51
|
Nascimento DDC, Rolnick N, Neto IVDS, Severin R, Beal FLR. A Useful Blood Flow Restriction Training Risk Stratification for Exercise and Rehabilitation. Front Physiol 2022; 13:808622. [PMID: 35360229 PMCID: PMC8963452 DOI: 10.3389/fphys.2022.808622] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Blood flow restriction training (BFRT) is a modality with growing interest in the last decade and has been recognized as a critical tool in rehabilitation medicine, athletic and clinical populations. Besides its potential for positive benefits, BFRT has the capability to induce adverse responses. BFRT may evoke increased blood pressure, abnormal cardiovascular responses and impact vascular health. Furthermore, some important concerns with the use of BFRT exists for individuals with established cardiovascular disease (e.g., hypertension, diabetes mellitus, and chronic kidney disease patients). In addition, considering the potential risks of thrombosis promoted by BFRT in medically compromised populations, BFRT use warrants caution for patients that already display impaired blood coagulability, loss of antithrombotic mechanisms in the vessel wall, and stasis caused by immobility (e.g., COVID-19 patients, diabetes mellitus, hypertension, chronic kidney disease, cardiovascular disease, orthopedic post-surgery, anabolic steroid and ergogenic substance users, rheumatoid arthritis, and pregnant/postpartum women). To avoid untoward outcomes and ensure that BFRT is properly used, efficacy endpoints such as a questionnaire for risk stratification involving a review of the patient's medical history, signs, and symptoms indicative of underlying pathology is strongly advised. Here we present a model for BFRT pre-participation screening to theoretically reduce risk by excluding people with comorbidities or medically complex histories that could unnecessarily heighten intra- and/or post-exercise occurrence of adverse events. We propose this risk stratification tool as a framework to allow clinicians to use their knowledge, skills and expertise to assess and manage any risks related to the delivery of an appropriate BFRT exercise program. The questionnaires for risk stratification are adapted to guide clinicians for the referral, assessment, and suggestion of other modalities/approaches if/when necessary. Finally, the risk stratification might serve as a guideline for clinical protocols and future randomized controlled trial studies.
Collapse
Affiliation(s)
- Dahan da Cunha Nascimento
- Department of Physical Education, Catholic University of Brasília (UCB), Brasília, Brazil
- Department of Gerontology, Catholic University of Brasília (UCB), Brasília, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasília, Brasília, Brazil
| | - Richard Severin
- Department of Physical Therapy, College of Applied Health Sciences, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physical Therapy, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, United States
| | - Fabiani Lage Rodrigues Beal
- Department of Gerontology, Catholic University of Brasília (UCB), Brasília, Brazil
- Department of Nutrition, Health and Medicine School, Catholic University of Brasília (UCB), Brasília, Brazil
| |
Collapse
|
52
|
Hughes L, Hackney KJ, Patterson SD. Optimization of Exercise Countermeasures to Spaceflight Using Blood Flow Restriction. Aerosp Med Hum Perform 2022; 93:32-45. [PMID: 35063054 DOI: 10.3357/amhp.5855.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION: During spaceflight missions, astronauts work in an extreme environment with several hazards to physical health and performance. Exposure to microgravity results in remarkable deconditioning of several physiological systems, leading to impaired physical condition and human performance, posing a major risk to overall mission success and crew safety. Physical exercise is the cornerstone of strategies to mitigate physical deconditioning during spaceflight. Decades of research have enabled development of more optimal exercise strategies and equipment onboard the International Space Station. However, the effects of microgravity cannot be completely ameliorated with current exercise countermeasures. Moreover, future spaceflight missions deeper into space require a new generation of spacecraft, which will place yet more constraints on the use of exercise by limiting the amount, size, and weight of exercise equipment and the time available for exercise. Space agencies are exploring ways to optimize exercise countermeasures for spaceflight, specifically exercise strategies that are more efficient, require less equipment, and are less time-consuming. Blood flow restriction exercise is a low intensity exercise strategy that requires minimal equipment and can elicit positive training benefits across multiple physiological systems. This method of exercise training has potential as a strategy to optimize exercise countermeasures during spaceflight and reconditioning in terrestrial and partial gravity environments. The possible applications of blood flow restriction exercise during spaceflight are discussed herein.Hughes L, Hackney KJ, Patterson SD. Optimization of exercise countermeasures to spaceflight using blood flow restriction. Aerosp Med Hum Perform. 2021; 93(1):32-45.
Collapse
|
53
|
Freitas EDS, Karabulut M, Bemben MG. The Evolution of Blood Flow Restricted Exercise. Front Physiol 2021; 12:747759. [PMID: 34925056 PMCID: PMC8674694 DOI: 10.3389/fphys.2021.747759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The use of blood flow restricted (BFR) exercise has become an accepted alternative approach to improve skeletal muscle mass and function and improve cardiovascular function in individuals that are not able to or do not wish to use traditional exercise protocols that rely on heavy loads and high training volumes. BFR exercise involves the reduction of blood flow to working skeletal muscle by applying a flexible cuff to the most proximal portions of a person’s arms or legs that results in decreased arterial flow to the exercising muscle and occluded venous return back to the central circulation. Safety concerns, especially related to the cardiovascular system, have not been consistently reported with a few exceptions; however, most researchers agree that BFR exercise can be a relatively safe technique for most people that are free from serious cardiovascular disease, as well as those with coronary artery disease, and also for people suffering from chronic conditions, such as multiple sclerosis, Parkinson’s, and osteoarthritis. Potential mechanisms to explain the benefits of BFR exercise are still mostly speculative and may require more invasive studies or the use of animal models to fully explore mechanisms of adaptation. The setting of absolute resistive pressures has evolved, from being based on an individual’s systolic blood pressure to a relative measure that is based on various percentages of the pressures needed to totally occlude blood flow in the exercising limb. However, since several other issues remain unresolved, such as the actual external loads used in combination with BFR, the type of cuff used to induce the blood flow restriction, and whether the restriction is continuous or intermittent, this paper will attempt to address these additional concerns.
Collapse
Affiliation(s)
- Eduardo D S Freitas
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Murat Karabulut
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
54
|
Suga T, Dora K, Mok E, Sugimoto T, Tomoo K, Takada S, Hashimoto T, Isaka T. Exercise adherence-related perceptual responses to low-load blood flow restriction resistance exercise in young adults: A pilot study. Physiol Rep 2021; 9:e15122. [PMID: 34877802 PMCID: PMC8652406 DOI: 10.14814/phy2.15122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Resistance exercise (RE) with blood flow restriction (BFR) is recognized as a beneficial strategy in increasing skeletal muscle mass and strength. However, the effects of BFR on changes in perceptual parameters, particularly those related to exercise adherence, induced by RE are not completely understood. In this study, we examined the exercise adherence-related perceptual responses to low-load BFR-RE. Sixteen young males performed both BFR and non-BFR (NBFR) sessions in a crossover design. The bilateral knee extensor low-load RE was performed with a standard BFR-RE protocol, consisting of four sets (total 75 repetitions), using 20% of one-repetition maximum. BFR-RE was performed with 200 mmHg pressure cuffs placed around the proximal region of the thighs. NBFR-RE was performed without pressure cuffs. The ratings of perceived exertion and leg discomfort measured using the Borg's Scales were higher for BFR-RE session than for NBFR-RE session (both p < 0.001 for interaction effect). The Feeling Scale-measured affect and Task Motivation Scale-measured task motivation were lower for BFR-RE session than for NBFR-RE session (both p < 0.05 for interaction effect); by contrast, the Numerical Rating Scale-measured perceived pain was higher for BFR-RE session than for NBFR-RE session (p < 0.001 for interaction effect). The Physical Activity Enjoyment Scale-measured enjoyment immediately after RE was lower with BFR than with NBFR (p < 0.001). These findings suggest that BFR exacerbates the exercise adherence-related perceptual responses to low-load RE in young males. Therefore, further studies are needed to develop effective strategies that minimize the BFR-RE-induced negative effects on perceptual responses.
Collapse
Affiliation(s)
- Tadashi Suga
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
- Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuShigaJapan
| | - Kento Dora
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Ernest Mok
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Takeshi Sugimoto
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Keigo Tomoo
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Shingo Takada
- Faculty of Lifelong Sport, Department of Sports EducationHokusho UniversityEbetsuHokkaidoJapan
| | - Takeshi Hashimoto
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Tadao Isaka
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
55
|
Sardeli A, Ferreira M, Santos L, Cavaglieri C, Chacon-Mikahil M. Cardiovascular responses during and after aerobic and strength exercises with blood flow restriction in older adults. Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
56
|
Andrade DC, Melipillan C, Toledo C, Rios-Gallardo A, Marcus NJ, Ortiz FC, Martinez G, Muñoz Venturelli P, Del Rio R. Heart rate and cardiac autonomic responses to concomitant deep breathing, hand grip exercise, and circulatory occlusion in healthy young adult men and women. Biol Res 2021; 54:32. [PMID: 34565477 PMCID: PMC8474820 DOI: 10.1186/s40659-021-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep breathing (DB) and handgrip (HG) exercise -with and without circulatory occlusion (OC) in muscle-, have been shown to have beneficial effects on cardiovascular function; however, the combination of these maneuvers on heart rate (HR) and cardiac sympathovagal balance have not been previously investigated. Therefore, the aim of the present study was to evaluate the effect of simultaneous DB, HG, and OC maneuvers on the sympathovagal balance in healthy women and men subjects. METHODS AND RESULTS Electrocardiogram and ventilation were measured in 20 healthy subjects (Women: n = 10; age = 27 ± 4 years; weight = 67.1 ± 8.4 kg; and height = 1.6 ± 0.1 m. Men: n = 10; age = 27 ± 3 years; weight = 77.5 ± 10.1 kg; and height = 1.7 ± 0.1 m) at baseline and during DB, DB + HG, or DB + HG + OC protocols. Heart rate (HR) and respiratory rate were continuously recorded, and spectral analysis of heart rate variability (HRV) were calculated to indirectly estimate cardiac autonomic function. Men and women showed similar HR responses to DB, DB + HG and DB + HG + OC. Men exhibited a significant HR decrease following DB + HG + OC protocol which was accompanied by an improvement in cardiac autonomic control evidenced by spectral changes in HRV towards parasympathetic predominance (HRV High frequency: 83.95 ± 1.45 vs. 81.87 ± 1.50 n.u., DB + HG + OC vs. baseline; p < 0.05). In women, there was a marked decrease in HR after completion of both DB + HG and DB + HG + OC tests which was accompanied by a significant increase in cardiac vagal tone (HRV High frequency: 85.29 ± 1.19 vs. 77.93 ± 0.92 n.u., DB + HG vs. baseline; p < 0.05). No adverse effects or discomfort were reported by men or women during experimental procedures. Independent of sex, combination of DB, HG, and OC was tolerable and resulted in decreases in resting HR and elevations in cardiac parasympathetic tone. CONCLUSIONS These data indicate that combined DB, HG and OC are effective in altering cardiac sympathovagal balance and reducing resting HR in healthy men and women.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología Y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Melipillan
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Corporación de Rehabilitación Club de Leones Cruz del Sur, Punta Arenas, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Noah J Marcus
- Dept. of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Gonzalo Martinez
- Division of Cardiovascular Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias E Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,Centro de Envejecimiento Y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
57
|
Fashi M, Ahmadizad S. Short-term hypoxic resistance training improves muscular performance in untrained males. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
58
|
Noyes FR, Barber-Westin SD, Sipes L. Blood Flow Restriction Training Can Improve Peak Torque Strength in Chronic Atrophic Postoperative Quadriceps and Hamstrings Muscles. Arthroscopy 2021; 37:2860-2869. [PMID: 33812031 DOI: 10.1016/j.arthro.2021.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To report a prospective study of patients who underwent blood flow restriction training (BFRT) for marked quadriceps or hamstring muscle deficits after failure to respond to traditional rehabilitation after knee surgery. METHODS The BFRT protocol consisted of 4 low resistance exercises (30% of 1 repetition maximum): leg press, knee extension, mini-squats, and hamstring curls with 60% to 80% limb arterial occlusion pressure. Knee peak isometric muscle torque (60° flexion) was measured on an isokinetic dynamometer. RESULTS Twenty-seven patients (18 females, 9 males; mean age, 40.1 years) with severe quadriceps and/or hamstrings deficits were enrolled from April 2017 to January 2020. They had undergone a mean of 5.3 ± 3.5 months of outpatient therapy and 22 ± 10 supervised therapy visits and did not respond to traditional rehabilitation. Prior surgery included anterior cruciate ligament reconstruction, partial or total knee replacements, meniscus repairs, and others. All patients completed 9 BFRT sessions, and 14 patients completed 18 sessions. The mean quadriceps and hamstrings torque deficits before BFRT were 43% ± 16% and 38% ± 14%, respectively. After 9 BFRT sessions, statistically significant improvements were found in muscle peak torque deficits for the quadriceps (P = .003) and hamstring (P = .02), with continued improvements after 18 sessions (P = .004 and P = .002, respectively). After 18 BFRT sessions, the peak quadriceps and hamstring peak torques increased > 20% in 86% and 76% of the patients, respectively. The failure rate of achieving this improvement in peak quadriceps and hamstring torque after 18 BFRT sessions was 14% and 24%, respectively. CONCLUSIONS BFRT produced statistically significant improvements in peak quadriceps and hamstring torque measurements after 9 and 18 sessions in a majority of patients with severe quadriceps and hamstring strength deficits that had failed to respond to many months of standard and monitored postoperative rehabilitation. LEVEL OF EVIDENCE Level IV therapeutic case series.
Collapse
Affiliation(s)
- Frank R Noyes
- Cincinnati SportsMedicine & Orthopaedic Center, Cincinnati, Ohio, U.S.A.; Mercy Health, Cincinnati, Ohio, U.S.A.; Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A.; Noyes Knee Institute, Cincinnati, Ohio, U.S.A
| | | | | |
Collapse
|
59
|
Differences in Femoral Artery Occlusion Pressure between Sexes and Dominant and Non-Dominant Legs. ACTA ACUST UNITED AC 2021; 57:medicina57090863. [PMID: 34577785 PMCID: PMC8471356 DOI: 10.3390/medicina57090863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Blood flow restriction during low-load exercise stimulates similar muscle adaptations to those normally observed with higher loads. Differences in the arterial occlusion pressure (AOP) between limbs and between sexes are unclear. We compared the AOP of the superficial femoral artery in the dominant and non-dominant legs, and the relationship between blood flow and occlusion pressure in 35 (16 males, 19 females) young adults. Materials and Methods: Using ultrasound, we measured the AOP of the superficial femoral artery in both legs. Blood flow at occlusion pressures ranging from 0% to 100% of the AOP was measured in the dominant leg. Results: There was a significant difference in the AOP between males and females in the dominant (230 ± 41 vs. 191 ± 27 mmHg; p = 0.002) and non-dominant (209 ± 37 vs. 178 ± 21 mmHg; p = 0.004) legs, and between the dominant and non-dominant legs in males (230 ± 41 vs. 209 ± 37 mmHg; p = 0.009) but not females (191 ± 27 vs. 178 ± 21 mmHg; p = 0.053), respectively. Leg circumference was the most influential independent predictor of the AOP. There was a linear relationship between blood flow (expressed as a percentage of unoccluded blood flow) and occlusion pressure (expressed as a percentage of AOP). Conclusions: Arterial occlusion pressure is not always greater in the dominant leg or the larger leg. Practitioners should measure AOP in both limbs to determine if occlusion pressures used during exercise should be limb specific. Occlusion pressures used during blood flow restriction exercise should be chosen carefully.
Collapse
|
60
|
Rolnick N, Kimbrell K, Cerqueira MS, Weatherford B, Brandner C. Perceived Barriers to Blood Flow Restriction Training. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:697082. [PMID: 36188864 PMCID: PMC9397924 DOI: 10.3389/fresc.2021.697082] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Blood flow restriction (BFR) training is increasing in popularity in the fitness and rehabilitation settings due to its role in optimizing muscle mass and strength as well as cardiovascular capacity, function, and a host of other benefits. However, despite the interest in this area of research, there are likely some perceived barriers that practitioners must overcome to effectively implement this modality into practice. These barriers include determining BFR training pressures, access to appropriate BFR training technologies for relevant demographics based on the current evidence, a comprehensive and systematic approach to medical screening for safe practice and strategies to mitigate excessive perceptual demands of BFR training to foster long-term compliance. This manuscript attempts to discuss each of these barriers and provides evidence-based strategies and direction to guide clinical practice and future research.
Collapse
Affiliation(s)
- Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States
- *Correspondence: Nicholas Rolnick
| | - Kyle Kimbrell
- Owens Recovery Science, San Antonio, TX, United States
| | - Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory, Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | | |
Collapse
|
61
|
Cardiac autonomic response to aerobic exercise with different levels of blood flow restriction in pre-hypertensive men. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
62
|
de Queiros VS, Dantas M, Neto GR, da Silva LF, Assis MG, Almeida-Neto PF, Dantas PMS, Cabral BGDAT. Application and side effects of blood flow restriction technique: A cross-sectional questionnaire survey of professionals. Medicine (Baltimore) 2021; 100:e25794. [PMID: 33950976 PMCID: PMC8104249 DOI: 10.1097/md.0000000000025794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/15/2021] [Indexed: 01/04/2023] Open
Abstract
The physiological benefits of applying blood flow restriction (BFR) in isolation or in the presence of physical exercise have been widely documented in the scientific literature. Most investigations carried out under controlled laboratory conditions have found the technique to be safe. However, few studies have analyzed the use of the technique in clinical settings.To analyze how the BFR technique has been applied by professionals working in the clinical area and the prevalence of side effects (SEs) resulting from the use of this technique.This is a cross-sectional study. A total of 136 Brazilian professionals who perform some function related to physical rehabilitation, sports science, or physical conditioning participated in this study. Participants answered a self-administered online questionnaire consisting of 21 questions related to the professional profile and methodological aspects and SEs of the BFR technique.Professionals reported applying the BFR technique on individuals from different age groups from youth (≤18 years; 3.5%) to older adults (60-80 years; 30.7%), but mainly on people within the age group of 20 to 29 years (74.6%). A total of 99.1% of the professionals coupled the BFR technique with resistance exercise. Their main goals were muscle hypertrophy and physical rehabilitation. The majority (60.9%) of interviewees reported using BFR in durations of less than 5 minutes and the pressure used was mainly determined through the values of brachial blood pressure and arterial occlusion. Moreover, 92% of professionals declared observing at least 1 SE resulting from the BFR technique. Most professionals observed tingling (71.2%) and delayed onset of muscle soreness (55.8%). Rhabdomyolysis, fainting, and subcutaneous hemorrhaging were reported less frequently (1.9%, 3.8%, and 4.8%, respectively).Our findings indicate that the prescription of blood flow restriction technique results in minimal serious side effects when it is done in a proper clinical environment and follows the proposed recommendations found in relevant scientific literature.
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Master of Science in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte
| | - Matheus Dantas
- Master of Science in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte
| | - Gabriel Rodrigues Neto
- Professional Master's in Family Health/Physical Education Coordination/Physiotherapy Coordination, Faculties of Nursing and Medicine Nova Esperança (FACENE/FAMENE), João Pessoa
| | - Luiz Felipe da Silva
- Master of Science in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte
| | - Marina Gonçalves Assis
- Bachelor of Science in Physical Education, Unifacisa University Center (UNIFACISA), Campina Grande, Paraíba, Brazil
| | - Paulo Francisco Almeida-Neto
- Master of Science in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte
| | - Paulo Moreira Silva Dantas
- Master of Science in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte
| | | |
Collapse
|
63
|
Cherouveim ED, Miliotis P, Dipla K, Koskolou MD, Vrabas IS, Geladas ND. The effect of muscle blood flow restriction on hemodynamics, cerebral oxygenation and activation at rest. Appl Physiol Nutr Metab 2021; 46:1216-1224. [PMID: 33951406 DOI: 10.1139/apnm-2020-1082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that muscle blood flow restriction reduces muscle and cerebral oxygenation, at rest. In 26 healthy males, aged 33±2 yrs, physiological variables were continuously recorded during a 10-min period in two experimental conditions: a) with muscle blood flow restriction through thigh cuffs application inflated at 120 mmHg (With Cuffs, WC) and b) without restriction (No Cuffs, NC). Muscle and cerebral oxygenation were reduced by muscle blood flow restriction as suggested by the increase in both muscle and cerebral deoxygenated hemoglobin (Δ[HHb]; p<0.01) and the decrease of muscle and cerebral oxygenation index (Δ[HbDiff]; p<0.01). Hemodynamic responses were not affected by such muscle blood flow restriction, whereas baroreflex sensitivity was reduced (p=0.009). The perception of leg discomfort was higher (p<0.001) in the WC than in the NC condition. This study suggests that thigh cuffs application inflated at 120 mmHg is an effective method to reduce muscle oxygenation at rest. These changes at the muscular level seem to be sensed by the central nervous system, evoking alterations in cerebral oxygenation and baroreflex sensitivity. Novelty bullets: • Thigh cuffs application inflated at 120 mmHg effectively reduces muscle oxygenation at rest. • Limiting muscle oxygenation appears to reduce cerebral oxygenation, and baroreflex sensitivity, at rest. • Even in healthy subjects, limiting muscle oxygenation, at rest, affects neural integration.
Collapse
Affiliation(s)
- Evgenia D Cherouveim
- National and Kapodistrian University of Athens, 68993, School of Physical Education and Sport Science, Athens, Attica, Greece;
| | - Panagiotis Miliotis
- National and Kapodistrian University of Athens, 68993, School of Physical Education and Sport Science, Athens, Attica, Greece;
| | - Konstantina Dipla
- Aristotle University of Thessaloniki, Department of Physical Education and Sport Sciences at Serres (TEFAA), Exercise Physiology and Biochemistry Laboratory, Serres, Greece, 62110;
| | - Maria D Koskolou
- National and Kapodistrian University of Athens, 68993, School of Physical Education and Sport Science, Athens, Attica, Greece;
| | | | - Nickos D Geladas
- National and Kapodistrian University of Athens, 68993, School of Physical Education and Sport Science, Athens, Attica, Greece;
| |
Collapse
|
64
|
Kambic T, Jug B, Lainscak M. Response: Commentary: Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2021; 12:665568. [PMID: 33868031 PMCID: PMC8044887 DOI: 10.3389/fphys.2021.665568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tim Kambic
- Cardiac Rehabilitation Unit, Department of Research and Education, General Hospital Murska Sobota, Murska Sobota, Slovenia
| | - Borut Jug
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mitja Lainscak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
65
|
Preobrazenski N, Islam H, Gurd BJ. Molecular regulation of skeletal muscle mitochondrial biogenesis following blood flow-restricted aerobic exercise: a call to action. Eur J Appl Physiol 2021; 121:1835-1847. [PMID: 33830325 DOI: 10.1007/s00421-021-04669-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Blood flow-restricted (BFR) exercise can induce training adaptations comparable to those observed following training in free flow conditions. However, little is known about the acute responses within skeletal muscle following BFR aerobic exercise (AE). Moreover, although preliminary evidence suggests chronic BFR AE may augment certain training adaptations in skeletal muscle mitochondria more than non-BFR AE, the underlying mechanisms are poorly understood. In this review, we summarise the acute BFR AE literature examining mitochondrial biogenic signalling pathways and provide insight into mechanisms linked to skeletal muscle remodelling following BFR AE. Specifically, we focus on signalling pathways potentially contributing to augmented peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA following work-rate-matched BFR AE compared with non-BFR AE. We present evidence suggesting reductions in muscle oxygenation during acute BFR AE lead to increased intracellular energetic stress, AMP-activated protein kinase (AMPK) activation and PGC-1α mRNA. In addition, we briefly discuss mitochondrial adaptations to BFR aerobic training, and we assess the risk of bias using the Cochrane Collaboration risk of bias assessment tool. We ultimately call for several straightforward modifications to help minimise bias in future BFR AE studies.
Collapse
Affiliation(s)
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
66
|
Lopes KG, Farinatti P, Bottino DA, DE Souza MDASGC, Maranhão PA, Bouskela E, Lourenço RA, DE Oliveira RB. Does Resistance Training with Blood Flow Restriction Affect Blood Pressure and Cardiac Autonomic Modulation in Older Adults? INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2021; 14:410-422. [PMID: 34055161 PMCID: PMC8136558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Resistance training (RT) with blood flow restriction (BFR) appears to accelerate muscle hypertrophy and strength gains in older populations. However, the training-related effects of RT with BFR upon blood pressure (BP) and cardiac autonomic modulation in the elderly remains unclear. The objective of this study is to compare the chronic effects of low-intensity RT performed with soft BFR (BFR) vs. high-intensity (HI) and low-intensity RT (CON) without BFR on BP and heart rate variability (HRV) indices in older adults. Thirty-two physically inactive participants (72 ± 7 yrs) performed RT for upper and lower limbs (50-min sessions, 3 times/week) for 12 weeks, being assigned into three groups: a) BFR; 30% of 1 repetition maximum (RM) with BFR corresponding to 50% of arterial occlusion pressure; b) HI; 70% of 1RM without BFR; c) CON; 30% of 1 RM without BFR. Resting BP and HRV were assessed at rest in the supine position, before and after exercise interventions. Systolic BP (Δ = -7.9 ± 8.0 mmHg; p = 0.002; effect size = 0.62), diastolic BP (Δ = trace length by the duration of the test 5.0 ± 6.0 mmHg; p = 0.007; effect size = 0.67) and mean arterial pressure (Δ = -6.3 ± 6.5 mmHg; p = 0.003/effect size = 0.77) reduced after BFR, remaining unaltered in HI and CON. HRV indices of sympathetic and vagal modulation did not change in all groups (p ≥ 0.07 for all comparisons). 12-wk RT with low intensity and relatively soft BFR substantially reduced BP at rest in older adults vs. traditional RT performed with either low or high intensity. Those reductions were not parallel to changes in autonomic modulation.
Collapse
Affiliation(s)
- Karynne Grutter Lopes
- Graduate Program in Clinical and Experimental Physiopathology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, Brazil
- Graduate Program in Exercise and Sport Sciences, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Daniel Alexandre Bottino
- Graduate Program in Clinical and Experimental Physiopathology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Maria DAS Graças Coelho DE Souza
- Graduate Program in Clinical and Experimental Physiopathology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Priscila Alves Maranhão
- Laboratory for Clinical and Experimental Research on Vascular Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Eliete Bouskela
- Graduate Program in Clinical and Experimental Physiopathology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Laboratory for Clinical and Experimental Research on Vascular Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Roberto Alves Lourenço
- Research Laboratory on Human Aging, Internal Medicine Department, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Ricardo Brandão DE Oliveira
- Graduate Program in Clinical and Experimental Physiopathology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- Graduate Program in Exercise and Sport Sciences, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
67
|
Wu L, Shi P, Yu H. Exercise-related blood pressure response is related to autonomic modulation in young adults: A new extension study. Technol Health Care 2021; 29:367-376. [PMID: 33682774 PMCID: PMC8150602 DOI: 10.3233/thc-218035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND: The delayed blood pressure recovery (BPR) at post-exercise has been in association with a major risk of cardiovascular disease and death. OBJECTIVE: The study focused on evaluating the systolic and diastolic blood pressure recovery (SBPR, DBPR) and the autonomic modulation following treadmill exercise in healthy young adults. Although considerable literature had been published about BPR and HRV, the association between BPR and ultra-short-term HRV has not yet been completely described. METHODS: Fifteen subjects performed exercise with three different intensities on a treadmill, the speed was 6 km/h, 9 km/h, 12 km/h, respectively. SBP and DBP was measured per 30 s in each trial. The synchronous 5-min electrocardiogram (ECG) signals were recorded and HRV30s parameters including SDNN30s, RMSSD30s, SDNN30s/RMSSD30s, SD130s, SD230s and SD130s/SD230s were calculated every 30 s periods in 5 min ECG signals to match the corresponding BPR. RESULTS: The intraclass correlation coefficient (ICC) values and the Bland-Altman plots indicated good consistency and repeatability between HRV30s and HRV5min at three post-exercise trials, with most ICC values > 0.75. Besides, SBPR and DBPR generally decreased and returned to the Rest level in 5 mins. The Spearman correlation coefficients showed strong relationships between BPR and HRV30s sympathetic-vagal balance parameters, i.e., ratio SDNN/RMSSD and ratio SD1/SD2. CONCLUSIONS: These observations represented a new insight into the cardiovascular regulation at post-exercise, which could contribute to physical exercise areas in the future.
Collapse
Affiliation(s)
| | - Ping Shi
- Corresponding author: Ping Shi, Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China. Tel.: +86 15871374614; E-mail:
| | | |
Collapse
|
68
|
Liu Y, Jiang N, Pang F, Chen T. Resistance Training with Blood Flow Restriction on Vascular Function: A Meta-analysis. Int J Sports Med 2021; 42:577-587. [PMID: 33735919 DOI: 10.1055/a-1386-4846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this meta-analysis, the aims were to examine the effects of resistance training with and without blood flow restriction on vascular function. Five databases were searched up to June 2020 for papers about resistance training with blood flow restriction influence on vascular function. The quality of each identified study was evaluated. Effect sizes were estimated in terms of the standardized mean difference. A subgroup analysis was conducted according to participants' age, training duration, and cuff pressure. The results of six studies on arterial compliance and five on vascular function were highly homogenous regarding responses to resistance training with or without blood flow restriction. Resistance training with blood flow restriction had a more positive effect for regulating arterial compliance than resistance training without blood flow restriction, but not for vascular function. Resistance training with blood flow restriction leads to a more positive effect on vascular function than resistance training when training for no longer than four weeks.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Physical Education, Jiangsu Normal University, Xuzhou, China
| | - Ning Jiang
- Department of Orthopedics, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangfang Pang
- Department of Emergency, Haigang Hospital of Yantai City, Yantai, China
| | - Tong Chen
- Department of Marxism Studies, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
69
|
Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T. Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control. Heliyon 2021; 7:e06261. [PMID: 33665431 PMCID: PMC7903307 DOI: 10.1016/j.heliyon.2021.e06261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background The extremely low loads (e.g., <30% of one-repetition maximum) involved in performing resistance exercise are effective in preventing musculoskeletal injury and enhancing exercise adherence in various populations, especially older individuals and patients with chronic diseases. Nevertheless, long-term intervention using this type of protocol is known to have little effects on muscle size and strength adaptations. Despite this knowledge, very low-intensity resistance exercise (VLRE) with slow movement and tonic force generation (ST) significantly increases muscle size and strength. To further explore efficacy of ST-VLRE in the clinical setting, this study examined the effect of ST-VLRE on post-exercise inhibitory control (IC). Methods Twenty healthy, young males (age: 21 ± 0 years, body height: 173.4 ± 1.2 cm, body weight: 67.4 ± 2.2 kg) performed both ST-VLRE and normal VLRE in a crossover design. The load for both protocols was set at 30% of one-repetition maximum. Both protocols were programmed with bilateral knee extension for six sets with ten repetitions per set. The ST-VLRE and VLRE were performed with slow (3-sec concentric, 3-sec eccentric, and 1-sec isometric actions with no rest between each repetition) and normal contractile speeds (1-sec concentric and 1-sec eccentric actions and 1-sec rests between each repetition), respectively. IC was assessed using the color-word Stroop task at six time points: baseline, pre-exercise, immediate post-exercise, and every 10 min during the 30-min post-exercise recovery period. Results The reverse-Stroop interference score, a parameter of IC, significantly decreased immediately after both ST-VLRE and VLRE compared to that before each exercise (decreasing rate >32 and 25%, respectively, vs. baseline and/or pre-exercise for both protocols; all Ps < 0.05). The improved IC following ST-VLRE, but not following VLRE, remained significant until the 20-min post-exercise recovery period (decreasing rate >48% vs. baseline and pre-exercise; both Ps < 0.001). The degree of post-exercise IC improvements was significantly higher for ST-VLRE than for VLRE (P = 0.010 for condition × time interaction effect). Conclusions These findings suggest that ST-VLRE can improve post-exercise IC effectively. Therefore, ST-VLRE may be an effective resistance exercise protocol for improving cognitive function.
Collapse
Affiliation(s)
- Kento Dora
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Keigo Tomoo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ernest Mok
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hayato Tsukamoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shingo Takada
- Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Hokkaido, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
70
|
Cohen ET, Cleffi N, Ingersoll M, Karpatkin HI. Blood-Flow Restriction Training for a Person With Primary Progressive Multiple Sclerosis: A Case Report. Phys Ther 2021; 101:6044313. [PMID: 33351952 DOI: 10.1093/ptj/pzaa224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Blood flow restriction (BFR) training, in which an inflatable cuff partially occludes blood flow around the proximal portion of a limb, coupled with low-intensity resistance training (LIRT) has resulted in gains comparable with traditional progressive resistive exercise in healthy populations. The use of BFR with LIRT may enable people with multiple sclerosis (MS) to improve strength without an increase in fatigue. The purpose of this case report is to describe the use of a BFR/LIRT program for a person with MS. METHODS The patient was a 54-year-old woman with a 13-year history of primary progressive MS with an Extended Disability Severity Score of 3.0 out of 10. She received a BFR/LIRT program for both lower extremities biweekly for 12 weeks. Outcomes measured at baseline and at 6 and 12 weeks included the 12-item Multiple Sclerosis Walking Scale (MSWS-12), Fatigue Severity Scale, Patient-Specific Functional Scale (PSFS) (goals: running for exercise and pleasure for 45 minutes, 100% confidence in negotiating a flight of stairs, confidently and safely drive without restriction), and 14 lower extremity strength tests. RESULTS The intervention was well tolerated without adverse events. After 6 weeks, the MSWS-12 score improved; however, it did not exceed minimum detectable change (MDC). Fatigue Severity Scale was unchanged. All PSFS goals improved beyond MDC, and improvements in strength exceeded MDC in 2 out of 14 tests. After 12 weeks, MSWS-12 improvements persisted and the Fatigue Severity Scale score improved, but neither exceeded MDC. The PSFS improvements persisted. There were improvements exceeding MDC for 8 out of 14 strength tests. The remaining 6 strength tests improved but did not exceed MDC. CONCLUSION The patient had measurable improvements following the use of a BFR/LIRT program. BFR/LIRT may be an option for strength training in people with MS; however, research is needed to determine its safety and effectiveness across the population of people with MS. IMPACT Traditional physical therapist interventions for people with MS have been shown to be beneficial; however, their usefulness has been limited by fatigue. A growing body of literature has demonstrated the effects of a BFR/LIRT program on strength and other measures of physical function in healthy populations and those with chronic disease. This case report adds missing information to the existing literature and suggests directions for research on the effectiveness of BFR/LIRT in people with primary progressive MS. LAY SUMMARY Blood flow restriction, which has been used to help improve strength in healthy adults and in some people with chronic disease, applies pressure around the arm or leg to limit the flow of blood to that body part during exercise, helping to reduce fatigue. Blood flow restriction coupled with low-intensity strengthening exercises can be used for a person with MS.
Collapse
Affiliation(s)
- Evan T Cohen
- Rutgers, The State University of New Jersey, Blackwood, New Jersey, USA
| | - Nicole Cleffi
- RWJ Sports Physical Therapy, Princeton, New Jersey, USA
| | | | - Herb I Karpatkin
- Hunter College - City University of New York, New York, New York, USA
| |
Collapse
|
71
|
Ogawa H, Nakajima T, Shibasaki I, Nasuno T, Kaneda H, Katayanagi S, Ishizaka H, Mizushima Y, Uematsu A, Yasuda T, Yagi H, Toyoda S, Hortobágyi T, Mizushima T, Inoue T, Fukuda H. Low-Intensity Resistance Training with Moderate Blood Flow Restriction Appears Safe and Increases Skeletal Muscle Strength and Size in Cardiovascular Surgery Patients: A Pilot Study. J Clin Med 2021; 10:547. [PMID: 33540756 PMCID: PMC7867301 DOI: 10.3390/jcm10030547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
We examined the safety and the effects of low-intensity resistance training (RT) with moderate blood flow restriction (KAATSU RT) on muscle strength and size in patients early after cardiac surgery. Cardiac patients (age 69.6 ± 12.6 years, n = 21, M = 18) were randomly assigned to the control (n = 10) and the KAATSU RT group (n = 11). All patients had received a standard aerobic cardiac rehabilitation program. The KAATSU RT group additionally executed low-intensity leg extension and leg press exercises with moderate blood flow restriction twice a week for 3 months. RT-intensity and volume were increased gradually. We evaluated the anterior mid-thigh thickness (MTH), skeletal muscle mass index (SMI), handgrip strength, knee extensor strength, and walking speed at baseline, 5-7 days after cardiac surgery, and after 3 months. A physician monitored the electrocardiogram, rate of perceived exertion, and the color of the lower limbs during KAATSU RT. Creatine phosphokinase (CPK) and D-dimer were measured at baseline and after 3 months. There were no side effects during KAATSU RT. CPK and D-dimer were normal after 3 months. MTH, SMI, walking speed, and knee extensor strength increased after 3 months with KAATSU RT compared with baseline. Relatively low vs. high physical functioning patients tended to increase physical function more after 3 months with KAATSU RT. Low-intensity KAATSU RT as an adjuvant to standard cardiac rehabilitation can safely increase skeletal muscle strength and size in cardiovascular surgery patients.
Collapse
Affiliation(s)
- Hironaga Ogawa
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
- Department of Medical KAATSU Training, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Ikuko Shibasaki
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| | - Takahisa Nasuno
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Hiroyuki Kaneda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Satoshi Katayanagi
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Hayato Ishizaka
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Yuta Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Azusa Uematsu
- Department of Health and Sport Sciences, Premedical Sciences, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan;
| | - Tomohiro Yasuda
- School of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka 433-8558, Japan;
| | - Hiroshi Yagi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Tibor Hortobágyi
- University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ Groningen, The Netherlands;
| | - Takashi Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan; (S.K.); (H.I.); (Y.M.); (T.M.)
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (T.N.); (H.K.); (H.Y.); (S.T.); (T.I.)
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan; (H.O.); (I.S.); (H.F.)
| |
Collapse
|
72
|
Ferguson RA, Mitchell EA, Taylor CW, Bishop DJ, Christiansen D. Blood-flow-restricted exercise: Strategies for enhancing muscle adaptation and performance in the endurance-trained athlete. Exp Physiol 2021; 106:837-860. [PMID: 33486814 DOI: 10.1113/ep089280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the topic of this review? Blood-flow-restricted (BFR) exercise represents a potential approach to augment the adaptive response to training and improve performance in endurance-trained individuals. What advances does it highlight? When combined with low-load resistance exercise, low- and moderate-intensity endurance exercise and sprint interval exercise, BFR can provide an augmented acute stimulus for angiogenesis and mitochondrial biogenesis. These augmented acute responses can translate into enhanced capillary supply and mitochondrial function, and subsequent endurance-type performance, although this might depend on the nature of the exercise stimulus. There is a requirement to clarify whether BFR training interventions can be used by high-performance endurance athletes within their structured training programme. ABSTRACT A key objective of the training programme for an endurance athlete is to optimize the underlying physiological determinants of performance. Training-induced adaptations are governed by physiological and metabolic stressors, which initiate transcriptional and translational signalling cascades to increase the abundance and/or function of proteins to improve physiological function. One important consideration is that training adaptations are reduced as training status increases, which is reflected at the molecular level as a blunting of the acute signalling response to exercise. This review examines blood-flow-restricted (BFR) exercise as a strategy for augmenting exercise-induced stressors and subsequent molecular signalling responses to enhance the physiological characteristics of the endurance athlete. Focus is placed on the processes of capillary growth and mitochondrial biogenesis. Recent evidence supports that BFR exercise presents an intensified training stimulus beyond that of performing the same exercise alone. We suggest that this has the potential to induce enhanced physiological adaptations, including increases in capillary supply and mitochondrial function, which can contribute to an improvement in performance of endurance exercise. There is, however, a lack of consensus regarding the potency of BFR training, which is invariably attributable to the different modes, intensities and durations of exercise and BFR methods. Further studies are needed to confirm its potential in the endurance-trained athlete.
Collapse
Affiliation(s)
- Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma A Mitchell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Conor W Taylor
- Ineos Grenadiers Cycling Team, Bollin House, Wilmslow, UK
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Danny Christiansen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
73
|
Effects of aerobic, resistance and concurrent exercise on pulse wave reflection and autonomic modulation in men with elevated blood pressure. Sci Rep 2021; 11:760. [PMID: 33436986 PMCID: PMC7804273 DOI: 10.1038/s41598-020-80800-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/28/2020] [Indexed: 12/03/2022] Open
Abstract
The acute effects of exercise modes on pulse wave reflection (PWR) and their relationship with autonomic control remain undefined, particularly in individuals with elevated blood pressure (BP). We compared PWR and autonomic modulation after acute aerobic (AE), resistance (RE), and concurrent exercise (CE) in 15 men with stage-1 hypertension (mean ± SE: 34.7 ± 2.5 years, 28.4 ± 0.6 kg/m2, 133 ± 1/82 ± 2 mmHg). Participants underwent AE, RE, and CE on different days in counterbalanced order. Applanation tonometry and heart rate variability assessments were performed before and 30-min postexercise. Aortic pressure decreased after AE (− 2.4 ± 0.7 mmHg; P = 0.01), RE (− 2.2 ± 0.6 mmHg; P = 0.03), and CE (− 3.1 ± 0.5 mmHg; P = 0.003). Augmentation index remained stable after RE, but lowered after AE (− 5.1 ± 1.7%; P = 0.03) and CE (− 7.6 ± 2.4% P = 0.002). Systolic BP reduction occurred after CE (− 5.3 ± 1.9 mmHg). RR-intervals and parasympathetic modulation lowered after all conditions (~ 30–40%; P < 0.05), while the sympathovagal balance increased after RE (1.2 ± 0.3–1.3 ± 0.3 n.u., P < 0.05). Changes in PWR correlated inversely with sympathetic and directly with vagal modulation in CE. In conclusion, AE, RE, and CE lowered central aortic pressure, but only AE and CE reduced PWR. Overall, those reductions related to decreased parasympathetic and increased sympathetic outflows. Autonomic fluctuations seemed to represent more a consequence than a cause of reduced PWR.
Collapse
|
74
|
Franz A, Berndt F, Raabe J, Harmsen JF, Zilkens C, Behringer M. Invasive Assessment of Hemodynamic, Metabolic and Ionic Consequences During Blood Flow Restriction Training. Front Physiol 2021; 11:617668. [PMID: 33391036 PMCID: PMC7772195 DOI: 10.3389/fphys.2020.617668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: Medically recommended training often faces the dilemma that necessary mechanical intensities for muscle adaptations exceed patients' physical capacity. In this regard, blood flow restriction (BFR) training is becoming increasingly popular because it enables gains in muscle mass and strength despite using low-mechanical loads combined with external venous occlusion. Since the underlying mechanisms are still unknown, we applied invasive measurements during exercise with and without BFR to promote physiological understanding and safety of this popular training technique. Methods: In a randomized cross-over design, ten healthy men (28.1 ± 6.5 years) underwent two trials of unilateral biceps curls either with (BFR) and without BFR (CON). For analysis of changes in intravascular pressures, blood gases, oximetry and electrolytes, an arterial and a venous catheter were placed at the exercising arm before exercise. Arterial and venous blood gases and intravascular pressures were analyzed before, during and 5 min after exercise. Results: Intravascular pressures in the arterial and venous system were more increased during exercise with BFR compared to CON (p < 0.001). Furthermore, arterial and venous blood gas analyses revealed a BFR-induced metabolic acidosis (p < 0.05) with increased lactate production (p < 0.05) and associated elevations in [K+], [Ca2+] and [Na+] (p < 0.001). Conclusion: The present study describes for the first time the local physiological changes during BFR training. While BFR causes greater hypertension in the arterial and venous system of the exercising extremity, observed electrolyte shifts corroborate a local metabolic acidosis with concurrent rises in [K+] and [Na+]. Although BFR could be a promising new training concept for medical application, its execution is associated with comprehensive physiological challenges.
Collapse
Affiliation(s)
- Alexander Franz
- Department of Orthopedics, University Hospital Duesseldorf, Düsseldorf, Germany.,Department of Adult Reconstruction, ATOS Orthoparc Clinic Cologne, Cologne, Germany
| | - Felix Berndt
- Department of Orthopedics, University Hospital Duesseldorf, Düsseldorf, Germany
| | - Joachim Raabe
- Department of Anesthesiology, University Hospital Duesseldorf, Düsseldorf, Germany
| | - Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Christoph Zilkens
- Department of Orthopedics, University Hospital Duesseldorf, Düsseldorf, Germany.,Department of Adult Reconstruction, ATOS Orthoparc Clinic Cologne, Cologne, Germany
| | - Michael Behringer
- Department of Sports Medicine and Exercise Physiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
75
|
Acute Effects of Resistance Exercise With Blood Flow Restriction in Elderly Women: A Pilot Study. J Aging Phys Act 2020; 29:361-371. [PMID: 33373977 DOI: 10.1123/japa.2020-0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022]
Abstract
AIM To compare the acute effects of two resistance exercise sessions with different partial blood flow restrictions (BFR) on hemodynamic parameters and cardiac autonomic modulation in older women with metabolic syndrome. METHODS Thirty-nine older women (64.4 ± 4.5 years) were allocated into three groups: BFR0 = resistance exercise (20%, 1 maximum repetition [MR]) + 0% BFR; BFR60 = 20% 1 MR resistance exercise + 60% BFR; and BFR80 = 20% 1MR resistance exercise + 80% BFR. RESULTS A reduction of 14 mmHg (BFR60 group) and 13 mmHg (BRF80 group) was observed 48 hr after the first exercise session, while vagal modulation was increased in the BRF60 group after 24 and 48 hr. CONCLUSION A low-intensity resistance exercise session with 60% and 80% of BFR resulted in blood pressure (systolic, diastolic, and mean) reduction and positive changes on heart rate variability after 24 h of a RE session.
Collapse
|
76
|
Spranger MD. Commentary: Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2020; 11:599592. [PMID: 33329051 PMCID: PMC7716798 DOI: 10.3389/fphys.2020.599592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
77
|
Amorim S, Rolnick N, Schoenfeld BJ, Aagaard P. Low-intensity resistance exercise with blood flow restriction and arterial stiffness in humans: A systematic review. Scand J Med Sci Sports 2020; 31:498-509. [PMID: 33283322 DOI: 10.1111/sms.13902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022]
Abstract
Low-intensity resistance exercise with blood flow restriction exercise is an emerging type of exercise recognition worldwide. This systematic review evaluated the effects of low-intensity resistance exercise performed with concurrent blood flow restriction (LIRE-BFR) on acute and chronic measures of arterial stiffness in humans. A systematic search in six healthcare science databases and reference lists was conducted. Data selected for primary analysis consisted of post-intervention changes in arterial stiffness markers. This systematic review included randomized and non-randomized controlled trials of LIRE-BFR in humans. 156 articles were initially identified, 15 of which met inclusion criteria. Ten studies were excluded because they did not match predefined arterial stiffness markers. Thus, five articles were included in this review: two acute studies (N = 39 individuals, age = 20-30 years old, 30.8% women and 69.2% men) and three longitudinal studies (N = 51 individuals, age = 24-86-years old, 41.2% women and 58.8% men). Acute LIRE-BFR demonstrated both positive and negative effects on arterial stiffness in healthy young people. In contrast, longitudinal studies reported neutral effects in healthy young and older people. In conclusion, LIRE-BFR applied to the upper and lower limbs may acutely induce increases in central blood pressure and pulse wave velocity in healthy young people, whereas LIRE-BFR for the lower limbs may elicit positive effects related to indirect markers of arterial stiffness. Moreover, longitudinal LIRE-BFR studies showed no changes in arterial stiffness in young and older people. Hence, LIRE-BFR should be prescribed with a degree of caution to avoid non-intended responses in arterial stiffness markers in humans.
Collapse
Affiliation(s)
- Samuel Amorim
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nicholas Rolnick
- Department of Health Sciences, Lehman College, CUNY, Bronx, NY, USA
| | | | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
78
|
Kirkman DL, Bohmke N, Carbone S, Garten RS, Rodriguez-Miguelez P, Franco RL, Kidd JM, Abbate A. Exercise intolerance in kidney diseases: physiological contributors and therapeutic strategies. Am J Physiol Renal Physiol 2020; 320:F161-F173. [PMID: 33283641 DOI: 10.1152/ajprenal.00437.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exertional fatigue, defined as the overwhelming and debilitating sense of sustained exhaustion that impacts the ability to perform activities of daily living, is highly prevalent in chronic kidney disease (CKD) and end-stage renal disease (ESRD). Subjective reports of exertional fatigue are paralleled by objective measurements of exercise intolerance throughout the spectrum of the disease. The prevalence of exercise intolerance is clinically noteworthy, as it leads to increased frailty, worsened quality of life, and an increased risk of mortality. The physiological underpinnings of exercise intolerance are multifaceted and still not fully understood. This review aims to provide a comprehensive outline of the potential physiological contributors, both central and peripheral, to kidney disease-related exercise intolerance and highlight current and prospective interventions to target this symptom. In this review, the CKD-related metabolic derangements, cardiac and pulmonary dysfunction, altered physiological responses to oxygen consumption, vascular derangements, and sarcopenia are discussed in the context of exercise intolerance. Lifestyle interventions to improve exertional fatigue, such as aerobic and resistance exercise training, are discussed, and the lack of dietary interventions to improve exercise tolerance is highlighted. Current and prospective pharmaceutical and nutraceutical strategies to improve exertional fatigue are also broached. An extensive understanding of the pathophysiological mechanisms of exercise intolerance will allow for the development of more targeted therapeutic approached to improve exertional fatigue and health-related quality of life in CKD and ESRD.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Natalie Bohmke
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Paula Rodriguez-Miguelez
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Robert L Franco
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Jason M Kidd
- Division of Nephrology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.,Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
79
|
Silva HGD, Rodrigues Neto G, Vasconcelos WKV, Pereira-Neto EA, Silva JCGD, Bittar ST, Cirilo-Sousa MS. EFFECT OF EXERCISE WITH CONTINUOUS AND INTERMITTENT BLOOD FLOW RESTRICTION ON HEMODYNAMICS. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-869220202606222490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: Strength training with blood flow restriction (BFR) involves the use of low loads (20-30% of 1RM) with restriction of blood flow to promote gains in physical fitness. The restriction can be applied continuously or intermittently; however, it is unclear how it affects the hemodynamics of hypertensive women. Objective: To analyze the acute effect of resistance exercise (RE) on the upper and lower limbs with continuous and intermittent blood flow restriction (BFR) on the hemodynamic variables of women with hypertension. Methods: Thirteen women with controlled hypertension (40 to 65 years) underwent eight experimental protocols, with a randomized, counter balanced, crossover design; four exercise sessions for the right upper limb (elbow flexion) and four for the right lower limb (knee extension). The systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and heart rate (HR) were measured before, during, immediately after and 15, 30, 45 and 60 minutes after the exercises. Results: There were no significant interactions between the protocols vs. segments vs. time, protocols vs. segments, protocols vs. time, segments vs. time, protocol, segment and time, on the variables SAP, DAP, and HR during and after the RE (p>0.05). Although all these protocols had significantly elevated SAP, DAP and HR, the values remained within the normal range. The protocols of this study did not cause hypotensive effect. Conclusion: Low-load RE combined with continuous and intermittent BFR, on the upper and lower limbs, appears to promote similar variations in the hemodynamic variables of women with hypertension. Level of evidence II; Randomized clinical trial.
Collapse
Affiliation(s)
| | | | | | | | - Julio Cesar Gomes da Silva
- Universidade de Pernambuco/Universidade Federal da Paraíba, Brazil; Universidade Federal da Paraíba, Brazil; Faculdades Nova Esperança, Brazil
| | | | - Maria Socorro Cirilo-Sousa
- Universidade de Pernambuco/Universidade Federal da Paraíba, Brazil; Universidade Federal da Paraíba, Brazil
| |
Collapse
|
80
|
Zhu WG, Yitzchaki N, Kuehne TE, Kataoka R, Mattocks KT, Buckner SL. Cardiovascular and Muscular Response to NO LOAD Exercise with Blood Flow Restriction. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:1807-1818. [PMID: 33414867 PMCID: PMC7745893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Changes in muscle thickness (MT), isometric torque, and arterial occlusion pressure (AOP) were examined following four sets of twenty unilateral elbow flexion exercise. Participants performed four sets of maximal voluntary contractions with no external load throughout a full range of motion of a bicep curl with and without the application of blood flow restriction (BFR). For torque there was an interaction (p = 0.012). The BFR condition had lower torque following exercise (56.07 ± 17.78 Nm) compared to the control condition (58.67 ± 19.06 Nm). For MT, there was a main effect for time (p < 0.001). MT increased from pre (3.52 ± .78cm) to post (3.68 ± 81cm) exercise and remained increased above baseline 15 min post-exercise. For AOP, there was an interaction (p = 0.027). The change in AOP was greater in the BFR condition (16.6 ± 13.42mmHg) compared to the control (11.1 ± 11.84 mmHg). NO LOAD exercise with BFR let to greater reductions in torque and an exaggerated cardiovascular response compared to exercise alone. There were no differences in swelling. These results suggest that the application of BFR to NO LOAD exercise may result in greater fatigue.
Collapse
Affiliation(s)
- Wenyuan G Zhu
- Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Noam Yitzchaki
- Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Tayla E Kuehne
- Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Ryo Kataoka
- Exercise Science Program, University of South Florida, Tampa, FL, USA
| | - Kevin T Mattocks
- Exercise Science Program, Lindenwood University, Bellville, MO, USA
| | - Samuel L Buckner
- Exercise Science Program, University of South Florida, Tampa, FL, USA
| |
Collapse
|
81
|
Wu L, Shi P, Yu H, Liu Y. An optimization study of the ultra-short period for HRV analysis at rest and post-exercise. J Electrocardiol 2020; 63:57-63. [DOI: 10.1016/j.jelectrocard.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
|
82
|
THE VALIDITY AND RELIABILITY OF THE HANDHELD OXIMETER TO DETERMINE LIMB OCCLUSION PRESSURE FOR BLOOD FLOW RESTRICTION EXERCISE IN THE LOWER EXTREMITY. Int J Sports Phys Ther 2020; 15:783-791. [PMID: 33110698 DOI: 10.26603/ijspt20200783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The limb occlusion pressure (LOP) is determined to calculate the relative LOP. The different levels of relative LOP (percentage of LOP) influence the treatment effect and perceived discomfort during low-load blood flow restriction (BFR) strength training. Thus, determining the LOP is of the utmost importance when using BFR in clinical practice. Purpose The objective of this study was to investigate the concurrent validity and intra-rater (test-retest), intra-day reliability of an inexpensive, portable, easy-to-use handheld (HH) oximeter compared to a high-resolution Doppler ultrasound scanner in detecting LOP in the lower extremity. Study design Cross-sectional validity and reliability study. Methods Two raters who were blinded from each other simultaneously assessed 50 healthy participants (mean age of 25.8 years). A 20 cm-wide thigh cuff with an attached sphygmomanometer was inflated until the raters independently registered the LOP with the HH oximeter and the Doppler ultrasound scanner. The test session was repeated once after a five-minute time interval. Results The HH oximeter recorded a non-significantly higher LOP than the Doppler ultrasound scanner, with a mean difference of 6.3 mmHg in the test session (95% limits of agreement (LoA): -16.2 to 28.8, p = 0.13) and 5.4 mmHg in the retest session (95% LoA: -13.3 to 24.0, p = 0.10). The intra-rater reliability for both devices was moderate (ICC = 0.72-0.79). The measured LOP was significantly lower (p < 0.005) in the retest session than in the test session for both the HH oximeter (mean difference: -5.7 mmHg) and the Doppler ultrasound scanner (mean difference: -4.8 mmHg). Conclusions The HH oximeter is a valid and reliable measuring device for determining the LOP in the lower extremity in healthy adults. The authors recommend performing at least two LOP measurements with a one-minute rest interval. Level of Evidence 2, Validity and reliability study.
Collapse
|
83
|
Dos Santos L, Andreatta MV, Curty VM, Marcarini WD, Ferreira LG, Barauna VG. Effects of Blood Flow Restriction on Leukocyte Profile and Muscle Damage. Front Physiol 2020; 11:572040. [PMID: 33162898 PMCID: PMC7581907 DOI: 10.3389/fphys.2020.572040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Muscle damage affects the blood leukocyte profile. Resistance exercise (RE) with blood flow restriction (BFR) attenuates exercise-induced muscle damage (EIMD).
Collapse
Affiliation(s)
- Leandro Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil.,Academic Unity of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada, Brazil
| | - Michely V Andreatta
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Victor M Curty
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Wena Dantas Marcarini
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Lucas G Ferreira
- Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, Brazil
| | - Valerio G Barauna
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
84
|
Ma F, Li Y, Yang J, Li X, Zeng N, Martin RL. The effectiveness of low intensity exercise and blood flow restriction without exercise on exercise induced muscle damage: A systematic review. Phys Ther Sport 2020; 46:77-88. [PMID: 32882622 DOI: 10.1016/j.ptsp.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the evidence and provide clinical recommendations for low intensity exercises(LIE) and blood flow restriction(BFR) without exercise on reducing the effects of exercise induced muscle damage(EIMD). METHOD PubMed, Embase, Web of science, and PEDro(Physiotherapy Evidence Database) were searched up to December 2019 for studies that included LIE or BFR without exercise and their effect on EIMD. RESULTS Out of 3192 studies, 23 were included with 17 on LIE and 6 on BFR without exercise. 11 studies demonstrated positive effects for LIE on EIMD, with two level 2 and nine level 3 studies. Two level 2 and two level 3 studies found benefits for BFR without exercise on reducing the negative effects of EIMD, while two level 2 studies found did not find benefits for BFR without exercise. CONCLUSION Moderate to low levels of evidence supported LIE, particularly in the form of protective low load eccentric exercise, in reducing the negative effects of EIMD. Conflicting moderate to low levels of evidence was found regarding BFR without exercise. There does seem to be potential benefit for BFR without exercise in untrained individuals. Clinicians can provide clinical recommendations as LIE and BFR without exercise reducing EIMD.
Collapse
Affiliation(s)
- Fenghao Ma
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Tongji University School of Medicine, Shanghai, 201619, China; Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
| | - Yingqi Li
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
| | - Jinchao Yang
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
| | - Xidian Li
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
| | - Na Zeng
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institution (OHRI), Ottawa, Ontario, Canada.
| | - RobRoy L Martin
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
85
|
Hori A, Hasegawa D, Suijo K, Nishigaki K, Ishida K, Hotta N. Exaggerated pressor response to blood flow restriction resistance exercise is associated with a muscle metaboreflex-induced increase in blood pressure in young, healthy humans. Appl Physiol Nutr Metab 2020; 46:182-185. [PMID: 32841573 DOI: 10.1139/apnm-2020-0491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some researchers are concerned that exercise training with the blood flow restriction (BFR) technique induces an exaggeration in blood pressure response and potentiates adverse cardiovascular events. In the present study, we demonstrate that the blood pressure response to arm-curl exercise was intensified by the BFR technique, and the degree of intensification was associated with a blood pressure response to postexercise muscle ischemia of the elbow flexors, which elicit a muscle metaboreflex. Novelty: BFR technique intensifies blood pressure response to exercise, which was associated with a blood pressure response in postexercise muscle ischemia-induced muscle metaboreflex.
Collapse
Affiliation(s)
- Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Daisuke Hasegawa
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Kenichi Suijo
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Keita Nishigaki
- School of Health Studies, Tokai University, Hiratsuka 259-1292, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| |
Collapse
|
86
|
da Cunha Nascimento D, Schoenfeld BJ, Prestes J. Potential Implications of Blood Flow Restriction Exercise on Vascular Health: A Brief Review. Sports Med 2020; 50:73-81. [PMID: 31559565 DOI: 10.1007/s40279-019-01196-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood flow restriction (BFR) exercise (a.k.a. occlusion training) has emerged as a viable surrogate to traditional heavy-load strength rehabilitation training for a broad range of clinical populations including elderly subjects and rehabilitating athletes. A particular benefit of BFR exercise is the lower stress upon the joints as compared to traditional heavy resistance training, with similar gains in muscle strength and size. The application of an inflatable cuff to the proximal portion of the limbs increases the pressure required for venous return, leading to changes in venous compliance and wall tension. However, it is not known if long-term benefits of BFR exercise on muscle strength and size outweigh potential short and long-term complications on vascular health. BFR exercise could lead to clinical deterioration of the vasculature along with sympathetic overactivity and decreased vascular function associated with retrograde shear stress. This raises a fundamental question: Given the concern that excessive restriction could cause injury to endothelial cells and might cause detrimental effects on endothelial function, even in healthy individuals, should we critically re-evaluate the safety of this method for the general population? From this perspective, the purpose of this manuscript is to review the effects of BFR exercise on vascular function, and to provide relevant insights for training practice as well as future directions for research.
Collapse
Affiliation(s)
- Dahan da Cunha Nascimento
- Department of Physical Education, Catholic University of Brasilia (UCB), Q.S. 07, Lote 01, EPTC-Bloco G. Código Postal, Distrito Federal, Brasilia, 71966-700, Brazil. .,Department of Physical Education, University Center of the Federal District (UDF), Brasilia, Brazil.
| | | | - Jonato Prestes
- Department of Physical Education, Catholic University of Brasilia (UCB), Q.S. 07, Lote 01, EPTC-Bloco G. Código Postal, Distrito Federal, Brasilia, 71966-700, Brazil
| |
Collapse
|
87
|
Spitz RW, Chatakondi RN, Bell ZW, Wong V, Viana RB, Dankel SJ, Abe T, Yamada Y, Loenneke JP. Blood Flow Restriction Exercise: Effects of Sex, Cuff Width, and Cuff Pressure on Perceived Lower Body Discomfort. Percept Mot Skills 2020; 128:353-374. [PMID: 32777996 DOI: 10.1177/0031512520948295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Narrow cuffs cause less discomfort than wide cuffs immediately following elbow flexion exercise in combination with blood flow restriction, possibly due to a balling up effect of the bicep underneath the cuff. In this study, we sought to examine the impact of cuff width, sex, and pressure on perceived discomfort in the quadriceps, following knee extensions. One hundred participants completed three separate experiments. In Experiment 1, we compared participants' discomfort at rest after using a 5 and a 12 cm cuff. In Experiment 2, we compared the discomfort from these two cuffs after four sets of exercise. In Experiment 3, we used the same exercise protocol as in Experiment 2, but we compared the discomfort between a 12 cm cuff inflated to an inappropriate pressure and a 12 cm cuff inflated to the recommended pressure. We found no sex differences in Experiments 1 and 3. In Experiment 1, the narrow cuff had higher discomfort (16 vs 12 AU). In Experiment 2, men reported higher discomfort than women, with no discomfort differences related to cuff width, though narrow cuffs were most preferred. In Experiment 3, cuffs inflated to a pressure intended for narrow cuffs were associated with higher discomfort, and participants preferred to use it less. In summary, we found no strong evidence for discomfort differences due to cuff width. There was some indication that participants preferred narrow cuffs with pressures inflated to the recommended relative pressure. Muscle shape may influence how cuff width affects discomfort.
Collapse
Affiliation(s)
- Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| | - Raksha N Chatakondi
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| | - Ricardo B Viana
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi.,Faculty of Physical Education and Dance, Federal University of Goiás
| | - Scott J Dankel
- Department of Health and Exercise Science, Exercise Physiology Laboratory, Rowan University, Glassboro, New Jersey, United States
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi
| |
Collapse
|
88
|
Mok E, Suga T, Sugimoto T, Tomoo K, Dora K, Takada S, Hashimoto T, Isaka T. Negative effects of blood flow restriction on perceptual responses to walking in healthy young adults: A pilot study. Heliyon 2020; 6:e04745. [PMID: 32885079 PMCID: PMC7452548 DOI: 10.1016/j.heliyon.2020.e04745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 11/02/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
|
89
|
Hwang H, Mizuno S, Kasai N, Kojima C, Sumi D, Hayashi N, Goto K. Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction. Phys Act Nutr 2020; 24:30-37. [PMID: 32698259 PMCID: PMC7451842 DOI: 10.20463/pan.2020.0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (V˙O2 max) or 40% V˙O2 max) on muscle oxygenation, energy metabolism, and endocrine responses. METHODS Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% V˙O2 max without BFR (NBFR40), (2) endurance exercise at 25% V˙O2 max with BFR (BFR25), and (3) endurance exercise at 40% V˙O2 max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise. RESULTS Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40. CONCLUSION Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.
Collapse
Affiliation(s)
- Hyejung Hwang
- Graduate school of Sport and Health Science, Ritsumeikan University, ShigaJapan
- Department of Physical Education, Hanyang University, SeoulKorea
- Physical Activity and Performance Institute (PAPI), Konkuk University, SeoulKorea
| | - Sahiro Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, NagoyaJapan
| | - Nobukazu Kasai
- Department of Sports Science, Japan Institute of Sports Sciences, TokyoJapan
| | - Chihiro Kojima
- Department of Sports Science, Japan Institute of Sports Sciences, TokyoJapan
| | - Daichi Sumi
- Research Center for Urban Health and Sports, Osaka City University, OsakaJapan
| | - Nanako Hayashi
- Research Center for Urban Health and Sports, Osaka City University, OsakaJapan
| | - Kazushige Goto
- Research Center for Urban Health and Sports, Osaka City University, OsakaJapan
| |
Collapse
|
90
|
Acute cardiovascular response to unilateral, bilateral, and alternating resistance exercise with blood flow restriction. Eur J Appl Physiol 2020; 120:1921-1930. [PMID: 32588194 DOI: 10.1007/s00421-020-04401-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
AIM Blood flow restriction (BFR) exercise is a common alternative to traditional high-load resistance exercise used to increase muscle size and strength. Some populations utilizing BFR at a low load may wish to limit their cardiovascular response to exercise. Different contraction patterns may attenuate the cardiovascular response, but this has not been compared using BFR. PURPOSE To compare the cardiovascular response to unilateral (UNI), bilateral (BIL), and alternating (ALT) BFR exercise contraction patterns. METHODS Twenty healthy participants performed four sets (30 s rest) of knee extensions to failure, using 30% one-repetition maximum, 40% arterial occlusion pressure, and each of the three contraction patterns (on different days, at the same time of day, separated by 2-10 days, randomized). Cardiovascular responses, presented as pre- to post-exercise mean changes (SD), were measured using pulse wave analysis and analyzed with Bayesian RMANOVA. RESULTS ALT caused greater changes in: aortic systolic [ΔmmHg: ALT = 21(8); UNI = 13(11); BIL = 15(8); BF10 = 29.599], diastolic [ΔmmHg: ALT = 13(8); UNI = 7(11); BIL = 8(8); BF10 = 5.175], and mean arterial [ΔmmHg: ALT = 19(8); UNI = 11(11); BIL = 13(7); BF10 = 48.637] blood pressures. Aortic [ΔmmHg bpm: ALT = 4945(2340); UNI = 3294(1408); BIL = 3428 (1461); BF10 = 113.659] and brachial [ΔmmHg bpm: ALT = 6134(2761); UNI = 4300(1709); BIL = 4487(1701); BF10 = 31.845] rate pressure products, as well as heart rate [Δbpm: ALT = 26(14); UNI = 19(8); BIL = 19(11); BF10 = 5.829] were greatest with ALT. Augmentation index [Δ%: UNI = -6(13); BIL = - 7(11); ALT = - 5(16); BF10 = 0.155] and wave reflection magnitude [Δ%: UNI = - 5(9); BIL = - 4(7); ALT = - 4(7); BF10 = 0.150] were not different. CONCLUSION Those at risk of a cardiovascular event may choose unilateral or bilateral BFR exercise over alternating until further work determines the degree to which it can be tolerated.
Collapse
|
91
|
Abstract
Blood flow restriction therapy (BFRT) is an innovative training method for the development of muscle strength and hypertrophy in the athletic and clinical settings. Through the combination of venous occlusion and low-load resistance training, it induces muscle development through a number of proposed mechanisms including anaerobic metabolism, cellular swelling, and induction of type 2 muscle fibers. Muscle weakness and atrophy are prevalent among musculoskeletal rehabilitation patients, causing delayed return to functional activity. In traditional resistance training, muscle development requires exercise loads of 70% of one-repetition maximum (1RM), but the stress placed on connective tissues and joints can be detrimental to the elderly and rehabilitation patients. However, BFRT with loads of 20% to 40% of 1RM has been shown consistently in the literature to increase muscle strength, hypertrophy, and angiogenesis. The rate of adverse effects has not been found to be greater than that in traditional high-load resistance training, but its effects on the cardiovascular system have yet to be evaluated in long-term studies. Although further investigations are needed to determine the exact mechanism and optimal usage, current evidence is promising for the application of BFRT in athletes, rehabilitation patients, and the elderly patients.
Collapse
|
92
|
Bowman EN, Elshaar R, Milligan H, Jue G, Mohr K, Brown P, Watanabe DM, Limpisvasti O. Upper-extremity blood flow restriction: the proximal, distal, and contralateral effects-a randomized controlled trial. J Shoulder Elbow Surg 2020; 29:1267-1274. [PMID: 32423577 DOI: 10.1016/j.jse.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Blood flow restriction (BFR) training with low weight is purported to induce similar physiological changes to high-weight regimens with the benefit of less tissue stress. We hypothesized that low-weight training with BFR would produce increased gains in strength and hypertrophy for muscle groups proximal, distal, and contralateral to tourniquet placement compared with low-weight training alone. METHODS In this prospective, randomized controlled trial, healthy subjects were randomized into a 6-week low-weight training program either with or without BFR on 1 extremity. Outcome measures included limb circumference and strength. Comparisons were made between the BFR and non-BFR extremities, BFR and control groups, and non-BFR extremity and control groups. RESULTS A total of 24 subjects (14 BFR and 10 control subjects) completed the protocol. Significantly greater gains were observed in dynamometric strength both proximal (shoulder scaption [30% greater], flexion [23%], and abduction [22%]) and distal (grip strength [13%]) to the tourniquet in the BFR limb compared with both the non-BFR extremity and the control group (P < .05). Arm and forearm circumferences significantly increased in the BFR limb compared with the non-BFR limb and control group (P = .01). The non-BFR extremity demonstrated greater grip strength than the control group (9%, P < .01). No adverse events were reported. CONCLUSION Low-weight BFR training provided a greater increase in strength and hypertrophy in the upper-extremity proximal and distal muscle groups compared with the control group. The non-BFR extremity showed a significant increase in grip strength compared with the control group, indicating a potential systemic effect.
Collapse
Affiliation(s)
- Eric N Bowman
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Rami Elshaar
- Rochester Regional Health Orthopaedics, Pittsford, NY, USA
| | | | - Gregory Jue
- Select Physical Therapy, Los Angeles, CA, USA
| | - Karen Mohr
- Kerlan Jobe Institute, Los Angeles, CA, USA
| | - Patty Brown
- Patty Brown Physical Therapy & Associates, El Segundo, CA, USA
| | | | | |
Collapse
|
93
|
Stray-Gundersen S, Wooten S, Tanaka H. Walking With Leg Blood Flow Restriction: Wide-Rigid Cuffs vs. Narrow-Elastic Bands. Front Physiol 2020; 11:568. [PMID: 32547424 PMCID: PMC7273976 DOI: 10.3389/fphys.2020.00568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background Blood flow restriction (BFR) training is becoming a popular form of exercise. Walking exercise in combination with pressurized wide-rigid (WR) cuffs elicits higher cardiac workload and a vascular dysfunction due presumably to reperfusion injury to the endothelium. In contrast, narrow-elastic (NE) BFR bands may elicit different hemodynamic effects. Therefore, we compared the acute cardiovascular responses to two distinct forms of BFR training during light-intensity exercise. Methods and Results 15 young healthy participants (M = 9, F = 6) performed five bouts of 2-min walking intervals at 0.9 m/s with a 1-min rest and deflation period with either WR, NE, or no bands placed on upper thighs. Cuff pressure was inflated to 160 mmHg in WR cuffs and 300 mmHg in NE bands while no cuffs were used for the control. Increases in heart rate and arterial blood pressure were greater (p < 0.05) in the WR than the NE and control conditions. Double product increased to a greater extent in the WR than in the NE and control conditions. Increases in perceived exertion and blood lactate concentration were greater (p < 0.05) in the WR compared with the NE and control conditions (p < 0.05), while no differences emerged between the NE and control conditions. There were no changes in arterial stiffness or brachial artery flow-mediated dilation (FMD) after all three trials. Conclusion Use of WR BFR cuffs resulted in a marked increase in blood pressure and myocardial oxygen demand compared with NE BFR bands, suggesting that NE bands present a safer alternative for at-risk populations to perform BFR exercise. Clinical Trial Registration This study was registered in the Clinicaltrials.gov (NCT03540147).
Collapse
Affiliation(s)
- Sten Stray-Gundersen
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Savannah Wooten
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Hirofumi Tanaka
- Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
94
|
Tanaka R, Fuse S, Kuroiwa M, Amagasa S, Endo T, Ando A, Kime R, Kurosawa Y, Hamaoka T. Vigorous-Intensity Physical Activities Are Associated with High Brown Adipose Tissue Density in Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2796. [PMID: 32325644 PMCID: PMC7216014 DOI: 10.3390/ijerph17082796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022]
Abstract
Brown adipose tissue (BAT) plays a role in adaptive thermogenesis in response to cold environments and dietary intake via sympathetic nervous system (SNS) activation. It is unclear whether physical activity increases BAT density (BAT-d). Two-hundred ninety-eight participants (age: 41.2 ± 12.1 (mean ± standard deviation), height: 163.6 ± 8.3 cm, weight: 60.2 ± 11.0 kg, body mass index (BMI): 22.4 ± 3.0 kg/m2, body fat percentage: 25.4 ± 7.5%) without smoking habits were categorized based on their physical activity levels (a group performing physical activities including walking and moderate physical activity (WM) and a group performing WM + vigorous-intensity physical activities (VWM)). We measured the total hemoglobin concentration ([Total-Hb]) in the supraclavicular region, an index of BAT-d, and anthropometric parameters. [Total-Hb] was significantly higher in VWM than WM for all participant groups presumably owing to SNS activation during vigorous-intensity physical activities, and unrelated to the amount of total physical activity levels. Furthermore, multiple regression analysis revealed that BAT-d was related to visceral fat area and VWM in men and related to body fat percentage in women. We conclude that vigorous-intensity physical activities are associated with high BAT-d in humans, especially in men.
Collapse
Affiliation(s)
- Riki Tanaka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Sayuri Fuse
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Shiho Amagasa
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Akira Ando
- Japan Institute of Sports Sciences, Tokyo 115-0056, Japan;
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo 160-8402, Japan; (R.T.); (S.F.); (M.K.); (T.E.); (R.K.); (Y.K.)
| |
Collapse
|
95
|
Cuyul-Vásquez I, Leiva-Sepúlveda A, Catalán-Medalla O, Berríos-Contreras L. [Blood flow restriction training for people with cardiovascular disease: An exploratory review]. Rehabilitacion (Madr) 2020; 54:116-127. [PMID: 32370826 DOI: 10.1016/j.rh.2020.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 11/10/2019] [Accepted: 01/11/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To analyse the evidence on the effects of blood flow restriction training in people with cardiovascular disease. MATERIALS AND METHODS We searched MEDLINE, EMBASE, SPORTDiscus, CINAHL, LILACS, SCOPUS and Wiley databases. Experimental and non-experimental studies investigating the effects of blood flow restriction in participants with cardiovascular disease were included. RESULTS Six clinical trials and three non-experimental studies met the inclusion criteria. The experimental studies were conducted in participants with hypertension and ischaemic heart disease. Non-experimental studies described hemodynamic adaptations and potential adverse effects of therapy. The risk of bias of the included clinical trials was moderate to high. Exercise-induced hemodynamic stress increased significantly during training with blood flow restriction compared with traditional training. The small number of available studies have focused mostly on acute effects, but chronic effects are unknown. CONCLUSION There is currently no evidence to recommend the use of blood flow restriction in people with cardiovascular disease.
Collapse
Affiliation(s)
- I Cuyul-Vásquez
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile.
| | - A Leiva-Sepúlveda
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| | - O Catalán-Medalla
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
| | - L Berríos-Contreras
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
96
|
Skovlund SV, Aagaard P, Larsen P, Svensson RB, Kjaer M, Magnusson SP, Couppé C. The effect of low‐load resistance training with blood flow restriction on chronic patellar tendinopathy — A case series. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian V. Skovlund
- Department of Orthopaedic Surgery M Faculty of Health and Medical Sciences Bispebjerg Hospital and Center for Healthy Aging Institute of Sports Medicine University of Copenhagen Copenhagen Denmark
- Department of Physical and Occupational Therapy Bispebjerg Hospital Kobenhavn Denmark
| | - Per Aagaard
- Muscle Physiology and Biomechanics Research Unit Department of Sports Sciences and Clinical Biomechanics University of Southern Denmark Odense Denmark
| | - Patricia Larsen
- Department of Orthopaedic Surgery M Faculty of Health and Medical Sciences Bispebjerg Hospital and Center for Healthy Aging Institute of Sports Medicine University of Copenhagen Copenhagen Denmark
- Department of Physical and Occupational Therapy Bispebjerg Hospital Kobenhavn Denmark
| | - Rene B. Svensson
- Department of Orthopaedic Surgery M Faculty of Health and Medical Sciences Bispebjerg Hospital and Center for Healthy Aging Institute of Sports Medicine University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M Faculty of Health and Medical Sciences Bispebjerg Hospital and Center for Healthy Aging Institute of Sports Medicine University of Copenhagen Copenhagen Denmark
| | - Stig P. Magnusson
- Department of Orthopaedic Surgery M Faculty of Health and Medical Sciences Bispebjerg Hospital and Center for Healthy Aging Institute of Sports Medicine University of Copenhagen Copenhagen Denmark
- Department of Physical and Occupational Therapy Bispebjerg Hospital Kobenhavn Denmark
| | - Christian Couppé
- Department of Orthopaedic Surgery M Faculty of Health and Medical Sciences Bispebjerg Hospital and Center for Healthy Aging Institute of Sports Medicine University of Copenhagen Copenhagen Denmark
- Department of Physical and Occupational Therapy Bispebjerg Hospital Kobenhavn Denmark
| |
Collapse
|
97
|
Cerqueira MS, Do Nascimento JDS, Maciel DG, Barboza JAM, De Brito Vieira WH. Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:152-159. [PMID: 32117574 PMCID: PMC7031770 DOI: 10.1016/j.jshs.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE To investigate whether blood flow restriction (BFR) without concomitant exercise mitigated strength reduction and atrophy of thigh muscles in subjects under immobilization for lower limbs. METHODS The following databases were searched: PubMed, CINAHL, PEDro, Web of Science, Central, and Scopus. RESULTS The search identified 3 eligible studies, and the total sample in the identified studies consisted of 38 participants. Isokinetic and isometric torque of the knee flexors and extensors was examined in 2 studies. Cross-sectional area of thigh muscles was evaluated in 1 study, and thigh girth was measured in 2 studies. The BFR protocol was 5 sets of 5 min of occlusion and 3 min of free flow, twice daily for approximately 2 weeks. As a whole, the included studies indicate that BFR without exercise is able to minimize strength reduction and muscular atrophy after immobilization. It is crucial to emphasize, however, that the included studies showed a high risk of bias, especially regarding allocation concealment, blinding of outcome assessment, intention-to-treat analyses, and group similarity at baseline. CONCLUSION Although potentially useful, the high risk of bias presented by original studies limits the indication of BFR without concomitant exercise as an effective countermeasure against strength reduction and atrophy mediated by immobilization.
Collapse
Affiliation(s)
- Mikhail Santos Cerqueira
- Department of Physical Therapy, Laboratory of Muscle Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59072-970, Brazil.
| | - José Diego Sales Do Nascimento
- Department of Physical Therapy, Neuromuscular Performance Analysis Laboratory, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59072-970, Brazil
| | - Daniel Germano Maciel
- Department of Physical Therapy, Laboratory of Muscle Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59072-970, Brazil
| | - Jean Artur Mendonça Barboza
- Department of Physical Therapy, Laboratory of Muscle Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59072-970, Brazil
| | - Wouber Hérickson De Brito Vieira
- Department of Physical Therapy, Laboratory of Muscle Performance, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59072-970, Brazil
| |
Collapse
|
98
|
Spitz RW, Wong V, Bell ZW, Viana RB, Chatakondi RN, Abe T, Loenneke JP. Blood Flow Restricted Exercise and Discomfort: A Review. J Strength Cond Res 2020; 36:871-879. [PMID: 32058360 DOI: 10.1519/jsc.0000000000003525] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spitz, RW, Wong, V, Bell, ZW, Viana, RB, Chatakondi, RN, Abe, T, and Loenneke, JP. Blood flow restricted exercise and discomfort: A Review. J Strength Cond Res XX(X): 000-000, 2020-Blood flow restriction exercise involves using a pneumatic cuff or elastic band to restrict arterial inflow into the muscle and block venous return out of the muscle during the exercise bout. The resultant ischemia in conjunction with low-load exercise has shown to be beneficial with increasing muscle size and strength. However, a limitation of using blood flow restriction (BFR) is the accompanying discomfort associated with this type of exercise. Factors that may influence discomfort are applied pressure, width of the cuff, cuff material, sex, and training to failure. The goal of this review was to evaluate the existing literature and elucidate how these factors can be manipulated to reduce discomfort during exercise as well as provide possible directions for future research. Thirty-eight different studies were located investigating BFR and discomfort. It was found that BFR training causes more discomfort than exercise without BFR. However, chronic use of BFR may increase tolerability, but discomfort may still be elevated over traditional non-blood flow restricted exercise. Discomfort can be attenuated by the application of lower applied pressures and stopping short of task failure. Finally, in the upper body, wider cuffs seem to increase ratings of discomfort compared with more narrow cuffs. In conclusion, applying the proper-sized cuff and making the applied pressure relative to both the individual and the cuff applied may attenuate discomfort. Reducing discomfort during exercise may help increase adherence to exercise and rehabilitation programs.
Collapse
Affiliation(s)
- Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Ricardo B Viana
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi.,Faculty of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | - Raksha N Chatakondi
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi
| |
Collapse
|
99
|
The Evidence for Common Nonsurgical Modalities in Sports Medicine, Part 2: Cupping and Blood Flow Restriction. JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS GLOBAL RESEARCH AND REVIEWS 2020; 4:e1900105. [PMID: 32672728 PMCID: PMC7028774 DOI: 10.5435/jaaosglobal-d-19-00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are a number of nonsurgical modalities used by athletes in attempts to improve performance or prevent, treat, and rehabilitate musculoskeletal injuries. A concise review of available evidence on common nonsurgical modalities used today is necessary, so that practitioners may appropriately counsel patients.
Collapse
|
100
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|