51
|
Kumar A, Noda K, Philips B, Velayutham M, Stolz DB, Gladwin MT, Shiva S, D'Cunha J. Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L580-L591. [PMID: 32073901 DOI: 10.1152/ajplung.00367.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary graft dysfunction (PGD) is directly related to ischemia-reperfusion (I/R) injury and a major obstacle in lung transplantation (LTx). Nitrite (NO2-), which is reduced in vivo to form nitric oxide (NO), has recently emerged as an intrinsic signaling molecule with a prominent role in cytoprotection against I/R injury. Using a murine model, we provide the evidence that nitrite mitigated I/R-induced injury by diminishing infiltration of immune cells in the alveolar space, reducing pulmonary edema, and improving pulmonary function. Ultrastructural studies support severe mitochondrial impairment in the lung undergoing I/R injury, which was significantly protected by nitrite treatment. Nitrite also abrogated the increased pulmonary vascular permeability caused by I/R. In vitro, hypoxia-reoxygenation (H/R) exacerbated cell death in lung epithelial and microvascular endothelial cells. This contributed to mitochondrial dysfunction as characterized by diminished complex I activity and mitochondrial membrane potential but increased mitochondrial reactive oxygen species (mtROS). Pretreatment of cells with nitrite robustly attenuated mtROS production through modulation of complex I activity. These findings illustrate a potential novel mechanism in which nitrite protects the lung against I/R injury by regulating mitochondrial bioenergetics and vascular permeability.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kentaro Noda
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Philips
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Murugesan Velayutham
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
52
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
53
|
Tao G, Song G, Qin S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1189-1197. [PMID: 31738389 DOI: 10.1093/abbs/gmz121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/20/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ever since molecular hydrogen was first reported as a hydroxyl radical scavenger in 2007, the beneficial effect of hydrogen was documented in more than 170 disease models and human diseases including ischemia/reperfusion injury, metabolic syndrome, inflammation, and cancer. All these pathological damages are concomitant with overproduction of reactive oxygen species (ROS) where molecular hydrogen has been widely demonstrated as a selective antioxidant. Although it is difficult to construe the molecular mechanism of hydrogen's biomedical effect, an increasing number of studies have been helping us draw the picture clearer with days passing by. In this review, we summarized the current knowledge on systemic and cellular modulation by hydrogen treatment. We discussed the antioxidative, anti-inflammatory, and anti-apoptosis effects of hydrogen, as well as its protection on mitochondria and the endoplasmic reticulum, regulation of intracellular signaling pathways, and balancing of the immune cell subtypes. We hope that this review will provide organized information that prompts further investigation for in-depth studies of hydrogen effect.
Collapse
Affiliation(s)
- Geru Tao
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| |
Collapse
|
54
|
Feng S, Duan E, Shi X, Zhang H, Li H, Zhao Y, Chao L, Zhong X, Zhang W, Li R, Yan X. Hydrogen ameliorates lung injury in a rat model of subacute exposure to concentrated ambient PM2.5 via Aryl hydrocarbon receptor. Int Immunopharmacol 2019; 77:105939. [DOI: 10.1016/j.intimp.2019.105939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
|
55
|
Ahmed RF, Moussa RA, Eldemerdash RS, Zakaria MM, Abdel-Gaber SA. Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1483-1492. [PMID: 32133068 PMCID: PMC7043873 DOI: 10.22038/ijbms.2019.14069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Aspiration is a common cause of acute lung injury (ALI), which lacks an effective treatment. Inflammation and oxidative stress play key roles in ALI development. Silymarin is an active extract of Silybum marianum plant seeds (milk thistle). Silymarin has potent anti-inflammatory and antioxidant effects; however its role in aspiration induced ALI has not been investigated. The aim of this study is to investigate the role of silymarin in the treatment of hydrochloric acid (HCl) aspiration induced ALI and explores its mechanisms of action. MATERIALS AND METHODS The study included three groups of rats: Control non-treated group, ALI group (intra-tracheal HCl injected), and silymarin treated ALI group. White blood cells (WBCs) with differential count, oxidative stress parameters, B-cell lymphoma 2 (Bcl-2), transforming growth factor-beta (TGF-β), cyclooxygenase 2 (COX-2), nuclear factor erythroid 2-related factor-2 (Nrf-2), and heme oxygenase-1 (HO-1) were investigated. Lung tissue histopathology and immunohistochemical expression of survivin and proliferating cell nuclear antigen (PCNA) were also examined. RESULTS The results of the study showed that HCL caused histopathological changes in ALI with leukocytopenia and increased oxidative stress biomarkers. It increased TGF-β, up-regulated mRNA expression of COX-2, Nrf-2, and HO-1 and increased survivin and PCNA but decreased Bcl-2. Silymarin ameliorated the histopathological lung injury with further up-regulation of Nrf-2 and HO-1 mRNA and decreased the inflammatory and fibrotic parameters together with up-regulation of the anti-apoptotic and the proliferation parameters. CONCLUSION The protective effect of silymarin against ALI is mediated by Nrf-2/HO-1 pathway with subsequent antioxidant, anti-inflammatory, antiapoptotic, and proliferating activities.
Collapse
Affiliation(s)
- Rasha F Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Rabab A Moussa
- Department of Pathology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Reda S Eldemerdash
- Research Building, Urology & Nephrology Center, Mansoura University, 35516 Mansoura, Egypt
| | - Mahmoud M Zakaria
- Research Building, Urology & Nephrology Center, Mansoura University, 35516 Mansoura, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
56
|
Shen M, Zheng Y, Zhu K, Cai Z, Liu W, Sun X, Liu J, Zhu D. Hydrogen gas protects against delayed encephalopathy after acute carbon monoxide poisoning in a rat model. Neurol Res 2019; 42:22-30. [PMID: 31679470 DOI: 10.1080/01616412.2019.1685064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: The protective effects of 2%-4% hydrogen gas in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) have been previously reported. This study aimed to assess the neuroprotective effects of high concentration hydrogen (HCH) on DEACMP.Methods: A total of 36 male Sprague-Dawley rats were divided into 3 groups. In the DEACMP group, rats were exposed to CO to induce CO poisoning; in the HCH group, the animals were exposed to 67% H2 and 33% O2 at 3,000 mL/min for 90 min immediately after CO poisoning. Neurological function was evaluated at 1 and 9 days after poisoning. Then, the contents of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine, as well as superoxide dismutase activity in the serum, cortex and hippocampus were detected by ELISA. Additionally, the mRNA and protein expression levels of Nrf2 and downstream genes were detected by RT-PCR and Western blotting, respectively.Results: Our results showed that CO poisoning significantly impaired neurological function which was improved over time, and HCH markedly attenuated neurological impairment following CO poisoning. In addition, CO poisoning resulted in increased levels of malondialdehyde, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine and markedly reduced superoxide dismutase activity at 1 and 9 days, which were significantly inhibited by HCH at 9 days. Finally, CO poisoning increased the mRNA and protein levels of Nrf2 and downstream genes, and HCH further induced the anti-oxidative capability.Conclusion: These findings indicate the neuroprotective effects of HCH on DEACMP, which are related to the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Meihua Shen
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.,Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Yijun Zheng
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Kaimin Zhu
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Zhonghai Cai
- Department of Critical Care Unit, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, PR China
| | - Wenwu Liu
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Xuejun Sun
- Department of Naval Aeromedicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China
| | - Duming Zhu
- Department of Critical Care Unit, Zhongshan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
57
|
Saito M, Chen-Yoshikawa TF, Takahashi M, Kayawake H, Yokoyama Y, Kurokawa R, Hirano SI, Date H. Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation. J Thorac Cardiovasc Surg 2019; 159:2110-2118. [PMID: 31780065 DOI: 10.1016/j.jtcvs.2019.09.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Molecular hydrogen can reduce the oxidative stress of ischemia-reperfusion injury in various organs for transplantation and potentially improve survival rates in recipients. This study aimed to evaluate the protective effects of a hydrogen-rich preservation solution against ischemia-reperfusion injury after cold ischemia in rat lung transplantation. METHODS Lewis rats were divided into a nontransplant group (n = 3), minimum-ischemia group (n = 3), cold ischemia group (n = 6), and cold ischemia with hydrogen-rich (more than 1.0 ppm) preservation solution group (n = 6). The rats in the nontransplant group underwent simple thoracotomy, and the rats in the remaining 3 groups underwent orthotopic left lung transplantation. The ischemic time was <30 minutes in the minimum-ischemia group and 6 hours in the cold ischemia groups. After 2-hour reperfusion, we evaluated arterial blood gas levels, pulmonary function, lung wet-to-dry weight ratio, and histologic features of the lung tissue. The expression of proinflammatory cytokines was measured using quantitative polymerase chain reaction assays, and 8-hydroxydeoxyguanosine levels were evaluated using enzyme-linked immunosorbent assays. RESULTS When compared with the nontransplant and minimum-ischemia groups, the cold ischemia group had lower dynamic compliance, lower oxygenation levels, and higher wet-to-dry weight ratios. However, these variables were significantly improved in the cold ischemia with hydrogen-rich preservation solution group. This group also had fewer signs of perivascular edema, lower interleukin-1β messenger RNA expression, and lower 8-hydroxydeoxyguanosine levels than the cold ischemia group. CONCLUSIONS The use of a hydrogen-rich preservation solution attenuates ischemia-reperfusion injury in rat lungs during cold ischemia through antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Masao Saito
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Mamoru Takahashi
- Department of Thoracic Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuhei Yokoyama
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
58
|
Soo E, Welch A, Marsh C, McKay DB. Molecular strategies used by hibernators: Potential therapeutic directions for ischemia reperfusion injury and preservation of human donor organs. Transplant Rev (Orlando) 2019; 34:100512. [PMID: 31648853 DOI: 10.1016/j.trre.2019.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- E Soo
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - A Welch
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - C Marsh
- Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America
| | - D B McKay
- Scripps Research, Department of Immunology and Molecular Biology, 10550 North Torrey Pines Rd, La Jolla, CA, United States of America; Scripps Clinic and Green Hospital, Department of Medicine and Surgery, 10660 North Torrey Pines Rd, La Jolla, CA, United States of America.
| |
Collapse
|
59
|
Ozeki N, Yamawaki-Ogata A, Narita Y, Mii S, Ushida K, Ito M, Hirano SI, Kurokawa R, Ohno K, Usui A. Hydrogen water alleviates obliterative airway disease in mice. Gen Thorac Cardiovasc Surg 2019; 68:158-163. [PMID: 31468277 DOI: 10.1007/s11748-019-01195-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Bronchiolitis obliterans syndrome arising from chronic airway inflammation is a leading cause of death following lung transplantation. Several studies have suggested that inhaled hydrogen can protect lung grafts from ischemia-reperfusion injury via anti-inflammatory and -oxidative mechanisms. We investigated whether molecular hydrogen-saturated water can preserve lung allograft function in a heterotopic tracheal allograft mouse model of obliterative airway disease METHODS: Obliterative airway disease was induced by heterotopically transplanting tracheal allografts from BALB/c donor mice into C57BL/6 recipient mice, which were subsequently administered hydrogen water (10 ppm) or tap water (control group) (n = 6 each) daily without any immunosuppressive treatment. Histological and immunohistochemical analyses were performed on days 7, 14, and 21. RESULTS Hydrogen water decreased airway occlusion on day 14. No significant histological differences were observed on days 7 or 21. The cluster of differentiation 4/cluster of differentiation 3 ratio in tracheal allografts on day 14 was higher in the hydrogen water group than in control mice. Enzyme-linked immunosorbent assay performed on day 7 revealed that hydrogen water reduced the level of the pro-inflammatory cytokine interleukin-6 and increased that of forkhead box P3 transcription factor, suggesting an enhancement of regulatory T cell activity. CONCLUSIONS Hydrogen water suppressed the development of mid-term obliterative airway disease in a mouse tracheal allograft model via anti-oxidant and -inflammatory mechanisms and through the activation of Tregs. Thus, hydrogen water is a potential treatment strategy for BOS that can improve the outcome of lung transplant patients.
Collapse
Affiliation(s)
- Naoki Ozeki
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Specimen Preparation Room for Optical Microscopic Examinations, Core Clinical Research Hospital Support Room, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
60
|
Wu Y, Yuan M, Song J, Chen X, Yang H. Hydrogen Gas from Inflammation Treatment to Cancer Therapy. ACS NANO 2019; 13:8505-8511. [PMID: 31329427 DOI: 10.1021/acsnano.9b05124] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydrogen (H2) therapy is a highly promising strategy against several diseases due to its inherent biosafety. However, the current H2 treatment modalities rely predominantly on the systemic administration of the gas, resulting in poor targeting and utilization. Furthermore, although H2 has significant anti-tumor effects, the underlying mechanisms have not yet been elucidated. Due to their ultrasmall size, nanomaterials are highly suitable drug-delivery systems with a myriad of biomedical applications. Nanocarrier-mediated H2 delivery, as well as in situ production of H2 by nanogenerators, can significantly improve targeted accumulation of the gas and accelerate the therapeutic effects. In addition, nanomaterials can be further modified to enhance passive or active accumulation at the target site. In this Perspective, we summarize the mechanism of H2 therapy and describe possibilities for combining H2 therapy with nanomaterials. We also discuss the current challenges of H2 therapy and provide some insights into this burgeoning field.
Collapse
Affiliation(s)
- Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Meng Yuan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) Bethesda , Maryland 20892 , United States
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P.R. China
| |
Collapse
|
61
|
Hydrogen-Rich Saline Ameliorates Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice Via the Nrf2-ARE Signaling Pathway. Inflammation 2019; 42:586-597. [PMID: 30343391 DOI: 10.1007/s10753-018-0915-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic and inflammatory disease of the central nervous system that is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. Hydrogen-rich saline (HRS) is efficacious in preventive and therapeutic applications for many disorders because of its antioxidant and anti-inflammatory properties. Here, we determined the effect of HRS in experimental autoimmune encephalomyelitis (EAE), which is a generally accepted model of the immuno-pathogenic mechanisms underlying MS. We found that HRS reduced the severity of EAE in mice and alleviated inflammation and demyelination. Furthermore, treatment with HRS attenuated oxidative stress in EAE mice. Finally, the results of our study suggest that activation of the Nrf2-ARE pathway plays a critical role in the protective effects of HRS in EAE mice.
Collapse
|
62
|
Li S, Fujino M, Takahara T, Li XK. Protective role of heme oxygenase-1 in fatty liver ischemia-reperfusion injury. Med Mol Morphol 2019; 52:61-72. [PMID: 30171344 PMCID: PMC6542780 DOI: 10.1007/s00795-018-0205-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Ischemia-reperfusion (IR) injury is a kind of injury resulting from the restoration of the blood supply after blood vessel closure during liver transplantation and is the main cause of graft failure. The pathophysiological mechanisms of hepatic IR include a variety of oxidative stress responses. Hepatic IR is characterized by ischemia and hypoxia inducing oxidative stress, immune response and apoptosis. Fat-denatured livers are also used as donors due to the lack of liver donors. Fatty liver is less tolerant to IR than normal liver. Heme oxygenase (HO) is an enzyme that breaks down hemoglobin to bilirubin, ferrous iron and carbon monoxide (CO). Inducible HO subtype HO-1 is an important protective molecule in mammalian cells used to improve acute and chronic liver injury owing to its characteristic anti-inflammatory and anti-apoptotic qualities. HO-1 degrades heme, and its reaction product CO has been shown to reduce hepatic IR injury and increase the survival rate of grafts. As an induced form of HO, HO-1 also exerts a protective effect against liver IR injury and may be useful as a new strategy of ameliorating this kind of damage. This review summarizes the protective effects of HO-1 in liver IR injury, especially in fatty liver.
Collapse
Affiliation(s)
- Shaowei Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
63
|
Kura B, Bagchi AK, Singal PK, Barancik M, LeBaron TW, Valachova K, Šoltés L, Slezák J. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury. Can J Physiol Pharmacol 2019; 97:287-292. [DOI: 10.1139/cjpp-2018-0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uncontrolled production of oxygen and nitrogen radicals results in oxidative and nitrosative stresses that impair cellular functions and have been regarded as causative common denominators of many pathological processes. In this review, we report on the beneficial effects of molecular hydrogen in scavenging radicals in an artificial system of•OH formation. As a proof of principle, we also demonstrate that in rat hearts in vivo, administration of molecular hydrogen led to a significant increase in superoxide dismutase as well as pAKT, a cell survival signaling molecule. Irradiation of the rats caused a significant increase in lipid peroxidation, which was mitigated by pre-treatment of the animals with molecular hydrogen. The nuclear factor erythroid 2-related factor 2 is regarded as an important regulator of oxyradical homeostasis, as well as it supports the functional integrity of cells, particularly under conditions of oxidative stress. We suggest that the beneficial effects of molecular hydrogen may be through the activation of nuclear factor erythroid 2-related factor 2 pathway that promotes innate antioxidants and reduction of apoptosis, as well as inflammation.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Ashim K. Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
- Molecular Hydrogen Institute, Enoch, Utah 84721, USA
| | - Katarina Valachova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovak Republic
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovak Republic
| | - Ján Slezák
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
64
|
Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, He Q. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials 2019; 197:393-404. [DOI: 10.1016/j.biomaterials.2019.01.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
65
|
Meng J, Yu P, Tong J, Sun W, Jiang H, Wang Y, Xue K, Xie F, Qian H, Liu N, Zhao J, Bao N. Hydrogen treatment reduces tendon adhesion and inflammatory response. J Cell Biochem 2019; 120:1610-1619. [PMID: 30367509 DOI: 10.1002/jcb.27441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023]
Abstract
A rat model of tendon repair was established to investigate the effects of hydrogen water on tendon adhesion reduction. Thirty-six Sprague Dawley rats were randomly divided into a normal saline (NS) group and a hydrogen water (HS) group according to the processing reagents after a tendon repairing operation. Pre- and postoperative superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in subjects' serum were observed. Skin fibroblasts were grouped into an NS group, H2 O2 group, H2 group, and H2 O2 H2 group. Expressions of Nrf2, CATA, and γ-GCS were also tested by Western blot analysis. 8-OHdG, GSH, MDA, and SOD of the cells were analyzed by the enzyme-linked immunosorbent assay method. The postoperative SOD activity and GSH contents were significantly reduced (P < 0.05), whereas the postoperative MDA level was significantly increased (P < 0.05). Similarly, the postoperative HS group showed significantly higher SOD activity and GSH contents (P < 0.05) but lower MDA (P < 0.05) compared with the postoperative NS group. MDA and 8-OHdG were significantly decreased in hydrogen-rich medium, while SOD and GSH were increased. The expression of Nrf2, CATA, and γ-GCS in antioxidant system were reduced after H2 O2 processing, which were restored after the application of hydrogen-rich medium. Hydrogen water can reduce tendon adhesion after tendon repairing and prohibit excessive inflammatory response, which could be associated with the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jia Meng
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Tong
- Orthopedic Department, The Affiliated Taizhou people's Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Wenshuang Sun
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hui Jiang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yicun Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kaiwen Xue
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Farong Xie
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hong Qian
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Naicheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
66
|
Hirayama M, Ito M, Minato T, Yoritaka A, LeBaron TW, Ohno K. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2'-deoxyguanine in Parkinson's disease. Med Gas Res 2019; 8:144-149. [PMID: 30713666 PMCID: PMC6352570 DOI: 10.4103/2045-9912.248264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Hyposmia is one of the earliest and the most common symptoms in Parkinson's disease (PD). The benefits of hydrogen water on motor deficits have been reported in animal PD models and PD patients, but the effects of hydrogen gas on PD patients have not been studied. We evaluated the effect of inhalation of hydrogen gas on olfactory function, non-motor symptoms, activities of daily living, and urinary 8-hydroxy-2'-deoxyguanine (8-OHdG) levels by a randomized, double-blinded, placebo-controlled, crossover trial with an 8-week washout period in 20 patients with PD. Patients inhaled either ~1.2-1.4% hydrogen-air mixture or placebo for 10 minutes twice a day for 4 weeks. Inhalation of low dose hydrogen did not significantly influence the PD clinical parameters, but it did increase urinary 8-OHdG levels by 16%. This increase in 8-OHdG is markedly less than the over 300% increase in diabetes, and is more comparable to the increase after a bout of strenuous exercise. Although increased reactive oxygen species is often associated with toxicity and disease, they also play essential roles in mediating cytoprotective cellular adaptations in a process known as hormesis. Increases of oxidative stress by hydrogen have been previously reported, along with its ability to activate the Nrf2, NF-κB pathways, and heat shock responses. Although we did not observe any beneficial effect of hydrogen in our short trial, we propose that the increased 8-OHdG and other reported stress responses from hydrogen may indicate that its beneficial effects are partly or largely mediated by hormetic mechanisms. The study was approved by the ethics review committee of Nagoya University Graduate School of Medicine (approval number 2015-0295). The clinical trial was registered at the University Hospital Medical Information Network (identifier UMIN000019082).
Collapse
Affiliation(s)
- Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Minato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asako Yoritaka
- Department of Neurology, Juntendo University Koshigaya Hospital, Saitama, Japan
| | - Tyler W LeBaron
- Molecular Hydrogen Institute, Utah, USA.,Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Ropublic
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
67
|
Suzuki A, Ito M, Hamaguchi T, Mori H, Takeda Y, Baba R, Watanabe T, Kurokawa K, Asakawa S, Hirayama M, Ohno K. Quantification of hydrogen production by intestinal bacteria that are specifically dysregulated in Parkinson's disease. PLoS One 2018; 13:e0208313. [PMID: 30586410 PMCID: PMC6306167 DOI: 10.1371/journal.pone.0208313] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Oral administration of hydrogen water ameliorates Parkinson’s disease (PD) in rats, mice, and humans. We previously reported that the number of putative hydrogen-producing bacteria in intestinal microbiota is low in PD compared to controls. We also reported that the amount of hydrogen produced by ingestion of lactulose is low in PD patients. The decreased hydrogen production by intestinal microbiota may be associated with the development and progression of PD. We measured the amount of hydrogen production using gas chromatography by seven bacterial strains, which represented seven major intestinal bacterial groups/genera/species. Blautia coccoides and Clostridium leptum produced the largest amount of hydrogen. Escherichia coli and Bacteroides fragilis constituted the second group that produced hydrogen 34- to 93-fold lower than B. coccoides. Bifidobacterium pseudocatenulatum and Atopobium parvulum constituted the third group that produced hydrogen 559- to 2164-fold lower than B. coccoides. Lactobacillus casei produced no detectable hydrogen. Assuming that taxonomically neighboring strains have similar hydrogen production, we simulated hydrogen production using intestinal microbiota that we previously reported, and found that PD patients produce a 2.2-fold lower amount of intestinal hydrogen compared to controls. The lower amount of intestinal hydrogen production in PD was also simulated in cohorts of two other countries. The number of hydrogen-producing intestinal bacteria may be associated with the development and progression of PD. Further studies are required to prove its beneficial effect.
Collapse
Affiliation(s)
- Anzu Suzuki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Mori
- Genome Evolution Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Yuka Takeda
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuko Baba
- Laboratory of Soil Biology and Chemistry, Department of Biological Mechanisms and Functions, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Takeshi Watanabe
- Laboratory of Soil Biology and Chemistry, Department of Biological Mechanisms and Functions, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Susumu Asakawa
- Laboratory of Soil Biology and Chemistry, Department of Biological Mechanisms and Functions, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
68
|
Molecular hydrogen may enhance the production of testosterone hormone in male infertility through hormone signal modulation and redox balance. Med Hypotheses 2018; 121:6-9. [DOI: 10.1016/j.mehy.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
|
69
|
Tamaki I, Hata K, Okamura Y, Nigmet Y, Hirao H, Kubota T, Inamoto O, Kusakabe J, Goto T, Tajima T, Yoshikawa J, Tanaka H, Tsuruyama T, Tolba RH, Uemoto S. Hydrogen Flush After Cold Storage as a New End-Ischemic Ex Vivo Treatment for Liver Grafts Against Ischemia/Reperfusion Injury. Liver Transpl 2018; 24:1589-1602. [PMID: 30120877 PMCID: PMC6686173 DOI: 10.1002/lt.25326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 01/13/2023]
Abstract
Cold storage (CS) remains the gold standard for organ preservation worldwide, although it is inevitably associated with ischemia/reperfusion injury (IRI). Molecular hydrogen (H2 ) is well known to have antioxidative properties. However, its unfavorable features, ie, inflammability, low solubility, and high tissue/substance permeability, have hampered its clinical application. To overcome such obstacles, we developed a novel reconditioning method for donor organs named hydrogen flush after cold storage (HyFACS), which is just an end-ischemic H2 flush directly to donor organs ex vivo, and, herein, we report its therapeutic impact against hepatic IRI. Whole liver grafts were retrieved from Wistar rats. After 24-hour CS in UW solution, livers were cold-flushed with H2 solution (1.0 ppm) via the portal vein (PV), the hepatic artery (HA), or both (PV + HA). Functional integrity and morphological damages were then evaluated by 2-hour oxygenated reperfusion at 37°C. HyFACS significantly lowered portal venous pressure, transaminase, and high mobility group box protein 1 release compared with vehicle-treated controls (P < 0.01). Hyaluronic acid clearance was significantly higher in the HyFACS-PV and -PV + HA groups when compared with the others (P < 0.01), demonstrating the efficacy of the PV route to maintain the sinusoidal endothelia. In contrast, bile production and lactate dehydrogenase leakage therein were both significantly improved in HyFACS-HA and -PV + HA (P < 0.01), representing the superiority of the arterial route to attenuate biliary damage. Electron microscopy consistently revealed that sinusoidal ultrastructures were well maintained by portal HyFACS, while microvilli in bile canaliculi were well preserved by arterial flush. As an underlying mechanism, HyFACS significantly lowered oxidative damages, thus improving the glutathione/glutathione disulfide ratio in liver tissue. In conclusion, HyFACS significantly protected liver grafts from IRI by ameliorating oxidative damage upon reperfusion in the characteristic manner with its route of administration. Given its safety, simplicity, and cost-effectiveness, end-ischemic HyFACS may be a novel pretransplant conditioning for cold-stored donor organs.
Collapse
Affiliation(s)
- Ichiro Tamaki
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Koichiro Hata
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Yusuke Okamura
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Yermek Nigmet
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Hirofumi Hirao
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Toyonari Kubota
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Osamu Inamoto
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Jiro Kusakabe
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Toru Goto
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Tetsuya Tajima
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Junichi Yoshikawa
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Hirokazu Tanaka
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological and Forensic Medical ResearchKyoto University Graduate School of MedicineKyotoJapan
| | - Rene H. Tolba
- Institute for Laboratory Animal Science and Experimental SurgeryRheinisch‐Westfälische Technische Hochschule Aachen UniversityAachenGermany
| | - Shinji Uemoto
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| |
Collapse
|
70
|
Mo XY, Li XM, She CS, Lu XQ, Xiao CG, Wang SH, Huang GQ. Hydrogen-rich saline protects rat from oxygen glucose deprivation and reperusion-induced apoptosis through VDAC1 via Bcl-2. Brain Res 2018; 1706:110-115. [PMID: 30287344 DOI: 10.1016/j.brainres.2018.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hydrogen is received as an inert gas that thought to be non-functional in vivo previously. Recently, emerging evidences showed that in ischemia/reperfusion (IR) condition, hydrogen reduced cellular reactive oxygen species (ROS) production and ameliorated cell apoptosis. However, the underlying mechanism of hydrogen on IR-induced apoptosis remains elusive. Here we tried to unravel the mode of action of hydrogen with rat adrenal medulla cell line PC-12 in vitro. METHODS The mitochondrial functions before and after oxygen glucose deprivation and reperfusion (OGD/RP) were determined with corresponding dyes. The expression of Bcl-2, Bax, VDAC1, cytochrome c and caspase 9 was detected using qRT-PCR and Western Blotting method. Then Bcl-2 inhibitor, AB-199, was applied to investigate the role of Bcl-2 in OGD/RP-induced cell apoptosis. Finally, we manipulated the expression of VDAC1 with plasmids transfection to understand the effects of VDAC1 on Bcl-2-mediated anti-apoptosis in OGD/RP. RESULTS In this study, we demonstrated that hydrogen-rich saline (HRS) reduced OGD/RP-mediated neuronal loss by stimulating the expression of Bcl-2, which suppressed the activity of VDAC1. Consequently, HRS maintained the mitochondrial functions, restrained the release of cytochrome c and caspase 9 activation, resulting in ameliorated cell viability. CONCLUSIONS HRS ameliorated OGD/RP-induced PC-12 cell apoptosis and provided a novel treatment option for ischemia.
Collapse
Affiliation(s)
- Xiao-Ye Mo
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Xiang-Min Li
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Chang-Shou She
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Xiao-Qin Lu
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Cheng-Gen Xiao
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Shi-Hai Wang
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China
| | - Guo-Qing Huang
- Department of Emergency, Xiangya Hospital of Central South University, Changsha 410008, PR China.
| |
Collapse
|
71
|
Molecular hydrogen protects against ischemia-reperfusion injury in a mouse fatty liver model via regulating HO-1 and Sirt1 expression. Sci Rep 2018; 8:14019. [PMID: 30232347 PMCID: PMC6145907 DOI: 10.1038/s41598-018-32411-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Fatty liver has lower tolerance against ischemia-reperfusion (I/R) injury in liver operations, including liver transplantation. Seeking to ameliorate liver injury following I/R in fatty liver, we examined the protective effect of hydrogen (H2) saline on I/R liver injury in a methionine and choline-deficient plus high fat (MCDHF) diet-induced fatty liver mouse model. Saline containing 7 ppm H2 was administrated during the process of I/R. Livers were obtained and analyzed. Primary hepatocytes and Kupffer cells (KCs) were obtained from fatty liver and subjected to hypoxia/reoxygenation. Apoptosis-related proteins and components of the signaling pathway were analyzed after treatment with hydrogen gas. The MCDHF I/R group showed higher levels of AST and ALT in serum, TUNEL-positive apoptotic cells, F4/80 immunopositive cells, mRNA levels of inflammatory cytokines, constituents of the signaling pathway, pro-apoptotic molecules in liver, and KCs and/or primary hepatocytes, compared to the control group. In contrast, H2 treatment significantly suppressed the signs of I/R injury in fatty liver. Moreover, the expression of Bcl-2, HO-1, and Sirt1 in liver, KCs, and hepatocytes by hydrogen gas were increased, whereas caspase activation, Bax, and acetylation of p53 were suppressed by hydrogen gas. These results demonstrated that H2 treatment ameliorated I/R liver injury in a fatty liver model by reducing hepatocyte apoptosis, inhibiting macrophage activation and inflammatory cytokines, and inducing HO-1 and Sirt1 expression. Taken togather, treatment with H2 saline may have a protective effect and safe therapeutic activity during I/R events, such as in liver transplantation with fatty liver.
Collapse
|
72
|
Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J Surg Res 2018; 228:238-246. [DOI: 10.1016/j.jss.2018.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/29/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
|
73
|
The Anti-inflammatory Effect of Hydrogen on Lung Transplantation Model of Pulmonary Microvascular Endothelial Cells During Cold Storage Period. Transplantation 2018; 102:1253-1261. [DOI: 10.1097/tp.0000000000002276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
74
|
Ishikawa T, Shimada S, Fukai M, Kimura T, Umemoto K, Shibata K, Fujiyoshi M, Fujiyoshi S, Hayasaka T, Kawamura N, Kobayashi N, Shimamura T, Taketomi A. Post-reperfusion hydrogen gas treatment ameliorates ischemia reperfusion injury in rat livers from donors after cardiac death: a preliminary study. Surg Today 2018; 48:1081-1088. [PMID: 29980846 DOI: 10.1007/s00595-018-1693-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE We reported previously that hydrogen gas (H2) reduced hepatic ischemia and reperfusion injury (IRI) after prolonged cold storage (CS) of livers retrieved from heart-beating donors. The present study was designed to assess whether H2 reduced hepatic IRI during donation of a cardiac death (DCD) graft with subsequent CS. METHODS Rat livers were harvested after 30-min cardiac arrest and stored for 4 h in University of Wisconsin solution. The graft was reperfused with oxygenated buffer, with or without H2 (H2 or NT groups, respectively), at 37° for 90 min on isolated perfused rat liver apparatus. RESULTS In the NT group, liver enzyme leakage, apoptosis, necrosis, energy depletion, redox status, impaired microcirculation, and bile production were indicative of severe IRI, whereas in the H2 group these impairments were significantly suppressed. The phosphorylation of cytoplasmic MKK4 and JNK were enhanced in the NT group and suppressed in the H2 group. NFkB-p65 and c-Fos in the nucleus were unexpectedly unchanged by IRI regardless of H2 treatment, indicating the absence of inflammation in this model. CONCLUSION H2 was observed to ameliorate IRI in the DCD liver by maintaining microcirculation, mitochondrial functions, and redox status, as well as suppressing the cytoplasmic MKK4-JNK-mediated cellular death pathway.
Collapse
Affiliation(s)
- Takahisa Ishikawa
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Taichi Kimura
- Laboratory of Cancer Research, Department of Pathology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kouhei Umemoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Masato Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Sunao Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Central Clinical Facilities, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
75
|
Positive effects of hydrogen-water bathing in patients of psoriasis and parapsoriasis en plaques. Sci Rep 2018; 8:8051. [PMID: 29795283 PMCID: PMC5966409 DOI: 10.1038/s41598-018-26388-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Psoriasis and parapsoriasis en plaques are chronic inflammatory skin diseases, both representing therapeutic challenge in daily practice and adversely affecting the quality of life. Reactive oxygen species (ROS) has been evidenced to be involved in the pathogenesis of the chronic inflammatory diseases. We now report that hydrogen water, an effective ROS scavenger, has significant and rapid improvement in disease severity and quality of life for patients with psoriasis and parapsoriasis en plaques. At week 8, our parallel-controlled trial revealed 24.4% of patients (10/41) receiving hydrogen-water bathing achieved at least 75% improvement in Psoriasis Area Severity Index (PASI) score compared with 2.9% of patients (1/34) of the control group (Pc = 0.022, OR = 0.094, 95%CI = [0.011, 0.777]). Of patients, 56.1% (23/41) who received bathing achieved at least 50% improvement in PASI score compared with only 17.7%(6/34) of the control group (P = 0.001, OR = 0.168, 95%CI = [0.057, 0.492]). The significant improvement of pruritus was also observed (P = 3.94 × 10−4). Besides, complete response was observed in 33.3% of patients (2/6) of parapsoriasis en plaques and partial response in 66.7% (4/6) at week 8. Our findings suggested that hydrogen-water bathing therapy could fulfill the unmet need for these chronic inflammatory skin diseases.
Collapse
|
76
|
Protection by Inhaled Hydrogen Therapy in a Rat Model of Acute Lung Injury can be Tracked in vivo Using Molecular Imaging. Shock 2018; 48:467-476. [PMID: 28915216 DOI: 10.1097/shk.0000000000000872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inhaled hydrogen gas (H2) provides protection in rat models of human acute lung injury (ALI). We previously reported that biomarker imaging can detect oxidative stress and endothelial cell death in vivo in a rat model of ALI. Our objective was to evaluate the ability of Tc-hexamethylpropyleneamineoxime (HMPAO) and Tc-duramycin to track the effectiveness of H2 therapy in vivo in the hyperoxia rat model of ALI. Rats were exposed to room air (normoxia), 98% O2 + 2% N2 (hyperoxia) or 98% O2 + 2% H2 (hyperoxia+H2) for up to 60 h. In vivo scintigraphy images were acquired following injection of Tc-HMPAO or Tc-duramycin. For hyperoxia rats, Tc-HMPAO and Tc-duramycin lung uptake increased in a time-dependent manner, reaching a maximum increase of 270% and 150% at 60 h, respectively. These increases were reduced to 120% and 70%, respectively, in hyperoxia+H2 rats. Hyperoxia exposure increased glutathione content in lung homogenate (36%) more than hyperoxia+H2 (21%), consistent with increases measured in Tc-HMPAO lung uptake. In 60-h hyperoxia rats, pleural effusion, which was undetectable in normoxia rats, averaged 9.3 gram/rat, and lung tissue 3-nitrotyrosine expression increased by 790%. Increases were reduced by 69% and 59%, respectively, in 60-h hyperoxia+H2 rats. This study detects and tracks the anti-oxidant and anti-apoptotic properties of H2 therapy in vivo after as early as 24 h of hyperoxia exposure. The results suggest the potential utility of these SPECT biomarkers for in vivo assessment of key cellular pathways in the pathogenesis of ALI and for monitoring responses to therapies.
Collapse
|
77
|
Preadministration of Hydrogen-Rich Water Protects Against Lipopolysaccharide-Induced Sepsis and Attenuates Liver Injury. Shock 2018; 48:85-93. [PMID: 27918369 DOI: 10.1097/shk.0000000000000810] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant advances in antibiotic therapy and intensive care, sepsis remains the most common cause of death in intensive care units. We previously reported that molecular hydrogen (H2) acts as a therapeutic and preventive antioxidant. Here, we show that preadministration of H2-dissolved water (HW) suppresses lipopolysaccharide (LPS)-induced endotoxin shock in mice. Drinking HW for 3 days before LPS injection prolonged survival in a mouse model of sepsis. The H2 concentration immediately increased in the liver but not in the kidney after drinking HW. The protective effects of the preadministration of HW on LPS-induced liver injury were examined. Twenty-four hours after LPS injection, preadministration of HW reduced the increase in both apoptosis and oxidative stress. Moreover, preadministration of HW enhanced LPS-induced expression of heme oxyganase-1 and reduced endothelin-1 expression. These results indicate the therapeutic potential of HW in preventing acute injury of the liver with attenuation of an increase in oxidative stress. HW is likely to trigger adaptive responses against oxidative stress.
Collapse
|
78
|
Protective Effect of Hydrogen Gas Inhalation on Muscular Damage Using a Mouse Hindlimb Ischemia-Reperfusion Injury Model. Plast Reconstr Surg 2017; 140:1195-1206. [DOI: 10.1097/prs.0000000000003878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
79
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
80
|
Sun Q, Han W, Hu H, Fan D, Li Y, Zhang Y, Lv Y, Li M, Pan S. Hydrogen alleviates hyperoxic acute lung injury related endoplasmic reticulum stress in rats through upregulation of SIRT1. Free Radic Res 2017; 51:622-632. [PMID: 28675985 DOI: 10.1080/10715762.2017.1351027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qiang Sun
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Wenjie Han
- Department of VIP Respiration Medicine, PLA Navy General Hospital, Beijing, China
| | - Huijun Hu
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Danfeng Fan
- Department of VIP Respiration Medicine, PLA Navy General Hospital, Beijing, China
| | - Yanbo Li
- Department of VIP General Medicine, PLA Navy General Hospital, Beijing, China
| | - Yu Zhang
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Yan Lv
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Mingxin Li
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| |
Collapse
|
81
|
Role of the Nrf2/HO-1 axis in bronchopulmonary dysplasia and hyperoxic lung injuries. Clin Sci (Lond) 2017; 131:1701-1712. [PMID: 28667068 DOI: 10.1042/cs20170157] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic illness that usually originates in preterm newborns. Generally, BPD is a consequence of respiratory distress syndrome (RDS) which, in turn, comes from the early arrest of lung development and the lack of pulmonary surfactant. The need of oxygen therapy to overcome premature newborns' compromised respiratory function generates an increasing amount of reactive oxygen species (ROS), the onset of sustained oxidative stress (OS) status, and inflammation in the pulmonary alveoli deputies to respiratory exchanges. BPD is a severe and potentially life-threatening disorder that in the most serious cases, can open the way to neurodevelopmental delay. More importantly, there is no adequate intervention to hamper or treat BPD. This perspective article seeks to review the most recent and relevant literature describing the very early stages of BPD and hyperoxic lung injuries focussing on nuclear factor erythroid derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis. Indeed, Nrf2/HO1 activation in response to OS induced lung injury in preterm concurs to the induction of certain number of antioxidant, anti-inflammatory, and detoxification pathways that seem to be more powerful than the activation of one single antioxidant gene. These elicited protective effects are able to counteract/mitigate all multifaceted aspects of the disease and may support novel approaches for the management of BPD.
Collapse
|
82
|
Murakami Y, Ito M, Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS One 2017; 12:e0176992. [PMID: 28467497 PMCID: PMC5415102 DOI: 10.1371/journal.pone.0176992] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Inhalation of molecular hydrogen (H2) gas ameliorates oxidative stress-induced acute injuries in the brain. Consumption of water nearly saturated with H2 also prevents chronic neurodegenerative diseases including Parkinson's disease in animal and clinical studies. However, the molecular mechanisms underlying the remarkable effect of a small amount of H2 remain unclear. Here, we investigated the effect of H2 on mitochondria in cultured human neuroblastoma SH-SY5Y cells. H2 increased the mitochondrial membrane potential and the cellular ATP level, which were accompanied by a decrease in the reduced glutathione level and an increase in the superoxide level. Pretreatment with H2 suppressed H2O2-induced cell death, whereas post-treatment did not. Increases in the expression of anti-oxidative enzymes underlying the Nrf2 pathway in H2-treated cells indicated that mild stress caused by H2 induced increased resistance to exacerbated oxidative stress. We propose that H2 functions both as a radical scavenger and a mitohormetic effector against oxidative stress in cells.
Collapse
Affiliation(s)
- Yayoi Murakami
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
83
|
Yu J, Yu Q, Liu Y, Zhang R, Xue L. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells. PLoS One 2017; 12:e0173645. [PMID: 28362819 PMCID: PMC5375132 DOI: 10.1371/journal.pone.0173645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA) is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS), breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2) can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.
Collapse
Affiliation(s)
- Junchao Yu
- Department of Hyperbaric Oxygenation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiuhong Yu
- Department of Hyperbaric Oxygenation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaling Liu
- Department of Hyperbaric Oxygenation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruiyun Zhang
- Department of Neurology, Civil Aviation General Hospital, Beijing, China
| | - Lianbi Xue
- Department of Hyperbaric Oxygenation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
84
|
Iketani M, Ohsawa I. Molecular Hydrogen as a Neuroprotective Agent. Curr Neuropharmacol 2017; 15:324-331. [PMID: 27281176 PMCID: PMC5412697 DOI: 10.2174/1570159x14666160607205417] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress and neuroinflammation cause many neurological disorders. Recently, it has been reported that molecular hydrogen (H2) functions as an antioxidant and anti-inflammatory agent. The routes of H2 administration in animal model and human clinical studies are roughly classified into three types, inhalation of H2 gas, drinking H2-dissolved water, and injection of H2-dissolved saline. This review discusses some of the remarkable progress that has been made in the research of H2 use for neurological disorders, such as cerebrovascular diseases, neurodegenerative disorders, and neonatal brain disorders. Although most neurological disorders are currently incurable, these studies suggest the clinical potential of H2 administration for their prevention, treatment, and mitigation. Several of the potential effectors of H2 will also be discussed, including cell signaling molecules and hormones that are responsible for preventing oxidative stress and inflammation. Nevertheless, further investigation will be required to determine the direct target molecule of H2.
Collapse
Affiliation(s)
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
85
|
Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8241678. [PMID: 28243358 PMCID: PMC5294227 DOI: 10.1155/2017/8241678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/08/2016] [Accepted: 12/26/2016] [Indexed: 12/24/2022]
Abstract
We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (∙OH) levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.
Collapse
|
86
|
Nardiello C, Mižíková I, Morty RE. Looking ahead: where to next for animal models of bronchopulmonary dysplasia? Cell Tissue Res 2016; 367:457-468. [PMID: 27917436 PMCID: PMC5320021 DOI: 10.1007/s00441-016-2534-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth, with appreciable morbidity and mortality in a neonatal intensive care setting. Much interest has been shown in the identification of pathogenic pathways that are amenable to pharmacological manipulation (1) to facilitate the development of novel therapeutic and medical management strategies and (2) to identify the basic mechanisms of late lung development, which remains poorly understood. A number of animal models have therefore been developed and continue to be refined with the aim of recapitulating pathological pulmonary hallmarks noted in lungs from neonates with BPD. These animal models rely on several injurious stimuli, such as mechanical ventilation or oxygen toxicity and infection and sterile inflammation, as applied in mice, rats, rabbits, pigs, lambs and nonhuman primates. This review addresses recent developments in modeling BPD in experimental animals and highlights important neglected areas that demand attention. Additionally, recent progress in the quantitative microscopic analysis of pathology tissue is described, together with new in vitro approaches of value for the study of normal and aberrant alveolarization. The need to examine long-term sequelae of damage to the developing neonatal lung is also considered, as is the need to move beyond the study of the lungs alone in experimental animal models of BPD.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
| |
Collapse
|
87
|
Camara R, Huang L, Zhang JH. The production of high dose hydrogen gas by the AMS-H-01 for treatment of disease. Med Gas Res 2016; 6:164-166. [PMID: 27867484 PMCID: PMC5110138 DOI: 10.4103/2045-9912.191362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hydrogen gas is a new and promising treatment option for a variety of diseases including stroke. Here, we introduce the AMS-H-01, a medically approved machine capable of safely producing ~66% hydrogen gas. Furthermore, we propose the significance of this machine in the future of hydrogen gas research.
Collapse
Affiliation(s)
- Richard Camara
- Department of Basic Science, Division of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Lei Huang
- Department of Basic Science, Division of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Basic Science, Division of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
88
|
Diao M, Zhang S, Wu L, Huan L, Huang F, Cui Y, Lin Z. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits. Inflammation 2016; 39:2029-2039. [DOI: 10.1007/s10753-016-0440-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
89
|
Muramatsu Y, Ito M, Oshima T, Kojima S, Ohno K. Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats. Pediatr Pulmonol 2016; 51:928-35. [PMID: 26845501 DOI: 10.1002/ppul.23386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 11/06/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by developmental arrest of the alveolar tissue. Oxidative stress is causally associated with development of BPD. The effects of hydrogen have been reported in a wide range of disease models and human diseases especially caused by oxidative stress. We made a rat model of BPD by injecting lipopolysaccharide (LPS) into the amniotic fluid at E16.5. The mother started drinking hydrogen-rich water from E9.5 and also while feeding milk. Hydrogen normalized LPS-induced abnormal enlargement of alveoli at P7 and P14. LPS increased staining for nitrotyrosine and 8-OHdG of the lungs, and hydrogen attenuated the staining. At P1, LPS treatment decreased expressions of genes for FGFR4, VEGFR2, and HO-1 in the lungs, and hydrogen increased expressions of these genes. In contrast, LPS treatment and hydrogen treatment had no essential effect on the expression of SOD1. Inflammatory marker proteins of TNFα and IL-6 were increased by LPS treatment, and hydrogen suppressed them. Treatment of A549 human lung adenocarcinoma epithelial cells with 10% hydrogen gas for 24 hr decreased production of reactive oxygen species in both LPS-treated and untreated cells. Lack of any known adverse effects of hydrogen makes hydrogen a promising therapeutic modality for BPD. Pediatr Pulmonol. 2016; 51:928-935. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yukako Muramatsu
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Oshima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
90
|
Cui J, Chen X, Zhai X, Shi D, Zhang R, Zhi X, Li X, Gu Z, Cao L, Weng W, Zhang J, Wang L, Sun X, Ji F, Hou J, Su J. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use. Neuroscience 2016; 335:232-41. [PMID: 27555551 DOI: 10.1016/j.neuroscience.2016.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/25/2023]
Abstract
Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically.
Collapse
Affiliation(s)
- Jin Cui
- Graduate Management Unit, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Xiao Chen
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Xiao Zhai
- Graduate Management Unit, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Dongchen Shi
- Graduate Management Unit, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Rongjia Zhang
- Department of Naval Aviation Medicine, The Second Military Medical University, Shanghai, PR China
| | - Xin Zhi
- Graduate Management Unit, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Xiaoqun Li
- Graduate Management Unit, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Zhengrong Gu
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Liehu Cao
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Weizong Weng
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Jun Zhang
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou, PR China
| | - Xuejun Sun
- Department of Naval Aviation Medicine, The Second Military Medical University, Shanghai, PR China
| | - Fang Ji
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China
| | - Jiong Hou
- Department of Anesthesiology, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, PR China.
| | - Jiacan Su
- Department of Orthopedics, Changhai hospital Affiliated to the Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
91
|
Sakata H, Okamoto A, Aoyama-Ishikawa M, Yamashita H, Kohama K, Fujisaki N, Yamada T, Kotani J, Tsukahara K, Iida A, Nakao A. Inhaled hydrogen ameliorates endotoxin-induced bowel dysfunction. Acute Med Surg 2016; 4:38-45. [PMID: 29123834 PMCID: PMC5667287 DOI: 10.1002/ams2.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Aim Gastrointestinal dysmotility frequently occurs during sepsis and multiple organ failure, remaining a major cause of morbidity and mortality in critically ill patients. Previous studies have shown that hydrogen, a new therapeutic gas, can improve various organ damage associated with sepsis. In this study, we investigated the protective efficacies of inhaled hydrogen against lipopolysaccharide (LPS)‐induced ileus. Methods Sepsis was induced in rats and mice by a single i.p. injection of LPS at 15 mg/kg for mice and 5 mg/kg for rats. Four groups of rats and mice including sham/air, sham/hydrogen, LPS/air, and LPS/hydrogen were analyzed. Hydrogen (1.3%) was inhaled for 25 h beginning at 1 h prior to LPS treatment. Gastrointestinal transit was quantified and cytokine levels, as well as neutrophil extravasation, in the intestinal muscularis propria were determined. Results Lipopolysaccharide challenge remarkably delayed gastrointestinal transit of non‐absorbable dextran, associated with increased leukocyte recruitment and upregulation of pro‐inflammatory cytokine mRNA expressions in the muscularis propria. Hydrogen significantly prevented LPS‐induced bowel dysmotility and reduced leukocyte extravasation, as well as inhibition of inflammatory cytokine expression. In vitro analysis of cytokine levels after LPS treatment of cultured macrophages showed an increase of interleukin‐10 by hydrogen regardless of the presence of nitric oxide. Conclusions This study showed the protective effects of hydrogen inhalation on LPS‐induced septic ileus through inhibition of inflammation in the muscularis propria. These inhibitory effects on the pro‐inflammatory response may be partially derived from anti‐inflammatory cytokine interleukin‐10 induction.
Collapse
Affiliation(s)
- Hiroyuki Sakata
- Department of Emergency Disaster and Critical Care Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Ayana Okamoto
- Department of Emergency Disaster and Critical Care Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | | | - Hayato Yamashita
- Kobe University Graduate School of Health Science Kobe Hyogo Japan
| | - Keisuke Kohama
- Senri Critical Care Medical Center Saiseikai Senri Hospital Suita Osaka Japan
| | - Noritomo Fujisaki
- Department of Emergency Disaster and Critical Care Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Taihei Yamada
- Department of Emergency Disaster and Critical Care Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Joji Kotani
- Department of Emergency Disaster and Critical Care Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Kohei Tsukahara
- Department of Emergency and Critical Care Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Okayama Japan
| | - Atsuyoshi Iida
- Department of Emergency and Critical Care Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Okayama Japan
| | - Atsunori Nakao
- Department of Emergency and Critical Care Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Okayama Japan
| |
Collapse
|
92
|
Shimada S, Wakayama K, Fukai M, Shimamura T, Ishikawa T, Fukumori D, Shibata M, Yamashita K, Kimura T, Todo S, Ohsawa I, Taketomi A. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver. Artif Organs 2016; 40:1128-1136. [PMID: 27140066 DOI: 10.1111/aor.12710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H2 (+) and H2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H2 (+) group, these harmful changes were significantly suppressed [vs. H2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter.
Collapse
Affiliation(s)
| | | | - Moto Fukai
- Transplant Surgery, Hokkaido University Graduate School of Medicine
| | - Tsuyoshi Shimamura
- Central Clinical Facilities, Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | | | - Daisuke Fukumori
- Department of Surgical Gastroenterology and Transplantation, University of Copenhagen, Copenhagen, Denmark
| | - Maki Shibata
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo
| | | | - Taichi Kimura
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido
| | - Satoru Todo
- St. Maria Hospital Laboratory, Kurume, Fukuoka, Japan
| | - Ikuroh Ohsawa
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo
| | | |
Collapse
|
93
|
Meng C, Ma L, Niu L, Cui X, Liu J, Kang J, Liu R, Xing J, Jiang C, Zhou H. Protection of donor lung inflation in the setting of cold ischemia against ischemia-reperfusion injury with carbon monoxide, hydrogen, or both in rats. Life Sci 2016; 151:199-206. [PMID: 26969763 DOI: 10.1016/j.lfs.2016.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022]
Abstract
AIMS Lung ischemia-reperfusion injury (IRI) may be attenuated through carbon monoxide (CO)'s anti-inflammatory effect or hydrogen (H2)'s anti-oxidant effect. In this study, the effects of lung inflation with CO, H2, or both during the cold ischemia phase on graft function were observed. MATERIALS AND METHODS Rat donor lungs, inflated with 40% oxygen (control group), 500ppm CO (CO group), 3% H2 (H2 group) or 500ppm CO+3% H2 (COH group), were kept at 4°C for 180min. After transplantation, the recipients' artery blood gas and pressure-volume (P-V) curves were analyzed. The inflammatory response, oxidative stress and apoptosis in the recipients were assessed at 180min after reperfusion. KEY FINDINGS Oxygenation in the CO and H2 groups were improved compared with the control group. The CO and H2 groups also exhibited significantly improved P-V curves, reduced lung injury, and decreased inflammatory response, malonaldehyde content, and cell apoptosis in the grafts. Furthermore, the COH group experienced enhanced improvements in oxygenation, P-V curves, inflammatory response, lipid peroxidation, and graft apoptosis compared to the CO and H2 groups. SIGNIFICANCE Lung inflation with CO or H2 protected against IRI via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in a model of lung transplantation in rats, which was enhanced by combined treatment with CO and H2.
Collapse
Affiliation(s)
- Chao Meng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Liangjuan Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China
| | - Li Niu
- Department of Anesthesiology, The 211 Hospital of the Chinese People's Liberation Army, Harbin, Hei Longjiang Province 150001, China
| | - Xiaoguang Cui
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Jinfeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Jiyu Kang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China
| | - Rongfang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Jingchun Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China; The Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin, Hei Longjiang Province 150001, China
| | - Changlin Jiang
- Department of Anesthesiology, The General Hospital of Daqing Oilfield, Daqing, Hei Longjiang Province 163000, China
| | - Huacheng Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Hei Longjiang Province 150001, China.
| |
Collapse
|
94
|
Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S. Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 2016; 6:18971. [PMID: 26739257 PMCID: PMC4704061 DOI: 10.1038/srep18971] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
We previously showed that H2 acts as a novel antioxidant to protect cells against oxidative stress. Subsequently, numerous studies have indicated the potential applications of H2 in therapeutic and preventive medicine. Moreover, H2 regulates various signal transduction pathways and the expression of many genes. However, the primary targets of H2 in the signal transduction pathways are unknown. Here, we attempted to determine how H2 regulates gene expression. In a pure chemical system, H2 gas (approximately 1%, v/v) suppressed the autoxidation of linoleic acid that proceeds by a free radical chain reaction, and pure 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC), one of the major phospholipids, was autoxidized in the presence or absence of H2. H2 modified the chemical production of the autoxidized phospholipid species in the cell-free system. Exposure of cultured cells to the H2-dependently autoxidized phospholipid species reduced Ca2+ signal transduction and mediated the expression of various genes as revealed by comprehensive microarray analysis. In the cultured cells, H2 suppressed free radical chain reaction-dependent peroxidation and recovered the increased cellular Ca2+, resulting in the regulation of Ca2+-dependent gene expression. Thus, H2 might regulate gene expression via the Ca2+ signal transduction pathway by modifying the free radical-dependent generation of oxidized phospholipid mediators.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Akemi Imoto
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Kiyomi Nishimaki
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Harumi Ichimiya
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Takashi Yokota
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-machi, Nakahara-ku, Kawasaki-city, Kanagawa 211-8533, Japan.,Department of Neuroregenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
95
|
Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation. Mucosal Immunol 2016; 9:98-111. [PMID: 25943274 DOI: 10.1038/mi.2015.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 04/01/2015] [Indexed: 02/04/2023]
Abstract
Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.
Collapse
|
96
|
Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5679040. [PMID: 26798423 PMCID: PMC4699099 DOI: 10.1155/2016/5679040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 12/17/2022]
Abstract
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.
Collapse
|
97
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
98
|
|
99
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
100
|
Chen H, Xie K, Han H, Li Y, Liu L, Yang T, Yu Y. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2015; 28:643-54. [DOI: 10.1016/j.intimp.2015.07.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/27/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022]
|