51
|
Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Münzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD. FGF21 is an endocrine signal of protein restriction. J Clin Invest 2014; 124:3913-22. [PMID: 25133427 DOI: 10.1172/jci74915] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/05/2014] [Indexed: 01/09/2023] Open
Abstract
Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2α kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake.
Collapse
|
52
|
Jordi J, Herzog B, Lutz TA, Verrey F. Novel antidiabetic nutrients identified by in vivo screening for gastric secretion and emptying regulation in rats. Am J Physiol Regul Integr Comp Physiol 2014; 307:R869-78. [PMID: 25100072 DOI: 10.1152/ajpregu.00273.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a disease characterized by elevated blood glucose levels and represents a worldwide health issue. Postprandial hyperglycemia is considered a major predictor of diabetic complications, and its reduction represents a specific treatment target in Type 1 and 2 diabetes. Since postprandial glucose excursions depend to a large extent on gastric secretion and emptying, amylin and glucagon-like peptide 1 analogs are prescribed to reduce them. Although gastric function is considered mainly sensitive to ingested calories, its chemospecificity is not well understood. To identify ingestible nutrients reducing postprandial hyperglycemia, we applied intragastrically more than 40 individual nutrients at an isomolar dose to rats and quantified their impact on gastric secretion and emptying using a novel in vivo computed tomography imaging method. We identified l-tryptophan, l-arginine, l-cysteine, and l-lysine as the most potent modulators with effective strength comparable to a supraphysiological dose of amylin. Importantly, all identified candidates reduced postprandial glucose excursion within an oral glucose tolerance test in healthy and diabetic rats. This clinical beneficial effect originated predominantly from their impact on gastric function, as none of the candidates altered plasma glucose concentrations induced by intraperitoneal or intraduodenal glucose tolerance tests. Overall, these data demonstrate a remarkable chemospecificity of stomach function, unveil a strong role of the stomach for glycemic control and identifies nutrients with antidiabetic potential.
Collapse
Affiliation(s)
- Josua Jordi
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Brigitte Herzog
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
53
|
Laeger T, Morrison CD. Amino acid-dependent regulation of food intake: is protein more than the sum of its parts? J Physiol 2014; 591:5417-8. [PMID: 24240773 DOI: 10.1113/jphysiol.2013.264077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
54
|
Laeger T, Reed SD, Henagan TM, Fernandez DH, Taghavi M, Addington A, Münzberg H, Martin RJ, Hutson SM, Morrison CD. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein. Am J Physiol Regul Integr Comp Physiol 2014; 307:R310-20. [PMID: 24898843 DOI: 10.1152/ajpregu.00116.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebroventricular injections of leucine are sufficient to suppress food intake, but it remains unclear whether brain leucine signaling represents a physiological signal of protein balance. We tested whether variations in dietary and circulating levels of leucine, or all three branched-chain amino acids (BCAAs), contribute to the detection of reduced dietary protein. Of the essential amino acids (EAAs) tested, only intracerebroventricular injection of leucine (10 μg) was sufficient to suppress food intake. Isocaloric low- (9% protein energy; LP) or normal- (18% protein energy) protein diets induced a divergence in food intake, with an increased consumption of LP beginning on day 2 and persisting throughout the study (P < 0.05). Circulating BCAA levels were reduced the day after LP diet exposure, but levels subsequently increased and normalized by day 4, despite persistent hyperphagia. Brain BCAA levels as measured by microdialysis on day 2 of diet exposure were reduced in LP rats, but this effect was most prominent postprandially. Despite these diet-induced changes in BCAA levels, reducing dietary leucine or total BCAAs independently from total protein was neither necessary nor sufficient to induce hyperphagia, while chronic infusion of EAAs into the brain of LP rats failed to consistently block LP-induced hyperphagia. Collectively, these data suggest that circulating BCAAs are transiently reduced by dietary protein restriction, but variations in dietary or brain BCAAs alone do not explain the hyperphagia induced by a low-protein diet.
Collapse
Affiliation(s)
- Thomas Laeger
- Pennington Biomedical Research Center, Baton Rouge, Lousiana; and
| | - Scott D Reed
- Pennington Biomedical Research Center, Baton Rouge, Lousiana; and
| | - Tara M Henagan
- Pennington Biomedical Research Center, Baton Rouge, Lousiana; and
| | | | - Marzieh Taghavi
- Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Adele Addington
- Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, Lousiana; and
| | - Roy J Martin
- Pennington Biomedical Research Center, Baton Rouge, Lousiana; and
| | - Susan M Hutson
- Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | |
Collapse
|
55
|
Martens EA, Tan SY, Dunlop MV, Mattes RD, Westerterp-Plantenga MS. Protein leverage effects of beef protein on energy intake in humans. Am J Clin Nutr 2014; 99:1397-406. [PMID: 24760974 DOI: 10.3945/ajcn.113.078774] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The protein leverage hypothesis requires specific evidence that protein intake is regulated more strongly than energy intake. OBJECTIVE The objective was to determine ad libitum energy intake, body weight changes, appetite profile, and nitrogen balance in response to 3 diets with different protein-to-carbohydrate + fat ratios over 12 consecutive days, with beef as a source of protein. DESIGN A 3-arm, 12-d randomized crossover study was performed in 30 men and 28 women [mean ± SD age: 33 ± 16 y; body mass index (in kg/m²): 24.4 ± 4.0] with the use of diets containing 5%, 15%, and 30% of energy (En%) from protein, predominantly from beef. RESULTS Energy intake was significantly lower in the 30En%-protein condition (8.73 ± 1.93 MJ/d) than in the 5En%-protein (9.48 ± 1.67 MJ/d) and 15En%-protein (9.30 ± 1.62 MJ/d) conditions (P = 0.001), stemming largely from lower energy intake during meals (P = 0.001). Hunger (P = 0.001) and desire to eat (P = 0.001) ratings were higher and fullness ratings were lower (P = 0.001) in the 5En%-protein condition than in the 15En%-protein and 30En%-protein conditions. Nitrogen excretion was lower in the 5En%-protein condition (4.7 ± 1.5 g/24 h; P = 0.001) and was higher in the 30En%-protein condition (15.3 ± 8.7 g/24 h; P = 0.001) compared with the 15En%-protein condition (10.0 ± 5.2 g/24 h). Nitrogen balance was maintained in the 5En%-protein condition and was positive in the 15En%- and 30En%-protein conditions (P = 0.001). CONCLUSIONS Complete protein leverage did not occur because subjects did not consume to a common protein amount at the expense of energy balance. Individuals did underconsume relative to energy requirements from high-protein diets. The lack of support for protein leverage effects on a low-protein diet may stem from the fact that protein intake was sufficient to maintain nitrogen balance over the 12-d trial.
Collapse
Affiliation(s)
- Eveline A Martens
- From the Department of Human Biology, Maastricht University, Maastricht, Netherlands (EAM, MVD, and MSW-P), and the Department of Nutrition Science, Purdue University, West Lafayette, IN (S-YT and RDM)
| | - Sze-Yen Tan
- From the Department of Human Biology, Maastricht University, Maastricht, Netherlands (EAM, MVD, and MSW-P), and the Department of Nutrition Science, Purdue University, West Lafayette, IN (S-YT and RDM)
| | - Mandy V Dunlop
- From the Department of Human Biology, Maastricht University, Maastricht, Netherlands (EAM, MVD, and MSW-P), and the Department of Nutrition Science, Purdue University, West Lafayette, IN (S-YT and RDM)
| | - Richard D Mattes
- From the Department of Human Biology, Maastricht University, Maastricht, Netherlands (EAM, MVD, and MSW-P), and the Department of Nutrition Science, Purdue University, West Lafayette, IN (S-YT and RDM)
| | - Margriet S Westerterp-Plantenga
- From the Department of Human Biology, Maastricht University, Maastricht, Netherlands (EAM, MVD, and MSW-P), and the Department of Nutrition Science, Purdue University, West Lafayette, IN (S-YT and RDM)
| |
Collapse
|
56
|
“Meatless days” or “less but better”? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite 2014; 76:120-8. [DOI: 10.1016/j.appet.2014.02.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/15/2014] [Accepted: 02/04/2014] [Indexed: 11/17/2022]
|
57
|
Hypothalamic eIF2α signaling regulates food intake. Cell Rep 2014; 6:438-44. [PMID: 24485657 DOI: 10.1016/j.celrep.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/28/2013] [Accepted: 01/06/2014] [Indexed: 01/13/2023] Open
Abstract
The reversible phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2α kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demonstrate that the sole phosphorylation of eIF2α in the MBH is sufficient to regulate food intake. eIF2α signaling being at the crossroad of stress pathways activated in several pathological states, our study indicates that hypothalamic eIF2α phosphorylation could play a critical role in the onset of anorexia associated with certain diseases.
Collapse
|
58
|
Abstract
PURPOSE OF REVIEW The review addresses briefly the relevance of protein diets for body weight loss and weight maintenance. The addition of recent findings on age-dependent protein requirements, specific effects of protein intake and protein source, the relevance of the other dietary macronutrients, especially of 'low-carb', 'protein leverage', the mechanisms of protein-induced satiety, and food-reward makes the review up-to-date. RECENT FINDINGS Different effects of protein diets in different age groups result from age-dependent protein requirements that are primarily related to effects on body composition. A protein intake of 0.8 g/kg/day is sufficient to sustain a negative energy balance in adults, irrespective of the protein source. 'Low-carb' diets trace back to the protein-induced effects. Evidence that protein intake drives energy intake as suggested by the 'Protein leverage hypothesis' is scarce and equivocal. Finally, limited protein-induced food reward may affect compliance to a protein diet. SUMMARY An implication of the findings for clinical practice is that a protein intake of 0.8-1.2 g/kg/day is sufficient to sustain satiety, energy expenditure, and fat-free mass, independent of a dietary 'low-carb' content. Limited protein-induced food reward may affect compliance to a protein diet.
Collapse
Affiliation(s)
- Eveline A P Martens
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
59
|
Affiliation(s)
- Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Corresponding author: Thomas W. Gettys,
| |
Collapse
|
60
|
Jordi J, Herzog B, Camargo SMR, Boyle CN, Lutz TA, Verrey F. Specific amino acids inhibit food intake via the area postrema or vagal afferents. J Physiol 2013; 591:5611-21. [PMID: 23897232 DOI: 10.1113/jphysiol.2013.258947] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To maintain nutrient homeostasis the central nervous system integrates signals that promote or inhibit eating. The supply of vital amino acids is tuned by adjusting food intake according to its dietary protein content. We hypothesized that this effect is based on the sensing of individual amino acids as a signal to control food intake. Here, we show that food intake was most potently reduced by oral L-arginine (Arg), L-lysine (Lys) and L-glutamic acid (Glu) compared to all other 17 proteogenic amino acids in rats. These three amino acids induced neuronal activity in the area postrema and the nucleus of the solitary tract. Surgical lesion of the area postrema abolished the anorectic response to Arg and Glu, whereas vagal afferent lesion prevented the response to Lys. These three amino acids also provoked gastric distension by differentially altering gastric secretion and/or emptying. Importantly, these peripheral mechanical vagal stimuli were dissociated from the amino acids' effect on food intake. Thus, Arg, Lys and Glu had a selective impact on food processing and intake suggesting them as direct sensory input to assess dietary protein content and quality in vivo. Overall, this study reveals novel amino acid-specific mechanisms for the control of food intake and of gastrointestinal function.
Collapse
Affiliation(s)
- Josua Jordi
- F. Verrey: Institute of Physiology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
61
|
Davidenko O, Darcel N, Fromentin G, Tomé D. Control of protein and energy intake - brain mechanisms. Eur J Clin Nutr 2013; 67:455-61. [DOI: 10.1038/ejcn.2013.73] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
62
|
Figueroa J, Solà-Oriol D, Borda E, Sclafani A, Pérez JF. Flavour preferences conditioned by protein solutions in post-weaning pigs. Physiol Behav 2012; 107:309-16. [DOI: 10.1016/j.physbeh.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
|
63
|
The brain's response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol Neurobiol 2012; 46:332-48. [PMID: 22674217 DOI: 10.1007/s12035-012-8283-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/24/2012] [Indexed: 12/16/2022]
Abstract
The essential (indispensable) amino acids (IAA) are neither synthesized nor stored in metazoans, yet they are the building blocks of protein. Survival depends on availability of these protein precursors, which must be obtained in the diet; it follows that food selection is critical for IAA homeostasis. If even one of the IAA is depleted, its tRNA becomes quickly deacylated and the levels of charged tRNA fall, leading to disruption of global protein synthesis. As they have priority in the diet, second only to energy, the missing IAA must be restored promptly or protein catabolism ensues. Animals detect and reject an IAA-deficient meal in 20 min, but how? Here, we review the molecular basis for sensing IAA depletion and repletion in the brain's IAA chemosensor, the anterior piriform cortex (APC). As animals stop eating an IAA-deficient meal, they display foraging and altered choice behaviors, to improve their chances of encountering a better food. Within 2 h, sensory cues are associated with IAA depletion or repletion, leading to learned aversions and preferences that support better food selection. We show neural projections from the APC to appetitive and consummatory motor control centers, and to hedonic, motivational brain areas that reinforce these adaptive behaviors.
Collapse
|