51
|
Oliveira AC, Fu C, Lu Y, Williams MA, Pi L, Brantly ML, Ventetuolo CE, Raizada MK, Mehrad B, Scott EW, Bryant AJ. Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L434-L444. [PMID: 31364370 PMCID: PMC6842914 DOI: 10.1152/ajplung.00156.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension complicates the care of many patients with chronic lung diseases (defined as Group 3 pulmonary hypertension), yet the mechanisms that mediate the development of pulmonary vascular disease are not clearly defined. Despite being the most prevalent form of pulmonary hypertension, to date there is no approved treatment for patients with disease. Myeloid-derived suppressor cells (MDSCs) and endothelial cells in the lung express the chemokine receptor CXCR2, implicated in the evolution of both neoplastic and pulmonary vascular remodeling. However, precise cellular contribution to lung disease is unknown. Therefore, we used mice with tissue-specific deletion of CXCR2 to investigate the role of this receptor in Group 3 pulmonary hypertension. Deletion of CXCR2 in myeloid cells attenuated the recruitment of polymorphonuclear MDSCs to the lungs, inhibited vascular remodeling, and protected against pulmonary hypertension. Conversely, loss of CXCR2 in endothelial cells resulted in worsened vascular remodeling, associated with increased MDSC migratory capacity attributable to increased ligand availability, consistent with analyzed patient sample data. Taken together, these data suggest that CXCR2 regulates MDSC activation, informing potential therapeutic application of MDSC-targeted treatments.
Collapse
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Chunhua Fu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mason A Williams
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Liya Pi
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Mark L Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Andrew J Bryant
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|
52
|
Kumar R, Mickael C, Kassa B, Sanders L, Koyanagi D, Hernandez‐Saavedra D, Freeman S, Morales‐Cano D, Cogolludo A, McKee AS, Fontenot AP, Butrous G, Tuder RM, Graham BB. Th2 CD4 + T Cells Are Necessary and Sufficient for Schistosoma-Pulmonary Hypertension. J Am Heart Assoc 2019; 8:e013111. [PMID: 31339057 PMCID: PMC6761627 DOI: 10.1161/jaha.119.013111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Background Inflammation underlies many forms of pulmonary hypertension (PH), including that resulting from Schistosoma infection, a major cause of PH worldwide. Schistosomiasis-associated PH is proximately triggered by embolization of parasite eggs into the lungs, resulting in localized type 2 inflammation. However, the role of CD4+ T cells in this disease is not well defined. Methods and Results We used a mouse model of schistosomiasis-associated PH, induced by intraperitoneal egg sensitization followed by intravenous egg challenge, with outcomes including right ventricle systolic pressure measured by cardiac catheterization, and cell density and phenotype assessed by flow cytometry. We identified that embolization of Schistosoma eggs into lungs of egg-sensitized mice increased the perivascular density of T-helper 2 (Th2) CD4+ T cells by recruitment of cells from the circulation and triggered type 2 inflammation. Parabiosis confirmed that egg embolization is required for localized type 2 immunity. We found Th2 CD4+ T cells were necessary for Schistosoma-induced PH, given that deletion of CD4+ T cells or inhibiting their Th2 function protected against type 2 inflammation and PH following Schistosoma exposure. We also observed that adoptive transfer of Schistosoma-sensitized CD4+ Th2 cells was sufficient to drive type 2 inflammation and PH. Conclusions Th2 CD4+ T cells are a necessary and sufficient component for the type 2 inflammation-induced PH following Schistosoma exposure.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Claudia Mickael
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Biruk Kassa
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Linda Sanders
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Dan Koyanagi
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | | | - Scott Freeman
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Daniel Morales‐Cano
- Department of Pharmacology and ToxicologySchool of MedicineUniversity Complutense of MadridInstituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Ciber Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Angel Cogolludo
- Department of Pharmacology and ToxicologySchool of MedicineUniversity Complutense of MadridInstituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Ciber Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Amy S. McKee
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
- Department of Microbiology and ImmunologyUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Andrew P. Fontenot
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
- Department of Microbiology and ImmunologyUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Ghazwan Butrous
- Pharmaceutical SciencesUniversity of KentCanterburyUnited Kingdom
| | - Rubin M. Tuder
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Brian B. Graham
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
53
|
Arterial Hypertension and Interleukins: Potential Therapeutic Target or Future Diagnostic Marker? Int J Hypertens 2019; 2019:3159283. [PMID: 31186952 PMCID: PMC6521461 DOI: 10.1155/2019/3159283] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hypertension as a multifactorial pathology is one of the most important cardiovascular risk factors, affecting up to 30-40% of the general population. Complex immune responses are involved in the inflammatory mechanism of hypertension, with evidence pointing to increased inflammatory mediators even in prehypertensive patients. Increased vascular permeability, thrombogenesis, and fibrosis, effects that are associated with sustained hypertension, could be attributed to chronic inflammation. Chronic inflammation triggers endothelial dysfunction via increased production of ROS through proinflammatory cytokines. Increased serum level of proinflammatory cytokines such as IL-1β, IL-6, IL-8, IL-17, IL-23, TGFβ, and TNFα in hypertensive patients has been associated with either increased blood pressure values and/or end-organ damage. Moreover, some cytokines (i.e., IL-6) seem to determine a hypertensive response to angiotensin II, regardless of blood pressure values. Understanding hypertension as an inflammatory-based pathology gives way to new therapeutic targets. As such, conventional cardiovascular drugs (statins, calcium channels blockers, and ACEIs/ARBs) have shown additional anti-inflammatory effects that could be linked to their blood pressure lowering properties. Moreover, anti-inflammatory drugs (mycophenolate mofetil) have been shown to decrease blood pressure in hypertensive patients or prevent its development in normotensive individuals. Further research is needed to evaluate whether drugs targeting hypertensive-linked proinflammatory cytokines, such as monoclonal antibodies, could become a new therapeutic option in treating arterial hypertension.
Collapse
|
54
|
Butrous G. Schistosome infection and its effect on pulmonary circulation. Glob Cardiol Sci Pract 2019; 2019:5. [PMID: 31024947 PMCID: PMC6472693 DOI: 10.21542/gcsp.2019.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is the most common parasitic disease associated with pulmonary hypertension. It induces remodelling via complex inflammatory processes, which eventually produce the clinical manifestation of pulmonary hypertension. The pulmonary hypertension shows clinical signs and symptoms that are not distinguishable from other forms of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Professor of Cardiopulmonary Sciences, Medway School of Pharmacy, University of Kent, UK and University of Greenwich, Central Ave, Gillingham, Chatham ME4 4BF, Kent, UK
| |
Collapse
|
55
|
Hao R, Song Y, Li R, Wu Y, Yang X, Li X, Qian F, Ye RD, Sun L. MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1070-L1080. [PMID: 30892082 DOI: 10.1152/ajplung.00349.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An excessive inflammatory response in terminal airways, alveoli, and the lung interstitium eventually leads to pulmonary hypertension and chronic obstructive pulmonary disease. Proinflammatory cytokine interleukin-17A (IL-17A) has been implicated in the pathogenesis of pulmonary inflammatory diseases. MLN4924, an inhibitor of NEDD8-activating enzyme (NAE), is associated with the treatment of various types of cancers, but its role in the IL-17A-mediated inflammatory response has not been identified. Here, we report that MLN4924 can markedly reduce the expression of proinflammatory cytokines and chemokines such as IL-1β, IL-6, and CXCL-1 and neutrophilia in a mouse model of IL-17A adenovirus-induced pulmonary inflammation. MLN4924 significantly inhibited IL-17A-induced stabilization of mRNA of proinflammatory cytokines and chemokines in vitro. Mechanistically, MLN4924 significantly blocked the activation of MAPK and NF-κB pathways and interfered with the interaction between ACT1 and tumor necrosis factor receptor-associated factor proteins (TRAFs), thereby inhibiting TRAF6 ubiquitination. Taken together, our data uncover a previously uncharacterized inhibitory effect of MLN4924 on the IL-17A-mediated inflammatory response; this phenomenon may facilitate the development of MLN4924 into an effective small-molecule drug for the treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Rui Hao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University , Shanghai , People's Republic of China
| | - Runsheng Li
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - Yaxian Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xinyi Yang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xiaozong Li
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University , Shanghai , People's Republic of China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, People's Republic of China
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau Special Administration Region , China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
56
|
Wang L, Liu J, Wang W, Qi X, Wang Y, Tian B, Dai H, Wang J, Ning W, Yang T, Wang C. Targeting IL-17 attenuates hypoxia-induced pulmonary hypertension through downregulation of β-catenin. Thorax 2019; 74:564-578. [PMID: 30777899 DOI: 10.1136/thoraxjnl-2018-211846] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The role of interleukin 17 (IL-17) in hypoxic pulmonary hypertension (HPH) remains unclear. This study is designed to explore whether IL-17 is a potential target for HPH treatment. METHODS Clinic samples from the lung tissue and serum were obtained from qualified patients. Western blotting, immunohistochemistry and/or ELISA were used to measure the expression of relevant proteins. HPH models were established in C57BL/6 wild-type (WT) and IL-17 -/- mice and were treated with exogenous recombinant mouse IL-17 (rmIL-17) or an IL-17 neutralising antibody. Assays for cell proliferation, angiogenesis and adhesion were employed to analyse the behaviours of human pulmonary arterial endothelial cells (HPAECs). A non-contact Transwell coculture model was used to evaluate intercellular interactions. RESULTS Expression of IL-17 was increased in lung tissue of both patients with bronchiectasis/COPD-associated PH and HPH mouse model. Compared with WT mice, IL-17 -/- mice had attenuated HPH, whereas administration of rmIL-17 aggravated HPH. In vitro, recombinant human IL-17 (rhIL-17) promoted proliferation, angiogenesis and adhesion in HPAECs through upregulation of Wnt3a/β-catenin/CyclinD1 pathway, and siRNA-mediated knockdown of β-catenin almost completely reversed this IL-17-mediated phenomena. IL-17 promoted the proliferation but not the migration of human pulmonary arterial smooth muscle cells (HPASMCs) cocultured with HPAECs under both normoxia and hypoxia, but IL-17 had no direct effect on proliferation and migration of HPASMCs. Blockade of IL-17 with a neutralising antibody attenuated HPH in WT mice. CONCLUSIONS IL-17 contributes to the pathogenesis of HPH through upregulation of β-catenin expression. Targeting IL-17 might provide potential benefits for alternative therapeutic strategies for HPH.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Physiology and Pathophysiology, School of BasicMedical Sciences, Capital Medical University, Beijing, China
| | - Wang Wang
- Department of Physiology and Pathophysiology, School of BasicMedical Sciences, Capital Medical University, Beijing, China
| | - Xianmei Qi
- Department of Physiology and Pathophysiology, School of BasicMedical Sciences, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bo Tian
- Department of Thoracic Surgery, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Physiology and Pathophysiology, School of BasicMedical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
57
|
Kuebler WM, Nicolls MR, Olschewski A, Abe K, Rabinovitch M, Stewart D, Chan SY, Morrell NW, Archer SL, Spiekerkoetter E. A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. Am J Physiol Lung Cell Mol Physiol 2018; 315:L502-L516. [PMID: 29877097 PMCID: PMC6230875 DOI: 10.1152/ajplung.00150.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/22/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
The following review summarizes the pro-con debate about current controversies regarding the pathogenesis of pulmonary arterial hypertension (PAH) that took place at the American Thoracic Society Conference in May 2017. Leaders in the field of PAH research discussed the importance of the immune system, the role of hemodynamic stress and endothelial apoptosis, as well as bone morphogenetic protein receptor-2 signaling in PAH pathogenesis. Whereas this summary does not intend to resolve obvious conflicts in opinion, we hope that the presented arguments entice further discussions and draw a new generation of enthusiastic researchers into this vibrant field of science to bridge existing gaps for a better understanding and therapy of this fatal disease.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitaetsmedizin Berlin, Berlin , Germany
- Keenan Research Centre for Biomedical Science at Saint Michael's , Toronto, Ontario , Canada
- Department of Surgery, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care, Department of Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University , Stanford, California
| | - Andrea Olschewski
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz , Graz , Austria
- Johannes Kepler University Linz, Medicine Rectorate, Linz, Austria
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences , Fukuoka , Japan
| | - Marlene Rabinovitch
- Division of Cardiology, Department of Pediatrics, Stanford University School of Medicine , Stanford, California
| | - Duncan Stewart
- Division of Cardiology, Department of Medicine, Ottawa Hospital Research Institute , Ottawa, Ontario , Canada
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Nicholas W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge , Cambridge , United Kingdom
| | - Stephen L Archer
- Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care, Department of Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University , Stanford, California
| |
Collapse
|
58
|
Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. Int J Mol Sci 2018; 19:ijms19082277. [PMID: 30081463 PMCID: PMC6121540 DOI: 10.3390/ijms19082277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/04/2023] Open
Abstract
Myeloid–derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow–derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.
Collapse
|
59
|
Agashe VV, Jankowska-Gan E, Keller M, Sullivan JA, Haynes LD, Kernien JF, Torrealba JR, Roenneburg D, Dart M, Colonna M, Wilkes DS, Burlingham WJ. Leukocyte-Associated Ig-like Receptor 1 Inhibits T h1 Responses but Is Required for Natural and Induced Monocyte-Dependent T h17 Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:772-781. [PMID: 29884698 DOI: 10.4049/jimmunol.1701753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022]
Abstract
Leukocyte-associated Ig-like receptor 1 (LAIR1) is an ITIM-bearing collagen receptor expressed by leukocytes and is implicated in immune suppression. However, using a divalent soluble LAIR1/Fc recombinant protein to block interaction of cell surface LAIR1 with matrix collagen, we found that whereas Th1 responses were enhanced as predicted, Th17 responses were strongly inhibited. Indeed, LAIR1 on both T cells and monocytes was required for optimal Th17 responses to collagen type (Col)V. For pre-existing "natural" Th17 response to ColV, the LAIR1 requirement was absolute, whereas adaptive Th17 and Th1/17 immune responses in both mice and humans were profoundly reduced in the absence of LAIR1. Furthermore, the addition of C1q, a natural LAIR1 ligand, decreased Th1 responses in a dose-dependent manner, but it had no effect on Th17 responses. In IL-17-dependent murine organ transplant models of chronic rejection, LAIR1+/+ but not LAIR1-/- littermates mounted strong fibroproliferative responses. Surface LAIR1 expression was higher on human Th17 cells as compared with Th1 cells, ruling out a receptor deficiency that could account for the differences. We conclude that LAIR1 ligation by its natural ligands favors Th17 cell development, allowing for preferential activity of these cells in collagen-rich environments. The emergence of cryptic self-antigens such as the LAIR1 ligand ColV during ischemia/reperfusion injury and early acute rejection, as well as the tendency of macrophages/monocytes to accumulate in the allograft during chronic rejection, favors Th17 over Th1 development, posing a risk to long-term graft survival.
Collapse
Affiliation(s)
- Vrushali V Agashe
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792.,Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Ewa Jankowska-Gan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | | | - Jeremy A Sullivan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Lynn D Haynes
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - John F Kernien
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Jose R Torrealba
- Division of Renal Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Drew Roenneburg
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - David S Wilkes
- University of Virginia School of Medicine, Charlottesville, VA 22908
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792;
| |
Collapse
|
60
|
Sydykov A, Mamazhakypov A, Petrovic A, Kosanovic D, Sarybaev AS, Weissmann N, Ghofrani HA, Schermuly RT. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers. Front Physiol 2018; 9:609. [PMID: 29875701 PMCID: PMC5974151 DOI: 10.3389/fphys.2018.00609] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.
Collapse
Affiliation(s)
- Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany.,Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Argen Mamazhakypov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
61
|
Maston LD, Jones DT, Giermakowska W, Resta TC, Ramiro-Diaz J, Howard TA, Jernigan NL, Herbert L, Maurice AA, Gonzalez Bosc LV. Interleukin-6 trans-signaling contributes to chronic hypoxia-induced pulmonary hypertension. Pulm Circ 2018; 8:2045894018780734. [PMID: 29767573 PMCID: PMC6055240 DOI: 10.1177/2045894018780734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleotropic cytokine that signals through the
membrane-bound IL-6 receptor (mIL-6R) to induce anti-inflammatory
(“classic-signaling”) responses. This cytokine also binds to the soluble IL-6R
(sIL-6R) to promote inflammation (“trans-signaling”). mIL-6R expression is
restricted to hepatocytes and immune cells. Activated T cells release sIL-6R
into adjacent tissues to induce trans-signaling. These cellular actions require
the ubiquitously expressed membrane receptor gp130. Reports show that IL-6 is
produced by pulmonary arterial smooth muscle cells (PASMCs) exposed to hypoxia
in culture as well as the medial layer of the pulmonary arteries in mice exposed
to chronic hypoxia (CH), and IL-6 knockout mice are protected from CH-induced
pulmonary hypertension (PH). IL-6 has the potential to contribute to a broad
array of downstream effects, such as cell growth and migration. CH-induced PH is
associated with increased proliferation and migration of PASMCs to previously
non-muscularized vessels of the lung. We tested the hypothesis that IL-6
trans-signaling contributes to CH-induced PH and arterial remodeling. Plasma
levels of sgp130 were significantly decreased in mice exposed to CH (380 mmHg)
for five days compared to normoxic control mice (630 mmHg), while sIL-6R levels
were unchanged. Consistent with our hypothesis, mice that received the IL-6
trans-signaling-specific inhibitor sgp130Fc, a fusion protein of the soluble
extracellular portion of gp130 with the constant portion of the mouse IgG1
antibody, showed attenuation of CH-induced increases in right ventricular
systolic pressure, right ventricular and pulmonary arterial remodeling as
compared to vehicle (saline)-treated control mice. In addition, PASMCs cultured
in the presence of IL-6 and sIL-6R showed enhanced migration but not
proliferation compared to those treated with IL-6 or sIL-6R alone or in the
presence of sgp130Fc. These results indicate that IL-6 trans-signaling
contributes to pulmonary arterial cell migration and CH-induced PH.
Collapse
Affiliation(s)
- Levi D Maston
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David T Jones
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Juan Ramiro-Diaz
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tamara A Howard
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lindsay Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Anna A Maurice
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
62
|
Happle C, Meyer-Decking L, Dreier A, Wetzke M, Gläsener S, Grychtol R, Braubach P, Jablonka A, Haid S, Jirmo AC, Habener A, Skuljec J, Hansen G. Improved protocol for simultaneous analysis of leukocyte subsets and epithelial cells from murine and human lung. Exp Lung Res 2018; 44:127-136. [PMID: 29677457 DOI: 10.1080/01902148.2018.1432721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study and isolate lung cells by flow cytometry, enzymatic digestion and generation of single cell suspensions is required. This significantly influences expression of cellular epitopes and protocols need to be adapted for the best isolation and subsequent analysis of specific cellular subsets. MATERIALS AND METHODS We optimized protocols for the simultaneous isolation and characterization of specific human and murine lung cell types. For alveolar epithelial cells (AEC), a primarily dispase based digestion method and for leukocytes, a primarily collagenase based technique was adapted. Protocols were applied in parallel in either single experimental mice or human lung specimens. RESULTS Optimized dispase/DNase digestion yielded a high percentage of Epcam+CD45-CD31- AEC as assessed by flow cytometry. Epcam+CD45-CD3-CD11b-CD11c-CD16/32-CD19-CD31-F4/80- AEC were readily sortable with high purity and typical morphology and function upon in vitro stimulation with lipopolysaccharide or respiratory-syncytial-virus (RSV) infection. To analyze lung leukocytes, specimens were digested with an adapted collagenase/DNase protocol yielding high percentages of viable leukocytes with typical morphology, function, and preserved subset specific leukocyte markers. Both protocols could be applied simultaneously in a single experimental mouse post mortem. Application of both digestion methods in primary human lung specimens yielded similar results with high proportions of Epcam+CD45- human AEC after dispase/DNase digestion and preservation of human T cell epitopes after collagenase/DNase digestion. CONCLUSION The here described protocols were optimized for the simple and efficient isolation of murine and human lung cells. In contrast to previously described techniques, they permit simultaneous in-depth characterization of pulmonary epithelial cells and leukocyte subsets such as T helper, cytotoxic T, and B cells from one sample. As such, they may help to comprehensively and sustainably characterize murine and human lung specimens and facilitate studies on the role of lung immune cells in different respiratory pathologies.
Collapse
Affiliation(s)
- Christine Happle
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Lena Meyer-Decking
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Anika Dreier
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Martin Wetzke
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Stephanie Gläsener
- b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Ruth Grychtol
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Peter Braubach
- b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany.,c Department of Pathology , Hannover Medical School , Hannover , Germany
| | - Alexandra Jablonka
- d Department of Clinical Immunology and Rheumatology , Hannover Medical School , Hannover , Germany.,e German Center for Infection Research (DZIF) , Standort Hannover-Braunschweig , Germany
| | - Sibylle Haid
- f Experimental Virology and TWINCORE , a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover , Germany
| | - Adan Chari Jirmo
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Anika Habener
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Jelena Skuljec
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Gesine Hansen
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| |
Collapse
|
63
|
Kumar R, Graham B. How does inflammation contribute to pulmonary hypertension? Eur Respir J 2018; 51:51/1/1702403. [PMID: 29371392 DOI: 10.1183/13993003.02403-2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/02/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Rahul Kumar
- Program in Translational Lung Research, Dept of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Brian Graham
- Program in Translational Lung Research, Dept of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| |
Collapse
|
64
|
Marshall JD, Bazan I, Zhang Y, Fares WH, Lee PJ. Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both. Am J Physiol Lung Cell Mol Physiol 2018; 314:L782-L796. [PMID: 29345195 DOI: 10.1152/ajplung.00331.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension describes a heterogeneous disease defined by increased pulmonary artery pressures, and progressive increase in pulmonary vascular resistance due to pathologic remodeling of the pulmonary vasculature involving pulmonary endothelial cells, pericytes, and smooth muscle cells. This process occurs under various conditions, and although these populations vary, the clinical manifestations are the same: progressive dyspnea, increases in right ventricular (RV) afterload and dysfunction, RV-pulmonary artery uncoupling, and right-sided heart failure with systemic circulatory collapse. The overall estimated 5-yr survival rate is 72% in highly functioning patients, and as low as 28% for those presenting with advanced symptoms. Metabolic theories have been suggested as underlying the pathogenesis of pulmonary hypertension with growing evidence of the role of mitochondrial dysfunction involving the major proteins of the electron transport chain, redox-related enzymes, regulators of the proton gradient and calcium homeostasis, regulators of apoptosis, and mitophagy. There remain more studies needed to characterize mitochondrial dysfunction leading to impaired vascular relaxation, increase proliferation, and failure of regulatory mechanisms. The effects on endothelial cells and resulting interactions with their microenvironment remain uncharted territory for future discovery. Additionally, on the basis of observations that the "plexigenic lesions" of pulmonary hypertension resemble the unregulated proliferation of tumor cells, similarities between cancer pathobiology and pulmonary hypertension have been drawn, suggesting interactions between mitochondria and angiogenesis. Recently, mitochondria targeting has become feasible, which may yield new therapeutic strategies. We present a state-of-the-art review of the role of mitochondria in both the pathobiology of pulmonary hypertension and potential therapeutic targets in pulmonary vascular processes.
Collapse
Affiliation(s)
- Jeffrey D Marshall
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Isabel Bazan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Yi Zhang
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Wassim H Fares
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|