The similarities include fundamental mechanisms of neuronal signaling, a conserved underlying brain architecture and the main classes of neurotransmitter system. Drosophila also have a sophisticated behavioral repertoire that includes extensive abilities to adapt to experience and other circumstances, and is therefore susceptible to the same kinds of insults that can cause neuropsychiatric disorders in humans. Given the different physiologies, lifestyles, and cognitive abilities of flies and humans, many higher order behavioral features of the human disorders cannot be modeled readily in flies. However, an increasing understanding of the genetics of human neuropsychiatric disorders is suggesting parallels with underlying neurobiological mechanisms in flies, thus providing important insights into the possible mechanisms of these poorly understood disorders.
Collapse
Affiliation(s)
- Cahir J O'Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK,
| |
Collapse
|
58
|
Samuels BA, Hen R. Novelty-Suppressed Feeding in the Mouse. MOOD AND ANXIETY RELATED PHENOTYPES IN MICE 2011. [DOI: 10.1007/978-1-61779-313-4_7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
59
|
Abstract
Most psychiatric disorders, including major depressive disorder (MDD), are known to involve complex interactions between genetic and environmental influences that impact the development and severity of symptomatology. Health care practitioner competencies have been expanded to include application of genetic knowledge in mental health. Yet this information is difficult to decipher and apply. To assist with these challenges, this article synthesizes recent literature related to the genetics of MDD and illustrates the genetic pathways for major depression.
Collapse
Affiliation(s)
- Betty L Elder
- Wichita State University, School of Nursing, Wichita, Kansas, USA.
| | | |
Collapse
|
60
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
61
|
Lyche P, Jonassen R, Stiles TC, Ulleberg P, Landrø NI. Cognitive Control Functions in Unipolar Major Depression with and without Co-Morbid Anxiety Disorder. Front Psychiatry 2010; 1:149. [PMID: 21423456 PMCID: PMC3059619 DOI: 10.3389/fpsyt.2010.00149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 11/24/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Impaired cognitive control functions have been demonstrated in both major depression (MDD) and anxiety disorder (A), but few studies have systematically examined the impact of MDD with co-morbid A (MDDA), which is the main aim of this study. METHOD We compared patients with MDD with (MDDA; n = 24) and without co-morbid A (n = 37) to a group of healthy controls (HC; n = 92) on three subtests from the Cambridge Neuropsychological Test Automated Battery; intra-extra dimensional, stop signal task, and spatial working memory. These tasks correspond to a theoretical model consisting of three separable but interrelated executive control functions: Shifting, Inhibition, and Updating. A simple psychomotor speed measure was also included. RESULTS After controlling for age, gender, and education level, the results showed that the MDDA group displayed significantly impaired performance on the functions Shifting and Updating compared to HC. There emerged no significant differences between any of the patient groups and HC regarding Inhibition. The pure MDD group did not display dysfunctions relative to the HC group on the main executive control variables, but displayed slowed psychomotor speed. Contrary to expectation there were no significant differences between the MDDA and the MDD groups. CONCLUSION Co-morbid anxiety should be taken into account when studying cognitive control functions in major depression.
Collapse
Affiliation(s)
- Pia Lyche
- Department of Psychology, Center for the Study of Human Cognition, University of OsloOslo, Norway
| | - Rune Jonassen
- Department of Psychology, Center for the Study of Human Cognition, University of OsloOslo, Norway
- Akershus University Hospital Health AuthorityLørenskog, Norway
| | - Tore C. Stiles
- Department of Psychology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Pål Ulleberg
- Department of Psychology, Center for the Study of Human Cognition, University of OsloOslo, Norway
| | - Nils I. Landrø
- Department of Psychology, Center for the Study of Human Cognition, University of OsloOslo, Norway
| |
Collapse
|
62
|
Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun. J Neurosci 2010; 30:15185-95. [PMID: 21068324 DOI: 10.1523/jneurosci.2740-10.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications.
Collapse
|
63
|
Lyche P, Jonassen R, Stiles TC, Ulleberg P, Landro NI. Attentional Functions in Major Depressive Disorders With and Without Comorbid Anxiety. Arch Clin Neuropsychol 2010; 26:38-47. [DOI: 10.1093/arclin/acq095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
64
|
Fournet V, Jany M, Fabre V, Chali F, Orsal D, Schweitzer A, Andrieux A, Messanvi F, Giros B, Hamon M, Lanfumey L, Deloulme JC, Martres MP. The deletion of the microtubule-associated STOP protein affects the serotonergic mouse brain network. J Neurochem 2010; 115:1579-94. [PMID: 20969568 DOI: 10.1111/j.1471-4159.2010.07064.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The deletion of microtubule-associated protein stable tubule only polypeptide (STOP) leads to neuroanatomical, biochemical and severe behavioral alterations in mice, partly alleviated by antipsychotics. Therefore, STOP knockout (KO) mice have been proposed as a model of some schizophrenia-like symptoms. Preliminary data showed decreased brain serotonin (5-HT) tissue levels in STOP KO mice. As literature data demonstrate various interactions between microtubule-associated proteins and 5-HT, we characterized some features of the serotonergic neurotransmission in STOP KO mice. In the brainstem, mutant mice displayed higher tissue 5-HT levels and in vivo synthesis rate, together with marked increases in 5-HT transporter densities and 5-HT1A autoreceptor levels and electrophysiological sensitivity, without modification of the serotonergic soma number. Conversely, in projection areas, STOP KO mice exhibited lower 5-HT levels and in vivo synthesis rate, associated with severe decreases in 5-HT transporter densities, possibly related to reduced serotonergic terminals. Mutant mice also displayed a deficit of adult hippocampal neurogenesis, probably related to both STOP deletion and 5-HT depletion. Finally, STOP KO mice exhibited a reduced anxiety- and, probably, an increased helpness-status, that could be because of the strong imbalance of the serotonin neurotransmission between somas and terminals. Altogether, these data suggested that STOP deletion elicited peculiar 5-HT disconnectivity.
Collapse
Affiliation(s)
- Vincent Fournet
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Garland EL, Fredrickson B, Kring AM, Johnson DP, Meyer PS, Penn DL. Upward spirals of positive emotions counter downward spirals of negativity: insights from the broaden-and-build theory and affective neuroscience on the treatment of emotion dysfunctions and deficits in psychopathology. Clin Psychol Rev 2010; 30:849-64. [PMID: 20363063 PMCID: PMC2908186 DOI: 10.1016/j.cpr.2010.03.002] [Citation(s) in RCA: 439] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 02/09/2010] [Accepted: 03/05/2010] [Indexed: 12/28/2022]
Abstract
This review integrates Fredrickson's broaden-and-build theory of positive emotions with advances in affective neuroscience regarding plasticity in the neural circuitry of emotions to inform the treatment of emotion deficits within psychopathology. We first present a body of research showing that positive emotions broaden cognition and behavioral repertoires, and in so doing, build durable biopsychosocial resources that support coping and flourishing mental health. Next, by explicating the processes through which momentary experiences of emotions may accrue into self-perpetuating emotional systems, the current review proposes an underlying architecture of state-trait interactions that engenders lasting affective dispositions. This theoretical framework is then used to elucidate the cognitive-emotional mechanisms underpinning three disorders of affect regulation: depression, anxiety, and schizophrenia. In turn, two mind training interventions, mindfulness and loving-kindness meditation, are highlighted as means of generating positive emotions that may counter the negative affective processes implicated in these disorders. We conclude with the proposition that positive emotions may exert a countervailing force on the dysphoric, fearful, or anhedonic states characteristic of psychopathologies typified by emotional dysfunctions.
Collapse
Affiliation(s)
- Eric L Garland
- College of Social Work, Florida State University, University Center, Building C, Tallahassee, Fl 32306-2570, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Gerlai R. Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 2010; 207:223-31. [PMID: 19836422 PMCID: PMC3203216 DOI: 10.1016/j.bbr.2009.10.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 12/11/2022]
Abstract
Human neuropsychiatric conditions associated with abnormally exaggerated or misdirected fear (anxiety disorders and phobias) still represent a large unmet medical need because the biological mechanisms underlying these diseases are not well understood. Animal models have been proposed to facilitate this research. Here I review the literature with a focus on zebrafish, an upcoming laboratory organism in behavioral brain research. I argue that abnormal human fear responses are likely the result of the malfunction of neurobiological mechanisms (brain areas, circuits and/or molecular mechanisms) that originally evolved to support avoidance of predators or other harm in nature. I also argue that the understanding of the normal as well as pathological functioning of such mechanisms may be best achieved if one utilizes naturalistic experimental approaches. In case of laboratory model organisms, this may entail presenting stimuli associated with predators and measuring species-specific antipredatory responses. Although zebrafish is a relatively new subject of such inquiry, I review the recently rapidly increasing number of zebrafish studies in this area, and conclude that zebrafish is a promising research tool for the analysis of the neurobiology and genetics of vertebrate fear responses.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada. robert
| |
Collapse
|
67
|
Abstract
The molecular architecture of developing serotonin (5HT) neurons is poorly understood, yet its determination is likely to be essential for elucidating functional heterogeneity of these cells and the contribution of serotonergic dysfunction to disease pathogenesis. Here, we describe the purification of postmitotic embryonic 5HT neurons by flow cytometry for whole-genome microarray expression profiling of this unitary monoaminergic neuron type. Our studies identified significantly enriched expression of hundreds of unique genes in 5HT neurons, thus providing an abundance of new serotonergic markers. Furthermore, we identified several hundred transcripts encoding homeodomain, axon guidance, cell adhesion, intracellular signaling, ion transport, and imprinted genes associated with various neurodevelopmental disorders that were differentially enriched in developing rostral and caudal 5HT neurons. These findings suggested a homeodomain code that distinguishes rostral and caudal 5HT neurons. Indeed, verification studies demonstrated that Hmx homeodomain and Hox gene expression defined an Hmx(+) rostral subtype and Hox(+) caudal subtype. Expression of engrailed genes in a subset of 5HT neurons in the rostral domain further distinguished two subtypes defined as Hmx(+)En(+) and Hmx(+)En(-). The differential enrichment of gene sets for different canonical pathways and gene ontology categories provided additional evidence for heterogeneity between rostral and caudal 5HT neurons. These findings demonstrate a deep transcriptome and biological pathway duality for neurons that give rise to the ascending and descending serotonergic subsystems. Our databases provide a rich, clinically relevant resource for definition of 5HT neuron subtypes and elucidation of the genetic networks required for serotonergic function.
Collapse
|
68
|
Stoltenberg SF, Nag P. Description and validation of a dynamical systems model of presynaptic serotonin function: genetic variation, brain activation and impulsivity. Behav Genet 2010; 40:262-79. [PMID: 20111992 DOI: 10.1007/s10519-010-9335-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
Abstract
Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = -.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses.
Collapse
Affiliation(s)
- Scott F Stoltenberg
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| | | |
Collapse
|
69
|
Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010; 65:40-52. [PMID: 20152112 PMCID: PMC2941196 DOI: 10.1016/j.neuron.2009.12.003] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2009] [Indexed: 12/28/2022]
Abstract
Most depressed patients don't respond to their first drug treatment, and the reasons for this treatment resistance remain enigmatic. Human studies implicate a polymorphism in the promoter of the serotonin-1A (5-HT(1A)) receptor gene in increased susceptibility to depression and decreased treatment response. Here we develop a new strategy to manipulate 5-HT(1A) autoreceptors in raphe nuclei without affecting 5-HT(1A) heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels. We show that this robustly affects raphe firing rates, but has no effect on either basal forebrain serotonin levels or conflict-anxiety measures. However, compared to 1A-Low mice, 1A-High mice show a blunted physiological response to acute stress, increased behavioral despair, and no behavioral response to antidepressant, modeling patients with the 5-HT(1A) risk allele. Furthermore, reducing 5-HT(1A) autoreceptor levels prior to antidepressant treatment is sufficient to convert nonresponders into responders. These results establish a causal relationship between 5-HT(1A) autoreceptor levels, resilience under stress, and response to antidepressants.
Collapse
|
70
|
Kircanski K, Craske MG, Epstein AM, Wittchen HU. Subtypes of panic attacks: a critical review of the empirical literature. Depress Anxiety 2010; 26:878-87. [PMID: 19750553 DOI: 10.1002/da.20603] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Panic disorder is a heterogeneous disorder, comprising a variety of somatic, physiological, and cognitive symptoms during repeated panic attacks. As a result, considerable data have examined whether panic attacks may be classified into distinct diagnostic or functional subtypes. The aim of this study is to evaluate the existing literature regarding the validity of panic attack subtypes. METHODS This review focuses on data published since 2000, with the publication of DSM-IV-TR, augmented by replicated data published since 1980, with the publication of DSM-III and subsequently DSM-IV. Published reports evaluating empirical evidence for the validity of panic attack subtypes are reviewed. RESULTS Five sets of panic symptoms (respiratory, nocturnal, nonfearful, cognitive, and vestibular) have been shown to cluster together at varying degrees of consistency. However, none of these potential subtypes have been associated with sufficient and reliable external validation criteria indicative of functional differences. This apparent lack of findings may be related to methodological inconsistencies or limitations across the reviewed studies. CONCLUSIONS Although at present the data do not warrant the utility of subtyping, further research aimed at patent gaps in the literature, including clearer operationalization of symptom subtypes, greater use of biological challenge paradigms and physiological and other more objective measures of fear and anxiety, and exploration of subtyping based on biological factors such as genetics, may support the future designation of panic attack subtypes and their ultimate clinical utility.
Collapse
Affiliation(s)
- Katharina Kircanski
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA.
| | | | | | | |
Collapse
|
71
|
Guimarães FS, Zangrossi H, Del Ben CM, Graeff FG. Serotonin in Panic and Anxiety Disorders. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70105-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
72
|
Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci 2009; 1179:120-43. [PMID: 19906236 DOI: 10.1111/j.1749-6632.2009.05011.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Markers of hyperactive central corticotropin releasing factor (CRF) systems and CRF-related single nucleotide polymorphisms (SNPs) have been identified in patients with anxiety and depressive disorders. Designing more effective antagonists may now be guided by data showing that small molecules bind to transmembrane domains. Specifically, CRF(1) receptor antagonists have been developed as novel anxiolytic and antidepressant treatments. Because CRF(1) receptors become rapidly desensitized by G protein-coupled receptor kinase (GRK) and beta-arrestin mechanisms in the presence of high agonist concentrations, neuronal hypersecretion of synaptic CRF alone may be insufficient to account for excessive central CRF neurotransmission in stress-induced affective pathophysiology. In addition to desensitizing receptor function, GRK phosphorylation and beta-arrestin binding can shift a G protein-coupled receptor (GPCR) to signal selectively via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) or Akt pathways independent of G proteins. Also, Epac-dependent CRF(1) receptor signaling via the ERK-MAPK pathway has been found to potentiate brain-derived neurotrophic factor (BDNF)-stimulated TrkB signaling. Thus, genetic or acquired abnormalities in GRK and beta-arrestin function may be involved in the pathophysiology of stress-induced anxiety and depression.
Collapse
Affiliation(s)
- Richard L Hauger
- Psychiatry Service, VA Healthcare System, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | |
Collapse
|
73
|
Genetic, environmental, and epigenetic factors in the development of personality disturbance. Dev Psychopathol 2009; 21:1031-63. [DOI: 10.1017/s0954579409990034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractA dimensional model of personality disturbance is presented that is defined by extreme values on interacting subsets of seven major personality traits. Being at the extreme has marked effects on the threshold for eliciting those traits under stimulus conditions: that is, the extent to which the environment affects the neurobiological functioning underlying the traits. To explore the nature of development of extreme values on these traits, each trait is discussed in terms of three major issues: (a) the neurobiological variables associated with the trait, (b) individual variation in this neurobiology as a function of genetic polymorphisms, and (c) the effects of environmental adversity on these neurobiological variables through the action of epigenetic processes. It is noted that gene–environment interaction appears to be dependent on two main factors: (a) both genetic and environmental variables appear to have the most profound and enduring effects when they exert their effects during early postnatal periods, times when the forebrain is undergoing exuberant experience–expectant dendritic and axonal growth; and (b) environmental effects on neurobiology are strongly modified by individual differences in “traitlike” functioning of neurobiological variables. A model of the nature of the interaction between environmental and neurobiological variables in the development of personality disturbance is presented.
Collapse
|
74
|
Kost NV, Sokolov OY, Kurasova OB, Dmitriev AD, Tarakanova JN, Gabaeva MV, Zolotarev YA, Dadayan AK, Grachev SA, Korneeva EV, Mikheeva IG, Zozulya AA. Beta-casomorphins-7 in infants on different type of feeding and different levels of psychomotor development. Peptides 2009; 30:1854-60. [PMID: 19576256 DOI: 10.1016/j.peptides.2009.06.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Casomorphins are the most important during the first year of life, when postnatal formation is most active and milk is the main source of both nutritive and biologically active material for infants. This study was conducted on a total of 90 infants, of which 37 were fed with breast milk and 53 were fed with formula containing cow milk. The study has firstly indicated substances with immunoreactivity of human (irHCM) and bovine (irBCM) beta-casomorphins-7 in blood plasma of naturally and artificially fed infants, respectively. irHCM and irBCM were detected both in the morning before feeding (basal level), and 3h after feeding. Elevation of irHCM and irBCM levels after feeding was detected mainly in infants in the first 3 months of life. Chromatographic characterization of the material with irBCM has demonstrated that it has the same molecular mass and polarity as synthetic bovine beta-casomorphin-7. The highest basal irHCM was observed in breast-fed infants with normal psychomotor development and muscle tone. In contrast, elevated basal irBCM was found in formula-fed infants showing delay in psychomotor development and heightened muscle tone. Among formula-fed infants with normal development, the rate of this parameter directly correlated to basal irBCM. The data indicate that breast feeding has an advantage over artificial feeding for infants' development during the first year of life and support the hypothesis for deterioration of bovine casomorphin elimination as a risk factor for delay in psychomotor development and other diseases such as autism.
Collapse
Affiliation(s)
- Natalya V Kost
- National Research Center for Mental Health RAMS, 113152 Moscow, Zagorodnoe shosse 2/2, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Carver CS, Johnson SL, Joormann J. Two-Mode Models of Self-Regulation as a Tool for Conceptualizing Effects of the Serotonin System in Normal Behavior and Diverse Disorders. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2009; 18:195-199. [PMID: 20161026 DOI: 10.1111/j.1467-8721.2009.01635.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serotonin system is a collection of neural pathways whose overall level of functioning (from low to high) relates to diverse kinds of psychological and behavioral variability. Individual differences in serotonergic function are important both in personality and in vulnerability to psychological disorders. These disorders range widely-from impulsive aggression to depression. One way to understand such diverse reflections of differences in serotonergic function is by viewing serotonergic function through the lens of two-mode (or dual-process) models of self-regulation. Such theories posit a lower-order system that responds quickly to associative cues of the moment and a higher-order system that responds reflectively and planfully. Low serotonergic function appears to enhance influence of the lower-order system. This often yields impulsive reactivity. Why, then, does low serotonergic function also relate to depression, which is characterized by lethargy and unresponsiveness? The answer must be that ascendance of the lower system interacts with other factors. One hypothesis is that low serotonergic function plus high sensitivity to incentives yields vulnerability to impulsive approach, whereas low serotonergic function plus low incentive sensitivity yields vulnerability to depression. Conceptualizing serotonergic function this way helps integrate information pertaining to very different disorders into a coherent picture.
Collapse
|
76
|
Synergistic neurochemical and behavioural effects of acute intrahippocampal injection of brain-derived neurotrophic factor and antidepressants in adult mice. Int J Neuropsychopharmacol 2009; 12:905-15. [PMID: 19236729 DOI: 10.1017/s1461145709000017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preclinical data support the view that brain-derived neurotrophic factor (BDNF) and serotonergic systems regulate circuits involved in affective disorders. The present study examined neurochemical and behavioural consequences of an acute intrahippocampal injection of BDNF combined with an antidepressant by using in-vivo intracerebral microdialysis in the ventral hippocampus (vHi) in conscious mice and behavioural paradigms predictive of antidepressant and anxiolytic-like effects [the mouse forced swim test (FST), the open-field (OF) paradigm and the elevated plus maze (EPM)]. Neurochemical data revealed that BDNF (100 ng) potentiated the effects of the systemic administration of a serotonin selective reuptake inhibitor (SSRI; paroxetine 4 mg/kg i.p.) and that of a locally applied citalopram perfusion on dialysate 5-HT levels in the vHi. These neurochemical changes correlated with behavioural data since, in the FST, antidepressant-like activity of paroxetine as measured on swimming behaviour was potentiated by BDNF. These data suggest an interesting synergy between BDNF and SSRI on antidepressant-like activity. Furthermore, in both the OF and EPM paradigms BDNF induced an anxiogenic-like activity, whereas paroxetine prevented this effect. Finally, the neurochemical and behavioural effects of BDNF on the serotonergic system might occur at both pre- and post-synaptic levels since by using in-situ hybridization, we showed that TrkB-R mRNA was expressed in the hippocampus and the dorsal raphe nucleus in adult mice. Taken together the neurochemical and behavioural effects of BDNF suggest that these behavioural changes were mediated by increases in 5-HT neurotransmission in vHi. Thus a BDNF+SSRI combination may offer new alternatives to treat mood disorders.
Collapse
|
77
|
Vallender EJ, Lynch L, Novak MA, Miller GM. Polymorphisms in the 3' UTR of the serotonin transporter are associated with cognitive flexibility in rhesus macaques. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:467-75. [PMID: 18655075 PMCID: PMC2702718 DOI: 10.1002/ajmg.b.30835] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The serotonin system is an important neurophysiological mediator of many behavioral phenotypes. Genetic variation within this system is thought to contribute not only to the natural range of behavioral differences, but also to neuropsychiatric pathologies. Cognitive flexibility, the ability to change patterns of response as reward context shifts, is an important trait that underlies many complex social interactions. Environmental manipulations of the serotonin system have been shown to alter performance on tests measuring cognitive flexibility. Variation at the serotonin transporter promoter region (5HTTLPR) has recently been shown to associate with the performance of rhesus monkeys on an object discrimination reversal learning task [Izquierdo et al., 2007]. Here, we demonstrate that functional genetic variation at the serotonin transporter 3' untranslated region, independent of 5HTTLPR, also associates with performance in an object discrimination reversal learning task in rhesus macaques. The polymorphisms comprising the T:G:T haplotype (T1970, G1991, and T2327) were associated with fewer errors on a reversal learning test and greater levels of cognitive flexibility. We have previously demonstrated that the T:G:T haplotype renders lower levels of gene expression in vitro, paralleling the functionality of human 3' UTR haplotypes, as well as the short allele of 5HTTLPR found in both macaques and humans. The 3' UTR haplotypes are independent and in linkage equilibrium with the 5HTTLPR locus. Together, these data lead to the intriguing possibility that differences observed in human cognitive flexibility, whether naturally or in pathological states, may be associated with genetic variation in the serotonin transporter 3' untranslated region also.
Collapse
Affiliation(s)
- Eric J. Vallender
- Division of Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Laurie Lynch
- Division of Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Melinda A. Novak
- Division of Behavioral Biology, New England Primate Research Center, Harvard Medical School, Southborough, MA
| | - Gregory M. Miller
- Division of Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA,Correspondence to G. M. Miller, New England Primate Research Center, Harvard Medical School, Southborough Campus, Pine Hill Drive, Southborough, MA 01772. email:
| |
Collapse
|
78
|
Sandi C, Richter-Levin G. From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci 2009; 32:312-20. [PMID: 19409624 DOI: 10.1016/j.tins.2009.02.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/30/2009] [Accepted: 02/03/2009] [Indexed: 12/16/2022]
Abstract
Although exposure to substantial stress has a major impact on the development of depression, there is considerable variability in the susceptibility of individuals to the adverse effects of stress. The personality trait of high anxiety has been identified as a vulnerability factor to develop depression. We propose here a new unifying model based on a series of neurocognitive mechanisms (and fed with crucial information provided by research on the fields of emotion, stress and cognition) whereby individuals presenting a high anxiety trait are particularly vulnerable to develop depression when facing stress and adversity. Our model highlights the importance of developing prevention programs addressed to restrain, in high anxious individuals, the triggering of a dysfunctional neurocognitive cascade while coping with stress.
Collapse
Affiliation(s)
- Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | | |
Collapse
|
79
|
Abstract
The personality trait of neuroticism refers to relatively stable tendencies to respond with negative emotions to threat, frustration, or loss. Individuals in the population vary markedly on this trait, ranging from frequent and intense emotional reactions to minor challenges to little emotional reaction even in the face of significant difficulties. Although not widely appreciated, there is growing evidence that neuroticism is a psychological trait of profound public health significance. Neuroticism is a robust correlate and predictor of many different mental and physical disorders, comorbidity among them, and the frequency of mental and general health service use. Indeed, neuroticism apparently is a predictor of the quality and longevity of our lives. Achieving a full understanding of the nature and origins of neuroticism, and the mechanisms through which neuroticism is linked to mental and physical disorders, should be a top priority for research. Knowing why neuroticism predicts such a wide variety of seemingly diverse outcomes should lead to improved understanding of commonalities among those outcomes and improved strategies for preventing them.
Collapse
Affiliation(s)
- Benjamin B Lahey
- Department of Health Studies, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
80
|
Lerch-Haner JK, Frierson D, Crawford LK, Beck SG, Deneris ES. Serotonergic transcriptional programming determines maternal behavior and offspring survival. Nat Neurosci 2009; 11:1001-3. [PMID: 19160496 DOI: 10.1038/nn.2176] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Central serotonergic signaling influences many physiological processes, but a requirement for reproductive success has not been demonstrated. Using mouse dams with a specific disruption in serotonin neuron development, we found that serotonergic function is required for the nurturing and survival of offspring. Full rescue of survival depended on the mother's expression level of the upstream serotonergic transcriptional cascade. Thus, intrinsic transcriptional programming of maternal serotonergic activity determines the quality of nurturing and whether or not the organism survives.
Collapse
Affiliation(s)
- Jessica K Lerch-Haner
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 2109 Adelbert Road, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
81
|
Anxiety in mice and men: a comparison. J Neural Transm (Vienna) 2009; 116:679-87. [PMID: 19340391 DOI: 10.1007/s00702-009-0215-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 03/17/2009] [Indexed: 12/23/2022]
Abstract
Anxiety is one of the most fundamental emotions required to survive or to cope with potential threatening stimuli. Under certain circumstances, it can change to excessive or maladaptive response and might manifest in anxious personality or even anxiety disorders. Genetic studies provide a number of promising candidate genes that, however, account for only a few percent of the phenotypic variance. Social and material environmental effects such as stressful life events, drugs or chemicals and particular behavioural influences such as parental care are suggested to interact with gene effects presumably involving epigenetic processes. Such interaction probably modifies an individual's predisposition, personality and susceptibility to develop normal or low anxiety or even maladaptive or excessive anxiety. Since human anxiety involves complex emotions as well as cognitions, unique experiences and an individual genetic make-up, studies trying to clarify the complex and functionally interwoven pathogenesis of anxious personality or anxiety disorders often adopt a reductionistic, simplifying approach. Therein, mice constitute an invaluable tool for modelling human anxiety in its various forms as they display remarkable similarities on anatomical, physiological, biochemical, molecular and behavioural levels. This review aims to fit observations and results obtained from men and mice on behavioural, genetic and environmental levels in response to different threatening stimuli elucidating different genetic and epigenetic effects.
Collapse
|
82
|
Moussaif M, Sze JY. Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans. J Neurosci 2009; 29:4065-75. [PMID: 19339602 PMCID: PMC2710879 DOI: 10.1523/jneurosci.0044-09.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 01/21/2023] Open
Abstract
Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery.
Collapse
Affiliation(s)
- Mustapha Moussaif
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
83
|
Kaitz M, Levy M, Ebstein R, Faraone SV, Mankuta D. The intergenerational effects of trauma from terror: A real possibility. Infant Ment Health J 2009. [PMID: 28636178 DOI: 10.1002/imhj.20209] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The goals of this article are to discuss the potential risk of children whose parents were traumatized by terror, to present literature on parenting in the context of terror, and to consider factors that may mediate the transmission of trauma-effects from parents to children. Mediators considered are parents' traumatic distress, disturbed parent-child interactions, trauma-related disturbances in parents' thinking, and effects of stress on children's neural functioning. Also discussed are genetic and environmental factors that may moderate the transmission of intergenerational effects and promote children's risk and resilience. Points raised during the discussion are illustrated with segments from interviews of women who were pregnant or gave birth some time after direct exposure to a terror attack. The authors conclude that empirical studies are needed to learn more about the intergenerational transmission of trauma-effects and processes that underlie it. The authors join others in the call to improve evaluation, treatment, and support of trauma victims and their children to stymie the transmission of problems from one generation to the next.
Collapse
Affiliation(s)
| | | | | | | | - David Mankuta
- Hadassah Hospital and Hebrew University Medical School
| |
Collapse
|
84
|
Bandelow B, Zohar J, Hollander E, Kasper S, Möller HJ, Zohar J, Hollander E, Kasper S, Möller HJ, Bandelow B, Allgulander C, Ayuso-Gutierrez J, Baldwin DS, Buenvicius R, Cassano G, Fineberg N, Gabriels L, Hindmarch I, Kaiya H, Klein DF, Lader M, Lecrubier Y, Lépine JP, Liebowitz MR, Lopez-Ibor JJ, Marazziti D, Miguel EC, Oh KS, Preter M, Rupprecht R, Sato M, Starcevic V, Stein DJ, van Ameringen M, Vega J. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders - first revision. World J Biol Psychiatry 2009; 9:248-312. [PMID: 18949648 DOI: 10.1080/15622970802465807] [Citation(s) in RCA: 424] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this report, which is an update of a guideline published in 2002 (Bandelow et al. 2002, World J Biol Psychiatry 3:171), recommendations for the pharmacological treatment of anxiety disorder, obsessive-compulsive disorder (OCD) and post-traumatic stress disorder (PTSD) are presented. Since the publication of the first version of this guideline, a substantial number of new randomized controlled studies of anxiolytics have been published. In particular, more relapse prevention studies are now available that show sustained efficacy of anxiolytic drugs. The recommendations, developed by the World Federation of Societies of Biological Psychiatry (WFSBP) Task Force for the Pharmacological Treatment of Anxiety, Obsessive-Compulsive and Post-traumatic Stress Disorders, a consensus panel of 30 international experts, are now based on 510 published randomized, placebo- or comparator-controlled clinical studies (RCTs) and 130 open studies and case reports. First-line treatments for these disorders are selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors (SNRIs) and the calcium channel modulator pregabalin. Tricyclic antidepressants (TCAs) are equally effective for some disorders, but many are less well tolerated than the SSRIs/SNRIs. In treatment-resistant cases, benzodiazepines may be used when the patient does not have a history of substance abuse disorders. Potential treatment options for patients unresponsive to standard treatments are described in this overview. Although these guidelines focus on medications, non-pharmacological were also considered. Cognitive behavioural therapy (CBT) and other variants of behaviour therapy have been sufficiently investigated in controlled studies in patients with anxiety disorders, OCD, and PTSD to support them being recommended either alone or in combination with the above medicines.
Collapse
Affiliation(s)
- Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University of Gottingen, Gottingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1-deficient serotonin neuron precursors. J Neurosci 2009; 28:12748-58. [PMID: 19036967 DOI: 10.1523/jneurosci.4349-08.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Altered expression of the human FEV (fifth Ewing variant) ETS transcription factor gene impacts the level of CNS serotonin (5-HT) neuron gene expression and maternal nurturing. However, the regulatory mechanisms that determine FEV expression are poorly understood. Here, we investigated the cis-regulatory control of FEV to begin to identify the upstream transcription factors that restrict FEV expression to 5-HT neurons. We find that sequences extending only 275 bp upstream of the FEV 5' untranslated region are sufficient to direct FEV transgene expression to embryonic 5-HT neurons, although sequences farther upstream are required for maintenance in adult 5-HT neurons. Two highly conserved consensus GATA factor binding sites within the 275 bp region interact with GATA factors in vitro. Chromatin immunoprecipitations with embryonic hindbrain demonstrated Gata-2 interactions with the orthologous mouse Pet-1 ETS cis-regulatory region. Mutagenesis of GATA sites revealed that one or the other site is required for serotonergic FEV transgene expression. Unexpectedly, FEV-LacZ transgenes enabled determination of 5-HT neuron precursor fate in the adult Pet-1(-/-) dorsal and median raphe nuclei and thus provided additional insight into FEV/Pet-1 function. Comparable numbers of FEV-LacZ-positive cells were detected in Pet-1(+/-) and Pet-1(-/-) adult dorsal raphe nuclei, indicating that the majority of mutant serotonergic precursors are not fated to apoptosis. However, B7 dorsal raphe cells were aberrantly distributed, suggesting a role for FEV/Pet-1 in their midline organization. Our findings identify a direct transcriptional interaction between Gata-2 and FEV and a unique marker for new insight into FEV/Pet-1 function in 5-HT neuron development.
Collapse
|
86
|
Common genetic, clinical, demographic and psychosocial predictors of response to pharmacotherapy in mood and anxiety disorders. Int Clin Psychopharmacol 2009; 24:1-18. [PMID: 19060722 DOI: 10.1097/yic.0b013e32831db2d7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study is to summarize available knowledge about common genetic, clinical, demographic and psychosocial predictors of response to pharmacotherapy in mood and anxiety disorders. A literature search was carried out by using MEDLINE and references of selected articles. The search included articles published up to March 2008. The main genetic finding concerns the serotonin transporter gene promoter polymorphisms, the long variant of which seems to be related to a positive response to therapy in mood disorders and could also have a role in the treatment of anxiety disorders. Among other predictors, the main factors common to both classes of disorder are comorbid axis II disorders and early onset of illness, which are related to a worse response to therapy and concomitant good physical conditions, absence of earlier treatments, early administration and response to therapies, and higher self- directedness, which is related to a better outcome. Many common predictors have been identified and these seem to be related to features covering the totality of patients that go beyond specific characteristics of single disorders. Possible limitations and suggestions for future research based on a more integrated vision of human complexity are discussed.
Collapse
|
87
|
Abstract
Anxiety disorders are a growing health problem world-wide. However, the causative factors, etiology, and underlying mechanisms of anxiety disorders, as for most psychiatric disorders, remain relatively poorly understood. The current status of clinical research indicates that anxiety traits and anxiety disorder in man have a genetic component, and therefore genetic modeling in animals is a logical approach to gain a greater insight into their neurobiology. However, it is also clear that the nature of these genetic contributions is highly complex. Moreover, the success of this approach is largely contingent upon the utility of available behavioral paradigms for modeling anxiety-related behaviors in mice. Animal genetic models provide a unique and comprehensive methodological tool to aid discovery into the etiology, neurobiology, and ultimately, the therapy of human anxiety disorders. The approach, however, is challenged with a number of complexities. In particular, the heterogeneous nature of anxiety disorders in man coupled with the associated multifaceted and descriptive diagnostic criteria, create challenges in both animal modeling and in clinical research. In this article, we describe some of the powerful modem genetic techniques that are uniquely amenable to the laboratory mouse and thus provide a strategy for approaching some of these challenges. Moreover, we focus on recent advances which have highlighted the relative contribution of genetic modeling in animals to the understanding of underlying neurobiology and genetic basis of anxiety disorders.
Collapse
|
88
|
Carver CS, Johnson SL, Joormann J. Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: what depression has in common with impulsive aggression. Psychol Bull 2008; 134:912-43. [PMID: 18954161 DOI: 10.1037/a0013740] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Evidence from diverse literatures supports the viewpoint that two modes of self-regulation exist, a lower-order system that responds quickly to associative cues of the moment and a higher-order system that responds more reflectively and planfully; that low serotonergic function is linked to relative dominance of the lower-order system; that how dominance of the lower-order system is manifested depends on additional variables; and that low serotonergic function therefore can promote behavioral patterns as divergent as impulsive aggression and lethargic depression. Literatures reviewed include work on two-mode models; studies of brain function supporting the biological plausibility of the two-mode view and the involvement of serotonergic pathways in functions pertaining to it; and studies relating low serotonergic function to impulsiveness, aggression (including extreme violence), aspects of personality, and depression vulnerability. Substantial differences between depression and other phenomena reviewed are interpreted by proposing that depression reflects both low serotonergic function and low reward sensitivity. The article closes with brief consideration of the idea that low serotonergic function relates to even more diverse phenomena, whose natures depend in part on sensitivities of other systems.
Collapse
Affiliation(s)
- Charles S Carver
- Department of Psychology, University of Miami, Coral Gables, FL 33124-0751, USA.
| | | | | |
Collapse
|
89
|
Cirulli F, Francia N, Berry A, Aloe L, Alleva E, Suomi SJ. Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci Biobehav Rev 2008; 33:573-85. [PMID: 18817811 DOI: 10.1016/j.neubiorev.2008.09.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/22/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
Abstract
Early adverse events can enhance stress responsiveness and lead to greater susceptibility for psychopathology at adulthood. The epigenetic factors involved in transducing specific features of the rearing environment into stable changes in brain and behavioural plasticity have only begun to be elucidated. Neurotrophic factors, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are affected by stress and play a major role in brain development and in the trophism of specific neuronal networks involved in cognitive function and in mood disorders. In addition to the central nervous system, these effectors are produced by peripheral tissues, thus being in a position to integrate the response to external challenges. In this paper we will review data, obtained from animal models, indicating that early maternal deprivation stress can affect neurotrophin levels. Maladaptive or repeated activation of NGF and BDNF, early during postnatal life, may influence stress sensitivity at adulthood and increase vulnerability for stress-related psychopathology.
Collapse
Affiliation(s)
- Francesca Cirulli
- Section of Behavioural Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
90
|
Vallender EJ, Priddy CM, Hakim S, Yang H, Chen GL, Miller GM. Functional variation in the 3′ untranslated region of the serotonin transporter in human and rhesus macaque. GENES BRAIN AND BEHAVIOR 2008; 7:690-7. [DOI: 10.1111/j.1601-183x.2008.00407.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
91
|
Thompson BL, Stanwood GD. Pleiotropic effects of neurotransmission during development: modulators of modularity. J Autism Dev Disord 2008; 39:260-8. [PMID: 18648918 DOI: 10.1007/s10803-008-0624-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 07/04/2008] [Indexed: 11/28/2022]
Abstract
The formation and function of the mammalian cerebral cortex relies on the complex interplay of a variety of genetic and environmental factors through protracted periods of gestational and postnatal development. Biogenic amine systems are important neuromodulators, both in the adult nervous system, and during critical epochs of brain development. Abnormalities in developmental programming likely contribute to developmental delays and multiple neurological and psychiatric disorders, often with symptom onset much later than the actual induction of pathology. We review several genetic and pharmacological models of dopamine, norepinephrine and serotonin modulation during development, each of which produces permanent changes in cerebral cortical structure and function. These models clearly illustrate the ability of these neurotransmitters to function beyond their classic roles and show their involvement in the development and modulation of fine brain circuitry that is sensitive to numerous effectors. Furthermore, these studies demonstrate the need to consider not only gene by environment interactions, but also gene by environment by developmental time interactions.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
92
|
Tronson NC, Schrick C, Fischer A, Sananbenesi F, Pagès G, Pouysségur J, Radulovic J. Regulatory mechanisms of fear extinction and depression-like behavior. Neuropsychopharmacology 2008; 33:1570-83. [PMID: 17712345 PMCID: PMC2562608 DOI: 10.1038/sj.npp.1301550] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human anxiety is frequently accompanied by depression, and when they co-occur both conditions exhibit greater severity and resistance to treatment. Little is known, however, about the molecular processes linking these emotional and mood disorders. Based on previously reported phosphorylation patterns of extracellular signal-regulated kinase (ERK) in the brain, we hypothesized that ERK's upstream activators intertwine fear and mood regulation through their hippocampal actions. We tested this hypothesis by studying the upstream regulation of ERK signaling in behavioral models of fear and depression. Wild-type and ERK1-deficient mice were used to study the dorsohippocampal actions of the putative ERK activators: mitogen-activated and extracellular signal-regulated kinase (MEK), protein kinase C (PKC), and cAMP-dependent protein kinase (PKA). Mice lacking ERK1 exhibited enhanced fear extinction and reduced depression caused by overactivation of ERK2. Both behaviors were reversed by inhibition of MEK, however the extinction phenotype depended on hippocampal, whereas the depression phenotype predominantly involved extrahippocampal MEK. Unexpectedly, inhibition of PKC accelerated extinction and decreased depression by ERK-independent mechanisms, whereas inhibition of PKA did not produce detectable molecular or behavioral effects in the employed paradigm. These results indicate that, contrary to fear conditioning but similar to mood stabilization, extinction of fear required upregulation of MEK/ERK and downregulation of ERK-independent PKC signaling. The dissociation of these pathways may thus represent a common mechanism for fear and mood regulation, and a potential therapeutic option for comorbid anxiety and depression.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
93
|
Behavioural analysis of congenic mouse strains confirms stress-responsive Loci on chromosomes 1 and 12. Behav Genet 2008; 38:407-16. [PMID: 18379869 DOI: 10.1007/s10519-008-9206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
The way in which animals respond to stressful environments correlates with anxiety-related behaviour. To begin identifying the genetic factors that influence anxiety, we have studied the stress-responsiveness of inbred mouse strains using a modified form of the open field activity test (OFA), termed the elevated (e) OFA. In particular, two strains show high (DBA/2J) or low (C57BL/6J) stress-responsiveness in the eOFA. Genetic studies of an F(2) intercross between these two strains previously identified two regions, on chromosomes (Chr) 1 and 12, linked to anxiety-related behaviour. To confirm that these regions contain loci for stress-responsiveness, we established separate congenic mouse strains for the linked Chr1 and Chr12 regions. Each congenic strain harbours a DBA/2J-derived interval encompassing the linked region on the C57BL/6J genetic background: the congenic intervals are between, but not including approximately 48.6 Mb and approximately 194.8 Mb on Chr1, and approximately 36.2 Mb and the distal end of Chr12. Cohorts of DBA/2J, C57BL/6J and congenic mice were analysed for a series of stress-responsive phenotypes using the eOFA test. Both congenic strains had significantly different stress-responsive phenotypes compared to the low-stress C57BL/6J parental strain, but the DBA/2J-derived Chr12 interval had a greater genetic effect than the DBA/2J-derived Chr1 interval for changing the behavioral phenotype of the parental C57BL/6J mouse strain. These results confirmed the presence of stress-responsive loci on Chr1 and Chr12. New stress-related phenotypes were also identified, which aided in comparing and differentiating DBA/2J, C57BL/6J and congenic mice.
Collapse
|
94
|
Rogaeva A, Galaraga K, Albert PR. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J Neurosci Res 2008; 85:2833-8. [PMID: 17394259 DOI: 10.1002/jnr.21277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The CC2D1A gene family consists of two homologous genes, Freud-1/CC2D1A and Freud-2/CC2D1B, that share conserved domains, including several DM14 domains that are specific to this protein family, a C-terminal helix-loop-helix domain, and a C2 calcium-dependent phospholipid binding domain. Although the function of Freud-2 is unknown, Freud-1 has been shown to function as a transcriptional repressor of the serotonin-1A receptor gene that binds to a novel DNA element (FRE, 5'-repressor element). The DNA binding and repressor activities of Freud-1 are inhibited by calcium-calmodulin-dependent protein kinase. Recently, a deletion in the CC2D1A gene has been linked to nonsyndromic mental retardation. This deletion results in the truncation of the helix-loop-helix DNA binding and the C2 domains, crucial for Freud-1 repressor activity, and hence is predicted to generate an inactive or weakly dominant negative protein. The possible mechanisms by which inactivation of Freud-1 could lead to abnormal cortical development and cognitive impairment and the potential roles of Freud-1 gene targets are discussed.
Collapse
Affiliation(s)
- Anastasia Rogaeva
- Ottawa Health Research Institute (Neuroscience) and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
95
|
Guimarães FS, Carobrez AP, Graeff FG. Chapter 4.3 Modulation of anxiety behaviors by 5-HT-interacting drugs. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
96
|
Interactions of child maltreatment and serotonin transporter and monoamine oxidase A polymorphisms: Depressive symptomatology among adolescents from low socioeconomic status backgrounds. Dev Psychopathol 2007; 19:1161-80. [PMID: 17931441 DOI: 10.1017/s0954579407000600] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractChild maltreatment and polymorphisms of the serotonin transporter (5-HTT) and monoamine oxidase A (MAOA) genes were examined in relation to depressive symptomatology. Adolescents (Mage = 16.7 years) from low socioeconomic backgrounds with a history of child maltreatment (n= 207) or no such history (n= 132) were interviewed and provided buccal cells for genetic analysis. Gene × environment interactions were observed. Heightened depressive symptoms were found only among extensively maltreated youth with lowMAOAactivity. Among comparably maltreated youth with highMAOAactivity, self-coping strategies related to lower symptoms. Sexual abuse and the5-HTT short/shortgenotype predicted higher depression, anxiety, and somatic symptoms. This Gene × Environment interaction was further moderated byMAOAactivity level. The results highlight the protective functions of genetic polymorphisms and coping strategies in high risk youth and offer direction for understanding resilience and its promotion from a multiple levels of analysis perspective.
Collapse
|
97
|
Smith GS, Gunning-Dixon FM, Lotrich FE, Taylor WD, Evans JD. Translational research in late-life mood disorders: implications for future intervention and prevention research. Neuropsychopharmacology 2007; 32:1857-75. [PMID: 17327888 DOI: 10.1038/sj.npp.1301333] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical and epidemiological studies have consistently observed the heterogeneous symptomatology and course of geriatric depression. Given the importance of genetic and environmental risk factors, aging processes, neurodegenerative and cerebrovascular disease processes, and medical comorbidity, the integration of basic and clinical neuroscience research approaches is critical for the understanding of the variability in illness course, as well as the development of prevention and intervention strategies that are more effective. These considerations were the impetus for a workshop, sponsored by the Geriatrics Research Branch in the Division of Adult Translational Research and Treatment Development of the National Institute of Mental Health that was held on September 7-8, 2005. The primary goal of the workshop was to bring together investigators in geriatric psychiatry research with researchers in specific topic areas outside of geriatric mental health to identify priority areas to advance translational research in geriatric depression. As described in this report, the workshop focused on a discussion of the development and application of integrative approaches combining genetics and neuroimaging methods to understand such complex issues as treatment response variability, the role of medical comorbidity in depression, and the potential overlap between depression and dementia. Future directions for integrative research were identified. Understanding the nature of geriatric depression requires the application of translational research and interdisciplinary research approaches. Geriatric depression could serve as a model for translational research integrating basic and clinical neuroscience approaches that would have implications for the study of other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gwenn S Smith
- PET Centre, Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
98
|
Izquierdo A, Newman TK, Higley JD, Murray EA. Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys. Proc Natl Acad Sci U S A 2007; 104:14128-33. [PMID: 17715054 PMCID: PMC1950559 DOI: 10.1073/pnas.0706583104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human and nonhuman primates, structural variants of the gene encoding the serotonin transporter [5-hydroxytryptamine transporter (5-HTT)] affect the transcription and functional efficacy of 5-HTT. Prior work has shown that structural variants differentially affect function of the amygdala and ventromedial prefrontal cortex (VMPFC), regions important for the regulation and expression of emotion. However, relatively little is known about the impact of 5-HTT allelic variants on cognition. To address this question, we tested rhesus monkeys carrying orthologous structural variants of 5-HTT on a battery of tasks that assess cognitive flexibility, reward processing, and emotion. Here we show that rhesus monkeys carrying two copies of the short allele (SS) of the rhesus 5-HTT gene-linked polymorphic region (rh5-HTTLPR) show significantly reduced cognitive flexibility as measured by two tasks in the battery: object discrimination reversal learning and instrumental extinction. Monkeys with the SS genotype also displayed alterations in socioemotional behavior. Genotype variation was not related to visual perceptual abilities, valuation of food rewards, or the ability to express a wide range of defensive responses. Although emotional alterations associated with 5-HTT variation have been described as the primary phenotype, the present study reports differences in at least one type of cognitive flexibility, which has not been described previously. Because behaviors modulated by the 5-HTTLPR are a subset of those dependent on the VMPFC, analysis of structural and functional correlates of gene variation in this region may inform the nature of the genetic modulation of cognition.
Collapse
Affiliation(s)
- Alicia Izquierdo
- *Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Timothy K. Newman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852; and
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Poolesville, MD 20837
| | - J. Dee Higley
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Poolesville, MD 20837
| | - Elisabeth A. Murray
- *Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed at:
Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892. E-mail:
| |
Collapse
|
99
|
Compan V. Do Limits of Neuronal Plasticity Represent an Opportunity for Mental Diseases, Such as Addiction to Food and Illegal Drugs? Use and Utilities of Serotonin Receptor Knock-Out Mice. Front Neurosci 2007. [DOI: 10.1201/9781420005752.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
100
|
Zietsch BP, Hansen JL, Hansell NK, Geffen GM, Martin NG, Wright MJ. Common and specific genetic influences on EEG power bands delta, theta, alpha, and beta. Biol Psychol 2007; 75:154-64. [PMID: 17316957 DOI: 10.1016/j.biopsycho.2007.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
It is difficult to study the genetic basis of psychological function/dysfunction due to its etiological complexity. Instead, we studied a biological marker, EEG power, which is associated with various psychological phenotypes and is closer to gene function. Previous studies have consistently demonstrated high heritability of EEG band power, but less is known about how common or specific genes influence each power band. For 519 adolescent twin pairs, spectral powers were calculated for delta, theta, alpha, and beta bands at bilateral occipital and frontal sites. All four bands were entered into a multivariate genetic model, with occipital and frontal sites modelled separately. Variance was decomposed into additive (A) and dominant (D) genetic factors, and common (C) and unique (E) environmental factors. Band heritabilities were higher at occipital (0.75-0.86) than frontal sites (0.46-0.80). Both common and specific genetic factors influenced the bands, with common genetic and specific genetic factors having more influence in the occipital and frontal regions, respectively. Non-additive genetic effects on beta power and a common environment effect on delta, theta, and alpha powers were observed in the frontal region.
Collapse
|