51
|
Garg BD, Kabra NS. Role of amino acid supplementation in the prevention of necrotizing enterocolitis in preterm neonates – a review of current evidences. J Matern Fetal Neonatal Med 2017; 31:2349-2366. [DOI: 10.1080/14767058.2017.1342797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Khan N, Binder L, Pantakani DVK, Asif AR. MPA Modulates Tight Junctions' Permeability via Midkine/PI3K Pathway in Caco-2 Cells: A Possible Mechanism of Leak-Flux Diarrhea in Organ Transplanted Patients. Front Physiol 2017; 8:438. [PMID: 28694783 PMCID: PMC5483464 DOI: 10.3389/fphys.2017.00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mycophenolic acid (MPA) is prescribed to prevent allograft rejection in organ transplanted patients. However, its use is sporadically linked to leak flux diarrhea and other gastrointestinal (GI) disturbances in around 75% of patients through yet unknown mechanisms. Recently, we identified Midkine as a modulator of tight junctions (TJs) permeability in MPA treated Caco-2 monolayer. In the present study, we investigated the possible involvement of Midkine dependent PI3K pathway in alteration of TJs under MPA treatment. Caco-2 cells were grown as monolayer to develop TJs and were treated for 72 h with DMSO (control) or MPA in presence and absence of Midkine inhibitor (iMDK) or PI3K inhibitors (LY/AMG). Caco-2 monolayer integrity was assessed by transepithelial electrical resistance (TEER) and FITC-dextran assays. Our functional assays showed that PI3K inhibitors (LY/AMG) can significantly inhibit the compromised TJs integrity of MPA-treated Caco-2 cells monolayer. Chromatin immunoprecipitation analyses showed a significant epigenetic activation of Midkine, PI3K, Cdx-2, and Cldn-2 genes and epigenetic repression of Cldn-1 gene after MPA treatment. The MPA-induced epigenetic alterations were further confirmed by mRNA and protein expression analysis. Collectively, our data shows that PI3K pathway as the downstream target of Midkine which in turn modulates p38MAPK and pAKT signaling to alter TJs permeability in Caco-2 cell monolayers treated with MPA. These results highlight the possible use of either Midkine or PI3K inhibitors as therapeutic agents to prevent MPA induced GI disturbances.
Collapse
Affiliation(s)
- Niamat Khan
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and TechnologyKohat, Pakistan
| | - Lutz Binder
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - D V Krishna Pantakani
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| |
Collapse
|
53
|
Kim MH, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci 2017; 18:ijms18051051. [PMID: 28498331 PMCID: PMC5454963 DOI: 10.3390/ijms18051051] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
54
|
The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Sci Rep 2017; 7:40128. [PMID: 28045137 PMCID: PMC5206730 DOI: 10.1038/srep40128] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/02/2016] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects.
Collapse
|
55
|
Hwang D, Jo H, Hwang S, Kim JK, Kim IH, Lim YH. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells. Biomed Pharmacother 2016; 85:280-286. [PMID: 27876210 DOI: 10.1016/j.biopha.2016.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Strengthening of intestinal tight junctions provides an effective barrier from the external environment. Goblet cell-derived trefoil factor 3 (TFF3) increases transepithelial resistance by upregulating the expression of tight junction proteins. Oxyresveratrol (OXY) is a hydroxyl-substituted stilbene found in the roots, leaves, stems, and fruit of many plants and known to have various biological activities. In this study, we investigated the strengthening effect of OXY on intestinal tight junctions through stimulation of TFF production in goblet cells. METHODS We prepared conditioned medium from LS 174T goblet cells treated with OXY (GCO-CM) and investigated the effect of GCO-CM on strengthening tight junctions of Caco-2 cells. The mRNA and protein expression levels of major tight junction components (claudin-1, occludin, and ZO-1) were measured by quantitative real-time PCR and western blotting, respectively. Transepithelial electric resistance (TEER) was measured using an ohm/V meter. Monolayer permeability was evaluated by paracellular transport of fluorescein isothiocyanate-dextran. RESULTS OXY showed a strong antioxidant activity. It significantly increased the expression level of TFF3 in LS 174T goblet cells. GCO-CM prepared by treatment with 2.5, 5, and 10μg/ml OXY did not show cytotoxicity in Caco-2 cells. GCO-CM increased the mRNA and protein expression levels of claudin-1, occludin, and ZO-1. It also significantly increased tight junction integrity and reduced permeability in a dose-dependent manner. CONCLUSION OXY stimulates the expression of TFF3 in goblet cells, which might increase the integrity of the intestinal tight junction barrier.
Collapse
Affiliation(s)
- Dahyun Hwang
- Department of Public Health Science (BK21 PLUS Program), Graduate School, Korea University, Seoul 136-701, South Korea
| | - HyunA Jo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 136-701, South Korea
| | - Seonwook Hwang
- Department of Public Health Science (BK21 PLUS Program), Graduate School, Korea University, Seoul 136-701, South Korea
| | - Jeong-Keun Kim
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Shihung-si, Gyeonggi-do 429-793, South Korea
| | - In-Ho Kim
- Division of Functional Food Research, Korea Food Research Institute, Seongnam-si, Gyeonggi-do 463-746, South Korea
| | - Young-Hee Lim
- Department of Public Health Science (BK21 PLUS Program), Graduate School, Korea University, Seoul 136-701, South Korea; Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 136-701, South Korea; Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703, South Korea.
| |
Collapse
|
56
|
Tilston-Lünel AM, Haley KE, Schlecht NF, Wang Y, Chatterton ALD, Moleirinho S, Watson A, Hundal HS, Prystowsky MB, Gunn-Moore FJ, Reynolds PA. Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells. J Mol Cell Biol 2016; 8:439-455. [PMID: 27190314 PMCID: PMC5055084 DOI: 10.1093/jmcb/mjw020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/30/2023] Open
Abstract
Crumbs 3 (CRB3) is a component of epithelial junctions, which has been implicated in apical-basal polarity, apical identity, apical stability, cell adhesion, and cell growth. CRB3 undergoes alternative splicing to yield two variants: CRB3a and CRB3b. Here, we describe novel data demonstrating that, as with previous studies on CRB3a, CRB3b also promotes the formation of tight junctions (TJs). However, significantly we demonstrate that the 4.1-ezrin-radixin-moesin-binding motif of CRB3b is required for CRB3b functionality and that ezrin binds to the FBM of CRB3b. Furthermore, we show that ezrin contributes to CRB3b functionality and the correct distribution of TJ proteins. We demonstrate that both CRB3 isoforms are required for the production of functionally mature TJs and also the localization of ezrin to the plasma membrane. Finally, we demonstrate that reduced CRB3b expression in head and neck squamous cell carcinoma (HNSCC) correlates with cytoplasmic ezrin, a biomarker for aggressive disease, and shows evidence that while CRB3a expression has no effect, low CRB3b and high cytoplasmic ezrin expression combined may be prognostic for HNSCC.
Collapse
Affiliation(s)
- Andrew M Tilston-Lünel
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Kathryn E Haley
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Nicolas F Schlecht
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yanhua Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Abigail L D Chatterton
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Susana Moleirinho
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews, KY16 9TF, UK.,Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK.,Present address: Scripps Research Institute, Jupiter, FL, USA
| | - Ailsa Watson
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Harinder S Hundal
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Paul A Reynolds
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| |
Collapse
|
57
|
Design and characterization of novel all-solid-state potentiometric sensor array dedicated to physiological measurements. Talanta 2016; 159:7-13. [DOI: 10.1016/j.talanta.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022]
|
58
|
Ghouzali I, Lemaitre C, Bahlouli W, Azhar S, Bôle-Feysot C, Meleine M, Ducrotté P, Déchelotte P, Coëffier M. Targeting immunoproteasome and glutamine supplementation prevent intestinal hyperpermeability. Biochim Biophys Acta Gen Subj 2016; 1861:3278-3288. [PMID: 27544233 DOI: 10.1016/j.bbagen.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal hyperpermeability has been reported in several intestinal and non-intestinal disorders. We aimed to investigate the role of the ubiquitin proteasome system in gut barrier regulation in two mice models: the water avoidance stress model (WAS) and a post-inflammatory model (post-TNBS). METHODS Both models were applied in C57BL/6 male mice (n=7-8/group); Proteasome was targeted by injection of a selective proteasome inhibitor or by using knock-out mice for β2i proteasome subunit. Finally, glutamine supplementation was evaluated. RESULTS In both models (WAS at day 10, post-TNBS at day 28), we observed an increase in proteasome trypsin-like activity and in inducible β2/constitutive β2 subunit protein expression ratio, associated with an increase in intestinal permeability. Moreover, intestinal hyperpermeability was blunted by intraperitoneal injection of selective proteasome inhibitor in WAS and post-TNBS mice. Of note, knock-out mice for the β2i subunit exhibited a significant decrease in intestinal permeability and fecal pellet output during WAS. Glutamine supplementation also improved colonic permeability in both models. CONCLUSIONS In conclusion, the proteasome system is altered in the colonic mucosa of WAS and post-TNBS mice with increased trypsin-like activity. Associated intestinal hyperpermeability was blunted by immunoproteasome inhibition.
Collapse
Affiliation(s)
- Ibtissem Ghouzali
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Caroline Lemaitre
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Wafa Bahlouli
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Saïda Azhar
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bôle-Feysot
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Mathieu Meleine
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Philippe Ducrotté
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France.
| |
Collapse
|
59
|
Nosworthy MG, Dodge ME, Bertolo RF, Brunton JA. Enterally delivered dipeptides improve small intestinal inflammatory status in a piglet model of intestinal resection. Clin Nutr 2016; 35:852-8. [DOI: 10.1016/j.clnu.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/23/2015] [Accepted: 05/24/2015] [Indexed: 11/24/2022]
|
60
|
Bertrand J, Ghouzali I, Guérin C, Bôle-Feysot C, Gouteux M, Déchelotte P, Ducrotté P, Coëffier M. Glutamine Restores Tight Junction Protein Claudin-1 Expression in Colonic Mucosa of Patients With Diarrhea-Predominant Irritable Bowel Syndrome. JPEN J Parenter Enteral Nutr 2016; 40:1170-1176. [DOI: 10.1177/0148607115587330] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Julien Bertrand
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Ibtissem Ghouzali
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Charlène Guérin
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Christine Bôle-Feysot
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Mélodie Gouteux
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Pierre Déchelotte
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
- Department of Nutrition, Rouen University Hospital, Rouen, France
| | - Philippe Ducrotté
- INSERM UMR1073, University of Rouen, Rouen, France
- Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
- Department of Nutrition, Rouen University Hospital, Rouen, France
| |
Collapse
|
61
|
Xing S, Zhang B, Lin M, Zhou P, Li J, Zhang L, Gao F, Zhou G. Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:236-245. [PMID: 27383799 PMCID: PMC5205612 DOI: 10.5713/ajas.16.0077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The study was to investigate the effects of alanyl-glutamine (Ala-Gln) and glutamine (Gln) supplementation on the intestinal mucosa barrier in piglets. METHODS A total of 180 barrows with initial weight 10.01±0.03 kg were randomly allocated to three treatments, and each treatment consisted of three pens and twenty pigs per pen. The piglets of three groups were fed with control diet [0.62% alanine (Ala)], Ala-Gln diet (0.5% Ala-Gln), Gln diet (0.34% Gln and 0.21% Ala), respectively. RESULTS The results showed that in comparison with control diet, dietary Ala-Gln supplementation increased the height of villi in duodenum and jejunum (p<0.05), Gln supplementation increased the villi height of jejunum (p<0.05), Ala-Gln supplementation up-regulated the mRNA expressions of epidermal growth factor receptor and insulin-like growth factor 1 receptor in jejunal mucosa (p<0.05), raised the mRNA expressions of Claudin-1, Occludin, zonula occludens protein-1 (ZO-1) and the protein levels of Occludin, ZO-1 in jejunal mucosa (p<0.05), Ala-Gln supplementation enlarged the number of goblet cells in duodenal and ileal epithelium (p<0.05), Gln increased the number of goblet cells in duodenal epithelium (p<0.05) and Ala-Gln supplementation improved the concentrations of secretory immunoglobulin A and immunoglobulin G in the jejunal mucosa (p<0.05). CONCLUSION These results demonstrated that dietary Ala-Gln supplementation could maintain the integrity of small intestine and promote the functions of intestinal mucosa barriers in piglets.
Collapse
Affiliation(s)
- Shen Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Bolin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China.,Department of Agricultural Science and Technology, Zunyi Normal College, Zunyi 563002, China
| | - Meng Lin
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
62
|
Bourgoin-Voillard S, Goron A, Seve M, Moinard C. Regulation of the proteome by amino acids. Proteomics 2016; 16:831-46. [DOI: 10.1002/pmic.201500347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/30/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Sandrine Bourgoin-Voillard
- Plateforme de Protéomique PROMETHEE; IAB; University Grenoble Alpes; Grenoble France
- Plateforme de Protéomique PROMETHEE, Institut de Biologie et de Pathologie; CHU de Grenoble; Grenoble France
- Plateforme de Protéomique PROMETHEE; IAB; INSERM; Grenoble France
| | - Arthur Goron
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); University Grenoble Alpes; Grenoble France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); INSERM; Grenoble France
| | - Michel Seve
- Plateforme de Protéomique PROMETHEE; IAB; University Grenoble Alpes; Grenoble France
- Plateforme de Protéomique PROMETHEE, Institut de Biologie et de Pathologie; CHU de Grenoble; Grenoble France
- Plateforme de Protéomique PROMETHEE; IAB; INSERM; Grenoble France
| | - Christophe Moinard
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); University Grenoble Alpes; Grenoble France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA); INSERM; Grenoble France
| |
Collapse
|
63
|
Wang B, Wu Z, Ji Y, Sun K, Dai Z, Wu G. L-Glutamine Enhances Tight Junction Integrity by Activating CaMK Kinase 2-AMP-Activated Protein Kinase Signaling in Intestinal Porcine Epithelial Cells. J Nutr 2016; 146:501-8. [PMID: 26865645 DOI: 10.3945/jn.115.224857] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/28/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The tight junctions (TJs) are essential for maintenance of the intestinal mucosal barrier integrity. Results of our recent work show that dietary l-glutamine (Gln) supplementation enhances the protein abundance of TJ proteins in the small intestine of piglets. However, the underlying mechanisms remain largely unknown. OBJECTIVE This study was conducted to test the hypothesis that Gln regulates TJ integrity through calcium/calmodulin-dependent kinase 2 (CaMKK2)-AMP-activated protein kinase (AMPK) signaling which, in turn, contributes to improved intestinal mucosal barrier function. METHODS Jejunal enterocytes isolated from a newborn pig were cultured in the presence of 0-2.0 mmol Gln/L for indicated time points. Cell proliferation, monolayer transepithelial electrical resistance (TEER), paracellular permeability, expression and distribution of TJ proteins, and phosphorylated AMPK were determined. RESULTS Compared with 0 mmol Gln/L, 2.0 mmol Gln/L enhanced (P < 0.05) cell growth (by 31.9% at 48 h and 11.1% at 60 h). Cells treated with 2 mmol Gln/L increased TEER by 32.2% at 60 h, and decreased (P < 0.05) TJ permeability by 20.3-40.0% at 36-60 h. In addition, 2.0 mmol Gln/L increased (P < 0.05) the abundance of transmembrane proteins, such as occludin, claudin-4, junction adhesion molecule (JAM)-A, and the plaque proteins zonula occludens (ZO)-1, ZO-2, and ZO-3 by 1.8-6 times. In contrast, 0.5 mmol Gln/L had a moderate effect on TJ protein abundance (20.2-70.5%; P < 0.05) of occludin, claudin-3, claudin-4, JAM-A, and ZO-1. 2.0 mmol Gln/L treatment led to a greater distribution of claudin-1, claudin-4, and ZO-1 at plasma membranes compared with 0 mmol Gln/L. This effect of Gln was mediated by the activation of CaMKK2-AMPK signaling, because either depletion of calcium from the medium or the presence of an inhibitor of CaMKK2 abrogated the effect of Gln on epithelial integrity. CONCLUSION Our findings indicate that activation of CaMKK2-AMPK signaling by Gln is associated with improved intestinal mucosal barrier function through enhancing the abundance of TJ proteins and altering their intracellular localization in intestinal porcine epithelial cells.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
64
|
Jegatheesan P, Beutheu S, Ventura G, Sarfati G, Nubret E, Kapel N, Waligora-Dupriet AJ, Bergheim I, Cynober L, De-Bandt JP. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin Nutr 2016; 35:175-182. [DOI: 10.1016/j.clnu.2015.01.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/29/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
65
|
Akagi R, Akagi M, Hatori Y, Inouye S. Prevention of Barrier Disruption by Heme Oxygenase-1 in Intestinal Bleeding Model. Biol Pharm Bull 2016; 39:1007-12. [DOI: 10.1248/bpb.b15-01028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Reiko Akagi
- Department of Pharmacy, Faculty of Pharmacy, Yasuda Women’s University
| | - Masaaki Akagi
- Department of Pharmacology, Faculty of Pharmaceutical Science, Tokushima Bunri University
| | - Yuta Hatori
- Department of Pharmacy, Faculty of Pharmacy, Yasuda Women’s University
| | - Sachiye Inouye
- Department of Pharmacy, Faculty of Pharmacy, Yasuda Women’s University
| |
Collapse
|
66
|
De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation. Front Immunol 2015; 6:612. [PMID: 26697008 PMCID: PMC4670985 DOI: 10.3389/fimmu.2015.00612] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
The intestinal tract represents the largest interface between the external environment and the human body. Nutrient uptake mostly happens in the intestinal tract, where the epithelial surface is constantly exposed to dietary antigens. Since inflammatory response toward these antigens may be deleterious for the host, a plethora of protective mechanisms take place to avoid or attenuate local damage. For instance, the intestinal barrier is able to elicit a dynamic response that either promotes or impairs luminal antigens adhesion and crossing. Regulation of intestinal barrier is crucial to control intestinal permeability whose increase is associated with chronic inflammatory conditions. The cross talk among bacteria, immune, and dietary factors is able to modulate the mucosal barrier function, as well as the intestinal permeability. Several nutritional products have recently been proposed as regulators of the epithelial barrier, even if their effects are in part contradictory. At the same time, the metabolic function of the microbiota generates new products with different effects based on the dietary content. Besides conventional treatments, novel therapies based on complementary nutrients are now growing. Fecal therapy has been recently used for the clinical treatment of refractory Clostridium difficile infection instead of the classical antibiotic therapy. In the present review, we will outline the epithelial response to nutritional components derived from dietary intake and microbial fermentation focusing on the consequent effects on the integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Stefania De Santis
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Elisabetta Cavalcanti
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Mauro Mastronardi
- Department of Gastroenterology, IRCCS "De Bellis" , Castellana Grotte , Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari , Bari , Italy
| | - Marcello Chieppa
- Laboratory of Experimental Immunopathology, IRCCS "De Bellis" , Castellana Grotte , Italy ; Istituto Comprensivo Bregante-Volta , Monopoli , Italy
| |
Collapse
|
67
|
Chaudhry KK, Shukla PK, Mir H, Manda B, Gangwar R, Yadav N, McMullen M, Nagy LE, Rao R. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. J Nutr Biochem 2015; 27:16-26. [PMID: 26365579 DOI: 10.1016/j.jnutbio.2015.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/12/2022]
Abstract
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.
Collapse
Affiliation(s)
- Kamaljit K Chaudhry
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Hina Mir
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Nikki Yadav
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | | | | | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN.
| |
Collapse
|
68
|
Coëffier M, Déchelotte P, Ducrotté P. Intestinal permeability in patients with diarrhea-predominant irritable bowel syndrome: is there a place for glutamine supplementation? Gastroenterology 2015; 148:1079-80. [PMID: 25824359 DOI: 10.1053/j.gastro.2015.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/13/2015] [Indexed: 02/08/2023]
Affiliation(s)
- Moïse Coëffier
- INSERM Unit 1073, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| | | | - Philippe Ducrotté
- Gastroenterology Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
69
|
Glutamine protects against cisplatin-induced nephrotoxicity by decreasing cisplatin accumulation. J Pharmacol Sci 2015; 127:117-26. [DOI: 10.1016/j.jphs.2014.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 01/07/2023] Open
|
70
|
Wang H, Zhang C, Wu G, Sun Y, Wang B, He B, Dai Z, Wu Z. Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J Nutr 2015; 145:25-31. [PMID: 25527658 DOI: 10.3945/jn.114.202515] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Dysfunction of tight junction integrity is associated with decreased nutrient absorption and numerous gastrointestinal diseases in humans and piglets. Although l-glutamine has been reported to enhance intestinal-mucosal mass and barrier function under stressful conditions, in vivo data to support a functional role for l-glutamine on intestinal tight junction protein (TJP) expression in weanling mammals are limited. OBJECTIVE This study tested the hypothesis that glutamine regulates expression of TJPs and stress-related corticotropin-releasing factor (CRF) signaling in the jejunum of weanling piglets. METHODS Piglets were reared by sows or weaned at 21 d of age to a corn and soybean meal-based diet that was or was not supplemented with 1% l-glutamine for 7 d. Growth performance, intestinal permeability, TJP abundance, and CRF expression were examined. RESULTS Weaning caused increases (P < 0.05) in intestinal permeability by 40% and in CRF concentrations by 4.7 times in association with villus atrophy (P < 0.05). Western blot analysis showed reductions (P < 0.05) in jejunal expression of occludin, claudin-1, zonula occludens (ZO) 2, and ZO-3, but no changes in the abundance of claudin-3, claudin-4, or ZO-1 in weanling piglets compared with age-matched suckling controls. Glutamine supplementation improved (P < 0.05) intestinal permeability and villus height, while reducing (P < 0.05) jejunal mRNA and protein levels for CRF and attenuating (P < 0.05) weanling-induced decreases in occludin, claudin-1, ZO-2, and ZO-3 protein abundances. CONCLUSION Collectively, our results support an important role for l-glutamine in regulating expression of TJPs and CRF in the jejunum of weanling piglets.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Chen Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Bin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Beibei He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| |
Collapse
|
71
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
72
|
Yang Y, Li W, Sun Y, Han F, Hu CAA, Wu Z. Amino acid deprivation disrupts barrier function and induces protective autophagy in intestinal porcine epithelial cells. Amino Acids 2014; 47:2177-84. [PMID: 25287255 DOI: 10.1007/s00726-014-1844-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Abstract
The integrity of intestinal barrier is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of various gastrointestinal diseases. Aside from serving as substrates for protein biosynthesis, amino acids also maintain the health of intestinal mucosal barrier. However, the underlying mechanisms remain unclear. We aimed to determine the effect and mechanism of non-essential amino acid (NEAA) deprivation on intestinal tight junction permeability using porcine intestinal epithelial cells as a model. We found that NEAA deprivation led to an impairment of barrier function as evidenced by increased permeability, decreased trans-epithelial resistance, and decreased expression of tight junction proteins claudin-1 and ZO-1. Importantly, NEAA deprivation induced both apoptosis and autophagy as shown by caspase-3 activation, and poly ADP-ribose polymerase cleavage; and LC3II lipidation and p62 degradation, hallmarks of apoptosis and autophagy, respectively. Importantly, we showed that the autophagy induced by NEAA deprivation counteracts apoptosis. Abrogation of autophagy by 3-methyladenine enhanced NEAA deprivation-induced barrier dysfunction and apoptosis; whereas, activation of autophagy by rapamycin partially rescued NEAA deprivation-induced barrier dysfunction and apoptosis. Taken together, our results demonstrate a critical role of NEAA on the mucosal integrity by regulating cell death and survival signaling pathways.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131-0001, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
73
|
Beutheu S, Ouelaa W, Guérin C, Belmonte L, Aziz M, Tennoune N, Bôle-Feysot C, Galas L, Déchelotte P, Coëffier M. Glutamine supplementation, but not combined glutamine and arginine supplementation, improves gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clin Nutr 2014; 33:694-701. [DOI: 10.1016/j.clnu.2013.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/12/2013] [Accepted: 09/04/2013] [Indexed: 12/27/2022]
|
74
|
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids 2014; 47:2143-54. [PMID: 24965526 DOI: 10.1007/s00726-014-1773-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
75
|
Distribution of the LDL receptor within clathrin-coated pits and caveolae in rat and human liver. Biochem Biophys Res Commun 2014; 445:422-7. [PMID: 24530906 DOI: 10.1016/j.bbrc.2014.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 11/22/2022]
Abstract
Several findings suggest that the low-density lipoprotein (LDL) receptor may internalize different lipoprotein particles via diverse pathways. Using a combination of discontinuous sucrose gradients and Triton solubilization studies, we demonstrated that the LDL receptor could be located simultaneously in clathrin-coated pits and caveolae in rat and human liver and in human hepatocyte-like C3A cells. Treatment with the cholesterol biosynthesis inhibitor, zaragozic acid A, shifted the distribution of the LDL receptor to clathrin containing fractions, whereas treatment with cholesterol or LDL shifted the receptor distribution towards caveolin-1 containing fractions. The LDL-dependent shift of the LDL receptor to caveolae coincided with a reduction in internalization of Bodipy-LDL. Redistribution within plasma membrane microdomains in response to specific treatments resulting in changes in LDL receptor function represents a novel paradigm that could be exploited in the development of a new class of therapeutic drugs.
Collapse
|
76
|
Wooten CJ, Adcock AF, Agina-Obu DI, Lopez D. Having excess levels of PCSK9 is not sufficient to induce complex formation between PCSK9 and the LDL receptor. Arch Biochem Biophys 2014; 545:124-32. [PMID: 24486405 DOI: 10.1016/j.abb.2014.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin-9 (PCSK9) acts mainly by forming complexes with the LDL receptor at the cell surface, which are then degraded in the lysosome. Studies were performed to determine whether excess levels of PCSK9 was sufficient to induce PCSK9/LDL receptor complex formation in human hepatocyte-like C3A cells. It was demonstrated using ELISA that instead of considering the overall levels of PCSK9 protein that is produced in response to certain treatment, what is critical is how much PCSK9 is actually capable of forming complexes. Despite the high levels, most of the PCSK9 produced as a result of incubating cells with a medium supplemented with BD™ MITO+ serum extender (MITO+ medium) appeared to be inhibited by a secreted factor. Having lower levels of PCSK9/LDL receptor complexes did not prevent an increase in the degradation rate of LDL receptors in MITO+ medium as compared to fetal bovine serum (FBS) containing medium (Regular medium), an effect that did not correlate with an increase in protein levels of the inducible degrader of LDL receptors (IDOL), as demonstrated using Western blotting analysis. Additional studies are required to determine the exact mechanism(s) for the degradation of the LDL receptor and/or to identify the secreted inhibitor of PCSK9.
Collapse
Affiliation(s)
- Catherine J Wooten
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Audrey F Adcock
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - DaTonye I Agina-Obu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Dayami Lopez
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
77
|
Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K, Moseley PL. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol (1985) 2013; 116:183-91. [PMID: 24285149 DOI: 10.1152/japplphysiol.00646.2013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P < 0.05). IκBα expression in peripheral blood mononuclear cells was higher 240 min after exercise in the GLN trial compared with the PLA trial (1.411 ± 0.523 vs. 0.9839 ± 0.343, respectively; P < 0.05). In vitro using the intestinal epithelial cell line Caco-2, we measured effects of GLN supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P < 0.05). Occludin levels increased after 4 mM supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P < 0.001). GLN supplementation prevented exercise-induced permeability, possibly through HSF-1 activation.
Collapse
Affiliation(s)
- Micah N Zuhl
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, New Mexico
| | | | | | | | | | | | | |
Collapse
|
78
|
|
79
|
Beutheu S, Ghouzali I, Galas L, Déchelotte P, Coëffier M. Glutamine and arginine improve permeability and tight junction protein expression in methotrexate-treated Caco-2 cells. Clin Nutr 2013; 32:863-9. [DOI: 10.1016/j.clnu.2013.01.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 12/16/2022]
|
80
|
Grant CN, Grikscheit TC. Tissue engineering: a promising therapeutic approach to necrotizing enterocolitis. Semin Pediatr Surg 2013; 22:112-6. [PMID: 23611615 DOI: 10.1053/j.sempedsurg.2013.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue engineering is a promising potential candidate for treating intestinal failure resulting from necrotizing enterocolitis. This requires the acquisition, preparation and implantation of autologous organoid units. This may be affected by the complexities of periods of storage of viable donor tissue and delayed implantation. This chapter addresses the development, methodology, and application of tissue-engineered intestine in the experimental and clinical setting. Tissue engineering has the potential of avoiding the inherent toxicities of intestinal transplantation and prolonged immunosuppression.
Collapse
Affiliation(s)
- Christa N Grant
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Saban Research Institute, Keck School of Medicine, University of Southern California, USA
| | | |
Collapse
|
81
|
Noth R, Häsler R, Stüber E, Ellrichmann M, Schäfer H, Geismann C, Hampe J, Bewig B, Wedel T, Böttner M, Schreiber S, Rosenstiel P, Arlt A. Oral glutamine supplementation improves intestinal permeability dysfunction in a murine acute graft-vs.-host disease model. Am J Physiol Gastrointest Liver Physiol 2013; 304:G646-54. [PMID: 23370678 DOI: 10.1152/ajpgi.00246.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although a profound barrier dysfunction has been reported, little is known about the pathophysiological mechanism evoking gastrointestinal graft-vs.-host disease (GI-GvHD) and apparent therapeutic options. The aim of this study was to evaluate the influence of oral glutamine on the course of GI-GvHD in an acute semiallogenic graft-vs.-host disease (GvHD) in irradiated B6D2F1 mice. An acute semiallogenic GvHD was induced by intraperitoneal injection of lymphocytes from C57BL/6 mice to irradiated B6D2F1 mice. Half of the GvHD animals received oral glutamine supplementation for 6 days started at the time of lymphocyte transfer. Six days after induction of the semiallogenic GvHD, jejunum specimens were prepared. The expression of the proinflammatory cytokine TNF-α and the tight junction protein occludin was investigated by PCR. Histological changes along with the apoptotic response were evaluated and intestinal permeability was assessed. Animals with GvHD showed a strong increase in paracellular permeability as a sign of the disturbed barrier function. TNF-α expression was significantly increased and the expression of the tight junction protein occludin decreased. GvHD led to mucosal atrophy, crypt hyperplasia, crypt apoptosis, and a disintegration of the tight junctions. Glutamine-treated mice showed reduced expression of TNF-α, increased occludin expression, fewer histological changes in the jejunum, smaller number of apoptotic cells in the crypt, and reduced gastrointestinal permeability. In conclusion, oral glutamine seems to have beneficial effects on the severity of inflammatory changes in the course of GvHD and might be a therapeutic option.
Collapse
Affiliation(s)
- Rainer Noth
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Liu Y, Ipharraguerre IR, Pettigrew JE. Digestive physiology of the pig symposium: potential applications of knowledge of gut chemosensing in pig production. J Anim Sci 2013; 91:1982-90. [PMID: 23408810 DOI: 10.2527/jas.2012-6193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pig production is a commodity business, which makes it a cost-driven business. Pig producers and their advisors are appropriately reluctant to adopt technologies without confidence that improved production will more than pay for the cost of the technology. Physiological effects of technologies targeting gut sensory pathways must translate to demonstrably improved health and/or productive performance if they are to be adopted. The types and degrees of stressors experienced by pigs in commercial production vary widely and often differ from those in research herds, and those variations influence their productive responses to nutritional and health technologies. Pigs are most vulnerable to disease soon after weaning, and the diets fed to pigs at that time are more expensive and offered in much smaller amounts than those fed later in life. Those factors make it easier to justify expensive dietary technologies for young pigs than for older ones. New developments in gut chemosensing appear important, but their practical application is not yet clear. We suggest investigation of the potential to connect chemical detection by the gut to pig productivity and/or efficiency through these mechanisms: 1) trophic effects on the intestines, which lead to improved enteric health or enhanced nutrient digestion and absorption, 2) enhanced barrier function in the intestinal mucosa, 3) increased feed intake, 4) enhanced insulin secretion and sensitivity, which may be especially useful in lactating sows to improve subsequent reproduction, and 5) other signals triggered by products of enteric fermentation, possibly short-chain fatty acids, that may influence gut integrity, feed intake, and reproductive function. Each of these mechanisms relates to a practical issue in pig production. Practical application would likely be achieved through dietary changes, but separate management factors, drugs, or other interventions may also be developed.
Collapse
Affiliation(s)
- Y Liu
- Department of Animal Sciences, University of Illinois, Urbana, IL 60801, USA
| | | | | |
Collapse
|
83
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 891] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
84
|
Akagi R, Ohno M, Matsubara K, Fujimoto M, Nakai A, Inouye S. Glutamine Protects Intestinal Barrier Function of Colon Epithelial Cells from Ethanol by Modulating Hsp70 Expression. Pharmacology 2013; 91:104-11. [DOI: 10.1159/000345930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022]
|
85
|
Chang M, Li X, Sun Y, Cheng F, Li Y, Zhao W, Wang Q. A Potential Mechanism of a Cationic Cyclopeptide for Enhancing Insulin Delivery across Caco-2 Cell Monolayers. Biol Pharm Bull 2013; 36:1602-7. [DOI: 10.1248/bpb.b13-00487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mingming Chang
- School of Pharmaceutical Science and Technology, Dalian University of Technology
| | - Xiaohui Li
- School of Life Science and Biotechnology, Dalian University of Technology
| | - Yuming Sun
- Chemical Analysis and Research Center, Dalian University of Technology
| | - Fang Cheng
- School of Pharmaceutical Science and Technology, Dalian University of Technology
| | | | - Weijie Zhao
- School of Pharmaceutical Science and Technology, Dalian University of Technology
| | - Qing Wang
- School of Pharmaceutical Science and Technology, Dalian University of Technology
- State Key Laboratory of Fine Chemicals, Dalian University of Technology
| |
Collapse
|
86
|
Glutamine randomized studies in early life: the unsolved riddle of experimental and clinical studies. Clin Dev Immunol 2012; 2012:749189. [PMID: 23019424 PMCID: PMC3457673 DOI: 10.1155/2012/749189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/25/2012] [Indexed: 11/21/2022]
Abstract
Glutamine may have benefits during immaturity or critical illness in early life but its effects on outcome end hardpoints are controversial. Our aim was to review randomized studies on glutamine supplementation in pups, infants, and children examining whether glutamine affects outcome. Experimental work has proposed various mechanisms of glutamine action but none of the randomized studies in early life showed any effect on mortality and only a few showed some effect on inflammatory response, organ function, and a trend for infection control. Although apparently safe in animal models (pups), premature infants, and critically ill children, glutamine supplementation does not reduce mortality or late onset sepsis, and its routine use cannot be recommended in these sensitive populations. Large prospectively stratified trials are needed to better define the crucial interrelations of “glutamine-heat shock proteins-stress response” in critical illness and to identify the specific subgroups of premature neonates and critically ill infants or children who may have a greater need for glutamine and who may eventually benefit from its supplementation. The methodological problems noted in the reviewed randomized experimental and clinical trials should be seriously considered in any future well-designed large blinded randomized controlled trial involving glutamine supplementation in critical illness.
Collapse
|
87
|
Roth WJ, Lindley DJ, Carl SM, Knipp GT. The effects of intralaboratory modifications to media composition and cell source on the expression of pharmaceutically relevant transporters and metabolizing genes in the Caco-2 cell line. J Pharm Sci 2012; 101:3962-78. [PMID: 22786684 DOI: 10.1002/jps.23241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 11/05/2022]
Abstract
Expression and function of drug transporters and drug-metabolizing enzymes (DMEs) in the gastrointestinal tract are critical attributes of intestinal physiology that influence the absorption of orally administered compounds. The purpose of this study was to examine the effects of media composition and cell source on mRNA expression and function of pharmaceutically relevant drug transporters and DMEs from two different sources of Caco-2 cells. Briefly, cells were cultured in either minimum essential medium alpha or Dulbecco's modified Eagle's medium. Total RNA was isolated from each experimental group, and mRNA expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction arrays. Principal component analysis was used to analyze results, which indicated variable transporter and metabolic expression attributable to differences in media composition and cell source. In addition, transport properties of paracellular markers and proton-dependent oligopeptide transporter-mediated substrates across Caco-2 cell monolayers were assessed. Transport experiments demonstrated significant differences in both paracellular and transcellular permeation resultant from differences in media composition and cell source. These studies support previous findings that media composition and cell source may significantly impact expressional and functional characteristics of Caco-2 cells. Standardization of culture-related methodology may reduce variability associated with Caco-2 cells, enabling more meaningful intralaboratory and interlaboratory data comparisons.
Collapse
Affiliation(s)
- Wyatt J Roth
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | | | | | |
Collapse
|
88
|
Regulation of intestinal protein metabolism by amino acids. Amino Acids 2012; 45:443-50. [DOI: 10.1007/s00726-012-1325-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
|
89
|
Li N, Ma L, Liu X, Shaw L, Calzi SL, Grant MB, Neu J. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuates hyperoxia-induced small intestinal injury in neonatal mice. J Pediatr Gastroenterol Nutr 2012; 54:499-504. [PMID: 22020559 PMCID: PMC3749514 DOI: 10.1097/mpg.0b013e3182330867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Supplementation studies of glutamine, arginine, and docosahexaenoic acid (DHA) have established the safety of each of these nutrients in neonates; however, the potential for a more stable and soluble dipeptide, arginyl-glutamine (Arg-Gln) or DHA with anti-inflammatory properties, to exert benefits on hyperoxia-induced intestinal injury has not been investigated. Arg-Gln dipeptide has been shown to prevent retinal damage in a rodent model of oxygen-induced injury. The objective of the present study was to investigate whether Arg-Gln dipeptide or DHA could also attenuate markers of injury and inflammation to the small intestine in this same model. METHODS Seven-day-old mouse pups were placed with their dams in 75% oxygen for 5 days. After 5 days of hyperoxic exposure (P7-P12), pups were removed from hyperoxia and allowed to recover in atmospheric conditions for 5 days (P12-P17). Mouse pups received Arg-Gln (5g·kg·day) or DHA (5g·kg·day) or vehicle orally started on P12 through P17. Distal small intestine (DSI) histologic changes, myeloperoxidase (MPO), lactate dehydrogenase (LDH), inflammatory cytokines, and tissue apoptosis were evaluated. RESULTS Hyperoxic mice showed a greater distortion of overall villus structure and with higher injury score (P<0.05). Arg-Gln dipeptide and DHA supplementation groups were more similar to the room air control group. Supplementation of Arg-Gln or DHA reduced hyperoxia-induced MPO activity (P<0.05). Supplementation of Arg-Gln or DHA returned LDH activity to the levels of control. Hyperoxia induced apoptotic cell death in DSIs, and both Arg-Gln and DHA reversed this effect (P<0.05). CONCLUSIONS Supplementation with either Arg-Gln or DHA may limit some inflammatory and apoptotic processes involved in hyperoxic-induced intestinal injury in neonatal mice.
Collapse
Affiliation(s)
- Nan Li
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Liya Ma
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Xueyan Liu
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Lynn Shaw
- Department of Pharmacology, University of Florida, Gainesville, FL
| | - Sergio Li Calzi
- Department of Pharmacology, University of Florida, Gainesville, FL
| | - Maria B. Grant
- Department of Pharmacology, University of Florida, Gainesville, FL
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
90
|
Glutamine and whey protein improve intestinal permeability and morphology in patients with Crohn's disease: a randomized controlled trial. Dig Dis Sci 2012; 57:1000-12. [PMID: 22038507 DOI: 10.1007/s10620-011-1947-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/08/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased intestinal permeability (IP) has been implicated in the etiopathogenesis, disease activity and relapse of Crohn's disease (CD). Glutamine, the major fuel for the enterocytes, may improve IP. AIM We evaluated the effect of oral glutamine on IP and intestinal morphology in patients with CD. METHODS In a randomized controlled trial, consecutive patients with CD in remission phase with an abnormal IP were randomized to a glutamine group (GG) or active control group (ACG) and were given oral glutamine or whey protein, respectively, as 0.5 g/kg ideal body weight/day for 2 months. IP was assessed by the lactulose mannitol excretion ratio (LMR) in urine, and morphometry was performed by computerized image analysis system. RESULTS Patients (age 34.5 ± 10.5 years; 20 males) were assigned to the GG (n = 15) or ACG (n = 15). Fourteen patients in each group completed the trial. The LMR [median (range)] in GG and ACG at 2 months was 0.029 (0.006-0.090) and 0.033 (0.009-0.077), respectively, with P = 0.6133. IP normalized in 8 (57.1%) patients in each group (P = 1.000). The villous crypt ratio (VCR) [mean (SD)] in GG and ACG at 2 months was 2.68 (1.02) and 2.49 (0.67), respectively, (P = 0.347). At the end of 2 months LMR improved significantly in GG from 0.071 (0.041-0.254) to 0.029 (0.006-0.090) (P = 0.0012) and in ACG from 0.067 (0.040-0.136) to 0.033 (0.009-0.077) (P = 0.0063). VCR improved in the GG from 2.33 (0.77) to 2.68 (1.02) (P = 0.001), and in ACG from 2.26 (0.57) to 2.49 (0.67) (P = 0.009). CONCLUSIONS Intestinal permeability and morphology improved significantly in both glutamine and ACG.
Collapse
|
91
|
Rao R, Samak G. Role of Glutamine in Protection of Intestinal Epithelial Tight Junctions. ACTA ACUST UNITED AC 2012; 5:47-54. [PMID: 25810794 DOI: 10.2174/1875044301205010047] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Geetha Samak
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
92
|
Mok E, Hankard R. Glutamine supplementation in sick children: is it beneficial? J Nutr Metab 2011; 2011:617597. [PMID: 22175008 PMCID: PMC3228321 DOI: 10.1155/2011/617597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evidence is available on the benefits of Gln supplementation in pediatric patients. This includes premature infants, infants with gastrointestinal disease, children with Crohn's disease, short bowel syndrome, malnutrition/diarrhea, cancer, severe burns/trauma, Duchenne muscular dystrophy, sickle cell anemia, cystic fibrosis, and type 1 diabetes. Moreover, methodological issues have been noted in some studies. Further mechanistic data is needed along with large randomized controlled trials in select populations of sick children, who may eventually benefit from supplemental Gln.
Collapse
Affiliation(s)
- Elise Mok
- INSERM Centre D'Investigation Clinique 802, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers Cedex, France
| | | |
Collapse
|
93
|
Zhou X, Wu X, Yin Y, Zhang C, He L. Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats. Amino Acids 2011; 43:813-21. [PMID: 22068917 DOI: 10.1007/s00726-011-1137-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/22/2011] [Indexed: 02/07/2023]
Abstract
The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P < 0.05) in the jejunum and ileum induced by LPS challenge. LPS administration resulted in a significant increase in TNF-α, IL-1β, IL-6 and IL-10 mRNA abundance. Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Research Center for Healthy Breeding of Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
| | | | | | | | | |
Collapse
|
94
|
Lee JH. An update on necrotizing enterocolitis: pathogenesis and preventive strategies. KOREAN JOURNAL OF PEDIATRICS 2011; 54:368-72. [PMID: 22232629 PMCID: PMC3250602 DOI: 10.3345/kjp.2011.54.9.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/28/2011] [Indexed: 01/04/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most critical morbidities in preterm infants. The incidence of NEC is 7% in very-low-birth-weight infants, and its mortality is 15 to 30%. Infants who survive NEC have various complications, such as nosocomial infection, malnutrition, growth failure, bronchopulmonary dysplasia, retinopathy of prematurity, and neurodevelopmental delays. The most important etiology in the pathogenesis of NEC is structural and immunological intestinal immaturity. In preterm infants with immature gastrointestinal tracts, development of NEC may be associated with a variety of factors, such as colonization with pathogenic bacteria, secondary ischemia, genetic polymorphisms conferring NEC susceptibility, anemia with red blood cell transfusion, and sensitization to cow milk proteins. To date, a variety of preventive strategies has been accepted or attempted in clinical practice with regard to the pathogenesis of NEC. These strategies include the use of breast feeding, various feeding strategies, probiotics, prebiotics, glutamine and arginine, and lactoferrin. There is substantial evidence for the efficacy of breast feeding and the use of probiotics in infants with birth weights above 1,000 g, and these strategies are commonly used in clinical practice. Other preventive strategies, however, require further research to establish their effect on NEC.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
95
|
Tennoune N, Bertrand J, Goichon A, Déchelotte P, Coëffier M. Régulation du métabolisme protéique intestinal par les nutriments. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
96
|
Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011; 141:769-76. [PMID: 21430248 DOI: 10.3945/jn.110.135657] [Citation(s) in RCA: 813] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein structures comprised of transmembrane proteins, which interact with the actin cytoskeleton via plaque proteins. Signaling pathways involved in the assembly, disassembly, and maintenance of TJ are controlled by a number of signaling molecules, such as protein kinase C, mitogen-activated protein kinases, myosin light chain kinase, and Rho GTPases. The intestinal barrier is a complex environment exposed to many dietary components and many commensal bacteria. Studies have shown that the intestinal bacteria target various intracellular pathways, change the expression and distribution of TJ proteins, and thereby regulate intestinal barrier function. The presence of some commensal and probiotic strains leads to an increase in TJ proteins at the cell boundaries and in some cases prevents or reverses the adverse effects of pathogens. Various dietary components are also known to regulate epithelial permeability by modifying expression and localization of TJ proteins.
Collapse
Affiliation(s)
- Dulantha Ulluwishewa
- Food Nutrition Genomics Team, Agri-Foods and Health Section, Palmerston North 4442, New Zealand
| | | | | | | | | | | |
Collapse
|
97
|
Sevastiadou S, Malamitsi-Puchner A, Costalos C, Skouroliakou M, Briana DD, Antsaklis A, Roma-Giannikou E. The impact of oral glutamine supplementation on the intestinal permeability and incidence of necrotizing enterocolitis/septicemia in premature neonates. J Matern Fetal Neonatal Med 2011; 24:1294-300. [PMID: 21463215 DOI: 10.3109/14767058.2011.564240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To examine the impact of oral glutamine (Gln) supplementation on gut integrity and on the incidence of necrotizing enterocolitis (NEC)/septicemia of premature neonates. METHODS Preterm neonates (n = 101, gestational age <34 weeks, birth weight <2000 g) were randomly allocated to receive from day 3 to day 30 postpartum, either oral Gln (0.3 g/kg/day, n = 51-Gln group) or placebo (caloreen-isocaloric, n = 50-control group). Intestinal permeability was determined from the urinary lactulose/mannitol recovery (L/M ratio) following their oral administration and assessed at three time points: day 2 (before first administration), day 7 and day 30 of life. The incidence of NEC and septicemia over the study period was also recorded. RESULTS A decrease of lactulose recovery at days 7 (p = 0.001) and 30 (p < 0.001) and a decrease of L/M ratio at day 7 (p = 0.002) were observed only in the Gln group. Lactulose recovery and L/M ratio at day 7 (p = 0.022 and p = 0.004, respectively), as well as lactulose recovery (p = 0.001), mannitol recovery (p = 0.042), and L/M ratio (p = 0.001) at day 30, were decreased in the Gln group as compared to controls. NEC and septicemia were lower in the Gln group at the end of the first week (p = 0.009 and p = 0.041, respectively) and up to the end of the study (p < 0.001 and p = 0.048, respectively). CONCLUSION Oral Gln administration may have beneficial effects on intestinal integrity and the overall incidence of NEC/septicemia in preterm infants.
Collapse
Affiliation(s)
- Sofia Sevastiadou
- Department of Neonatology, Alexandra Regional General Hospital, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
98
|
Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem 2010; 22:401-8. [PMID: 21167699 DOI: 10.1016/j.jnutbio.2010.08.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 08/23/2010] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract provides a physical barrier to the diffusion of foreign materials from the lumen into the circulatory system. Impairment of the intercellular tight junction (TJ) shield, which is the major determinant of intestinal barrier function, is associated with various diseases. Dietary flavonoids demonstrate various beneficial effects on our health; however, the information regarding their effects on TJ function is quite limited. To date, four flavonoids - epigallocatechin gallate (EGCG), genistein, myricetin and quercetin - have been reported to exhibit promotive and protective effects on intestinal TJ barrier functions. Genistein, a major soybean isoflavone, protects TJ barrier function against oxidative stress, acetaldehyde, enteric bacteria and inflammatory cytokines. Genistein blocks the tyrosine phosphorylation of the TJ proteins induced by oxidative stress and acetaldehyde, which results in the disassembly of the proteins from the junctional complex. Quercetin, a flavonol, enhances intestinal TJ barrier function through the assembly and expression of TJ proteins. The change in phosphorylation status is responsible for the quercetin-mediated assembly of TJ proteins. TJ protein induction has an additional role in this effect. This review presents the recent advances in our understanding of the flavonoid-mediated promotive and protective effects on intestinal TJ barrier function with a particular focus on intracellular molecular mechanisms.
Collapse
Affiliation(s)
- Takuya Suzuki
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | |
Collapse
|
99
|
Boukhettala N, Claeyssens S, Bensifi M, Maurer B, Abed J, Lavoinne A, Déchelotte P, Coëffier M. Effects of essential amino acids or glutamine deprivation on intestinal permeability and protein synthesis in HCT-8 cells: involvement of GCN2 and mTOR pathways. Amino Acids 2010; 42:375-83. [DOI: 10.1007/s00726-010-0814-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/16/2010] [Indexed: 01/03/2023]
|
100
|
Biazik JM, Jahn KA, Su Y, Wu YN, Braet F. Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World J Gastroenterol 2010; 16:2743-53. [PMID: 20533594 PMCID: PMC2883130 DOI: 10.3748/wjg.v16.i22.2743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterise differences between three widely used colorectal cancer cell lines using ultrastructural selective staining for glycogen to determine variation in metastatic properties.
METHODS: Transmission electron microscopy was used in this investigation to help identify intracellular structures and morphological features which are precursors of tumor invasion. In addition to morphological markers, we used selective staining of glycogen as a marker for neoplastic cellular proliferation and determined whether levels of glycogen change between the three different cell lines.
RESULTS: Ultrastructural analysis revealed morphological differences between the cell lines, as well as differentiation into two sub-populations within each cell line. Caco-2 cells contained large glycogen deposits as well as showing the most obvious morphological changes between the two sub-populations. SW480 cells also contained large glycogen stores as well as deep cellular protrusions when grown on porous filter membranes. HT-29 cells had trace amounts of glycogen stores with few cellular projections into the filter pores and no tight junction formation.
CONCLUSION: Morphology indicative of metastatic properties coincided with larger glycogen deposits, providing strong evidence for the use of selective staining to determine the neoplastic properties of cells.
Collapse
|