51
|
Arya A, Sethy NK, Singh SK, Das M, Bhargava K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomedicine 2013; 8:4507-20. [PMID: 24294000 PMCID: PMC3839803 DOI: 10.2147/ijn.s53032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. METHODS A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. RESULTS Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria. CONCLUSION Cumulatively, these results suggest nanoceria deposit in lungs, confer protection by quenching noxious free radicals during hypobaric hypoxia, and do not evoke any inflammatory response.
Collapse
Affiliation(s)
- Aditya Arya
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | | | | | | | | |
Collapse
|
52
|
Gupta P, Bansal MP, Koul A. Lycopene modulates initiation of N-nitrosodiethylamine induced hepatocarcinogenesis: studies on chromosomal abnormalities, membrane fluidity and antioxidant defense system. Chem Biol Interact 2013; 206:364-74. [PMID: 24144777 DOI: 10.1016/j.cbi.2013.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/13/2013] [Accepted: 10/09/2013] [Indexed: 01/02/2023]
Abstract
Oxidative damage due to free radicals generated during nitrosamine metabolism has been suggested as one of the major cause for the initiation of hepatocarcinogenesis. Lycopene, is a well known antioxidant and have promising preventive potentials, however the mechanism of action remain hypothetical and unclear. To investigate the involvement of lycopene extracted from tomatoes (LycT) against oxidative stress induced deleterious effect of N-nitrosodiethylamine (NDEA) on cellular macromolecules, female Balb/c mice were divided in four groups: Control, NDEA (cumulative dose of 200mg NDEA/kg body weight injected intraperitoneally in 8 weeks), LycT (5mg/kg body weight given orally on alternate days, throughout the study) and LycT+NDEA (co-administration of LycT and NDEA). NDEA treatment commenced after 2 weeks of LycT administration. At the end of NDEA exposure i.e., at 10th week, enhanced activities of hepatic phase I enzymes, levels of reactive oxygen species (ROS), lipid peroxidation (LPO) was observed in NDEA group which may have contributed in chromosomal aberrations, enhanced micronucleated cell score, membrane fluidity and serum liver marker enzymes. A significant decrease in enzymatic and non-enzymatic antioxidant system could delineate the mechanism behind such NDEA insults. LycT pre-treatment to NDEA challenged group showed lower chromosomal abnormalities, micronucleated cells score, ROS, LPO levels and liver enzymes. Lycopene aids in normalizing the membrane fluidity and enhancing the activity of antioxidant enzymes and reduced glutathione which could account for the reduced oxidative damage in LycT+NDEA group. It seemed that lycopene supplementation target multiple dys-regulated pathways during initiation of carcinogenesis. Thus, dietary supplementation with lycopene can serve as an alternate measure to intervene the initiation of carcinogenesis.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|
53
|
Crystal NJ, Townson DH, Cook SB, LaRoche DP. Effect of cryotherapy on muscle recovery and inflammation following a bout of damaging exercise. Eur J Appl Physiol 2013; 113:2577-86. [PMID: 23873339 DOI: 10.1007/s00421-013-2693-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/03/2013] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to determine the effect of cryotherapy on the inflammatory response to muscle-damaging exercise using a randomized trial. Twenty recreationally active males completed a 40-min run at a -10 % grade to induce muscle damage. Ten of the subjects were immersed in a 5 °C ice bath for 20 min and the other ten served as controls. Knee extensor peak torque, soreness rating, and thigh circumference were obtained pre- and post-run, and 1, 6, 24, 48, and 72 h post-run. Blood samples were obtained pre- and post-run, and 1, 6 and 24 h post-run for assay of plasma chemokine ligand 2 (CCL2). Peak torque decreased from 270 ± 57 Nm at baseline to 253 ± 65 Nm post-run and increased to 295 ± 68 Nm by 72 h post-run with no differences between groups (p = 0.491). Soreness rating increased from 3.6 ± 6.0 mm out of 100 mm at baseline to 47.4 ± 28.2 mm post-run and remained elevated at all time points with no differences between groups (p = 0.696). CCL2 concentrations increased from 116 ± 31 pg mL(-1) at baseline to 293 ± 109 pg mL(-1) at 6 h post-run (control) and from 100 ± 27 pg mL(-1) at baseline to 208 ± 71 pg mL(-1) at 6 h post-run (cryotherapy). The difference between groups was not significant (p = 0.116), but there was a trend for lower CCL2 in the cryotherapy group at 6 h (p = 0.102), though this measure was highly variable. In conclusion, 20 min of cryotherapy was ineffective in attenuating the strength decrement and soreness seen after muscle-damaging exercise, but may have mitigated the rise in plasma CCL2 concentration. These results do not support the use of cryotherapy during recovery.
Collapse
Affiliation(s)
- Naomi J Crystal
- Robert Kertzer Exercise Physiology Laboratory, University of New Hampshire, Durham, NH, USA,
| | | | | | | |
Collapse
|
54
|
Sloboda DD, Brooks SV. Reactive oxygen species generation is not different during isometric and lengthening contractions of mouse muscle. Am J Physiol Regul Integr Comp Physiol 2013; 305:R832-9. [PMID: 23948772 DOI: 10.1152/ajpregu.00299.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscles can be injured by lengthening contractions, when the muscles are stretched while activated. Lengthening contractions produce structural damage that leads to the degeneration and regeneration of damaged muscle fibers by mechanisms that have not been fully elucidated. Reactive oxygen species (ROS) generated at the time of injury may initiate degenerative or regenerative processes. In the present study we hypothesized that lengthening contractions that damage the muscle would generate more ROS than isometric contractions that do not cause damage. To test our hypothesis, we subjected muscles of mice to lengthening contractions or isometric contractions and simultaneously monitored intracellular ROS generation with the fluorescent indicator 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (CM-DCFH), which is oxidized by ROS to form the fluorescent product CM-DCF. We found that CM-DCF fluorescence was not different during or shortly after lengthening contractions compared with isometric controls, regardless of the amount of stretch and damage that occurred during the lengthening contractions. The only exception was that after severe stretches, the increase in CM-DCF fluorescence was impaired. We conclude that lengthening contractions that damage the muscle do not generate more ROS than isometric contractions that do not cause damage. The implication is that ROS generated at the time of injury are not the initiating signals for subsequent degenerative or regenerative processes.
Collapse
Affiliation(s)
- Darcée D Sloboda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; and
| | | |
Collapse
|
55
|
Oliveira RJ, Salles MJS, da Silva AF, Kanno TYN, Lourenço ACDS, Leite VDS, Matiazi HJ, Pesarini JR, Ribeiro LR, Mantovani MS. In vivo evaluation of the antimutagenic and antigenotoxic effects of β-glucan extracted from Saccharomyces cerevisiae in acute treatment with multiple doses. Genet Mol Biol 2013; 36:413-24. [PMID: 24130450 PMCID: PMC3795161 DOI: 10.1590/s1415-47572013005000028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/27/2013] [Indexed: 01/29/2023] Open
Abstract
Ample evidence suggests that cancer is triggered by mutagenic damage and diets or supplements capable of reducing such incidences can be related to the prevention of neoplasy development or to an improvement in life quality of patients who undergo chemotherapy. This research aimed to evaluate the antimutagenic and antigenotoxic activity of β-glucan. We set up 8 experimental groups: control (Group 1), cyclophosphamide (Group 2), Groups 3–5 to assess the effect of β-glucan administration, and Groups 6–8 to evaluate the association between cyclophosphamide and β-glucan. The intraperitonial concentrations of β-glucan used were 100, 150 and 200 mg/kg. Micronucleus and comet assays showed that within the first week of treatment β-glucan presented a damage reduction rate between 100–62.04% and 94.34–59.52% for mutagenic and genotoxic damages, respectively. This activity decreased as the treatment was extended. During the sixth week of treatment antimutagenicity rates were reduced to 59.51–39.83% and antigenotoxicity was not effective. This leads to the conclusion that the efficacy of β-glucan in preventing DNA damage is limited when treatment is extended, and that its use as a chemotherapeutic adjuvant need to be better clarified.
Collapse
Affiliation(s)
- Rodrigo Juliano Oliveira
- Centro de Estudos em Célula Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil . ; Programa de Pós-graduação em Saúde em Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina "Dr. Hélio Mandetta", Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil . ; Programa de Mestrado em Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Engineered Andrographolide Nanoparticles Mitigate Paracetamol Hepatotoxicity in Mice. Pharm Res 2013; 30:1252-62. [DOI: 10.1007/s11095-012-0964-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022]
|
57
|
Silva LA, Bom KF, Tromm CB, Rosa GL, Mariano I, Pozzi BG, Tuon T, Stresck EL, Souza CT, Pinho RA. Effect of eccentric training on mitochondrial function and oxidative stress in the skeletal muscle of rats. ACTA ACUST UNITED AC 2013; 46:14-20. [PMID: 23314343 PMCID: PMC3854341 DOI: 10.1590/1414-431x20121956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 09/04/2012] [Indexed: 01/24/2023]
Abstract
The objective of the present study was to investigate the effects of eccentric training on the activity of mitochondrial respiratory chain enzymes, oxidative stress, muscle damage, and inflammation of skeletal muscle. Eighteen male mice (CF1) weighing 30-35 g were randomly divided into 3 groups (N = 6): untrained, trained eccentric running (16°; TER), and trained running (0°) (TR), and were submitted to an 8-week training program. TER increased muscle oxidative capacity (succinate dehydrogenase and complexes I and II) in a manner similar to TR, and TER did not decrease oxidative damage (xylenol and creatine phosphate) but increased antioxidant enzyme activity (superoxide dismutase and catalase) similar to TR. Muscle damage (creatine kinase) and inflammation (myeloperoxidase) were not reduced by TER. In conclusion, we suggest that TER improves mitochondrial function but does not reduce oxidative stress, muscle damage, or inflammation induced by eccentric contractions.
Collapse
Affiliation(s)
- L A Silva
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ruan Q, Liu F, Gao Z, Kong D, Hu X, Shi D, Bao Z, Yu Z. The anti-inflamm-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats. Mech Ageing Dev 2013; 134:89-97. [PMID: 23313706 DOI: 10.1016/j.mad.2012.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 02/06/2023]
Abstract
Oxidative stress contributes to a chronic inflammatory process referred to as "inflamm-aging". Acetylcholinesterase inhibitors (AChEI) can enhance cholinergic transmission and act as anti-inflammatory agents via immunocompetent cells expressing α-7 acetylcholine receptors (AChR). The present study explores the possible role of huperzine A, a reversible and selective AChEI, against D-gal-induced oxidative damage, cell toxicity and inflamm-aging in rat livers. In two-month-old rats with normal liver function, an 8-week administration of D-gal (300 mg/kg subcutaneously (s.c.) injected), significantly increased hepatic impairment, ROS generation and oxidative damage, hepatic senescence, nuclear factor-kappa B (NF-κB) activation and inflammatory responses. An 8-week co-administration of both D-gal (300 mg/kg s.c.) and huperzine A (0.1 mg/kg s.c.) not only significantly decreased hepatic function impairment, ROS generation, oxidative damage, but also suppressed inflamm-aging by inhibiting hepatic replicative senescence, AChE activity, IκBα degradation, NF-κB p65 nuclear translocation and inflammatory responses. The expression levels of pro-inflammatory cytokine mRNA and proteins, such as TNFα, IL-1β and IL-6 decrease significantly, and the protein levels of the anti-inflammatory cytokine IL-10 display an obvious increase. These findings indicated that D-gal-induced hepatic injury and inflamm-aging in the rat liver was associated with the development of a pro-inflammatory phenotype in this organ. D-gal induced damage-associated molecular patterns (DAMPs) because oxidative damages might play an important role in D-gal-induced hepatic sterile inflammation. Huperzine A exhibited protective effects against D-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation.
Collapse
Affiliation(s)
- Qingwei Ruan
- Central Laboratory, Shanghai Institute of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, 221 West Yan An Road, Shanghai 200040, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Thakur P, Nehru B. Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson's disease. Neuroscience 2012; 231:420-31. [PMID: 23159314 DOI: 10.1016/j.neuroscience.2012.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/05/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder manifesting in motor, cognitive and behavioral anomalies. Loss of dopaminergic neurons in the substantia nigra region of the brain is the hallmark feature of PD, which is attributed to oxidative and inflammatory stress besides other diverse factors and hence drugs targeting these pathways hold promise as neuro-therapeutics. The anti-oxidative as well as anti-inflammatory properties of sodium salicylate (SS), suggest its neuroprotective potentials in PD. Since PD is a progressive neurodegenerative disorder, the mechanistic basis for utilizing SS as a neuroprotectant in PD could be better understood in the chronic models. The present study utilizes a rotenone-based model of PD to evaluate the neuro-modulatory efficacy of SS. Subcutaneous injection of rotenone (2mg/kg body weight) was given to male SD rats every day, for a period of 5 weeks, which developed all the essential features of PD in these animals. Simultaneously, another group was injected SS intraperitoneally at the dose of 100mg/kg body weight, in addition to the rotenone. In the animals receiving rotenone+SS, significant improvement was observed in the various characteristic hallmarks of PD such as dopamine and tyrosine hydroxylase levels as well as the motor dysfunction symptoms. It attenuated the reactive oxygen species levels significantly but failed to reduce the levels of protein carbonylation and lipid peroxidation. However, SS effectively abridged the levels of inflammatory mediators like cyclooxygenase-2 (COX-2), nuclear factor kappa B and inducible nitric oxide synthase. Correspondingly, a significant decrease in the levels of pro-inflammatory cytokines interleukin-6, interleukin-1β and tumor necrosis factor-α was also observed following SS co-treatment. Thus, neuroprotective efficacy of SS in this chronic model of PD can be largely attributed to its anti-inflammatory effects rather than its free radical-scavenging properties.
Collapse
Affiliation(s)
- P Thakur
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| | | |
Collapse
|
60
|
Santos JM, Tewari S, Kowluru RA. A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy. Free Radic Biol Med 2012; 53:1729-37. [PMID: 22982046 PMCID: PMC3632051 DOI: 10.1016/j.freeradbiomed.2012.08.588] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/03/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
Abstract
In the pathogenesis of diabetic retinopathy, an increase in retinal oxidative stress precedes mitochondrial dysfunction and capillary cell apoptosis. This study is designed to understand the mechanism responsible for the protection of mitochondria damage in the early stages of diabetic retinopathy. After 15 days-12 months of streptozotocin-induced diabetes in rats, retina was analyzed for mitochondria DNA (mtDNA) damage by extended length PCR. DNA repair enzyme and replication machinery were quantified in the mitochondria, and the binding of mitochondrial transcriptional factor A (TFAM) with mtDNA was analyzed by ChIP. Key parameters were confirmed in the retinal endothelial cells incubated in 20mM glucose for 6-96h. Although reactive oxygen species (ROS) were increased within 15 days of diabetes, mtDNA damage was observed at 6 months of diabetes. After 15 days of diabetes DNA repair/replication enzymes were significantly increased in the mitochondria, but at 2 months, their mitochondrial accumulation started to come down, and mtDNA copy number and binding of TFAM with mtDNA became significantly elevated. However, at 6 months of diabetes, the repair/replication machinery became subnormal and mtDNA copy number significantly decreased. A similar temporal relationship was observed in endothelial cells exposed to high glucose. Thus, in the early stages of diabetes, increased mtDNA biogenesis and repair compensates for the ROS-induced damage, but, with sustained insult, this mechanism is overwhelmed, and mtDNA and electron transport chain (ETC) are damaged. The compromised ETC propagates a vicious cycle of ROS and the dysfunctional mitochondria fuels loss of capillary cells by initiating their apoptosis.
Collapse
|
61
|
Accelerated skeletal muscle recovery after in vivo polyphenol administration. J Nutr Biochem 2012; 23:1072-9. [DOI: 10.1016/j.jnutbio.2011.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/10/2011] [Accepted: 05/28/2011] [Indexed: 11/17/2022]
|
62
|
Xian YF, Mao QQ, Ip SP, Lin ZX, Che CT. Comparison on the anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis in 12-O-tetradecanoyl-phorbol-13-acetate-induced ear edema in mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1425-1430. [PMID: 21875660 DOI: 10.1016/j.jep.2011.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/15/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cortex Phellodendri is derived from the dried bark of Phellodendron chinense Schneid. or Phellodendron amurense Rupr. Traditionally, Cortex Phellodendron Chinensis (CPC) and Cortex Phellodendron Amurensis (CPA) are used interchangeably under the name "Huang Bai" for the treatment of gastroenteritis, abdominal pain or diarrhea. The present study aims to compare the anti-inflammatory effect of ethanol extracts of Cortex Phellodendri Chinensis (ECPC) and Cortex Phellodendri Amurensis (ECPA) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA). MATERIALS AND METHODS The anti-inflammatory effect was evaluated by measuring the ear thickness, activity of myeloperoxidase (MPO) and the production reactive oxygen species (ROS). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. RESULTS The results showed that both ECPC and ECPA significantly decreased the ear thickness, MPO activity and the ROS level in mouse model of inflammation induced by TPA. In addition, ECPC and ECPA also remarkably inhibited the protein and mRNA levels of TNF-α, IL-1β, IL-6 and COX-2. Interestingly, ECPC has better anti-inflammatory effect than that of ECPA. CONCLUSIONS These results indicate that both ECPC and ECPA have potential anti-inflammatory effect on TPA-induced inflammatory in mice, and ECPC is more effective than ECPA. The anti-inflammatory effect of the herbal drugs may be mediated, at least in part, by down-regulating the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-1β, IL-6 and COX-2.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China
| | | | | | | | | |
Collapse
|
63
|
López-Cruz RI, Zenteno-Savín T, Galván-Magaña F. Superoxide production, oxidative damage and enzymatic antioxidant defenses in shark skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:50-6. [DOI: 10.1016/j.cbpa.2009.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/17/2022]
|
64
|
Rezaei A, Ardestani SK, Forouzandeh M, Tavangar SM, Khorramizadeh MR, Payabvash S, Nezami BG, Jahanshiri Z, Tavakoli Z, Shariftabrizi A, Dehpour AR. The effects of N-acetylcysteine on the expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 in hepatic fibrosis in bile duct ligated rats. Hepatol Res 2008; 38:1252-63. [PMID: 18713279 DOI: 10.1111/j.1872-034x.2008.00393.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM N-acetylcysteine can inhibit the formation of intracellular reactive oxygen intermediates. Cellular redox state plays a role in regulating the secretion of matrix metalloproteinase-2. We investigated the effects of N-acetylcysteine on the expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2. METHODS Bile duct ligated rats were used as a model of hepatic fibrosis. We compared the level of gene expression (using real-time reverse transcription polymerase chain reaction [RT-PCR]), liver function parameters, hepatic reactive oxygen production, lipid peroxidation and glutathione state in experimental groups. RESULTS N-acetylcysteine treatment significantly improved liver function parameters including the plasma levels of aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase and bilirubin. In addition, significant improvement of glutathione state and reactive oxygen production were observed. Hepatic lipid peroxidation was reversed by N-acetylcysteine treatment. Although N-acetylcysteine treatment did not completely normalize the increased matrix metalloproteinase-2 expression, it significantly decreased its level by 65%. N-acetylcysteine treatment also significantly decreased matrix metalloproteinase-2 activity and normalized tissue inhibitor of matrix metalloproteinase-2 expression. CONCLUSION Collectively, N-acetylcysteine showed inhibition of matrix metalloproteinase-2 expression and activity. In addition, administration of N-acetylcysteine was associated with downregulation of the expression of tissue inhibitor of matrix metalloproteinase-2 and amelioration of oxidative stress in the liver of bile duct ligated rats.
Collapse
Affiliation(s)
- Arezou Rezaei
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Song HY, Lee JA, Ju SM, Yoo KY, Won MH, Kwon HJ, Eum WS, Jang SH, Choi SY, Park J. Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain ameliorates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice. Biochem Pharmacol 2008; 75:1348-57. [DOI: 10.1016/j.bcp.2007.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 11/26/2022]
|
66
|
Davis WJ, Wood DT, Andrews RG, Elkind LM, Davis WB. Elimination of Delayed-Onset Muscle Soreness by Pre-resistance Cardioacceleration before Each Set. J Strength Cond Res 2008; 22:212-25. [DOI: 10.1519/jsc.0b013e31815f93a1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
67
|
Ji LL. Antioxidant signaling in skeletal muscle: A brief review. Exp Gerontol 2007; 42:582-93. [PMID: 17467943 DOI: 10.1016/j.exger.2007.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 01/22/2023]
Abstract
Generation of reactive oxygen species (ROS) is a ubiquitous biological phenomenon in eukaryotic cell life. During the past two decades, much attention has been paid to the detrimental effects of ROS such as oxidative stress, pathogenesis and aging. However, there is now increasing evidence and recognition that ROS are not merely damaging agents inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, differentiation, proliferation, and apoptosis, at least within the physiological concentration. In skeletal muscle contractile activity has been shown to upregulate antioxidant defense systems and ROS has been postulated to be essential in this adaptation. Available research data suggest that nuclear factor (NF)kappaB and mitogen-activated protein kinase (MAPK) play a critical role in the relay of oxidative stress signals to gene expression apparatus in the myocytes under a variety of physiological and pathological conditions. This mini-review will discuss the main mechanisms and gene targets for these antioxidant signaling pathways during exercise, inflammation and aging.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
68
|
Maruhashi Y, Kitaoka K, Yoshiki Y, Nakamura R, Okano A, Nakamura K, Tsuyama T, Shima Y, Tomita K. ROS Scavenging Activity and Muscle Damage Prevention in Eccentric Exercise in Rats. J Physiol Sci 2007; 57:211-6. [PMID: 17594755 DOI: 10.2170/physiolsci.rp013006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 06/26/2007] [Indexed: 11/05/2022]
Abstract
Depending on intensity, eccentric exercise is experimentally and clinically documented to have opposing dual effects on skeletal muscle; intense eccentric exercise damages muscle, but daily low-load eccentric exercise prevents damage. To clarify the mechanisms of this dual effect, microscopic damage and oxidative stress were studied in rat quadriceps muscle. Oxidative stress was estimated from an immunostaining of advanced glycation end-products (AGE) and a measurement of muscle tissue preparations, the ability to scavenge reactive oxygen species (ROS). Intense eccentric downhill running (IEE) induced muscle damage that was, microscopically apparent 3 days later. Since AGE-positive cells and decreased ROS scavenging activity were observed earlier (on the day after IEE), cellular damage may be related to ROS production. Intense concentric uphill running (ICE) induced an immediate but transient decrease in ROS scavenging activity, which recovered within a day. Neither AGE-positive cells nor microscopic damage was observed after ICE. Since each contracting muscle fiber develops greater tension during eccentric rather than concentric exercise, the initial trigger of IEE-induced muscle damage may be damage to muscle fibers and connective tissues at the subcellular level. Daily low-load training of eccentric downhill running (LET), but not concentric uphill running, efficiently prevented muscle damage after subsequent IEE. No evident elevation of ROS scavenging activity was evident after LET. We concluded that LET prevents IEE-induced muscle damage not through elevated ROS scavenging activity, but through a suppression of initial subcellular damage that triggers subsequent ROS-producing processes, resulting in cellular delayed damage.
Collapse
Affiliation(s)
- Yoshinobu Maruhashi
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Neutrophils have not consistently been detected in exercise-injured skeletal muscle and, therefore, neutrophil infiltration in this muscle has become a controversial issue. Thirty-eight animal and human studies that assessed injured muscle for neutrophils and employed acute exercise (e.g. level, uphill or downhill running, eccentric contractions, or swimming) were analysed to help clarify the relationship between neutrophil infiltration and exercise-induced muscle injury. Findings from nearly three-quarters of the reviewed studies suggest that neutrophil accumulation follows exercise-induced muscle injury. Intramuscular neutrophil infiltration was present in 85% and 55% of the animal and human studies, respectively. However, no consistent relationship between the potential damaging effect of the exercise type and neutrophil infiltration can be conclusively established from these studies. Specific animal-related factors that could influence these results include age, animal strain, catecholamines, corticosterone, acute stressors and muscle type, whereas a specific human-related influencing factor is physical activity status. Factors affecting both animal and human studies could include sex hormones, muscle sampling techniques and neutrophil detection approaches. General categories of methods that have been used to detect neutrophil infiltration are microscopy, myeloperoxidase (MPO) biochemical assay, antibody staining and white blood cell radionuclide imaging. Only studies employing white blood cell radionuclide imaging have consistently detected neutrophil infiltration. However, antibody staining with a quantitative analysis is currently the most feasible, valid and sensitive method. Research recommendations, therefore, are warranted to resolve the neutrophil infiltration controversy. We propose two approaches for animal studies. The first approach encompasses (i) studying or measuring factors that could influence neutrophil infiltration; (ii) using quantitative antibody staining analysis (in all studies and employing a panel of anti-neutrophil antibodies); (iii) examining the relationship between fibre morphological changes and neutrophil antigen expression; and (iv) developing a neutrophil antibody-radionuclide imaging technique. The second approach will yield animal findings complementing or addressing the gaps from the human exercise studies. For human studies, we suggest that (i) physical activity status is investigated; (ii) quantitative antibody staining analysis is performed (including staining injured muscle with a panel of antibodies such as anti-elastase, anti-MPO, anti-CD11b and anti-CD15 or assessing injured muscle using both immunohistochemistry and the MPO biochemical assay); and (iii) the relationship between fibre morphological changes and neutrophil antigen expression is examined. Studies that incorporate these recommendations could lead to an increased understanding of whether neutrophils are essential for the recovery from an exercise-induced muscle injury.
Collapse
|
70
|
Abstract
Stretch injury to the myotendinous junction is a common problem in competitive athletes and those involved in regular physical activity. The major risk factor for recurrent injury appears to be the primary injury itself. Physicians, physical therapists, athletic trainers and athletes alike continue to search for optimal treatment and prevention strategies. Acute inflammation is regarded as the body's generalized protective response to tissue injury. An especially important and unexplored aspect of inflammation following injury is the role of inflammatory cells in extending injury and possibly directing muscle repair. It has been suggested that the inflammatory reaction, although it typically represents a reaction to damage and necrosis, may even bring about some local damage of its own and therefore increase the possibility for scarring and fibrosis. Limiting certain aspects of inflammation may theoretically reduce muscle damage as well as signals for muscle scarring. Here we focus on the role of neutrophils in injury and repair of stretch-injured skeletal muscle. A minimally invasive model that generates a reproducible injury to rabbit skeletal muscle is presented. We present a plausible theory that neutrophil-derived oxidants resulting from the initial stretch injury are responsible for extending the damage. An anti-CD11b antibody that blocks the neutrophil's respiratory burst is employed to reduce myofibre damage. An intriguing area that is currently being explored in our laboratory and others is the potential role for neutrophils to contribute to muscle growth and repair. It may be possible that neutrophils facilitate muscle repair through removal of tissue debris as well as by activation of satellite cells. Recent and ongoing investigations point to interleukin-6 as a possible key cytokine in muscle inflammation and repair. Studies to elucidate a clearer understanding of this possibility will be reviewed.
Collapse
Affiliation(s)
- Hechmi Toumi
- Cardiff School of Biosciences, University of Cardiff, UK
| | | | | |
Collapse
|
71
|
Fugere NA, Ferrington DA, Thompson LV. Protein nitration with aging in the rat semimembranosus and soleus muscles. J Gerontol A Biol Sci Med Sci 2006; 61:806-12. [PMID: 16912096 PMCID: PMC2692712 DOI: 10.1093/gerona/61.8.806] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
On the basis of the accelerated age-related effects in type II muscle, we hypothesized that with aging the semimembranosus (type II) muscle would accumulate a greater amount of oxidized proteins compared to proteins in the soleus (type I) muscle. In this study, 3-nitrotyrosine (3-NT) was used as a stable marker of protein oxidative damage. The presence of 3-NT was evaluated in muscles from young adult, old, and very old Fischer 344 rats to provide an indication of the time course of muscle protein oxidative damage. A significant age-associated increase in nitrotyrosine-modified proteins was observed. The modified proteins identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry include the sarcoplasmic reticulum Ca(+2)-ATPase, aconitase, beta-enolase, triosephosphate isomerase, and carbonic anhydrase III. These proteins, involved in metabolism and calcium homeostasis, exhibited an age-dependent increase in 3-NT content in both muscles. However, significant levels of 3-NT modification were present at an earlier age in the semimembranosus muscle.
Collapse
Affiliation(s)
- Nicole A. Fugere
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis
| | | | - LaDora V. Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis
| |
Collapse
|
72
|
You T, Goldfarb AH, Bloomer RJ, Nguyen L, Sha X, McKenzie MJ. Oxidative stress response in normal and antioxidant supplemented rats to a downhill run: changes in blood and skeletal muscles. ACTA ACUST UNITED AC 2006; 30:677-89. [PMID: 16485519 DOI: 10.1139/h05-148] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine if changes in oxidative stress biomarkers in blood and skeletal muscles are similar in normal and antioxidant supplemented rats after a downhill run. Sixty-six male Sprague-Dawley rats were pretreated with a normal rat diet or diet + antioxidants (2,000 mg vitamin C + 1,000 IU vitamin E/kg diet) for 2 weeks. Exercised rats ran 90 min on a rodent treadmill at a speed of 16 m/min at -16 degrees grade. Rats were sacrificed either at rest, immediately, 2 hrs, or 48 hrs postexercise. Malondialdehyde (MDA) and protein carbonyl (PC) concentrations and glutathione status in blood, vastus lateralis (white fast-twitch), vastus intermedius (red fast-twitch), and soleus (slow-twitch) muscles were determined. A significant increase from rest in PC occurred in plasma, vastus intermedius and soleus muscle 2 hrs after the downhill run (p < 0.05), with no changes observed at any other times postexercise. Antioxidant supplementation significantly decreased PC concentrations in both vastus intermedius and soleus muscles at all times combined (p < 0.05). MDA and glutathione status in blood and muscles were unaffected by either the downhill run or antioxidant treatment. For PC and MDA, the concentrations were lower in blood as compared to skeletal muscle, with the opposite finding for oxidized glutathione; however, the pattern of response postexercise was similar. These data indicate that (a) PC, but not MDA or oxidized glutathione, is elevated transiently following downhill running in male rats; (b) the elevation in PC postexercise occurs in plasma, vastus intermedius, and soleus muscles; (c) antioxidant therapy can attenuate PC in vastus intermedius, and soleus muscles; and (d) while the concentrations of oxidative stress biomarkers differ between blood and the various skeletal muscles, the pattern of response postexercise is similar.
Collapse
Affiliation(s)
- Tongjian You
- Gerontology and Geriatric Medicine, Wake Forest U School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
73
|
Hakim M, Hage W, Lovering RM, Moorman CT, Curl LA, De Deyne PG. Dexamethasone and recovery of contractile tension after a muscle injury. Clin Orthop Relat Res 2005; 439:235-42. [PMID: 16205165 DOI: 10.1097/01.blo.0000177716.70404.f9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Muscle strains, frequently the result of a lengthening contraction, sometimes are treated with corticosteroids. We tested whether an injection of dexamethasone administered soon after muscle injury would minimize inflammation and facilitate the recovery of contractile tension. We applied one eccentric contraction on the tibialis anterior of 76 rats, which were randomly assigned to one of three groups: sham-injured plus dexamethasone, injured plus vehicle, and injured plus dexamethasone. Electrophysiology, histology, and reverse transcription-polymerase chain reaction were used to study the relation between contractile tension, inflammation, and the expression of inflammatory molecules. The single eccentric contraction led to a reversible muscle injury characterized initially by reduced contractile tension and inflammation. The dexamethasone injection reduced the expression of interleukin-1beta and transforming growth factor-beta1 compared with injured vehicle-injected controls and led to a transient improvement of contractile tension 3 days after the injury. No adverse effects were seen for as much as 3 weeks after the dexamethasone injection. The data indicate that one dose of dexamethasone administered soon after muscle strain may facilitate recovery of contractile tension without causing major adverse consequences in this experimental model.
Collapse
Affiliation(s)
- Marc Hakim
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
74
|
Allen DG, Whitehead NP, Yeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 2005; 567:723-35. [PMID: 16002444 PMCID: PMC1474216 DOI: 10.1113/jphysiol.2005.091694] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Accepted: 07/05/2005] [Indexed: 12/22/2022] Open
Abstract
Muscle damage, characterized by prolonged weakness and delayed onset of stiffness and soreness, is common following contractions in which the muscles are stretched. Stretch-induced damage of this sort is more pronounced in the muscular dystrophies and the profound muscle damage observed in these conditions may involve similar pathways. It has been known for many years that damaged muscles accumulate calcium and that elevating calcium in normal muscles simulates many aspects of muscle damage. The changes in intracellular calcium, sodium and pH following stretched contractions are reviewed and the various pathways which have been proposed to allow ion entry are discussed. One possibility is that TRPC1 (transient receptor potential, canonical), a protein which seems to form both a stretch-activated channel and a store-operated channel, is the main source of Ca(2+) entry. The mechanisms by which the changes in intracellular ions contribute to reduced force production, to increased protein breakdown and to increased membrane permeability are considered. A hypothetical scheme for muscle damage which incorporates these ideas is presented.
Collapse
Affiliation(s)
- D G Allen
- School of Medical Sciences, University of Sydney, NSW, Australia.
| | | | | |
Collapse
|
75
|
Lovering RM, Hakim M, Moorman CT, De Deyne PG. The contribution of contractile pre-activation to loss of function after a single lengthening contraction. J Biomech 2005; 38:1501-7. [PMID: 15922761 PMCID: PMC4489540 DOI: 10.1016/j.jbiomech.2004.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
PURPOSE Some muscle injuries are the result of a single lengthening contraction. Our goal was to evaluate the contributions of angular velocity, arc of motion, and timing of contractile activation relative to the onset of joint motion in an animal model of muscle injury using a single lengthening contraction. METHODS The intact tibialis anterior (TA) muscle of rats was activated while lengthened, preceded by a maximal isometric contraction of 0, 25, 50, 100, or 200 ms. The lengthening contraction was performed at two different angular velocities (300 or 900 degrees/s) and through two different arcs of motion (90 degrees or 45 degrees). RESULTS Muscle contractile function, as measured by maximal isometric tetanic tension, was significantly decreased only when the TA was activated at least 50 ms prior to the motion, regardless of angular velocity or arc of motion. CONCLUSION The data indicated that the duration of an isometric contraction prior to a single lengthening contraction determined the extent of muscle injury irrespective of two different angular velocities.
Collapse
Affiliation(s)
- Richard M. Lovering
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Marc Hakim
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Claude T. Moorman
- Division of Orthopedic Surgery and Duke Sports Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Patrick G. De Deyne
- Department of Physical Therapy and Rehabilitation Science, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
- Corresponding author. DePuy Biologics, Soft Tissue Technology Group, 325 Paramount Drive, Raynham, MA 02767, USA. Tel: +1-508-828-2762; fax: +1-508-828-3731. (P.G. De Deyne)
| |
Collapse
|
76
|
Sakurai T, Hollander J, Brickson SL, Ohno H, Ji LL, Izawa T, Best TM. Changes in nitric oxide and inducible nitric oxide synthase following stretch-induced injury to the tibialis anterior muscle of rabbit. ACTA ACUST UNITED AC 2005; 55:101-7. [PMID: 15857575 DOI: 10.2170/jjphysiol.r614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 04/06/2005] [Indexed: 11/05/2022]
Abstract
This study investigated the changes in nitric oxide (NO) together with inducible nitric oxide synthase (iNOS) content and enzyme activity at 0, 4, 12, 24, and 48 h following acute muscle stretch injury. A single stretch injury was induced to the tibialis anterior muscle of 30 male New Zealand white rabbits (n = 6 at each time point). Injured and uninjured contralateral sham-operated muscles were harvested and analyzed for NO levels, iNOS content, and iNOS activity at each time point. Furthermore, three animals were used to estimate baseline NO levels and iNOS activity. There was a progressive reduction in NO content in the injured and the sham-operated muscles up to 24 h postoperation and stretch injury (p < 0.05). At 48 h postinjury, however, NO levels were 146% higher in injured muscles than in sham-operated muscles (p < 0.05). iNOS protein content was higher at 4 h and 48 h in injured versus shamoperated muscles (p < 0.05). Similarly, iNOS activity was higher at 4 h (p < 0.05) and at 48 h (p < 0.01) in injured versus sham-operated muscles. These results suggest that NO may play an active role during the postinjury recovery of skeletal muscle modulated by iNOS expression.
Collapse
Affiliation(s)
- Tomonobu Sakurai
- Department of Kinesiology, Tokyo Metropolitan University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
77
|
Pizza FX, Peterson JM, Baas JH, Koh TJ. Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 2004; 562:899-913. [PMID: 15550464 PMCID: PMC1665528 DOI: 10.1113/jphysiol.2004.073965] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We tested the hypotheses that: (1) neutrophil accumulation after contraction-induced muscle injury is dependent on the beta(2) integrin CD18, (2) neutrophils contribute to muscle injury and oxidative damage after contraction-induced muscle injury, and (3) neutrophils aid the resolution of contraction-induced muscle injury. These hypotheses were tested by exposing extensor digitorum longus (EDL) muscles of mice deficient in CD18 (CD18(-/-); Itgb2(tm1Bay)) and of wild type mice (C57BL/6) to in situ lengthening contractions and by quantifying markers of muscle inflammation, injury, oxidative damage and regeneration/repair. Neutrophil concentrations were significantly elevated in wild type mice at 6 h and 3 days post-lengthening contractions; however, neutrophils remained at control levels at these time points in CD18-/- mice. These data indicate that CD18 is required for neutrophil accumulation after contraction-induced muscle injury. Histological and functional (isometric force deficit) signs of muscle injury and total carbonyl content, a marker of oxidative damage, were significantly higher in wild type relative to CD18-/- mice 3 days after lengthening contractions. These data show that neutrophils exacerbate contraction-induced muscle injury. After statistically controlling for differences in the force deficit at 3 days, wild type mice also demonstrated a higher force deficit at 7 days, a lower percentage of myofibres expressing embryonic myosin heavy chain at 3 and 7 days, and a smaller cross sectional area of central nucleated myofibres at 14 days relative to CD18-/- mice. These observations suggest that neutrophils impair the restoration of muscle structure and function after injury. In conclusion, neutrophil accumulation after contraction-induced muscle injury is dependent on CD18. Furthermore, neutrophils appear to contribute to muscle injury and impair some of the events associated with the resolution of contraction-induced muscle injury.
Collapse
Affiliation(s)
- Francis X Pizza
- Dept of Kinesiology, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA.
| | | | | | | |
Collapse
|
78
|
Tsivitse SK, Mylona E, Peterson JM, Gunning WT, Pizza FX. Mechanical loading and injury induce human myotubes to release neutrophil chemoattractants. Am J Physiol Cell Physiol 2004; 288:C721-9. [PMID: 15548571 DOI: 10.1152/ajpcell.00237.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to 1) test the hypothesis that skeletal muscle cells (myotubes) after mechanical loading and/or injury are a source of soluble factors that promote neutrophil chemotaxis and superoxide anion (O(2)(-).) production and 2) determine whether mechanical loading and/or injury causes myotubes to release cytokines that are known to influence neutrophil responses [tumor necrosis factor-alpha (TNF-alpha), IL-8, and transforming growth factor-beta1 (TGF-beta1)]. Human myotubes were grown in culture and exposed to either a cyclic strain (0, 5, 10, 20, or 30% strain) or a scrape injury protocol. Protocols of 5, 10, and 20% strain did not cause injury, whereas 30% strain and scrape injury caused a modest and a high degree of injury, respectively. Conditioned media from strained myotubes promoted chemotaxis of human blood neutrophils and primed them for O(2)(-). production in a manner that was dependent on a threshold of strain and independent from injury. Neutrophil chemotaxis, but not priming, progressively increased with higher magnitudes of strain. Conditioned media only from scrape-injured myotubes increased O(2)(-). production from neutrophils. Concentrations of IL-8 and total TGF-beta1 in conditioned media were reduced by mechanical loading, whereas TNF-alpha and active TGF-beta1 concentrations were unaffected. In conclusion, skeletal muscle cells after mechanical loading and injury are an important source of soluble factors that differentially influence neutrophil chemotaxis and the stages of neutrophil-derived reactive oxygen species production. Neutrophil responses elicited by mechanical loading, however, did not parallel changes in the release of IL-8, TGF-beta1, or TNF-alpha from skeletal muscle cells.
Collapse
Affiliation(s)
- Susan K Tsivitse
- Department of Kinesiology, University. of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
79
|
Steinberg JG, Faucher M, Guillot C, Kipson N, Badier M, Jammes Y. Depressed fatigue-induced oxidative stress in chronic hypoxemic humans and rats. Respir Physiol Neurobiol 2004; 141:179-89. [PMID: 15239968 DOI: 10.1016/j.resp.2004.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 01/24/2023]
Abstract
It was already documented that acute hypoxemia reduces the oxidative stress following static as well as dynamic handgrip bouts in humans. Then, we examined if chronic hypoxemia could produce the same effect in patients suffering from chronic respiratory insufficiency. In rats, we studied the respective consequence of a one-month exposure to normobaric hypoxia on two muscles (soleus, SOL, and extensor digitorum longus, EDL) which have high and low aerobic metabolism, respectively. Compared to healthy humans, the resting level of erythrocyte reduced glutathione (GSH) was significantly lower in chronic hypoxemic patients, and after a handgrip contraction sustained at 50% of maximal until exhaustion the GSH level and plasma thiobarbituric acid reactive substances (TBARS) did not vary. A 20-min period of oxygen supplementation partly restored the post-handgrip oxidative stress. Compared to control rats, SOL muscle of hypoxemic animals had lower intra-muscular resting level of GSH; after a 3-min muscle stimulation (MS) leading to fatigue, TBARS did not vary in SOL and EDL and the GSH decrease was absent in SOL whereas it persisted in EDL. We concluded that chronic hypoxemia depressed the fatigue-induced oxidative stress, the effects prevailing in muscles having a high oxygen demand.
Collapse
Affiliation(s)
- Jean Guillaume Steinberg
- Laboratoire de Physiopathologie Respiratoire (UPRES EA 2201), Institut Jean Roche, Faculté de Médecine, Université de la Méditerranée, Blvd. Pierre Dramard, 13916 cedex 20 Marseille, France
| | | | | | | | | | | |
Collapse
|
80
|
Arbogast S, Reid MB. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide. Am J Physiol Regul Integr Comp Physiol 2004; 287:R698-705. [PMID: 15178539 DOI: 10.1152/ajpregu.00072.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Free radicals are produced continuously by skeletal muscle fibers. Extracellular release of reactive oxygen species (ROS) and nitric oxide (NO) derivatives has been demonstrated, but little is known about intracellular oxidant regulation. We used a fluorescent oxidant probe, 2',7'-dichlorofluorescin (DCFH), to assess net oxidant activity in passive muscle fiber bundles isolated from mouse diaphragm and studied in vitro. We tested the following three hypotheses. 1) Net oxidant activity is decreased by muscle cooling. 2) CO(2) exposure depresses intracellular oxidant activity. 3) Muscle-derived ROS and NO both contribute to overall oxidant activity. Our results indicate that DCFH oxidation was diminished by cooling muscle fibers from 37 degrees C to 23 degrees C (P < 0.001). The rate of DCFH oxidation correlated positively with CO(2) exposure (0-10%; P < 0.05) and negatively with concurrent changes in pH (7.0-8.5; P < 0.05). Separate exposures to anti-ROS enzymes (superoxide dismutase, 1 kU/ml; catalase, 1 kU/ml), a glutathione peroxidase mimetic (ebselen, 30 microM), NO synthase inhibitors (N(omega)-nitro-l-arginine methyl ester, 1 mM; N(omega)-monomethyl-l-arginine, 1 mM), or an NO scavenger (hemoglobin, 1 microM) each inhibited DCFH oxidation (P < 0.05). Oxidation was increased by hydrogen peroxide, 100 microM, an NO donor (NOC-22, 400 microM), or the substrate for NO synthase (l-arginine, 5 mM). We conclude that net oxidant activity in resting muscle fibers is 1) decreased at subphysiological temperatures, 2) increased by CO(2) exposure, and 3) influenced by muscle-derived ROS and NO derivatives to similar degrees.
Collapse
Affiliation(s)
- Sandrine Arbogast
- Dept. of Physiology, Univ. of Kentucky, 800 Rose St., Rm. MS-509; Lexington, KY 40536-0298, USA
| | | |
Collapse
|
81
|
Corr DT, Leverson GE, Vanderby R, Best TM. A nonlinear rheological assessment of muscle recovery from eccentric stretch injury. Med Sci Sports Exerc 2003; 35:1581-8. [PMID: 12972880 DOI: 10.1249/01.mss.0000084423.39529.c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To better understand the mechanical behavior of healing skeletal muscle; specifically the tissue's response after acute eccentric stretch injury. METHODS Rabbit tibialis anterior (TA) muscle tendon units were subjected to an in vivo single stretch (eccentric) injury and mechanically evaluated (constant rate elongation to failure) at 1, 3, and 7 d postinjury. In addition to a traditional linear analysis (linear stiffness and failure load), an existing nonlinear rheological model was modified to interpret the experimental load-to-failure data. The models' performance were evaluated and discussed. RESULTS No significant injury effect was observed, either within or between groups, across the 7-d healing interval, using the linear analysis. However, interpretation of the data using our nonlinear phenomenological model identified significant changes in mechanical behavior that went undetected by linear analyses. Percent differences, between injured and contralateral control limbs, of model parameter estimates were analyzed. Nonparametric statistical analysis illustrated significant changes in the first-order stiffness (k1) throughout the 7-d healing interval. Model simulations using mean values of each parameter revealed increased low-load tissue compliance after injury, with a decrease in linear slope that recovered steadily toward control values by day 7. At 7 d postinjury, virtually no differences were observed between injured and sham control tissues. CONCLUSIONS Our findings suggest that acute eccentric injury increases the muscle's compliance 24 h after injury, with a steady recovery to uninjured values by the 7th day, yet these changes went undetected by linear analysis. Therefore, nonlinear analysis is necessary to recognize valuable information contained in the low-load region and to quantify important biomechanical phenomena of stretch-injured healing skeletal muscle.
Collapse
Affiliation(s)
- David T Corr
- Human Performance Laboratory, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
82
|
Brickson S, Ji LL, Schell K, Olabisi R, St Pierre Schneider B, Best TM. M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury. J Appl Physiol (1985) 2003; 95:969-76. [PMID: 12730143 DOI: 10.1152/japplphysiol.00005.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the role of the CD11b-dependent respiratory burst in neutrophil oxidant generation and activation, interleukin-8 (IL-8) production, and myofiber damage after muscle stretch injury by using the monoclonal antibody M1/70 to block this pathway. Twelve male New Zealand White rabbits were randomly assigned to a treatment group: M1/70 (n = 6), IgG isotype control (n = 3), or saline control (n = 3). After intravenous injection of the assigned agent under gas anesthesia, a standardized single-stretch injury was created in the right tibialis anterior, whereas the left tibialis anterior underwent a sham surgery. Blood-borne neutrophil oxidant generation and CD11b receptor density and plasma IL-8 levels were measured pre- and 24 h postinjury. Damage was assessed histologically at the hematoma site by counting torn myofibers. M1/70 group demonstrated decreased blood-borne neutrophil oxidant generation (P < 0.05) and CD11b receptor density (P < 0.05), an increase in plasma IL-8 concentration (P < 0.01), and less torn myofibers (P < 0.01) compared with IgG isotype or saline control groups. These data indicate that 1). CD11b-dependent respiratory burst is a major source of oxidants produced by the neutrophil, and that treatment with M1/70 2). attenuates neutrophil activation status, 3). increases plasma IL-8 concentration, and 4). minimizes myofiber damage 24 h postmuscle stretch injury.
Collapse
Affiliation(s)
- S Brickson
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Joulia F, Steinberg JG, Faucher M, Jamin T, Ulmer C, Kipson N, Jammes Y. Breath-hold training of humans reduces oxidative stress and blood acidosis after static and dynamic apnea. Respir Physiol Neurobiol 2003; 137:19-27. [PMID: 12871674 DOI: 10.1016/s1569-9048(03)00110-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Repeated epochs of breath-holding were superimposed to the regular training cycling program of triathletes to reproduce the adaptative responses to hypoxia, already described in elite breath-hold divers [Respir. Physiol. Neurobiol. 133 (2002) 121]. Before and after a 3-month breath-hold training program, we tested the response to static apnea and to a 1-min dynamic forearm exercise executed during apnea (dynamic apnea). The breath-hold training program did not modify the maximal performances measured during an incremental cycling exercise. After training, the duration of static apnea significantly lengthened and the associated bradycardia was accentuated; we also noted a reduction of the post-apnea decrease in venous blood pH and increase in lactic acid concentration, and the suppression of the post-apnea oxidative stress (increased concentration of thiobarbituric acid reactive substances). After dynamic apnea, the blood acidosis was reduced and the oxidative stress no more occurred. These results suggest that the practice of breath-holding improves the tolerance to hypoxemia independently from any genetic factor.
Collapse
Affiliation(s)
- Fabrice Joulia
- Laboratoire d'Ergonomie Sportive et Performance (EA 20548), U.F.R. STAPS, Université de Toulon et du Var, 83130 La Garde cedex, France
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Limiting certain aspects of inflammation may be a useful new treatment for sport related muscle injury.
Collapse
Affiliation(s)
- H Toumi
- Department of Orthopedics and Rehabilitation and Family Medicine, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
85
|
Koh TJ, Peterson JM, Pizza FX, Brooks SV. Passive stretches protect skeletal muscle of adult and old mice from lengthening contraction-induced injury. J Gerontol A Biol Sci Med Sci 2003; 58:592-7. [PMID: 12865474 DOI: 10.1093/gerona/58.7.b592] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We tested the hypothesis that a single bout of training with passive stretches or isometric contractions protects the extensor digitorum longus muscle in old mice from contraction-induced injury. Lengthening contractions produced similar decreases in force (approximately 70%-80%) and numbers of overtly injured fibers (approximately 15%-20%) in adult and old mice, but twofold greater inflammatory cell accumulation above untreated control values in old versus adult mice. For both age groups, prior training with passive stretches improved postinjury force almost twofold compared with untrained muscles and reduced injured fibers by one half. Training with passive stretches or isometric contractions reduced inflammatory cell accumulation following lengthening contractions by as much as two thirds in old mice, but not in adult mice. The data indicate that passive stretches provide some protection against contraction-induced injury in old mice, and that accumulation of inflammatory cells does not correlate strongly with force deficit and number of injured fibers.
Collapse
Affiliation(s)
- Timothy J Koh
- School of Kinesiology, University of Illinois at Chicago, USA
| | | | | | | |
Collapse
|
86
|
Thompson D, Williams C, Garcia-Roves P, McGregor SJ, McArdle F, Jackson MJ. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 2003; 89:393-400. [PMID: 12682838 DOI: 10.1007/s00421-003-0816-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2003] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate whether post-exercise vitamin C supplementation influences recovery from an unaccustomed bout of exercise. Sixteen male subjects were allocated to either a placebo (P; n=8) or vitamin C (VC) group ( n=8). Subjects performed a prolonged (90-min) intermittent shuttle-running test, and supplementation began after the cessation of exercise. Immediately after exercise the VC group consumed 200 mg of VC dissolved in a 500 ml drink, whereas the subjects in the P group consumed the drink alone. Later on the same day and then in the morning and evening of the following 2 days, subjects consumed additional identical drinks. Plasma VC concentrations in the VC group increased above those in the P group 1 h after exercise and remained above P values for the 3 days after exercise. Nevertheless, post-exercise VC supplementation was not associated with improved recovery. Post-exercise serum creatine kinase activities and myoglobin concentrations were unaffected by supplementation. Muscle soreness and the recovery of muscle function in the leg flexors and extensors were not different in VC and P groups. Furthermore, although plasma concentrations of interleukin-6 and malondialdehyde increased following exercise, there was no difference between VC and P groups. These results suggest that either free radicals are not involved in delaying the recovery process following a bout of unaccustomed exercise, or that the consumption of VC wholly after exercise is unable to deliver this antioxidant to the appropriate sites with sufficient expediency to improve recovery.
Collapse
Affiliation(s)
- D Thompson
- Department of Sport and Exercise Science, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
87
|
Perez AC, Cabral de Oliveira AC, Estevez E, Molina AJ, Prieto JG, Alvarez AI. Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:199-206. [PMID: 12600679 DOI: 10.1016/s1532-0456(02)00247-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several different exercise regimens varied in the severity of tissue damage induced. Therefore, this study investigated the effects of a single bout of exercise versus endurance training in heart and skeletal muscles with different predominant fiber types on indices of mitochondrial, endoplasmic reticulum (ER) integrity and protein degradation. Male Wistar rats performed different treadmill exercise protocols: exhaustive, maximal exhaustive, eccentric, training and exhaustive exercise after training. The maximal and eccentric exercises resulted in a significant loss of integrity of the sarcoplasmic and ER muscle, while no changes were observed in cardiac muscle. Mitochondrial membrane fluidity measured by the fluorescence polarization method was significantly increased post-acute exercises in heart and oxidative muscles. Regular exercise can stabilize and preserve the viscoelastic nature of mitochondrial membranes in both tissues. The highest increase in carbonyl content was obtained in heart after exhaustive exercise protocol, from 1+/-0.1 to 3.6+/-0.14 nmol mg protein(-1), such increase were not found after regular exercise with values significantly decreased. Nitrate heart levels showed attenuated generation of nitric oxide after training. Muscle protein oxidation was produced in all exhaustive exercises including eccentric exercise.
Collapse
Affiliation(s)
- Andrea C Perez
- Department of Physiology, University of Leon, Leon 24071, Spain
| | | | | | | | | | | |
Collapse
|
88
|
Joulia F, Steinberg JG, Wolff F, Gavarry O, Jammes Y. Reduced oxidative stress and blood lactic acidosis in trained breath-hold human divers. Respir Physiol Neurobiol 2002; 133:121-30. [PMID: 12385737 DOI: 10.1016/s1569-9048(02)00133-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We hypothesized that the repetition of brief epochs of hypoxemia in elite human breath-hold divers could induce an adaptation of their metabolic responses, resulting in reduced blood acidosis and oxidative stress. Trained divers who had a 7-10 year experience in breath-hold diving, and were able to sustain apnea up to 440 sec at rest, were compared to control individuals who sustained apnea for 145 sec at the most. The subjects sustained apnea at rest (static apnea), and then, performed two 1-min dynamic forearm exercises whether they breathed (control exercise) or sustained apnea (dynamic apnea). We measured arterial blood gases, venous blood pH, and venous blood concentrations of lactic acid, thiobarbituric acid reactive substances (TBARS), and two endogenous anti-oxidants (reduced glutathione, GSH, and reduced ascorbic acid, RAA). In control subjects, the three experimental conditions elicited an increase in blood lactic acid concentration and an oxidative stress (increased TBARS, decreased GSH and RAA concentrations). In divers, the changes in lactic acid, TBARS, RAA, and GSH concentrations were markedly reduced after static and dynamic apnea, as well as after control exercise. Thus, human subjects involved in a long duration training programme of breath-hold diving have reduced post-apnea as well as post-exercise blood acidosis and oxidative stress, mimicking the responses of diving animals.
Collapse
Affiliation(s)
- Fabrice Joulia
- Laboratoire d'Ergonomie du Sport et de la Performance Motrice, UFR STAPS, Université Toulon La Garde, Toulon, France
| | | | | | | | | |
Collapse
|
89
|
Abstract
Prior exercise training protects skeletal muscle from contraction-induced injury. However, the mechanisms of protection are unknown. In this paper, the hypothesis is developed that exercise-induced increases in small heat shock protein activity may protect muscle cells via interactions with cytoskeletal elements and/or the glutathione system.
Collapse
Affiliation(s)
- Timothy J Koh
- School of Kinesiology, University of Illinois, Chicago 60608, USA.
| |
Collapse
|
90
|
St Pierre Schneider B, Brickson S, Corr DT, Best T. CD11b+ neutrophils predominate over RAM11+ macrophages in stretch-injured muscle. Muscle Nerve 2002; 25:837-44. [PMID: 12115972 DOI: 10.1002/mus.10109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to determine whether both neutrophils and macrophages infiltrate the hematoma site of stretch-injured rabbit tibialis anterior muscle. The Mab.198 antibody was used to detect CD11b(+) neutrophils or macrophages. Neutrophils were identified specifically by using the RPN3/57 antibody. The RAM11 antibody was used to detect macrophages. The histological characteristics of the hematoma site, torn fibers or inflammatory cells, were present primarily at 4 and 24 h, but not at 48 and 72 h after injury. A difference in the Mab.198(+) cellular concentration was detected over time between uninjured and injured muscles (P = 0.03). The injured-uninjured difference in the RPN3/57(+) or RAM11(+) cellular concentrations approached significance (P = 0.07) or else was deemed insignificant (P = 0.13), respectively. Therefore, neutrophils may predominate over RAM11(+) macrophages in stretch-injured muscle. These findings may influence the antiinflammatory strategies used to treat stretch injuries.
Collapse
Affiliation(s)
- Barbara St Pierre Schneider
- School of Nursing, University of Wisconsin, Clinical Science Center, Room K6/364, 600 N. Highland Avenue, Madison, Wisconsin 53792-2455, USA.
| | | | | | | |
Collapse
|
91
|
|
92
|
Steinberg J, Gainnier M, Michel F, Faucher M, Arnaud C, Jammes Y. The post-exercise oxidative stress is depressed by acetylsalicylic acid. Respir Physiol Neurobiol 2002; 130:189-99. [PMID: 12380009 DOI: 10.1016/s0034-5687(02)00002-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to assess whether oxidative stress occurs after fatiguing dynamic contractions of a small forearm muscle group, we estimated the kinetics of changes in some of its biomarkers (thiobarbituric acid reactive substances or TBARS; plasma reduced ascorbic acid or RAA; erythrocyte reduced glutathione or GSH). We also tested the hypothesis that acetylsalicylic acid (ASA) may compete with endogenous radical targets, attenuating the post-exercise oxidative stress. Seven male subjects successively performed a 3-min dynamic handgrip exercise with the dominant and then the contralateral forearm. Blood samples were taken from an antecubital vein in each exercising forearm. Biochemical analyses, including the concentration measurements of lactic acid, potassium, and oxidative stress markers were performed at rest and then during the 30-min period of recovery following each exercise. The same day, exercises were repeated after ingestion of a single dose (10 mg/kg) of ASA, and the same exercises were performed after a 3-day ASA treatment (30 mg/kg/day). In control condition, the changes in TBARS, RAA and GSH were already significant immediately after the end of the forearm exercise. They culminated after 5 min, and control values were recovered by a 30-min rest period. We verified that repeated bouts failed to alter the post-exercise variations. ASA did not modify the lactic acid production significantly, though the 3-day ASA treatment significantly reduced the efflux of potassium (-74%, P < 0.05), and the post-exercise variations of TBARS (-45%, P < 0.01), RAA (-44%, P < 0.01) and GSH (-48%, P < 0.01). These results suggest that the dynamic handgrip exercise is a good model for studying the post-exercise oxidative stress and also that ASA seems to offer an efficient protection against oxidative stress and the changes in membrane permeability to potassium.
Collapse
Affiliation(s)
- Jean Steinberg
- Laboratoire de Physiopathologie Respiratoire (UPRES EA 2201), Faculté de Médecine, Institut Jean Roche, Université de la Méditerranée, Boulevard Pierre Dramard, 13916 Marseille, France
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Exercise-induced muscle damage is a well documented phenomenon that often follows unaccustomed and sustained metabolically demanding activities. This is a well researched, but poorly understood area, including the actual mechanisms involved in the muscle damage and repair cycle. An integrated model of muscle damage has been proposed by Armstrong and is generally accepted. A more recent aspect of exercise-induced muscle damage to be investigated is the potential of estrogen to have a protective effect against skeletal muscle damage. Estrogen has been demonstrated to have a potent antioxidant capacity that plays a protective role in cardiac muscle, but whether this antioxidant capacity has the ability to protect skeletal muscle is not fully understood. In both human and rat studies, females have been shown to have lower creatine kinase (CK) activity following both eccentric and sustained exercise compared with males. As CK is often used as an indirect marker of muscle damage, it has been suggested that female muscle may sustain less damage. However, these findings may be more indicative of the membrane stabilising effect of estrogen as some studies have shown no histological differences in male and female muscle following a damaging protocol. More recently, investigations into the potential effect of estrogen on muscle damage have explored the possible role that estrogen may play in the inflammatory response following muscle damage. In light of these studies, it may be suggested that if estrogen inhibits the vital inflammatory response process associated with the muscle damage and repair cycle, it has a negative role in restoring normal muscle function after muscle damage has occurred. This review is presented in two sections: firstly, the processes involved in the muscle damage and repair cycle are reviewed; and secondly, the possible effects that estrogen has upon these processes and muscle damage in general is discussed. The muscle damage and repair cycle is presented within a model, with particular emphasis on areas that are important to understanding the potential effect that estrogen has upon these processes.
Collapse
Affiliation(s)
- Becky Kendall
- School of Sport, Health and Exercise Sciences, University of Wales, Bangor, UK.
| | | |
Collapse
|
94
|
Brickson S, Hollander J, Corr DT, Ji LL, Best TM. Oxidant production and immune response after stretch injury in skeletal muscle. Med Sci Sports Exerc 2001; 33:2010-5. [PMID: 11740292 DOI: 10.1097/00005768-200112000-00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study investigated oxidant production and associated immune response after acute muscle stretch injury. METHODS A standardized single stretch injury was performed on the tibialis anterior (TA) muscle of 36 male New Zealand white rabbits while contralateral control limbs underwent a sham surgery. Animals were sacrificed 0, 4, 12, 24, 48, and 72 h after injury. Potential sites of oxidant production, measured with a dichlorofluorescein (DCF) probe, were evaluated using two separate buffers. RESULTS Nonmitochondrial oxidant production measured under basal buffer conditions (0.1 M potassium phosphate) was increased in both injured and control limbs at 24 h (P < 0.01) and was greater in the injured limb at 12 and 48 h (P < 0.01). There was also an interaction of time and injury (P < 0.05). Maximum oxidant production by neutrophils and macrophages, stimulated by the induced buffer (including 1.7 mM ADP, 0.1 mM NADPH, 0.1 mM FeCl3), was increased in both injured and control limbs at 4 h (P < 0.01) and was greater in the injured limb at 48 h (P < 0.01). Myeloperoxidase (MPO) activity, indicating the presence of activated neutrophils, was higher in the injured limb at 4 and 48 h (P < 0.01). The activities of superoxide radical producing and quenching enzymes, xanthine oxidase (XO) and superoxide dismutase (SOD), were elevated at 24 (P < 0.01) and 4 h (P < 0.05), respectively, but showed no difference between injured and control limbs. CONCLUSION We conclude that acute muscle stretch injury and the required surgeries to generate the injury result in a biphasic increase in oxidant production in both injured and control limbs, suggesting a systemic immune response. The increase in oxidant production at 4 h may be caused by an increase in activated neutrophils, whereas XO activity may contribute to oxidant generation at 24 h.
Collapse
Affiliation(s)
- S Brickson
- Department of Family Medicine, University of Wisconsin Medical School, 621 Science Drive, Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
95
|
Murrant CL, Reid MB. Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 2001; 55:236-48. [PMID: 11748862 DOI: 10.1002/jemt.1173] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are usually identified with pathological states and mediators of cellular injury. However, over the last decade ROS and RNS have been identified in skeletal muscle under physiological conditions. Detection of ROS and RNS production by skeletal muscle cells is fundamental to the problem of differentiating between physiological and pathological levels. The goal of this paper is to review the techniques that have been used to detect ROS and RNS in skeletal muscle. Electron spin resonance, fluorescent assays, cyotchrome c reduction, chemiluminescence, hydroxylation of salicylate, and nitration of phenylalanine are some of the assay systems that have been used thus far. A large body of evidence now indicates that ROS and RNS are continually produced by many different skeletal muscle types studied in vivo, in situ, and in vitro. Under resting conditions, ROS and RNS are detectable in both intracellular and extracellular compartments. Production increases during both non-fatiguing and fatiguing muscle contractions. In the absence of disease, the individual molecular species detected in skeletal muscle include parent radicals for the ROS and RNS cascades: superoxide anions and nitric oxide. Both are generated at rates estimated to range from pmol-to-nmol/mg muscle/minute. Evidence indicates that hydrogen peroxide, hydroxyl radicals, and peroxynitrite are also present under physiological conditions. However, the molecular species that mediate specific biological effects remains largely undetermined, as do the sources of ROS and RNS within muscle fibers. Eventual delineation of the mechanisms whereby ROS and RNS regulate cellular function will hinge on our understanding of the production and distribution of ROS and RNS within skeletal muscle.
Collapse
Affiliation(s)
- C L Murrant
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
96
|
|
97
|
Antioxidant vitamins and muscle soreness in humans: a brief review. Phys Ther Sport 2001. [DOI: 10.1054/ptsp.2001.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
98
|
Koh TJ, Brooks SV. Lengthening contractions are not required to induce protection from contraction-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 2001; 281:R155-61. [PMID: 11404289 DOI: 10.1152/ajpregu.2001.281.1.r155] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that lengthening contractions and subsequent muscle fiber degeneration and/or regeneration are required to induce exercise-associated protection from lengthening contraction-induced muscle injury. Extensor digitorum longus muscles in anesthetized mice were exposed in situ to repeated lengthening contractions, isometric contractions, or passive stretches. Three days after lengthening contractions, maximum isometric force production was decreased by 55%, and muscle cross sections contained a significant percentage (18%) of injured fibers. Neither isometric contractions nor passive stretches induced a deficit in maximum isometric force or a significant number of injured fibers at 3 days. Two weeks after an initial bout of lengthening contractions, a second identical bout produced a force deficit (19%) and a percentage of injured fibers (5%) that was smaller than those for the initial bout. Isometric contractions and passive stretches also provided protection from lengthening contraction-induced injury 2 wk later (force deficits = 35 and 36%, percentage of injured fibers = 12 and 10%, respectively), although the protection was less than that provided by lengthening contractions. These data indicate that lengthening contractions and fiber degeneration and/or regeneration are not required to induce protection from lengthening contraction-induced injury.
Collapse
Affiliation(s)
- T J Koh
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109 - 2007, USA
| | | |
Collapse
|
99
|
Abstract
Aging is associated with increased free radical generation in the skeletal muscle that can cause oxidative modification of protein, lipid, and DNA. Physical activity has many well-established health benefits, but strenuous exercise increases muscle oxygen flux and elicits intracellular events that can lead to increased oxidative injury. The paradox arises as to whether exercise would be advisable to aged population. Research evidence indicates that senescent organisms are more susceptible to oxidative stress during exercise because of the age-related ultrastructural and biochemical changes that facilitate formation of reactive oxygen species (ROS). Aging also increases the incidence of muscle injury, and the inflammatory response can subject senescent muscle to further oxidative stress. Furthermore, muscle repair and regeneration capacity is reduced at old age that could potentially enhance the accrual of cellular oxidative damage. Predeposition of certain age-related pathologic conditions may exacerbate the risks. In spite of these risks, the elderly who are physically active benefit from exercise-induced adaptation in cellular antioxidant defense systems. Improved muscle mechanics, strength, and endurance make them less vulnerable to acute injury and chronic inflammation. Many critical questions remain regarding the relationship of aging and exercise as we enter a new millennium. For example, how does aging alter exercise-induced intracellular and intercellular mechanisms that generate ROS? Can acute and chronic exercise modulate the declined gene expression of metabolic and antioxidant enzymes seen at old age? Does exercise prevent age-dependent muscle loss (sarcopenia)? What kinds of antioxidant supplementation, if any, do aged people who are physically active need? Answers to these questions require highly specific research in both animals and humans.
Collapse
Affiliation(s)
- L L Ji
- Department of Kinesiology, Nutritional Science, and Institute on Aging, University of Wisconsin-Madison, 53706, USA.
| |
Collapse
|
100
|
|