51
|
Zheng X, Li T, Chen Y, Pan H, Zhang Z, Dai Y, Wang J. Genetic polymorphisms of the P2X7 gene associated with susceptibility to and prognosis of pulmonary tuberculosis. INFECTION GENETICS AND EVOLUTION 2017; 53:24-29. [PMID: 28495473 DOI: 10.1016/j.meegid.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/30/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022]
Abstract
In this population-based case control study, we recruited 1601 pulmonary tuberculosis cases and 1526 healthy controls, aiming to investigate the association of genetic polymorphisms of the P2X7 gene with the susceptibility to and prognosis of pulmonary tuberculosis in a Chinese Han population. Five single-nucleotide polymorphisms (SNPs) in the P2X7 gene were genotyped. The odds ratio (OR) or relative risk (RR) together with 95% confidence interval (CI) were used to estimated the effect of genetic polymorphisms on the disease. After correction for multiple comparisons, the SNP rs1718119 remained significant. The allele A of rs1718119 was related to a reduced risk for all active tuberculosis (OR for each additional allele A: 0.81, 95% CI: 0.69-0.94) and sputum smear-positive cases (OR for each additional allele A: 0.78, 95% CI: 0.66-0.93). The effects of these genetic variations were more evident among smokers. Survival analysis showed a weak association between rs7958311 and treatment outcome, where each additional allele A of the SNP rs7958311 contributed to a 59% increase in the probability of a successful treatment outcome (adjusted RR: 1.59, 95% CI: 1.05-2.40, P=0.028); but it wasn't significant after the Bonferroni correction. We demonstrated that genetic variations of the P2X7 gene might be involved in the risk and prognosis of human tuberculosis.
Collapse
Affiliation(s)
- Xianzhi Zheng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tiecheng Li
- Department of Tuberculosis, the Fourth People's Hospital of Lianyungang City, Lianyungang 222000, China
| | - Yongzhong Chen
- Department of Tuberculosis, the Third Hospital of Zhenjiang City, Zhenjiang 212005, China
| | - Hongqiu Pan
- Department of Tuberculosis, the Third Hospital of Zhenjiang City, Zhenjiang 212005, China
| | - Zhihai Zhang
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Yaoyao Dai
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Innovation Center for Social Risk Governance in Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
52
|
Increased expression of P2X7 receptor in peripheral blood mononuclear cells correlates with clinical severity and serum levels of Th17-related cytokines in patients with myasthenia gravis. Clin Neurol Neurosurg 2017; 157:88-94. [PMID: 28458152 DOI: 10.1016/j.clineuro.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES P2X7R is a well-documented activator of innate and adaptive immune responses. We aimed to measure the expression levels of P2X7R in peripheral blood mononuclear cells (PBMCs) from patients with myasthenia gravis (MG) and to investigate whether the expression of P2X7R is associated with pathogenesis of MG. PATIENTS AND METHODS A total of 32 patients with MG (12 generalized MG (GMG) and 20 Ocular MG (OMG) and 22 healthy donors were recruited in this study. The quantitative MG score was used to evaluate the clinical severity. Real-time PCR and western blot were used to measure the levels of P2X7R expressed in PBMCs. Serum Th17-related cytokines (IL-1β, IL-6, IL-17 and IL-21) were tested by ELISA. PBMCs from MG patients were purified and challenged by LPS with or without a selective P2X7R inhibitor (BBG). RESULTS Our results showed that the expression of P2X7R mRNA and protein in PBMCs was increased in MG patients compared with healthy controls, with higher expression in generalized patients (GMG) than in ocular patients (OMG). In addition, P2X7R expression presents a significantly positive correlation with clinical severity and serum levels of IL-1β, IL-6, IL-17 and IL-21 in MG. In cultured MG PBMC, LPS challenge led to up-regulated P2X7R expression accompanied with increased production of IL-1β, IL-6, IL-17 and IL-21. Importantly, P2X7R blockade with BBG significantly attenuates the LPS-induced production of cytokines. CONCLUSION P2X7R expression was up-regulated in MG and LPS-P2X7R axis may be involved in the pathogenesis of MG by promoting Th17 immune response.
Collapse
|
53
|
Abstract
The P2X7 receptor is a trimeric ion channel gated by extracellular adenosine 5'-triphosphate. The receptor is present on an increasing number of different cells types including stem, blood, glial, neural, ocular, bone, dental, exocrine, endothelial, muscle, renal and skin cells. The P2X7 receptor induces various downstream events in a cell-specific manner, including inflammatory molecule release, cell proliferation and death, metabolic events, and phagocytosis. As such this receptor plays important roles in heath and disease. Increasing knowledge about the P2X7 receptor has been gained from studies of, but not limited to, protein chemistry including cloning, site-directed mutagenesis, crystal structures and atomic modeling, as well as from studies of primary tissues and transgenic mice. This chapter focuses on the P2X7 receptor itself. This includes the P2RX7 gene and its products including splice and polymorphic variants. This chapter also reviews modulators of P2X7 receptor activation and inhibition, as well as the transcriptional regulation of the P2RX7 gene via its promoter and enhancer regions, and by microRNA and long-coding RNA. Furthermore, this chapter discusses the post-translational modification of the P2X7 receptor by N-linked glycosylation, adenosine 5'-diphosphate ribosylation and palmitoylation. Finally, this chapter reviews interaction partners of the P2X7 receptor, and its cellular localisation and trafficking within cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
54
|
Pupovac A, Sluyter R. Roles of extracellular nucleotides and P2 receptors in ectodomain shedding. Cell Mol Life Sci 2016; 73:4159-4173. [PMID: 27180276 PMCID: PMC11108277 DOI: 10.1007/s00018-016-2274-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/10/2016] [Indexed: 02/03/2023]
Abstract
Ectodomain shedding of integral membrane receptors results in the release of soluble molecules and modification of the transmembrane portions to mediate or modulate extracellular and intracellular signalling. Ectodomain shedding is stimulated by a variety of mechanisms, including the activation of P2 receptors by extracellular nucleotides. This review describes in detail the roles of extracellular nucleotides and P2 receptors in the shedding of various cell surface molecules, including amyloid precursor protein, CD23, CD62L, and members of the epidermal growth factor, immunoglobulin and tumour necrosis factor families. This review discusses the mechanisms involved in P2 receptor-mediated shedding, demonstrating central roles for the P2 receptors, P2X7 and P2Y2, and the sheddases, ADAM10 and ADAM17, in this process in a number of cell types.
Collapse
Affiliation(s)
- Aleta Pupovac
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
55
|
Expression profile of novel cell surface molecules on different subsets of human peripheral blood antigen-presenting cells. Clin Transl Immunology 2016; 5:e100. [PMID: 27766148 PMCID: PMC5050278 DOI: 10.1038/cti.2016.54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/02/2023] Open
Abstract
Although major steps have been recently made in understanding the role of the distinct subsets of dendritic cells (DC)/antigen-presenting cells (APC), further studies are required to unravel their precise role, including in-depth immunophenotypic characterisation of these cells. Here, we used eight-colour flow cytometry to investigate the reactivity of a panel of 72 monoclonal antibodies (including those clustered in seven new Cluster of Differentiation, CD) on different subsets of APC in peripheral blood (PB) samples from five healthy adults. These experiments were performed in the context of the Tenth International Workshop on Human Leukocyte Differentiation Antigens (HLDA10). Plasmacytoid DC was the only cell population that expressed CD85g and CD195, whereas they lacked all of the other molecules investigated. In contrast, myeloid DC mostly expressed inhibitory C-type lectin receptors (CLRs) and other inhibitory-associated molecules, whereas monocytes expressed both inhibitory and activating CLRs, together with other phagocytosis-associated receptors. Within monocytes, progressively lower levels of expression were generally observed from classical monocytes (cMo) to SLAN- and SLAN+ non-classical monocytes (ncMo) for most of the molecules expressed, except for the CD368 endocytic receptor. This molecule was found to be positive only in cMo, and the CD369 and CD371 modulating/signalling receptors. In addition, the CD101 inhibitory molecule was found to be expressed at higher levels in SLAN+ vs SLAN- ncMo. In summary, the pattern of expression of the different signalling molecules and receptors analysed in this work varies among the distinct subsets of PB APCs, with similar profiles for molecules within each functional group. These findings suggest unique pattern-recognition and signalling capabilities for distinct subpopulations of APCs, and therefore, diverse functional roles.
Collapse
|
56
|
ZrCl4 as a new catalyst for ester amidation: an efficient synthesis of h-P2X7R antagonists. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat Commun 2016; 7:10555. [PMID: 26877061 PMCID: PMC4756306 DOI: 10.1038/ncomms10555] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022] Open
Abstract
Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X7R, which leads to ATP-induced loss of intracellular K+, NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X7R activation caused a sustained increase in intracellular [Ca2+], which is indicative of P2X7R channel opening. Although there are multiple polymorphic variants of P2X7R, we found that neutrophils from multiple donors express P2X7R, but with differential efficacies in ATP-induced increase in cytosolic [Ca2+]. Neutrophils were also the predominant P2X7R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X7R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X7R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact. Neutrophils are a major source of IL-1 β in a number of inflammatory settings. Here the authors show that mouse and human neutrophils express functional P2X7 receptors, which mediate ATP-triggered NLRP3 inflammasome activation and IL-1 ß secretion.
Collapse
|
58
|
Lovelace MD, Gu BJ, Eamegdool SS, Weible MW, Wiley JS, Allen DG, Chan-Ling T. P2X7 receptors mediate innate phagocytosis by human neural precursor cells and neuroblasts. Stem Cells 2015; 33:526-41. [PMID: 25336287 DOI: 10.1002/stem.1864] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
During early human neurogenesis there is overproduction of neuroblasts and neurons accompanied by widespread programmed cell death (PCD). While it is understood that CD68(+) microglia and astrocytes mediate phagocytosis during target-dependent PCD, little is known of the cell identity or the scavenger molecules used to remove apoptotic corpses during the earliest stages of human neurogenesis. Using a combination of multiple-marker immunohistochemical staining, functional blocking antibodies and antagonists, we showed that human neural precursor cells (hNPCs) and neuroblasts express functional P2X7 receptors. Furthermore, using live-cell imaging, flow cytometry, phagocytic assays, and siRNA knockdown, we showed that in a serum-free environment, doublecortin(+) (DCX) neuroblasts and hNPCs can clear apoptotic cells by innate phagocytosis mediated via P2X7. We found that both P2X7(high) DCX(low) hNPCs and P2X7(high) DCX(high) neuroblasts, derived from primary cultures of human fetal telencephalon, phagocytosed targets including latex beads, apoptotic ReNcells, and apoptotic hNPC/neuroblasts. Pretreatment of neuroblasts and hNPCs with 1 mM adenosine triphosphate (ATP), 100 µM OxATP (P2X7 antagonist), or siRNA knockdown of P2X7 inhibited phagocytosis of these targets. Our results show that P2X7 functions as a scavenger receptor under serum-free conditions resembling those in early neurogenesis. This is the first demonstration that hNPCs and neuroblasts may participate in clearance of apoptotic corpses during pre target-dependent neurogenesis and mediate phagocytosis using P2X7 as a scavenger receptor.
Collapse
Affiliation(s)
- Michael D Lovelace
- Discipline of Anatomy and Histology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
59
|
Rhein antagonizes P2X7 receptor in rat peritoneal macrophages. Sci Rep 2015; 5:14012. [PMID: 26354875 PMCID: PMC4564849 DOI: 10.1038/srep14012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptor plays important roles in inflammation and immunity, and thereby it serves as a potential therapeutic target for inflammatory diseases. Rhein, an anthraquinone derivative, exhibits significant anti-inflammatory and immunosuppressive activities in therapy. However, the underlying mechanisms are largely unclear. Here, we aimed to investigate the effects of rhein on P2X7 receptor-mediated responses in vitro. In HEK293 cells expressing rat P2X7 receptor, we first found that rhein concentration-dependently blocked ATP-induced cytosolic calcium concentration ([Ca(2+)]c) elevation and pore formation of the plasma membrane, two hallmarks of the P2X7 receptor activation. These two inhibitory effects of rhein were also observed in rat peritoneal macrophages. Furthermore, rhein counteracted macrophage phagocytosis attenuation and suppressed reactive oxygen species (ROS) production triggered by ATP/BzATP. Meanwhile, rhein reduced ATP/BzATP-induced IL-1β release in lipopolysaccharide-activated macrophages. Prolonged application of ATP caused macrophage apoptosis, while the presence of rhein suppressed this cell cytotoxicity. Such ATP/BzATP-induced cellular reactions were also inhibited by a well-known rat P2X7 receptor antagonist, brilliant blue G, in a similar way to rhein. Together, our results demonstrate that rhein inhibit ATP/BzATP-induced [Ca(2+)]c increase, pore formation, ROS production, phagocytosis attenuation, IL-1β release and cell apoptosis by antagonizing the P2X7 receptor in rat peritoneal macrophages.
Collapse
|
60
|
Nagahama M, Seike S, Shirai H, Takagishi T, Kobayashi K, Takehara M, Sakurai J. Role of P2X7 receptor in Clostridium perfringens beta-toxin-mediated cellular injury. Biochim Biophys Acta Gen Subj 2015; 1850:2159-67. [PMID: 26299247 DOI: 10.1016/j.bbagen.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Clostridium perfringens beta-toxin is a pore-forming toxin (PFT) and an important agent of necrotic enteritis and enterotoxemia. We recently reported that beta-toxin strongly induced cell death in THP-1 cells via the formation of oligomers. We here describe that the P2X(7) receptor, which is an ATP receptor, interacts with beta-toxin. METHODS We tested the role of P2X(7) receptor in beta-toxin-induced toxicity using specific inhibitors, knockdown of receptor, expression of the receptor and interaction by dot-blot assay. The potency of P2X(7) receptor was further determined using an in vivo mouse model. RESULTS Selective P2X(7) receptor antagonists (oxidized ATP (o-ATP), oxidized ADP, and Brilliant Blue G (BBG)) inhibited beta-toxin-induced cytotoxicity in THP-1 cells. o-ATP also blocked the binding of beta-toxin to cells. The P2X(7) receptor and beta-toxin oligomer were localized in the lipid rafts of THP-1 cells. siRNA for the P2X(7) receptor inhibited toxin-induced cytotoxicity and binding of the toxin. In contrast, the siRNA knockdown of P2Y(2) or P2Y(6) had no effect on beta-toxin-induced cytotoxicity. The addition of beta-toxin to P2X(7)-transfected HEK-293 cells resulted in binding of beta-toxin oligomer. Moreover, beta-toxin specifically bound to immobilized P2X(7) receptors in vitro and colocalized with the P2X(7) receptor on the THP-1 cell surface. Furthermore, beta-toxin-induced lethality in mice was blocked by the preadministration of BBG. CONCLUSIONS The results of this study indicate that the P2X(7) receptor plays a role in beta-toxin-mediated cellular injury. GENERAL SIGNIFICANCE P2X(7) receptor is a potential target for the treatment of C. perfringens type C infection.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Soshi Seike
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hidenori Shirai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Teruhisa Takagishi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Jun Sakurai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
61
|
Caseley EA, Muench SP, Baldwin SA, Simmons K, Fishwick CW, Jiang LH. Docking of competitive inhibitors to the P2X7 receptor family reveals key differences responsible for changes in response between rat and human. Bioorg Med Chem Lett 2015; 25:3164-7. [PMID: 26099538 PMCID: PMC4508345 DOI: 10.1016/j.bmcl.2015.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
The P2X7 receptor is a calcium permeable cationic channel activated by extracellular ATP, playing a role in chronic pain, osteoporosis and arthritis. A number of potential lead compounds are inactive against the rat isoform, despite good activity against the human homologue, making animal model studies problematic. Here we have produced P2X7 models and docked three structurally distinct inhibitors using in silico approaches and show they have a similar mode of binding in which Phe95 plays a key role by forming pi-stacking interactions. Importantly this residue is replaced by Leu in the rat P2X7 receptor resulting in a significantly reduced binding affinity. This work provides new insights into binding of P2X7 inhibitors and shows the structural difference in human and rat P2X7 receptors which results in a difference in affinity. Such information is useful both for the rational design of inhibitors based on these scaffolds and also the way in which these compounds are tested in animal models.
Collapse
Affiliation(s)
- Emily A Caseley
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
| | | | | | | | | | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
62
|
Csóka B, Németh ZH, Törő G, Idzko M, Zech A, Koscsó B, Spolarics Z, Antonioli L, Cseri K, Erdélyi K, Pacher P, Haskó G. Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB J 2015; 29:3626-37. [PMID: 26060214 DOI: 10.1096/fj.15-272450] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 μM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 μM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice. Our results with P2X7(-/-) bone marrow chimeric mice, adoptive transfer of peritoneal macrophages, and myeloid-specific P2X7(-/-) mice indicate that P2X7R signaling on macrophages is essential for the protective effect of P2X7Rs. P2X7R signaling protects through enhancing bacterial killing by macrophages, which is independent of the inflammasome. By using the connexin (Cx) channel inhibitor Gap27 (0.1 mg/kg, IC50 ≈ 0.25 μM) and pannexin channel inhibitor probenecid (10 mg/kg, IC50 ≈ 11.7 μM), we showed that ATP release through Cx is important for inhibiting inflammation and bacterial burden. In summary, targeting P2X7Rs provides a new opportunity for harnessing an endogenous protective immune mechanism in the treatment of sepsis.
Collapse
Affiliation(s)
- Balázs Csóka
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zoltán H Németh
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Gábor Törő
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Marco Idzko
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Andreas Zech
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Balázs Koscsó
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zoltán Spolarics
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Antonioli
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Karolina Cseri
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Katalin Erdélyi
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Pál Pacher
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- *Department of Surgery and Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA; Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary; and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
63
|
Lajdova I, Spustova V, Oksa A, Kaderjakova Z, Chorvat D, Morvova M, Sikurova L, Marcek Chorvatova A. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:807673. [PMID: 26064953 PMCID: PMC4434177 DOI: 10.1155/2015/807673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/19/2014] [Indexed: 01/24/2023]
Abstract
Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000-14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca(2+)]i decreased (P < 0.001). The differences in [Ca(2+)]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca(2+)-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca(2+)]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression.
Collapse
Affiliation(s)
- Ingrid Lajdova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Viera Spustova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Adrian Oksa
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zuzana Kaderjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Dusan Chorvat
- Department of Biophotonics, International Laser Centre, 833 03 Bratislava, Slovakia
| | - Marcela Morvova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Libusa Sikurova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | | |
Collapse
|
64
|
Ousingsawat J, Wanitchakool P, Kmit A, Romao AM, Jantarajit W, Schreiber R, Kunzelmann K. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nat Commun 2015; 6:6245. [PMID: 25651887 DOI: 10.1038/ncomms7245] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022] Open
Abstract
Purinergic P2X7 receptors (P2X7R) are fundamental to innate immune response. In macrophages, transient stimulation of P2X7R activates several transport mechanisms and induces the scrambling of phospholipids with subsequent membrane blebbing and apoptosis. These processes support phagocytosis and subsequent killing of phagocytosed bacteria. Here we demonstrate that the stimulation of P2X7 receptors activates anoctamin 6 (ANO6, TMEM16F), a protein that functions as Ca(2+) dependent phospholipid scramblase and Ca(2+)-activated Cl(-) channel. Inhibition or knockdown of ANO6 attenuates ATP-induced cell shrinkage, cell migration and phospholipid scrambling. In mouse macrophages, Ano6 produces large ion currents by stimulation of P2X7 receptors and contributes to ATP-induced membrane blebbing and apoptosis, which is largely reduced in macrophages from Ano6-/- mice. ANO6 supports bacterial phagocytosis and killing by mouse and human THP-1 macrophages. Our data demonstrate that anoctamin 6 is an essential component of the immune defense by macrophages.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Podchanart Wanitchakool
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Arthur Kmit
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ana M Romao
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Walailak Jantarajit
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
65
|
Pippel A, Beßler B, Klapperstück M, Markwardt F. Inhibition of antigen receptor-dependent Ca(2+) signals and NF-AT activation by P2X7 receptors in human B lymphocytes. Cell Calcium 2015; 57:275-89. [PMID: 25678443 DOI: 10.1016/j.ceca.2015.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/22/2022]
Abstract
One of the first intracellular signals after antigen binding by the antigen receptor of B lymphocytes is the increased intracellular Ca(2+) concentration ([Ca(2+)]i), which is followed by several intracellular signaling events like the nuclear translocation of the transcription factor NF-AT controlling the fate of B lymphocytes after their activation. Extracellular ATP, which is released from cells under several pathological conditions, is considered a danger-associated signal serving as an immunomodulator. We investigated the interaction of antigen receptor (BCR) and P2X7 receptor (P2X7R) activation on [Ca(2+)]i signaling and on nuclear translocation of the transcription factor NF-AT in human B lymphocytes. Although the P2X7R is an ATP-gated Ca(2+)-permeable ion channel, P2X7R activation inhibits the BCR-mediated [Ca(2+)]i responses. This effect is mimicked by cell membrane depolarization induced by an increase in the extracellular K(+) concentration or by application of the Na(+) ionophore gramicidin, but is abolished by stabilization of the membrane potential using the K(+) ionophore valinomycin, by extracellular Mg(2+), which is known to inhibit P2X7R-dependent effects, or by replacing Na(+) by the less P2X7R-permeable Tris(+) ion. Furthermore, P2X7R activation by ATP inhibits the BCR-dependent translocation of the transcription factor NF-ATc1 to the nucleus. We therefore conclude that extracellular ATP via the P2X7R mediates inhibitory effects on B cell activation. This may be of relevance for understanding of the activation of the BCR under pathological conditions and for the development of therapeutic strategies targeting human B lymphocytes or P2X7 receptors.
Collapse
Affiliation(s)
- Anja Pippel
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany
| | - Björn Beßler
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle (Saale), Germany.
| |
Collapse
|
66
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2015; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
67
|
Purinergic control of inflammation and thrombosis: Role of P2X1 receptors. Comput Struct Biotechnol J 2014; 13:106-10. [PMID: 25709760 PMCID: PMC4334884 DOI: 10.1016/j.csbj.2014.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation.
Collapse
|
68
|
Sáez PJ, Shoji KF, Aguirre A, Sáez JC. Regulation of hemichannels and gap junction channels by cytokines in antigen-presenting cells. Mediators Inflamm 2014; 2014:742734. [PMID: 25301274 PMCID: PMC4180397 DOI: 10.1155/2014/742734] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022] Open
Abstract
Autocrine and paracrine signals coordinate responses of several cell types of the immune system that provide efficient protection against different challenges. Antigen-presenting cells (APCs) coordinate activation of this system via homocellular and heterocellular interactions. Cytokines constitute chemical intercellular signals among immune cells and might promote pro- or anti-inflammatory effects. During the last two decades, two membrane pathways for intercellular communication have been demonstrated in cells of the immune system. They are called hemichannels (HCs) and gap junction channels (GJCs) and provide new insights into the mechanisms of the orchestrated response of immune cells. GJCs and HCs are permeable to ions and small molecules, including signaling molecules. The direct intercellular transfer between contacting cells can be mediated by GJCs, whereas the release to or uptake from the extracellular milieu can be mediated by HCs. GJCs and HCs can be constituted by two protein families: connexins (Cxs) or pannexins (Panxs), which are present in almost all APCs, being Cx43 and Panx1 the most ubiquitous members of each protein family. In this review, we focus on the effects of different cytokines on the intercellular communication mediated by HCs and GJCs in APCs and their impact on purinergic signaling.
Collapse
Affiliation(s)
- Pablo J. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Kenji F. Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Adam Aguirre
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
| | - Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677 Santiago, Chile
- Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Pasaje Harrington 287, Playa Ancha, 2360103 Valparaíso, Chile
| |
Collapse
|
69
|
Activation of the P2X7 receptor induces the rapid shedding of CD23 from human and murine B cells. Immunol Cell Biol 2014; 93:77-85. [PMID: 25155463 DOI: 10.1038/icb.2014.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/29/2014] [Accepted: 07/09/2014] [Indexed: 12/22/2022]
Abstract
Activation of the P2X7 receptor by the extracellular damage-associated molecular pattern, adenosine 5'-triphosphate (ATP), induces the shedding of cell surface molecules including the low-affinity IgE receptor, CD23, from human leukocytes. A disintegrin and metalloprotease (ADAM) 10 mediates P2X7-induced shedding of CD23 from multiple myeloma RPMI 8226 B cells; however, whether this process occurs in primary B cells is unknown. The aim of the current study was to determine whether P2X7 activation induces the rapid shedding of CD23 from primary human and murine B cells. Flow cytometric and ELISA measurements showed that ATP treatment of human and murine B cells induced the rapid shedding of CD23. Treatment of cells with the specific P2X7 antagonist, AZ10606120, near-completely impaired ATP-induced CD23 shedding from both human and murine B cells. ATP-induced CD23 shedding was also impaired in B cells from P2X7 knockout mice. The absence of full-length, functional P2X7 in the P2X7 knockout mice was confirmed by immunoblotting of splenic cells, and by flow cytometric measurements of ATP-induced YO-PRO-1(2+) uptake into splenic B and T cells. The broad-spectrum metalloprotease antagonist, BB-94, and the ADAM10 antagonist, GI254023X, impaired P2X7-induced CD23 shedding from both human and murine B cells. These data indicate that P2X7 activation induces the rapid shedding of CD23 from primary human and murine B cells and that this process may be mediated by ADAM10.
Collapse
|
70
|
Sullivan JA, Jankowska-Gan E, Shi L, Roenneburg D, Hegde S, Greenspan DS, Wilkes DS, Denlinger LC, Burlingham WJ. Differential requirement for P2X7R function in IL-17 dependent vs. IL-17 independent cellular immune responses. Am J Transplant 2014; 14:1512-22. [PMID: 24866539 PMCID: PMC4295495 DOI: 10.1111/ajt.12741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023]
Abstract
IL17-dependent autoimmunity to collagen type V (Col V) has been associated with lung transplant obliterative bronchiolitis. Unlike the T helper 1 (Th1)-dependent immune responses to Tetanus Toxoid (TT), the Th17 response to Col V in lung transplant patients and its Th1/17 variant observed in coronary artery disease patients requires IL-1β, tumor necrosis factor α and CD14(+) cells. Given the involvement of the P2X7 receptor (P2X7R) in monocyte IL-1β responses, we investigated its role in Th17-, Th1/17- and Th1-mediated proinflammatory responses. Transfer of antigen-pulsed peripheral blood mononucleated cells (PBMCs) from Col V-reactive patients into SCID mouse footpads along with P2X7R antagonists revealed a selective inhibition of Col V-, but not TT-specific swelling responses. P2X7R inhibitors blocked IL-1β induction from monocytes, including both Col V-α1 peptide-induced (T-dependent), as well as native Col V-induced (T-independent) responses. Significantly higher P2X7R expression was found on CXCR3(neg) CCR4(+)/6(+) CD4(+) [Th17] versus CXCR3(+)CCR4/6(neg) CD4(+) [Th1] subsets in PBMCs, suggesting that the paradigm of selective dependence on P2X7R might extend beyond Col V autoimmunity. Indeed, P2X7R inhibitors suppressed not only anti-Col V, but also Th1/17-mediated alloimmunity, in a heart transplant patient without affecting anti-viral Epstein-Barr virus responses. These results suggest that agents targeting the P2X7R might effectively treat Th17-related transplant pathologies, while maintaining Th1-immunity to infection.
Collapse
Affiliation(s)
- JA Sullivan
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - E Jankowska-Gan
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - L Shi
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - D Roenneburg
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | | | - DS Greenspan
- Department of Cell & Regenerative Biology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - DS Wilkes
- Department of Medicine, University of Indiana, 340 W 10th St Suite 6200 Indianapolis, IN 46202
| | - LC Denlinger
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792
| | - WJ Burlingham
- Department of Surgery, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792,To whom correspondence should be addressed: 600 Highland Avenue, Room G4/702, Madison, WI 53792. Tel: (608) 263-0119 Fax: (608) 262-6280
| |
Collapse
|
71
|
Molecular characterization and expression analysis of ATP-gated P2X7 receptor involved in Japanese flounder (Paralichthys olivaceus) innate immune response. PLoS One 2014; 9:e96625. [PMID: 24796752 PMCID: PMC4010493 DOI: 10.1371/journal.pone.0096625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/09/2014] [Indexed: 01/05/2023] Open
Abstract
ATP-gated P2X7 receptor (P2RX7) channel is a key component for purinergic signaling and plays important roles in the innate immune response in mammals. However, the expression, molecular properties and immune significances of P2RX7 in lower vertebrates are still very limited. Here we identified and characterized a novel bony fish P2RX7 homologue cDNA, termed poP2RX7, in Japanese flounder (Paralichthys olivaceus). PoP2RX7 protein shares about 60–88% sequence similarity and 45–78% sequence identity with known vertebrate P2RX7 proteins. Phylogenetic analysis placed poP2RX7 and other P2RX7 proteins within their own cluster apart from other P2RX members. While the functional poP2RX7 channel shares structural features in common with known P2RX7 homologs, electrophysiological studies revealed that BzATP, the more potent agonist for known mammalian and fish P2RX7s, shows similar potency to ATP in poP2RX7 activation. poP2RX7 mRNA constitutively expressed in all examined tissues from unstimulated healthy Japanese flounder with dominant expression in hepatopancreas and the lowest expression in head kidney, trunk kidney, spleen and gill. poP2RX7 mRNA expression, however, was significantly induced in Japanese flounder head kidney primary cells by Poly(I:C) and bacterial endotoxin LPS stimulations. In vivo experiments further revealed that poP2RX7 gene expression was substantially up-regulated by immune challenge with infectious bacteria Edwardsiella tarda and Vibrio anguillarum. Moreover, activation of poP2RX7 results in an increased gene expression of multifunctional cytokines IL-1β and IL-6 in the head kidney primary cells. Collectively, we identified and characterized a novel fish P2RX7 homolog which is engaged in Japanese flounder innate immune response probably through modulation of pro-inflammatory cytokines expression.
Collapse
|
72
|
Vergani A, Tezza S, Fotino C, Visner G, Pileggi A, Chandraker A, Fiorina P. The purinergic system in allotransplantation. Am J Transplant 2014; 14:507-14. [PMID: 24433446 DOI: 10.1111/ajt.12567] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 01/25/2023]
Abstract
The purine nucleotide adenosine triphosphate (ATP) is a universal source of energy for any intracellular reaction. Under specific physiological or pathological conditions, ATP can be released into extracellular spaces, where it binds and activates the purinergic receptors system (i.e. P2X, P2Y and P1 receptors). Extracellular ATP (eATP) binds to P2X or P2Y receptors in immune cells, where it mediates proliferation, chemotaxis, cytokine release, antigen presentation and cytotoxicity. eATP is then hydrolyzed by ectonucleotidases into adenosine diphosphate (ADP), which activates P2Y receptors. Ectonucleotidases also hydrolyze ADP to adenosine monophosphate and adenosine, which binds P1 receptors. In contrast to P2X and P2Y receptors, P1 receptors exert mainly an inhibitory effect on the immune response. In transplantation, a prominent role has been demonstrated for the eATP/P2X7R axis; the targeting of this pathway in fact is associated with long-term graft function and reduced graft versus host disease severity in murine models. Novel P2X receptor inhibitors are available for clinical use and are under assessment as immunomodulatory agents. In this review, we will focus on the relevance of the purinergic system and on the potential benefits of targeting this system in allograft rejection and tolerance.
Collapse
Affiliation(s)
- A Vergani
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
73
|
The P2X7 receptor: a key player in immune-mediated bone loss? ScientificWorldJournal 2014; 2014:954530. [PMID: 24574936 PMCID: PMC3915485 DOI: 10.1155/2014/954530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
Inflammatory diseases are often multiorganic diseases with manifestations not related directly to the primary affected organ. They are often complicated by a generalized bone loss that subsequently leads to osteoporosis and bone fractures. The exact mechanism for the accompanying bone loss is not understood in full detail, but factors such as glucocorticoid treatment, immobilization, malnutrition, and insufficient intake of vitamin D play a role. However, it has become evident that the inflammatory process itself is involved and the resulting bone loss is termed immune-mediated bone loss. It stems from an increase in bone resorption and the pro-inflammatory cytokines tumor necrosis factor alpha and interleukin 1 beta and has been shown to not only mediate the inflammatory response but also to strongly stimulate bone degradation. The purinergic P2X7 receptor is central in the processing of these two cytokines and in the initiation of the inflammatory response, and it is a key molecule in the regulation of both bone formation and bone resorption. The aim of this review is therefore to provide evidence-based novel hypotheses of the role of ATP-mediated purinergic signalling via the P2X7 receptor in immune-mediated bone loss and -osteoporosis.
Collapse
|
74
|
Robinson LE, Murrell-Lagnado RD. The trafficking and targeting of P2X receptors. Front Cell Neurosci 2013; 7:233. [PMID: 24319412 PMCID: PMC3837535 DOI: 10.3389/fncel.2013.00233] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023] Open
Abstract
The functional expression of P2X receptors at the plasma membrane is dependent on their trafficking along secretory and endocytic pathways. There are seven P2X receptor subunits, and these differ in their subcellular distributions because they have very different trafficking properties. Some are retained within the endoplasmic reticulum (ER), while others are predominantly at the cell surface or within endosomes and lysosomes. Changes in recruitment of receptors to and from the plasma membrane provides a way of rapidly up- or down-regulating the cellular response to adenosine triphosphate (ATP). An additional layer of regulation is the targeting of these receptors within the membranes of each compartment, which affects their stability, function and the nature of the effector proteins with which they form signaling complexes. The trafficking and targeting of P2X receptors is regulated by their interactions with other proteins and with lipids and we can expect this to vary in a cell-type specific manner and in response to changes in the environment giving rise to differences in receptor activity and function.
Collapse
Affiliation(s)
- Lucy E Robinson
- Department of Pharmacology, University of Cambridge Cambridge, UK
| | | |
Collapse
|
75
|
Castrichini M, Lazzerini PE, Gamberucci A, Capecchi PL, Franceschini R, Natale M, Hammoud M, Moramarco A, Zimbone S, Gianchecchi E, Montilli C, Ricci G, Selvi E, Cantarini L, Galeazzi M, Laghi-Pasini F. The purinergic P2×7 receptor is expressed on monocytes in Behçet's disease and is modulated by TNF-α. Eur J Immunol 2013; 44:227-38. [PMID: 24105615 DOI: 10.1002/eji.201343353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 02/01/2023]
Abstract
The P2×7 receptor (P2×7r) is expressed in innate immune cells (e.g. monocyte/macrophages), playing a key role in IL-1β release. Since innate immune activation and IL-1β release seem to be implicated in Behçet's disease (BD), a systemic immune-inflammatory disorder of unknown origin, we hypothesized that P2×7r is involved in the pathogenesis of the disease. Monocytes were isolated from 18 BD patients and 17 healthy matched controls. In BD monocytes, an increased P2×7r expression and Ca(2+) permeability induced by the selective P2×7r agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) was observed. Moreover, IL-1β release from LPS-primed monocytes stimulated with BzATP was markedly higher in BD patients than in controls. TNF-α-incubated monocytes from healthy subjects almost reproduced the findings observed in BD patients, as demonstrated by the increase in P2×7r expression and BzATP-induced Ca(2+) intake. Our results provide evidence that in BD monocytes both the expression and function of the P2×7r are increased compared with healthy controls, as the possible result, at least in part, of a positive modulating effect of TNF-α on the receptor. These data indicate P2×7r as a new potential therapeutic target for the control of BD, further supporting the rationale for the use of anti-TNF-α drugs in the treatment of the disease.
Collapse
Affiliation(s)
- Monica Castrichini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Muzzachi S, Blasi A, Ciani E, Favia M, Cardone RA, Marzulli D, Reshkin SJ, Merizzi G, Casavola V, Soleti A, Guerra L. MED1101: A new dialdehydic compound regulating P2×7 receptor cell surface expression in U937 cells. Biol Cell 2013; 105:399-413. [DOI: 10.1111/boc.201200088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Stefania Muzzachi
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Elena Ciani
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Maria Favia
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Rosa A. Cardone
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | - Domenico Marzulli
- Institute of Biomembranes and Bioenergetics; CNR; Bari; 70126; Italy
| | - Stephan J. Reshkin
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Valeria Casavola
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| | | | - Lorenzo Guerra
- Department of Biosciences; Biotechnologies and Biopharmaceutics; University of Bari; Bari; 70126; Italy
| |
Collapse
|
77
|
Conserved ectodomain cysteines are essential for rat P2X7 receptor trafficking. Purinergic Signal 2013; 8:317-25. [PMID: 22286664 DOI: 10.1007/s11302-012-9291-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/10/2012] [Indexed: 01/01/2023] Open
Abstract
The P2X7 receptor (P2X7R) is a member of the ATP-gated ion channel family that exhibits distinct electrophysiological and pharmacological properties. This includes low sensitivity to ATP, lack of desensitization, a sustained current growth during prolonged receptor stimulation accompanied with development of permeability to large organic cations, and the coupling of receptor activation to cell blebbing and death. The uniquely long C-terminus of P2X7R accounts for many of these receptor-specific functions. The aim of this study was to understand the role of conserved ectodomain cysteine residues in P2X7R function. Single- and double-point threonine mutants of C119-C168, C129-C152, C135-C162, C216-C226, and C260-C269 cysteine pairs were expressed in HEK293 cells and studied using whole-cell current recording. All mutants other than C119T-P2X7R responded to initial and subsequent application of 300-μM BzATP and ATP with small amplitude monophasic currents or were practically nonfunctional. The mutagenesis-induced loss of function was due to decreased cell-surface receptor expression, as revealed by assessing levels of biotinylated mutants. Coexpression of all double mutants with the wild-type receptor had a transient or, in the case of C119T/C168T double mutant, sustained inhibitory effect on receptor trafficking. The C119T-P2X7R mutant was expressed on the plasma membrane and was fully functional with a slight decrease in the sensitivity for BzATP, indicating that interaction of liberated Cys168 with another residue rescues the trafficking of receptor. Thus, in contrast to other P2XRs, all disulfide bonds of P2X7R are individually essential for the proper receptor trafficking.
Collapse
|
78
|
He YQ, Chen J, Lu XJ, Shi YH. Characterization of P2X7R and its function in the macrophages of ayu, Plecoglossus altivelis. PLoS One 2013; 8:e57505. [PMID: 23437395 PMCID: PMC3578793 DOI: 10.1371/journal.pone.0057505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
P2X purinoceptor 7 (P2X7R), an ATP-gated ion channel, plays an important role during the innate immune response in mammals. However, relatively little is known about the role of P2X7R in the fish immune system. Here, we cloned a cDNA sequence encoding ayu (Plecoglossus altivelis) P2X7R (aP2X7R). The predicted protein was composed of 574 amino acid residues with a P2X family signature, two transmembrane domains, and a long C-terminal. aP2X7R transcripts were mainly distributed in ayu immune tissues and significantly increased in all tested tissues and in macrophages after Listonella anguillarum infection. The aP2X7R protein was upregulated significantly in macrophages upon bacterial challenge. An antibody against the ectodomain of aP2X7R (aEPAb) and an antagonist (oATP) were used to block aP2X7R. aP2X7R siRNA was also used to knockdown the receptor expression in ayu macrophages. Cell death induced by ATP was significantly inhibited in ayu macrophages after aEPAb, oATP, or siRNA treatment. Moreover, aP2X7R ablation also resulted in suppression of phagocytic activity and ATP-induced bacterial killing in ayu macrophages. Our results indicated that aP2X7R was upregulated after infection and mediated cell death, phagocytosis, and bacterial killing of ayu macrophages.
Collapse
Affiliation(s)
- Yu-Qing He
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiong Chen
- School of Marine Sciences, Ningbo University, Ningbo, China
- * E-mail:
| | - Xin-Jiang Lu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yu-Hong Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
79
|
Foster JG, Carter E, Kilty I, MacKenzie AB, Ward SG. Mitochondrial superoxide generation enhances P2X7R-mediated loss of cell surface CD62L on naive human CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 190:1551-9. [PMID: 23319734 DOI: 10.4049/jimmunol.1201510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Migration of naive CD4(+) T lymphocytes into lymphoid tissue is essential for their activation and subsequent roles in adaptive immunity. The adhesion molecule L-selectin (CD62L), critical for this process, is highly expressed on naive CD4(+) T lymphocytes and is downregulated upon T lymphocyte activation. We demonstrate protein expression of P2X7R on naive CD4(+) T lymphocytes and show functional channel activity in whole-cell patch clamp recordings. CD62L downregulation occurs rapidly in response to extracellular ATP, a process that is blocked by selective antagonists of P2X7R. This loss of surface CD62L expression was not associated with externalization of phosphatidylserine. While investigating the mechanisms for this process, we revealed that pharmacological modulation of mitochondrial complex I or III, but not inhibition of NADPH oxidase, enhanced P2X7R-dependent CD62L downregulation by increasing ATP potency. Enhanced superoxide generation in the mitochondria of rotenone- and antimycin A-treated cells was observed and may contribute to the enhanced sensitivity of P2X7R to ATP. P2X7R-dependent exposure of phosphatidylserine was also revealed by preincubation with mitochondrial uncouplers prior to ATP treatment. This may present a novel mechanism whereby P2X7R-dependent phosphatidylserine exposure occurs only when cells have enhanced mitochondrial reactive oxygen species generation. The clearance of apoptotic cells may therefore be enhanced by this mechanism which requires functional P2X7R expression.
Collapse
Affiliation(s)
- John G Foster
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
80
|
Abstract
Over the past decade, extracellular nucleotides (such as ATP and UTP) have emerged as key immunomodulators. This family of molecules, already known for its key metabolic functions, has been the focus of intense investigation that has unambiguously shown its crucial role as mediators of cell-to-cell communication. More recently, in addition to its involvement in inflammation and immunity, purinergic signaling has also been shown to modulate BM-derived stem cells. Extracellular nucleotides promote proliferation, CXCL12-driven migration, and BM engraftment of hematopoietic progenitor and stem cells. In addition, purinergic signaling acts indirectly on hematopoietic progenitor and stem cells by regulating differentiation and release of proinflammatory cytokines in BM-derived human mesenchymal stromal cells, which are part of the hematopoietic stem cell (HSC) niche. HSC research has recently blended into the field of immunology, as new findings highlighted the role played by immunologic signals (such as IFN-α, IFN-γ, or TNF-α) in the regulation of the HSC compartment. In this review, we summarize recent reports unveiling a previously unsuspected ability of HSCs to integrate inflammatory signals released by immune and stromal cells, with particular emphasis on the dual role of extracellular nucleotides as mediators of both immunologic responses and BM stem cell functions.
Collapse
|
81
|
Manthei DM, Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Gern JE, Lemanske RF, Denlinger LC. Protection from asthma in a high-risk birth cohort by attenuated P2X(7) function. J Allergy Clin Immunol 2012; 130:496-502. [PMID: 22743305 DOI: 10.1016/j.jaci.2012.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/10/2012] [Accepted: 05/29/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Viral illnesses are important factors in both asthma inception and exacerbations, and allergic sensitization in early life further enhances asthma risk through unclear mechanisms. Cellular damage caused by infection or allergen inhalation increases ATP levels in the airways with subsequent purinergic receptor activation. The purinergic receptor P2X(7) can enhance airway leukocyte recruitment to the airways, and P2X(7) knockout mice display a reduced asthma-like phenotype. OBJECTIVE Based on the P2X(7) knockout mouse, we hypothesized that children with low P2X(7) function would have decreased rates of asthma. METHODS We used a functional assay to determine P2X(7) pore-producing capacity in whole-blood samples in a birth cohort at high risk for asthma development. The P2X(7) assay was validated with known loss-of-function alleles in human subjects. P2X(7) pore status categorization was used to assess asthma and allergy status in the cohort. RESULTS Attenuated P2X(7) function was associated with lower asthma rates at ages 6 and 8 years, and the greatest effects were observed in boys. Children with asthma at age 11 years who had low P2X(7) capacity had less severe disease in the previous year. Attenuated P2X(7) function was also associated with sensitization to fewer aeroallergens. CONCLUSION P2X(7) functional capacity is associated with asthma risk or disease severity, and these relationships appear to be age related.
Collapse
Affiliation(s)
- David M Manthei
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Wiley JS, Sluyter R, Gu BJ, Stokes L, Fuller SJ. The human P2X7 receptor and its role in innate immunity. ACTA ACUST UNITED AC 2012; 78:321-32. [PMID: 21988719 DOI: 10.1111/j.1399-0039.2011.01780.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human P2X7 receptor is a two-transmembrane ionotropic receptor which has a ubiquitous distribution and is most highly expressed on immune cells. In macrophages and similar myeloid cells primed by lipopolysaccharide (LPS), activation of P2X7 by extracellular ATP opens a cation channel/pore allowing massive K+ efflux associated with processing and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. A variety of other downstream effects follows P2X7 activation over several minutes including shedding of certain surface molecules, membrane blebbing, microvesicle/exosome release and apoptosis of the cell. High concentrations of ATP (>100 µM) are required to activate P2X7 but it remains unclear where these levels exist, other than in inflammatory foci or confined spaces such as in bone. A variety of potent selective antagonists of P2X7 activation have recently become available, allowing clinical trials to be undertaken in inflammatory and immune-mediated disorders. Proteomic studies have shown that P2X7 exists as a large multiprotein complex which includes non-muscle myosin heavy chain and other elements of the cytoskeleton. In the absence of its ATP ligand and serum, P2X7 has an alternate function in the recognition and phagocytosis of non-opsonized foreign particles, including bacteria and apoptotic cells. The P2RX7 gene has many polymorphic variants and isoforms which increase or decrease function of the receptor. Genetic association studies have linked loss-of-function polymorphisms with reactivation of latent tuberculosis as well as symptomatic infection with certain other obligate intracellular pathogens. The many roles involving P2X7 suggest that this receptor is essential to fundamental aspects of the innate immune response.
Collapse
Affiliation(s)
- J S Wiley
- Ion Channels and Disease Section, Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
83
|
Activation of the damage-associated molecular pattern receptor P2X7 induces interleukin-1β release from canine monocytes. Vet Immunol Immunopathol 2012; 149:86-91. [PMID: 22652409 DOI: 10.1016/j.vetimm.2012.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023]
Abstract
P2X7, a damage-associated molecular pattern receptor and adenosine 5'-triphosphate (ATP)-gated cation channel, plays an important role in the activation of the NALP3 inflammasome and subsequent release of interleukin (IL)-1β from human monocytes; however its role in monocytes from other species including the dog remains poorly defined. This study investigated the role of P2X7 in canine monocytes, including its role in IL-1β release. A fixed-time flow cytometric assay demonstrated that activation of P2X7 by extracellular ATP induces the uptake of the organic cation, YO-PRO-1(2+), into peripheral blood monocytes from various dog breeds, a process impaired by the specific P2X7 antagonist, A438079. Moreover, in five different breeds, relative P2X7 function in monocytes was about half that of peripheral blood T cells but similar to that of peripheral blood B cells. Reverse transcription-PCR demonstrated the presence of P2X7, NALP3, caspase-1 and IL-1β in LPS-primed canine monocytes. Immunoblotting confirmed the presence of P2X7 in LPS-primed canine monocytes. Finally, extracellular ATP induced YO-PRO-1(2+) uptake into and IL-1β release from these cells, with both processes impaired by A438079. These results demonstrate that P2X7 activation induces the uptake of organic cations into and the release of IL-1β from canine monocytes. These findings indicate that P2X7 may play an important role in IL-1β-dependent processes in dogs.
Collapse
|
84
|
Bertoncheli CDM, Zimmermann CEP, Jaques JADS, Leal CAM, Ruchel JB, Rocha BC, Pinheiro KDV, Souza VDCG, Stainki DR, Luz SCA, Schetinger MRC, Leal DBR. Increased NTPDase activity in lymphocytes during experimental sepsis. ScientificWorldJournal 2012; 2012:941906. [PMID: 22645477 PMCID: PMC3354756 DOI: 10.1100/2012/941906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022] Open
Abstract
We investigated in rats induced to sepsis the activity of ectonucleoside triphosphate diphosphohydrolase (NTPDase; CD39; E.C. 3.6.1.5), an enzyme involved in the modulation of immune responses. After 12 hours of surgery, lymphocytes were isolated from blood and NTPDase activity was determined. It was also performed the histology of kidney, liver, and lung. The results demonstrated an increase in the hydrolysis of adenosine-5′-triphosphate (ATP) (P < 0.01), but no changes regarding adenosine-5′-monophosphate (ADP) hydrolysis (P > 0.05). Histological analysis showed several morphological changes in the septic group, such as vascular congestion, necrosis, and infiltration of mononuclear cells. It is known that the intracellular milieu contains much more ATP nucleotides than the extracellular. In this context, the increased ATPasic activity was probably induced as a dynamic response to clean up the elevated ATP levels resulting from cellular death.
Collapse
Affiliation(s)
- Claudia de Mello Bertoncheli
- Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
86
|
Kaderjakova Z, Lajdova I, Horvathova M, Morvova M, Sikurova L. Effects of chronic kidney disease on blood cells membrane properties. Bioelectrochemistry 2012; 87:226-9. [PMID: 22425286 DOI: 10.1016/j.bioelechem.2012.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/12/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.
Collapse
Affiliation(s)
- Z Kaderjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
87
|
Gu BJ, Saunders BM, Petrou S, Wiley JS. P2X(7) is a scavenger receptor for apoptotic cells in the absence of its ligand, extracellular ATP. THE JOURNAL OF IMMUNOLOGY 2011; 187:2365-75. [PMID: 21821797 DOI: 10.4049/jimmunol.1101178] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis of apoptotic cells is essential during development and tissue remodeling. Our previous study has shown that the P2X(7) receptor regulates phagocytosis of nonopsonized particles and bacteria. In this study, we demonstrate that P2X(7) also mediates phagocytosis of apoptotic lymphocytes and neuronal cells by human monocyte-derived macrophages under serum-free conditions. ATP inhibited this process to a similar extent as observed with cytochalasin D. P2X(7)-transfected HEK-293 cells acquired the ability to phagocytose apoptotic lymphocytes. Injection of apoptotic thymocytes into the peritoneal cavity of wild-type mice resulted in their phagocytosis by macrophages, but injection of ATP prior to thymocytes markedly decreased this uptake. In contrast, ATP failed to inhibit phagocytosis of apoptotic thymocytes in vivo by P2X(7)-deficient peritoneal macrophages. The surface expression of P2X(7) on phagocytes increased significantly during phagocytosis of either beads or apoptotic cells. A peptide screen library containing 24 biotin-conjugated peptides mimicking the extracellular domain of P2X(7) was used to evaluate the binding profile to beads, bacteria, and apoptotic cells. One peptide showed binding to all particles and cell membrane lipids. Three other cysteine-containing peptides uniquely bound the surface of apoptotic cells but not viable cells, whereas substitution of alanine for cysteine abolished peptide binding. Several thiol-reactive compounds including N-acetyl-L-cysteine abolished phagocytosis of apoptotic SH-SY5Y cells by macrophages. These data suggest that the P2X(7) receptor in its unactivated state acts like a scavenger receptor, and its extracellular disulphide bonds play an important role in direct recognition and engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Ben J Gu
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, New South Wales 2750, Australia
| | | | | | | |
Collapse
|
88
|
Synthesis and in vitro activity of N-benzyl-1-(2,3-dichlorophenyl)-1H-tetrazol-5-amine P2X7 antagonists. Bioorg Med Chem Lett 2011; 21:3297-300. [DOI: 10.1016/j.bmcl.2011.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 11/21/2022]
|
89
|
Gadeock S, Tran JNSN, Georgiou JG, Jalilian I, Taylor RM, Wiley JS, Sluyter R. TGF-β1 prevents up-regulation of the P2X7 receptor by IFN-γ and LPS in leukemic THP-1 monocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2058-66. [PMID: 20670615 DOI: 10.1016/j.bbamem.2010.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium(+) uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium(+) uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium(+) uptake in a concentration-dependent fashion with a maximum effect at 5ng/ml and with an IC(50) of ~0.4ng/ml. Moreover, ATP-induced YO-PRO-1(2+) uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.
Collapse
Affiliation(s)
- Safina Gadeock
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
90
|
Teixeira JM, Oliveira MCG, Parada CA, Tambeli CH. Peripheral mechanisms underlying the essential role of P2X7 receptors in the development of inflammatory hyperalgesia. Eur J Pharmacol 2010; 644:55-60. [PMID: 20621090 DOI: 10.1016/j.ejphar.2010.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 06/10/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Activation of P2X7 receptors by endogenous ATP contributes to the development of inflammatory hyperalgesia. Given the clinical importance of mechanical hyperalgesia in inflammatory states, we hypothesized that the activation of the P2X7 receptor by endogenous ATP contributes to carrageenan-induced mechanical hyperalgesia, and that this contribution is mediated by an indirect sensitization of the primary afferent nociceptors. Co-administration of the selective P2X7 receptor antagonist, A-438079, or the P2X7 receptor antagonist, oATP, with carrageenan blocked the mechanical hyperalgesia induced by carrageenan and significantly reduced the increased concentration of TNF-alpha, IL-6 and CINC-1, but not of IL-1beta induced by carrageenan in the subcutaneous tissue of the rat's hind paw. We concluded that the activation of P2X7 receptors by endogenous ATP is essential to the development of the mechanical hyperalgesia induced by carrageenan in the subcutaneous tissue. It is suggested that this essential role of P2X7 receptors in the development of carrageenan-induced mechanical hyperalgesia is mediated by an indirect sensitization of the primary afferent nociceptors dependent on the previous release of TNF-alpha, IL-6 and CINC-1, but not of IL-1beta.
Collapse
Affiliation(s)
- Juliana Maia Teixeira
- Department of Physiological Sciences, Laboratory of Pain and Inflammation, Piracicaba Dental School, State University of Campinas, UNICAMP, Brazil.
| | | | | | | |
Collapse
|
91
|
Filep JG, El Kebir D. Serum amyloid A as a marker and mediator of acute coronary syndromes. Future Cardiol 2010; 4:495-504. [PMID: 19804343 DOI: 10.2217/14796678.4.5.495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammation promotes acute coronary syndromes and ensuing clinical complications. An emerging downstream marker of inflammation is serum amyloid A (SAA). Elevated plasma SAA levels predict increased cardiovascular risk and portend worse prognosis in patients with acute coronary artery disease (CAD). The pathophysiological role of SAA remains enigmatic. SAA plays a role in host defense, but it might also be atherogenic. SAA affects cholesterol transport, contributes to endothelial dysfunction, promotes thrombosis, evokes recruitment of inflammatory cells, activates neutrophils and suppresses neutrophil apoptosis, key events underlying acute coronary syndromes. These results provide a potential link between SAA and CAD and suggest that reducing SAA levels and/or opposing the actions of SAA may have beneficial effects in patients with acute CAD.
Collapse
Affiliation(s)
- János G Filep
- University of Montréal, Research Center, Maisonneuve-Rosemont Hospital & Department of Pathology & Cell Biology, Montréal, QC H1T2M4, Canada.
| | | |
Collapse
|
92
|
Lenertz LY, Wang Z, Guadarrama A, Hill LM, Gavala ML, Bertics PJ. Mutation of putative N-linked glycosylation sites on the human nucleotide receptor P2X7 reveals a key residue important for receptor function. Biochemistry 2010; 49:4611-9. [PMID: 20450227 PMCID: PMC2895974 DOI: 10.1021/bi902083n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nucleotide receptor P2X(7) is an immunomodulatory cation channel and a potential therapeutic target. P2X(7) is expressed in immune cells such as monocytes and macrophages and is activated by extracellular ATP following tissue injury or infection. Ligand binding to P2X(7) can stimulate ERK1/2, the transcription factor CREB, enzymes linked to the production of reactive oxygen species and interleukin-1 isoforms, and the formation of a nonspecific pore. However, little is known about the biochemistry of P2X(7), including whether the receptor is N-linked glycosylated and if this modification affects receptor function. Here we provide evidence that P2X(7) is sensitive to the glycosidases EndoH and PNGase F and that the human receptor appears glycosylated at N187, N202, N213, N241, and N284. Mutation of N187 results in weakened P2X(7) agonist-induced phosphorylation of ERK1/2, CREB, and p90 ribosomal S6 kinase, as well as a decreased level of pore formation. In further support of a role for glycosylation in receptor function, treatment of RAW 264.7 macrophages with the N-linked glycosylation synthesis inhibitor tunicamycin attenuates P2X(7) agonist-induced, but not phorbol ester-induced, ERK1/2 phosphorylation. Interestingly, residue N187 belongs to an N-linked glycosylation consensus sequence found in six of the seven P2X family members, suggesting this site is fundamentally important to P2X receptor function. To address the mechanism whereby N187 mutation attenuates receptor activity, we developed a live cell proteinase K digestion assay that demonstrated altered cell surface expression of P2X(7) N187A. This is the first report to map human P2X(7) glycosylation sites and reveal residue N187 is critical for receptor trafficking and function.
Collapse
Affiliation(s)
- Lisa Y. Lenertz
- Department of Biomolecular Chemistry, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ziyi Wang
- Department of Biomolecular Chemistry, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Arturo Guadarrama
- Department of Biomolecular Chemistry, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lindsay M. Hill
- Department of Biomolecular Chemistry, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Monica L. Gavala
- Department of Biomolecular Chemistry, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
93
|
Constantinescu P, Wang B, Kovacevic K, Jalilian I, Bosman GJCGM, Wiley JS, Sluyter R. P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1797-804. [PMID: 20529664 DOI: 10.1016/j.bbamem.2010.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/17/2010] [Accepted: 06/01/2010] [Indexed: 01/10/2023]
Abstract
Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR, immunoblotting and immunofluorescence staining demonstrated the presence of P2X7 in MEL cells. Cytofluorometric measurements demonstrated that ATP induced ethidium+ uptake into MEL cells in a concentration-dependent fashion and with an EC(50) of approximately 154 microM. The most potent P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not ADP or UTP, induced ethidium+ uptake. ATP-induced ethidium+ and YO-PRO-1(2+) uptake were impaired by the P2X7 antagonist, A-438079. A colourmetric assay demonstrated that ATP impaired MEL cell growth. A cytofluorometric assay showed that ATP induced MEL cell death and that this process was impaired by A-438079. Finally, cytofluorometric measurements of Annexin-V binding and bio-maleimide staining demonstrated that ATP could induce rapid phosphatidylserine exposure and microparticle release in MEL cells respectively, both of which were impaired by A-438079. These results demonstrate that MEL cells express functional P2X7, and indicate that activation of this receptor may be important in the death and release of microparticles from red blood cells in vivo.
Collapse
|
94
|
Portales-Cervantes L, Niño-Moreno P, Doníz-Padilla L, Baranda-Candido L, García-Hernández M, Salgado-Bustamante M, González-Amaro R, Portales-Pérez D. Expression and function of the P2X(7) purinergic receptor in patients with systemic lupus erythematosus and rheumatoid arthritis. Hum Immunol 2010; 71:818-25. [PMID: 20493226 DOI: 10.1016/j.humimm.2010.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 01/10/2023]
Abstract
Because the synthesis of pro-inflammatory cytokines and apoptosis of lymphoid cells can be induced through P2X(7), we decided to study its expression, function (apoptosis, shedding of CD62L and synthesis of IL-1beta induced by ATP) and genetic polymorphisms (1513 AC and -762 T/C) in peripheral blood mononuclear cells from 101 patients with systemic lupus erythematosus (SLE), 122 with rheumatoid arthritis (RA) and 90 healthy controls. We found no significant differences in the distribution of 1513 and -762 genotypes of P2X(7) gene in SLE or RA patients compared with healthy controls. However, a diminished induction of apoptosis of CD4(+) T lymphocytes and monocytes was observed in SLE patients with the 1513 AC genotype, and the release of IL-1beta upon stimulation with ATP was significantly decreased in SLE patients. In contrast, in RA patients we detected that the release of IL-1beta was increased. In addition, in patients with SLE and RA the SNPs 1513 AC was associated with a low expression of P2X(7). These results suggest a possible involvement of P2X(7) in the pathogenesis of inflammatory autoimmune diseases.
Collapse
|
95
|
Martel-Gallegos G, Rosales-Saavedra MT, Reyes JP, Casas-Pruneda G, Toro-Castillo C, Pérez-Cornejo P, Arreola J. Human neutrophils do not express purinergic P2X7 receptors. Purinergic Signal 2010; 6:297-306. [PMID: 21103213 DOI: 10.1007/s11302-010-9178-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/28/2010] [Indexed: 02/08/2023] Open
Abstract
It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X(7) receptors (P2X(7)R) to elicit Ca(2+) entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X(7)R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X(7)R activation to downstream effectors, immune-labelling of P2X(7)R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X(7)R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X(7)R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells-a model cell for human neutrophils. We concluded that P2X(7)R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered.
Collapse
|
96
|
The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood 2009; 115:1621-31. [PMID: 20007545 DOI: 10.1182/blood-2009-11-251744] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of nonopsonized bacteria is central to innate immunity, but its regulation is less defined. We show that overexpression of the P2X(7) receptor greatly augments the phagocytosis of nonopsonized beads and heat-killed bacteria by transfected HEK-293 cells, whereas blocking P2X(7) expression by siRNA significantly reduces the phagocytic ability of human monocytic cells. An intact P2X(7)-nonmuscle myosin complex is required for phagocytosis of nonopsonized beads because activation of P2X(7) receptors by adenosine triphosphate (ATP), which dissociates myosin IIA from the P2X(7) complex, inhibits this phagocytic pathway. Fresh human monocytes rapidly phagocytosed live and heat-killed Staphylococcus aureus and Escherichia coli in the absence of serum, but the uptake was reduced by prior incubation with ATP, or P2X(7) monoclonal antibody, or recombinant P2X(7) extracellular domain. Injection of beads or bacteria into the peritoneal cavity of mice resulted in their brisk phagocytosis by macrophages, but injection of ATP before particles markedly decreased this uptake. These data demonstrate a novel pathway of phagocytosis of nonopsonized particles and bacteria, which operate in vivo and require an intact P2X(7)-nonmuscle myosin IIA membrane complex. The inhibitory effect of ATP on particle uptake by the macrophage is regulated by the P2X(7) receptor and defines this phagocytic pathway.
Collapse
|
97
|
Sun C, Chu J, Singh S, Salter RD. Identification and characterization of a novel variant of the human P2X(7) receptor resulting in gain of function. Purinergic Signal 2009; 6:31-45. [PMID: 19838818 DOI: 10.1007/s11302-009-9168-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/05/2009] [Indexed: 11/30/2022] Open
Abstract
The P2X(7) receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X(7) cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X(7) agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X(7) variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X(7) receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X(7) is critical for regulation of P2X(7)-mediated pore formation.
Collapse
Affiliation(s)
- Chengqun Sun
- Department of Immunology, University of Pittsburgh School of Medicine, E1052 Biomedical Science Tower, Pittsburgh, PA 15261 USA
| | | | | | | |
Collapse
|
98
|
Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Faccinetto C, Marée R, Evans RJ, Volders PGA, Bours V, Oury C. P2X1 ion channels promote neutrophil chemotaxis through Rho kinase activation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2801-9. [PMID: 19635923 DOI: 10.4049/jimmunol.0804007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ATP, released at the leading edge of migrating neutrophils, amplifies chemotactic signals. The aim of our study was to investigate whether neutrophils express ATP-gated P2X(1) ion channels and whether these channels could play a role in chemotaxis. Whole-cell patch clamp experiments showed rapidly desensitizing currents in both human and mouse neutrophils stimulated with P2X(1) agonists, alphabeta-methylene ATP (alphabetaMeATP) and betagammaMeATP. These currents were strongly impaired or absent in neutrophils from P2X(1)(-/-) mice. In Boyden chamber assays, alphabetaMeATP provoked chemokinesis and enhanced formylated peptide- and IL-8-induced chemotaxis of human neutrophils. This agonist similarly increased W-peptide-induced chemotaxis of wild-type mouse neutrophils, whereas it had no effect on P2X(1)(-/-) neutrophils. In human as in mouse neutrophils, alphabetaMeATP selectively activated the small RhoGTPase RhoA that caused reversible myosin L chain phosphorylation. Moreover, the alphabetaMeATP-elicited neutrophil movements were prevented by the two Rho kinase inhibitors, Y27632 and H1152. In a gradient of W-peptide, P2X(1)(-/-) neutrophils migrated with reduced speed and displayed impaired trailing edge retraction. Finally, neutrophil recruitment in mouse peritoneum upon Escherichia coli injection was enhanced in wild-type mice treated with alphabetaMeATP, whereas it was significantly impaired in the P2X(1)(-/-) mice. Thus, activation of P2X(1) ion channels by ATP promotes neutrophil chemotaxis, a process involving Rho kinase-dependent actomyosin-mediated contraction at the cell rear. These ion channels may therefore play a significant role in host defense and inflammation.
Collapse
Affiliation(s)
- Christelle Lecut
- GIGA-Research Human Genetics Unit, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
The P2X(7) receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types. Purinergic Signal 2009; 5:385-94. [PMID: 19533417 DOI: 10.1007/s11302-009-9163-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/26/2009] [Indexed: 01/12/2023] Open
Abstract
We previously demonstrated that canine erythrocytes express the P2X(7) receptor, and that the function and expression of this receptor is greatly increased compared with human erythrocytes. Using (86)Rb(+) (K(+)) and organic cation flux measurements, we further compared P2X(7) in erythrocytes and mononuclear leukocytes from these species. Concentration response curves of BzATP- and ATP-induced (86)Rb(+) efflux demonstrated that canine P2X(7) was less sensitive to inhibition by extracellular Na(+) ions compared to human P2X(7). In contrast, canine and human P2X(7) showed a similar sensitivity to the P2X(7) antagonists KN-62 and Mg(2+). KN-62 and Mg(2+) also inhibited ATP-induced choline(+) uptake into canine and human erythrocytes. BzATP and ATP but not ADP or NAD induced ethidium(+) uptake into canine monocytes, T- and B-cells. ATP-induced ethidium(+) uptake was twofold greater in canine T-cells compared to canine B-cells and monocytes. KN-62 inhibited the ATP-induced ethidium(+) uptake in each cell type. P2X(7)-mediated uptake of organic cations was 40- and fivefold greater in canine erythrocytes and lymphocytes (T- and B-cells), respectively, compared to equivalent human cell types. In contrast, P2X(7) function was threefold lower in canine monocytes compared to human monocytes. Thus, P2X(7) activation can induce the uptake of organic cations into canine erythrocytes and mononuclear leukocytes, but the relative levels of P2X(7) function differ to that of equivalent human cell types.
Collapse
|
100
|
Gu BJ, Rathsam C, Stokes L, McGeachie AB, Wiley JS. Extracellular ATP dissociates nonmuscle myosin from P2X(7) complex: this dissociation regulates P2X(7) pore formation. Am J Physiol Cell Physiol 2009; 297:C430-9. [PMID: 19494237 DOI: 10.1152/ajpcell.00079.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The P2X(7) receptor is a ligand-gated cation channel that is highly expressed on monocyte-macrophages and that mediates the pro-inflammatory effects of extracellular ATP. Dilation of the P2X(7) channel and massive K(+) efflux follows initial channel opening, but the mechanism of secondary pore formation is unclear. The proteins associated with P2X(7) were isolated by using anti-P2X(7) monoclonal antibody-coated Dynabeads from both interferon-gamma plus LPS-stimulated monocytic THP-1 cells and P2X(7)-transfected HEK-293 cells. Two nonmuscle myosins, NMMHC-IIA and myosin Va, were found to associate with P2X(7) in THP-1 cells and HEK-293 cells, respectively. Activation of the P2X(7) receptor by ATP caused dissociation of P2X(7) from nonmuscle myosin in both cell types. The interaction of P2X(7) and NMMHC-IIA molecules was confirmed by fluorescent life time measurements and fluorescent resonance of energy transfer-based time-resolved flow cytometry assay. Reducing the expression of NMMHC-IIA or myosin Va by small interfering RNA or short hairpin RNA led to a significant increase of P2X(7) pore function without any increase in surface expression or ion channel function of P2X(7) receptors. S-l-blebbistatin, a specific inhibitor of NMMHC-IIA ATPase, inhibited both ATP-induced ethidium uptake and ATP-induced dissociation of P2X(7)-NMMHC-IIA complex. In both cell types nonmuscle myosin closely interacts with P2X(7) and is dissociated from the complex by extracellular ATP. Dissociation of this anchoring protein may be required for the transition of P2X(7) channel to a pore.
Collapse
Affiliation(s)
- Ben J Gu
- Department of Medicine, Nepean Clinical School, Penrith, NSW, Australia
| | | | | | | | | |
Collapse
|