51
|
Niu T, Cao G. Power-law rheology characterization of biological cell properties under AFM indentation measurement. RSC Adv 2014. [DOI: 10.1039/c4ra03111c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
52
|
Rebêlo LM, de Sousa JS, Mendes Filho J, Schäpe J, Doschke H, Radmacher M. Microrheology of cells with magnetic force modulation atomic force microscopy. SOFT MATTER 2014; 10:2141-2149. [PMID: 24651941 DOI: 10.1039/c3sm52045e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We propose a magnetic force modulation method to measure the stiffness and viscosity of living cells using a modified AFM apparatus. An oscillating magnetic field makes a magnetic cantilever oscillate in contact with the sample, producing a small AC indentation. By comparing the amplitude of the free cantilever motion (A0) with the motion of the cantilever in contact with the sample (A1), we determine the sample stiffness and viscosity. To test the method, the frequency-dependent stiffness of 3T3 fibroblasts was determined as a power law k(s)(f) = α + β(f/f¯)(γ) (α = 7.6 × 10(-4) N m(-1), β = 1.0 × 10(-4) N m(-1), f¯ = 1 Hz, γ = 0.6), where the coefficient γ = 0.6 is in good agreement with rheological data of actin solutions with concentrations similar to those in cells. The method also allows estimation of the internal friction of the cells. In particular we found an average damping coefficient of 75.1 μN s m(-1) for indentation depths ranging between 1.0 μm and 2.0 μm.
Collapse
Affiliation(s)
- L M Rebêlo
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
53
|
Wang H, Shi Q, Nakajima M, Takeuchi M, Chen T, Di P, Huang Q, Fukuda T. Rail-Guided Multi-Robot System for 3D Cellular Hydrogel Assembly with Coordinated Nanomanipulation. INT J ADV ROBOT SYST 2014. [DOI: 10.5772/58734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 3D assembly of micro-/nano-building blocks with multi-nanomanipulator coordinated manipulation is one of the central elements of nanomanipulation. A novel rail-guided nanomanipulation system was proposed for the assembly of a cellular vascular-like hydrogel microchannel. The system was equipped with three nanomanipulators and was restricted on the rail in order to realize the arbitrary change of the end-effectors during the assembly. It was set up with hybrid motors to achieve both a large operating space and a 30 nm positional resolution. The 2D components such as the assembly units were fabricated through the encapsulation of cells in the hydrogel. The coordinated manipulation strategies among the multi-nanomanipulators were designed with vision feedback and were demonstrated through the bottom-up assembly of the vascular-like microtube. As a result, the multi-layered microchannel was assembled through the cooperation of the nanomanipulation system.
Collapse
Affiliation(s)
- Huaping Wang
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| | - Qing Shi
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| | - Masahiro Nakajima
- Institute for Advanced Research, Nagoya University, Nagoya, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masaru Takeuchi
- Institute for Advanced Research, Nagoya University, Nagoya, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Tao Chen
- Jiangsu Provincial Key Labratory of Advanced Robotics & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Pei Di
- Institute for Advanced Research, Nagoya University, Nagoya, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Qiang Huang
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| | - Toshio Fukuda
- The Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, China
| |
Collapse
|
54
|
Sokolov I, Dokukin ME, Guz NV. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 2013; 60:202-13. [PMID: 23639869 DOI: 10.1016/j.ymeth.2013.03.037] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/09/2023] Open
Abstract
Here we overview and further develop a quantitative method to measure mechanics of biological cells in indentation experiments, which is based on the use of atomic force microscopy (AFM). We demonstrate how the elastic modulus of the cell body should be measured when the cellular brush is taken into account. The brush is an essential inelastic part of the cell, which surrounds all eukaryotic (the brush is mostly microvilli and glycocalyx) and gram-negative prokaryotic cells (the brush is polysaccharides). The other main feature of the described method is the use of a relatively dull AFM probe to stay in the linear stress-strain regime. In particular, we show that the elastic modulus (aka the Young's modulus) of cells is independent of the indentation depth up to 10-20% deformation for the eukaryotic cells studied here. Besides the elastic modulus, the method presented allows obtaining the parameters of cellular brush, such as the effective length and grafting density of the brush. Although the method is demonstrated on eukaryotic cells, it is directly applicable for all types of cells, and even non-biological soft materials surrounded by either a brush or any field of long-range forces.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
55
|
Steward RL, Rosner SR, Zhou EH, Fredberg JJ. Illuminating human health through cell mechanics. Swiss Med Wkly 2013; 143:w13766. [PMID: 23519500 DOI: 10.4414/smw.2013.13766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cells reside in mechanically rich and dynamic microenvironments, and the complex interplay between mechanics and biology is widely acknowledged. Recent research has yielded insights linking the mechanobiology of cells, human physiology, and pathophysiology. In particular, we have learned of the cell's astounding ability to sense and respond to its mechanical microenvironment. This seemingly innate behaviour of the cell has driven efforts to characterise precisely the cellular behaviour from a mechanical viewpoint. Here we present an overview of technologies used to probe cell mechanical and material properties, how they have led to the discovery of seemingly strange cellular mechanical behaviours, and their influential role in health and disease, including asthma, cancer, and glaucoma. The properties reviewed here have implications in physiology and pathology and raise questions that will fuel research opportunities for years to come.
Collapse
Affiliation(s)
- Robert L Steward
- Program in Molecular and Integrative Physiological Sciences School of Public Health, Harvard University, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
56
|
Lam RHW, Weng S, Lu W, Fu J. Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Integr Biol (Camb) 2012; 4:1289-98. [PMID: 22935822 PMCID: PMC4088946 DOI: 10.1039/c2ib20134h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells, such as cell stiffness, are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Here we reported a new whole-cell cell stiffness measurement technique with a subcellular spatial resolution. This technique was based on a novel cell stretching device that allowed for quantitative control and real-time measurements of mechanical stimuli and cellular biomechanical responses. Our strategy involved a microfabricated array of silicone elastomeric microposts integrated onto a stretchable elastomeric membrane. Using a computer-controlled vacuum, this micropost array membrane (mPAM) was activated to apply equibiaxial cell stretching forces to adherent cells attached on the tops of the microposts. The micropost top positions before and after mPAM stretches were recorded using fluorescence microscopy and further utilized to quantify local cell stretching forces and cell area increments. A robust computation scheme was developed and implemented for subcellular quantifications of cell stiffness using the data of local cell stretching forces and cell area increments generated from mPAM cell stretch assays. Our cell stiffness studies using the mPAM revealed strong positive correlations among cell stiffness, cellular traction force, and cell spread area, and illustrated the important functional roles of actin polymerization and myosin II-mediated cytoskeleton contractility in regulating cell stiffness. Collectively, our work reported a new approach for whole-cell stiffness measurements with a subcellular spatial resolution, which would help likely explain the complex biomechanical functions and force-sensing mechanisms of cells and design better materials for cell and tissue engineering and other applications in vivo.
Collapse
Affiliation(s)
- Raymond H. W. Lam
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Shinuo Weng
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Lu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
57
|
Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS One 2012; 7:e45297. [PMID: 23028915 PMCID: PMC3446885 DOI: 10.1371/journal.pone.0045297] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022] Open
Abstract
The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30–600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.
Collapse
|
58
|
Bazan C, Barba DT, Hawkins T, Nguyen H, Anderson S, Vazquez-Hidalgo E, Lemus R, Moore J, Mitchell J, Martinez J, Moore D, Larsen J, Paolini P. Contractility assessment in enzymatically isolated cardiomyocytes. Biophys Rev 2012; 4:231-243. [PMID: 28510074 PMCID: PMC5425706 DOI: 10.1007/s12551-012-0082-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 01/05/2023] Open
Abstract
The use of enzymatically isolated cardiac myocytes is ubiquitous in modern cardiovascular research. Parallels established between cardiomyocyte shortening responses and those of intact tissue make the cardiomyocyte an invaluable experimental model of cardiac function. Much of our understanding regarding the fundamental processes underlying heart function is owed to our increasing capabilities in single-cell stimulation and direct or indirect observation, as well as quantitative analysis of such cells. Of the many important mechanisms and functions that can be readily assessed in cardiomyocytes at all stages of development, contractility is the most representative and one of the most revealing. The purpose of this review is to provide a survey of various methodological approaches in the literature used to assess adult and neonatal cardiomyocyte contractility. The various methods employed to evaluate the contractile behavior of enzymatically isolated mammalian cardiac myocytes can be conveniently divided into two general categories-those employing optical (image)-based systems and those that use transducer-based technologies. This survey is by no means complete, but we have made an effort to include the most popular methods in terms of reliability and accessibility. These techniques are in constant evolution and hold great promise for the next generation of breakthrough studies in cell biology for the prevention, treatment, and cure of cardiovascular diseases.
Collapse
Affiliation(s)
- Carlos Bazan
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA.
| | - David Torres Barba
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Trevor Hawkins
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Hung Nguyen
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Samantha Anderson
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Esteban Vazquez-Hidalgo
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Rosa Lemus
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - J'Terrell Moore
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Jeremy Mitchell
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Johanna Martinez
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Delnita Moore
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Jessica Larsen
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| | - Paul Paolini
- Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA
| |
Collapse
|
59
|
Mann JM, Lam RHW, Weng S, Sun Y, Fu J. A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. LAB ON A CHIP 2012; 12:731-40. [PMID: 22193351 PMCID: PMC4120061 DOI: 10.1039/c2lc20896b] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
External forces are increasingly recognized as major regulators of cellular structure and function, yet the underlying mechanism by which cells sense forces and transduce them into intracellular biochemical signals and behavioral responses ('mechanotransduction') is largely undetermined. To aid in the mechanistic study of mechanotransduction, herein we devised a cell stretching device that allowed for quantitative control and real-time measurement of mechanical stimuli and cellular biomechanical responses. Our strategy involved a microfabricated array of silicone elastomeric microposts integrated onto a stretchable elastomeric membrane. Using a computer-controlled vacuum, this micropost array membrane (mPAM) was activated to apply equibiaxial cell stretching forces to adherent cells attached to the microposts. Using the mPAM, we studied the live-cell subcellular dynamic responses of contractile forces in vascular smooth muscle cells (VSMCs) to a sustained static equibiaxial cell stretch. Our data showed that in response to a sustained cell stretch, VSMCs regulated their cytoskeletal (CSK) contractility in a biphasic manner: they first acutely enhanced their contraction to resist rapid cell deformation ('stiffening') before they allowed slow adaptive inelastic CSK reorganization to release their contractility ('softening'). The contractile response across entire single VSMCs was spatially inhomogeneous and force-dependent. Our mPAM device and live-cell subcellular contractile measurements will help elucidate the mechanotransductive system in VSMCs and thus contribute to our understanding of pressure-induced vascular disease processes.
Collapse
Affiliation(s)
- Jennifer M. Mann
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Raymond H. W. Lam
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Shinuo Weng
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Yubing Sun
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
- Correspondence should be addressed to J. Fu [J. Fu (, Tel: 01-734-615-7363, Fax: 01-734-647-7303)]
| |
Collapse
|
60
|
Waters CM, Roan E, Navajas D. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2012; 2:1-29. [PMID: 23728969 PMCID: PMC4457445 DOI: 10.1002/cphy.c100090] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis.
Collapse
|
61
|
Kim JH, Butler JP, Loring SH. Probing softness of the parietal pleural surface at the micron scale. J Biomech 2011; 44:2558-64. [PMID: 21820660 PMCID: PMC3168578 DOI: 10.1016/j.jbiomech.2011.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 02/03/2023]
Abstract
The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 and 5 μm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38-0.95 kPa, lower than the values measured using flat-ended cylinders >100 μm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345-2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 vs. 5 μm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure.
Collapse
Affiliation(s)
- Jae Hun Kim
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Dana 715, Boston, MA 02215, USA.
| | | | | |
Collapse
|
62
|
Leckband DE, le Duc Q, Wang N, de Rooij J. Mechanotransduction at cadherin-mediated adhesions. Curr Opin Cell Biol 2011; 23:523-30. [PMID: 21890337 DOI: 10.1016/j.ceb.2011.08.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/21/2011] [Accepted: 08/08/2011] [Indexed: 01/30/2023]
Abstract
Cell-to-cell junctions are crucial mechanical and signaling hubs that connect cells within tissues and probe the mechanics of the surrounding environment. Although the capacity of cell-to-extracellular-matrix (ECM) adhesions to sense matrix mechanics and proportionally modify cell functions is well established, cell-cell adhesions only recently emerged as a new class of force sensors. This finding exposes new pathways through which force can instruct cell functions. This review highlights recent findings, which demonstrate that protein complexes associated with classical cadherins, the principal architectural proteins at cell-cell junctions in all soft tissues, are mechanosensors. We further discuss the current understanding of the rudiments of a cadherin-based mechanosensing and transduction pathway, which is distinct from the force sensing machinery of cell-ECM adhesions.
Collapse
Affiliation(s)
- Deborah E Leckband
- School of Chemical Sciences, University of Illinois, Urbana, IL 61822, USA.
| | | | | | | |
Collapse
|
63
|
Rajagopalan J, Saif MTA. MEMS Sensors and Microsystems for Cell Mechanobiology. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2011; 21:54002-54012. [PMID: 21886944 PMCID: PMC3163288 DOI: 10.1088/0960-1317/21/5/054002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Forces generated by cells play a vital role in many cellular processes like cell spreading, motility, differentiation and apoptosis. Understanding the mechanics of single cells is essential to delineate the link between cellular force generation/sensing and function. MEMS sensors, because of their small size and fine force/displacement resolution, are ideal for force and displacement sensing at the single cell level. In addition, the amenability of MEMS sensors to batch fabrication methods allows the study of large cell populations simultaneously, leading to robust statistical studies. In this review, we discuss various microsystems used for studying cell mechanics and the insights on cell mechanical behavior that have resulted from their use. The advantages and limitations of these microsystems for biological studies are also outlined.
Collapse
Affiliation(s)
- Jagannathan Rajagopalan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street Urbana IL -61801 USA ,
| | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street Urbana IL -61801 USA ,
| |
Collapse
|
64
|
Kim Y, Kim M, Shin JH, Kim J. Characterization of cellular elastic modulus using structure based double layer model. Med Biol Eng Comput 2011; 49:453-62. [DOI: 10.1007/s11517-010-0730-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/18/2010] [Indexed: 11/29/2022]
|
65
|
Azeloglu EU, Costa KD. Atomic force microscopy in mechanobiology: measuring microelastic heterogeneity of living cells. Methods Mol Biol 2011; 736:303-29. [PMID: 21660735 DOI: 10.1007/978-1-61779-105-5_19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent findings clearly demonstrate that cells feel mechanical forces, and respond by altering their -phenotype and modulating their mechanical environment. Atomic force microscope (AFM) indentation can be used to mechanically stimulate cells and quantitatively characterize their elastic properties, providing critical information for understanding their mechanobiological behavior. This review focuses on the experimental and computational aspects of AFM indentation in relation to cell biomechanics and pathophysiology. Key aspects of the indentation protocol (including preparation of substrates, selection of indentation parameters, methods for contact point detection, and further post-processing of data) are covered. Historical perspectives on AFM as a mechanical testing tool as well as studies of cell mechanics and physiology are also highlighted.
Collapse
Affiliation(s)
- Evren U Azeloglu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
66
|
Guido I, Jaeger MS, Duschl C. Dielectrophoretic stretching of cells allows for characterization of their mechanical properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:281-8. [PMID: 21110017 DOI: 10.1007/s00249-010-0646-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
Abstract
The mechanical behavior of biological cells is mainly determined by the cytoskeleton. Its properties are closely interlinked with many cellular events, including disease-related processes, and, thus, may be exploited as potent biomarkers. We have stretched two types of cells between microelectrodes through the application of dielectrophoretic forces. Small numbers of cells of cancerous origin (MCF-7) and from related noncancerous tissue (MCF-10A) were sufficient to obtain data that allowed us to unambiguously distinguish these cells. The Maxwell tension applied has been estimated to be 56 Pa. A detailed analysis of the cells showed that the differences in the stretching response are due to cell-specific mechanical properties. Through the addition of an actin- and a microtubule-specific toxin to the cells, differences in the microtubular structures of the two cell types have been identified as the major cause for the behavior observed. Our approach shows enormous potential for parallelization and automation. Hence, it should be suitable for achieving throughputs that make it attractive for many biomedical diagnostic purposes.
Collapse
Affiliation(s)
- Isabella Guido
- Fraunhofer Institute for Biomedical Engineering (IBMT), Am Muehlenberg 13, 14476 Potsdam, Germany
| | | | | |
Collapse
|
67
|
Reddy AN, Maheshwari N, Sahu DK, Ananthasuresh GK. Miniature Compliant Grippers With Vision-Based Force Sensing. IEEE T ROBOT 2010. [DOI: 10.1109/tro.2010.2056210] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Strohm E, Czarnota GJ, Kolios MC. Quantitative measurements of apoptotic cell properties using acoustic microscopy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:2293-2304. [PMID: 20889417 DOI: 10.1109/tuffc.2010.1690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Time-resolved acoustic microscopy was used to measure properties of cells such as the thickness, sound velocity, acoustic impedance, density, bulk modulus, and attenuation, before and after apoptosis. A total of 12 cells were measured, 5 apoptotic and 7 non-apoptotic. Measurements made at 375 MHz showed a statistically significant increase in the cell thickness from 13.6 ± 3.1 μm to 17.3 ± 1.6 μm, and in the attenuation from 1.08 ± 0.21 dB/cm/MHz to 1.74 ± 0.36 dB/cm/MHz. The other parameters, such as the sound velocity, density, acoustic impedance, and bulk modulus remained similar within experimental error. Acoustic images obtained at 1.0 GHz showed increased RF-signal backscatter and a clear delineation of the nucleus and cytoplasm from apoptotic cells compared with non-apoptotic cells. Extensive activity was observed optically and acoustically within apoptotic cells. Acoustic measurements made one minute apart showed variations in the ultrasonic backscatter but not attenuation in the cells, which indicated rapid structural changes were occurring but not changes in bulk composition. The normalized crosscorrelation coefficient was used to quantify the variations in the backscatter RF-signal during apoptosis by comparing the first RF signal measured to each successive RF signal every 10 s. A coefficient of 1 indicates strong correlation, whereas a coefficient of 0 indicates no correlation. An average correlation coefficient of 0.93 ± 0.05 was measured for non-apoptotic cells, compared with 0.68 ± 0.17 for apoptotic cells, indicating that the RF signal as a function of time varied rapidly during apoptosis.
Collapse
Affiliation(s)
- Eric Strohm
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | | | | |
Collapse
|
69
|
Influence of medium consumption on cell elasticity. Cytotechnology 2010; 62:257-63. [PMID: 20676759 DOI: 10.1007/s10616-010-9292-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/22/2010] [Indexed: 10/25/2022] Open
Abstract
The mechanical behavior of a living cell is highly dynamic and constantly adapts to its local environment. Changes in temperature and chemical stimuli, such as pH, may alter the structure of the cell and its mechanical response. Thus, the mechanical properties may serve as an indicator for the cellular state. We applied dielectrophoretic forces to suspension cells by means of two microelectrodes. The resultant stretching was analyzed on consecutive cultivation days with respect to the influence of medium consumption. Systematic experiments clearly showed that the medium consumption affected the viscoelastic properties of the investigated human leukemia cells HL-60. The shift in pH value and the culture medium depletion were identified as potentially responsible for the differing temporal development of the cell deformation. Both factors were investigated separately and a detailed analysis indicated that the changes observed in the cellular stiffness were primarily attributable to nutrient depletion.
Collapse
|
70
|
Kirkham G, Elliot K, Keramane A, Salter D, Dobson J, El Haj A, Cartmell S. Hyperpolarization of Human Mesenchymal Stem Cells in Response to Magnetic Force. IEEE Trans Nanobioscience 2010; 9:71-4. [DOI: 10.1109/tnb.2010.2042065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Yalcin HC, Hallow KM, Wang J, Wei MT, Ou-Yang HD, Ghadiali SN. Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening. Am J Physiol Lung Cell Mol Physiol 2009; 297:L881-91. [PMID: 19700641 DOI: 10.1152/ajplung.90562.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although patients with acute respiratory distress syndrome require mechanical ventilation, these ventilators often exacerbate the existing lung injury. For example, the cyclic closure and reopening of fluid-filled airways during ventilation can cause epithelial cell (EpC) necrosis and barrier disruption. Although much work has focused on minimizing the injurious mechanical forces generated during ventilation, an alternative approach is to make the EpC less susceptible to injury by altering the cell's intrinsic biomechanical/biostructural properties. In this study, we hypothesized that alterations in cytoskeletal structure and mechanics can be used to reduce the cell's susceptibility to injury during airway reopening. EpC were treated with jasplakinolide to stabilize actin filaments or latrunculin A to depolymerize actin and then exposed to cyclic airway reopening conditions at room temperature using a previously developed in vitro cell culture model. Actin stabilization did not affect cell viability but significantly improved cell adhesion primarily due to the development of more numerous focal adhesions. Surprisingly, actin depolymerization significantly improved both cell viability and cell adhesion but weakened focal adhesions. Optical tweezer based measurements of the EpC's micromechanical properties indicate that although latrunculin-treated cells are softer, they also have increased viscous damping properties. To further investigate the effect of "fluidization" on cell injury, experiments were also conducted at 37 degrees C. Although cells held at 37 degrees C exhibited no changes in cytoskeletal structure, they did exhibit increased viscous damping properties and improved cell viability. We conclude that fluidization of the actin cytoskeleton makes the EpC less susceptible to the injurious mechanical forces generated during cyclic airway reopening.
Collapse
Affiliation(s)
- H C Yalcin
- Mechanical Engineering and BioEngineering, Lehigh University, Bethlehem, PA, USA
| | | | | | | | | | | |
Collapse
|
72
|
Sen S, Kumar S. Cell-Matrix De-Adhesion Dynamics Reflect Contractile Mechanics. Cell Mol Bioeng 2009; 2:218-230. [PMID: 21297858 PMCID: PMC3018270 DOI: 10.1007/s12195-009-0057-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/16/2009] [Indexed: 11/17/2022] Open
Abstract
Measurement of the mechanical properties of single cells is of increasing interest both from a fundamental cell biological perspective and in the context of disease diagnostics. In this study, we show that tracking cell shape dynamics during trypsin-induced de-adhesion can serve as a simple but extremely useful tool for probing the contractility of adherent cells. When treated with trypsin, both SW13(-/-) epithelial cells and U373 MG glioma cells exhibit a brief lag period followed by a concerted retraction to a rounded shape. The time-response of the normalized cell area can be fit to a sigmoidal curve with two characteristic time constants that rise and fall when cells are treated with blebbistatin and nocodazole, respectively. These differences can be attributed to actomyosin-based cytoskeletal remodeling, as evidenced by the prominent buildup of stress fibers in nocodazole-treated SW13(-/-) cells, which are also two-fold stiffer than untreated cells. Similar results observed in U373 MG cells highlights the direct association between cell stiffness and the de-adhesion response. Faster de-adhesion is obtained with higher trypsin concentration, with nocodazole treatment further expediting the process and blebbistatin treatment blunting the response. A simple finite element model confirms that faster contraction is achieved with increased stiffness.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762 USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762 USA
| |
Collapse
|
73
|
Khismatullin DB. Chapter 3 The Cytoskeleton and Deformability of White Blood Cells. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
74
|
Shlomovitz R, Gov NS. Exciting cytoskeleton-membrane waves. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041911. [PMID: 18999459 DOI: 10.1103/physreve.78.041911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Indexed: 05/27/2023]
Abstract
Propagating waves on the surface of cells, over many micrometers, involve active forces. We investigate here the mechanical excitation of such waves when the membrane is perturbed by an external oscillatory force. The external perturbation may trigger the propagation of such waves away from the force application. This scheme is then suggested as a method to probe the properties of the excitable medium of the cell, and learn about the mechanisms that drive the wave propagation. We then apply these ideas to a specific model of active cellular membrane waves, demonstrating how the response of the system to the external perturbation depends on the properties of the model. The most outstanding feature that we find is that the excited waves exhibit a resonance phenomenon at the frequency corresponding to the tendency of the system to develop a linear instability. Mechanical excitation of membrane waves in cells at different frequencies can therefore be used to characterize the properties of the mechanism underlying the existence of these waves.
Collapse
Affiliation(s)
- R Shlomovitz
- Department of Chemical Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, Israel 76100
| | | |
Collapse
|
75
|
Kim YC, Park SJ, Park JK. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst 2008; 133:1432-9. [PMID: 18810292 DOI: 10.1039/b805355c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a new biomechanical analysis method for discrimination between cancerous and normal cells through compression by poly(dimethylsiloxane) (PDMS) membrane deflection in a microfluidic device. When a cell is compressed, cellular membrane will expand and then small bulges will appear on the peripheral cell membrane beyond the allowable strain. It is well known that the amount of F-actin in cancer cells is less than that of normal cells and bulges occur at the sites where cytoskeleton becomes detached from the membrane bilayer. Accordingly, we have demonstrated the difference of the bulge generation between breast cancer cells (MCF7) and normal cells (MCF10A). After excessive deformation, the bulges generated in MCF7 cells were not evenly distributed on the cell periphery. Contrary to this, the bulges of MCF10A cells showed an even distribution. In addition, the morphologies of bulges of MCF7 and MCF10A cells looked swollen protrusion and tubular protrusion, respectively. Peripheral strains at the moment of the bulge generation were also 72% in MCF7 and 46% in MCF10A. The results show that the bulge generation can be correlated with the cytoskeleton quantity inside the cell, providing the first step of a new biomechanical approach.
Collapse
Affiliation(s)
- Yu Chang Kim
- Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Korea
| | | | | |
Collapse
|
76
|
Jonas M, Huang H, Kamm RD, So PTC. Fast fluorescence laser tracking microrheometry, II: quantitative studies of cytoskeletal mechanotransduction. Biophys J 2008; 95:895-909. [PMID: 18424489 PMCID: PMC2440459 DOI: 10.1529/biophysj.107.120303] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 03/18/2008] [Indexed: 11/18/2022] Open
Abstract
Fluorescence laser tracking microrheometry (FLTM) is what we believe to be a novel method able to assess the local, frequency-dependent mechanical properties of living cells with nanometer spatial sensitivity at speeds up to 50 kHz. In an earlier article, we described the design, development, and optimization phases of the FLTM before reporting its performances in a variety of viscoelastic materials. In the work presented here, we demonstrate the suitability of FLTM to study local cellular rheology and obtain values for the storage and loss moduli G'(omega) and G''(omega) of fibroblasts consistent with past literature. We further establish that chemically induced cytoskeletal disruption is accompanied by reduced cellular stiffness and viscosity. Next, we provide a systematic study of some experimental variables that may critically influence microrheology measurements. First, we interrogate and justify the relevance of bead endocytosis as a method of cellular internalization of 1-microm probes in FLTM. Second, we show that as sample temperature increases, FLTM findings are elevated toward higher frequencies. Third, we confirm that relevant bead sizes (1 and 2 microm) have no effect on FLTM measurements. Fourth, we report the lack of influence of bead coatings (antiintegrin, antitransferrin, antidystroglycan, or uncoated tracers were surveyed) on their rheological readouts. Finally, we demonstrate the potential of FLTM in studying how substratum rigidity regulates cellular rheological properties. Interestingly, multiple, coupled strain relaxation mechanisms can be observed separated by two plateau moduli. Although these observations can be partly explained by rheological theories describing entangled actin filaments, there is a clear need to extend existing microrheology models to the cytoskeleton, including potentially important factors such as network geometry and remodeling.
Collapse
Affiliation(s)
- Maxine Jonas
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | |
Collapse
|
77
|
Azeloglu EU, Bhattacharya J, Costa KD. Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness. J Appl Physiol (1985) 2008; 105:652-61. [PMID: 18535125 DOI: 10.1152/japplphysiol.00958.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand the connection between alveolar mechanics and key biochemical events such as surfactant secretion, one first needs to characterize the underlying mechanical properties of the lung parenchyma and its cellular constituents. In this study, the mechanics of three major cell types from the neonatal rat lung were studied; primary alveolar type I (AT1) and type II (AT2) epithelial cells and lung fibroblasts were isolated using enzymatic digestion. Atomic force microscopy indentation was used to map the three-dimensional distribution of apparent depth-dependent pointwise elastic modulus. Histograms of apparent modulus data from all three cell types indicated non-Gaussian distributions that were highly skewed and appeared multimodal for AT2 cells and fibroblasts. Nuclear stiffness in all three cell types was similar (2.5+/-1.0 kPa in AT1 vs. 3.1+/-1.5 kPa in AT2 vs. 3.3+/-0.8 kPa in fibroblasts; n=10 each), whereas cytoplasmic moduli were significantly higher in fibroblasts and AT2 cells (6.0+/-2.3 and 4.7+/-2.9 kPa vs. 2.5+/-1.2 kPa). In both epithelial cell types, actin was arranged in sparse clusters, whereas prominent actin stress fibers were observed in lung fibroblasts. No systematic difference in actin or microtubule organization was noted between AT1 and AT2 cells. Atomic force microscope elastography, combined with live-cell fluorescence imaging, revealed that the stiffer measurements in AT2 cells often colocalized with lamellar bodies. These findings partially explain reported heterogeneity of alveolar cell deformation during in situ lung inflation and provide needed data for better understanding of how mechanical stretch influences surfactant release.
Collapse
Affiliation(s)
- Evren U Azeloglu
- Department of Biomedical Engineering, Columbia University, and Department of Medicine and Physiology, St. Luke's-Roosevelt Hospital Center, 1210 Amsterdam Ave., 351-H Engineering Terrace, MC8904, New York, NY 10027, USA
| | | | | |
Collapse
|
78
|
An historical perspective on cell mechanics. Pflugers Arch 2007; 456:3-12. [DOI: 10.1007/s00424-007-0405-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
|
79
|
McNaughton BH, Kehbein KA, Anker JN, Kopelman R. Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing. J Phys Chem B 2007; 110:18958-64. [PMID: 16986890 DOI: 10.1021/jp060139h] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, sensing magnetic microparticles were used to probe both the local pH and the viscosity-dependent nonlinear rotational behavior of the particles. The latter resulted from a critical transition marking a driven particle's crossover from phase-locking to phase-slipping with an externally rotating magnetic field, i.e., a sudden breakdown in its linear response that can be used to measure a variety of physical quantities. The transition from simple rotation to wobbling is described both theoretically and experimentally. The ability to measure both chemical and physical properties of a system could enable simultaneous monitoring of chemical and physical interactions in biological or other complex fluid microsystems.
Collapse
Affiliation(s)
- Brandon H McNaughton
- Applied Physics Program, 2477 Randall Laboratory, The University of Michigan, Ann Arbor, Michigan 48109-1120, USA
| | | | | | | |
Collapse
|
80
|
McDowell EJ, Ellerbee AK, Choma MA, Applegate BE, Izatt JA. Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:044008. [PMID: 17867812 DOI: 10.1117/1.2753755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present spectral domain phase microscopy (SDPM) as a new tool for measurements at the cellular scale. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity in real time. Our goal was to use SDPM to investigate the mechanical properties of the cytoskeleton of MCF-7 cells. Magnetic tweezers were designed to apply a vertical force to ligand-coated magnetic beads attached to integrin receptors on the cell surfaces. SDPM was used to resolve cell surface motions induced by the applied stresses. The cytoskeletal response to an applied force is shown for both normal cells and those with compromised actin networks due to treatment with Cytochalasin D. The cell response data were fit to several models for cytoskeletal rheology, including one- and two-exponential mechanical models, as well as a power law. Finally, we correlated displacement measurements to physical characteristics of individual cells to better compare properties across many cells, reducing the coefficient of variation of extracted model parameters by up to 50%.
Collapse
Affiliation(s)
- Emily J McDowell
- Duke University, Department of Biomedical Engineering, Durham, North Carolina 27708, USA.
| | | | | | | | | |
Collapse
|
81
|
Kwon RY, Jacobs CR. Time-dependent deformations in bone cells exposed to fluid flow in vitro: investigating the role of cellular deformation in fluid flow-induced signaling. J Biomech 2007; 40:3162-8. [PMID: 17559856 PMCID: PMC2134832 DOI: 10.1016/j.jbiomech.2007.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 03/12/2007] [Accepted: 04/02/2007] [Indexed: 11/23/2022]
Abstract
Numerous experiments have shown fluid flow to be a potent stimulator of bone cells in vitro, suggesting that fluid flow is an important physical signal in bone mechanotransduction. In fluid flow experiments, bone cells are exposed to both time-dependent (e.g., oscillating or pulsing) and time-independent (e.g., steady) flow profiles. Interestingly, the signaling response of bone cells shows dependence on loading frequency and/or rate that has been postulated to be due to viscoelastic behavior. Thus, the objective of this study was to investigate the time-dependent deformations of bone cells exposed to fluid flow in vitro. Specifically, our goal was to characterize the mechanical response of bone cells exposed to oscillatory flow from 0.5 to 2.0 Hz and steady flow, since these flow profiles have previously been shown to induce different morphological and biochemical responses in vitro. By tracking cell-bound sulfate and collagen coated fluorescent beads of varying sizes, we quantified the normalized peak deformation (peak displacement normalized by the maximum peak displacement observed for all frequencies) and phase lag in bone cells exposed to 1.0 Pa oscillating flow at frequencies of 0.5-2.0 Hz. The phase lag was small (3-10 degrees ) and frequency dependent, while the normalized peak displacements decreased as a weak power law of frequency ( approximately f(-0.2)). During steady flow, the cells exhibited a nearly instantaneous deformation, followed by creep. Our results suggest that while substantial viscous deformation may occur during steady flow (compared to oscillating flow at approximately 1 Hz), bone cells behave primarily as elastic bodies when exposed to flow at frequencies associated with habitual loading.
Collapse
Affiliation(s)
- Ronald Y Kwon
- Bone and Joint Rehabilitation R&D Center, Department of Veterans Affairs, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
82
|
Weihs D, Mason TG, Teitell MA. Bio-microrheology: a frontier in microrheology. Biophys J 2006; 91:4296-305. [PMID: 16963507 PMCID: PMC1635658 DOI: 10.1529/biophysj.106.081109] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 08/24/2006] [Indexed: 11/18/2022] Open
Abstract
Cells continuously adapt to changing conditions through coordinated molecular and mechanical responses. This adaptation requires the transport of molecules and signaling through intracellular regions with differing material properties, such as variations in viscosity or elasticity. To determine the impact of regional variations on cell structure and physiology, an approach, termed bio-microrheology, or the study of deformation and flow of biological materials at small length scales has emerged. By tracking the thermal and driven motion of probe particles, organelles, or molecules, the local physical environment in distinct subcellular regions can be explored. On the surface or inside cells, tracking the motion of particles can reveal the rheological properties that influence cell features, such as shape and metastatic potential. Cellular microrheology promises to improve our concepts of regional and integrated properties, structures, and transport in live cells. Since bio-microrheology is an evolving methodology, many specific details, such as how to interpret complex combinations of thermally mediated and directed probe transport, remain to be fully explained. This work reviews the current state of the field and discusses the utility and challenges of this emerging approach.
Collapse
Affiliation(s)
- Daphne Weihs
- Department of Pathology and Laboratory Medicine, Institute for Stem Cell Biology and Medicine, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
83
|
Balland M, Desprat N, Icard D, Féréol S, Asnacios A, Browaeys J, Hénon S, Gallet F. Power laws in microrheology experiments on living cells: Comparative analysis and modeling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021911. [PMID: 17025476 DOI: 10.1103/physreve.74.021911] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/02/2006] [Indexed: 05/06/2023]
Abstract
We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single cells. In the first one, the creep function J(t) of a cell stretched between two glass plates is measured after applying a constant force step. In the second one, a microbead specifically bound to transmembrane receptors is driven by an oscillating optical trap, and the viscoelastic coefficient Ge(omega) is retrieved. Both J(t) and Ge(omega) exhibit power law behaviors: J(t) = A0(t/t0)alpha and absolute value (Ge(omega)) = G0(omega/omega0)alpha, with the same exponent alpha approximately 0.2. This power law behavior is very robust; alpha is distributed over a narrow range, and shows almost no dependence on the cell type, on the nature of the protein complex which transmits the mechanical stress, nor on the typical length scale of the experiment. On the contrary, the prefactors A0 and G0 appear very sensitive to these parameters. Whereas the exponents alpha are normally distributed over the cell population, the prefactors A0 and G0 follow a log-normal repartition. These results are compared with other data published in the literature. We propose a global interpretation, based on a semiphenomenological model, which involves a broad distribution of relaxation times in the system. The model predicts the power law behavior and the statistical repartition of the mechanical parameters, as experimentally observed for the cells. Moreover, it leads to an estimate of the largest response time in the cytoskeletal network: tau(m) approximately 1000 s.
Collapse
Affiliation(s)
- Martial Balland
- Laboratoire Matière et Systèmes Complexes, UMR 7057 associée au CNRS et à l'Université Paris7-Denis Diderot, Case courrier 7056, 2, place Jussieu, 75251 Paris, Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Lim CT, Zhou EH, Quek ST. Mechanical models for living cells--a review. J Biomech 2006; 39:195-216. [PMID: 16321622 DOI: 10.1016/j.jbiomech.2004.12.008] [Citation(s) in RCA: 370] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Accepted: 12/13/2004] [Indexed: 11/25/2022]
Abstract
As physical entities, living cells possess structural and physical properties that enable them to withstand the physiological environment as well as mechanical stimuli occurring within and outside the body. Any deviation from these properties will not only undermine the physical integrity of the cells, but also their biological functions. As such, a quantitative study in single cell mechanics needs to be conducted. In this review, we will examine some mechanical models that have been developed to characterize mechanical responses of living cells when subjected to both transient and dynamic loads. The mechanical models include the cortical shell-liquid core (or liquid drop) models which are widely applied to suspended cells; the solid model which is generally used for adherent cells; the power-law structural damping model which is more suited for studying the dynamic behavior of adherent cells; and finally, the biphasic model which has been widely used to study musculoskeletal cell mechanics. Based upon these models, future attempts can be made to develop even more detailed and accurate mechanical models of living cells once these three factors are adequately addressed: structural heterogeneity, appropriate constitutive relations for each of the distinct subcellular regions and components, and active forces acting within the cell. More realistic mechanical models of living cells can further contribute towards the study of mechanotransduction in cells.
Collapse
Affiliation(s)
- C T Lim
- Nano Biomechanics Laboratory, Division of Bioengineering and Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | | | | |
Collapse
|
85
|
Kopke RD, Wassel RA, Mondalek F, Grady B, Chen K, Liu J, Gibson D, Dormer KJ. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol Neurootol 2006; 11:123-33. [PMID: 16439835 DOI: 10.1159/000090685] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SNP) composed of magnetite (Fe(3)O(4)) were studied preliminarily as vehicles for therapeutic molecule delivery to the inner ear and as a middle ear implant capable of producing biomechanically relevant forces for auditory function. Magnetite SNP were synthesized, then encapsulated in either silica or poly (D,L,-Lactide-co-glycolide) or obtained commercially with coatings of oleic acid or dextran. Permanent magnetic fields generated forces sufficient to pull them across tissue in several round window membrane models (in vitrocell culture, in vivo rat and guinea pig, and human temporal bone) or to embed them in middle ear epithelia. Biocompatibility was investigated by light and electron microscopy, cell culture kinetics, and hair cell survival in organotypic cell culture and no measurable toxicity was found. A sinusoidal magnetic field applied to guinea pigs with SNP implanted in the middle ear resulted in displacements of the middle ear comparable to 90 dB SPL.
Collapse
|
86
|
Hughes S, El Haj AJ, Dobson J. Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med Eng Phys 2005; 27:754-62. [PMID: 15985383 DOI: 10.1016/j.medengphy.2005.04.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Most cells are known to respond to mechanical cues, which initiate biochemical signalling pathways and play a role in cell membrane electrodynamics. These cues can be transduced either via direct activation of mechanosensitive (MS) ion channels or through deformation of the cell membrane and cytoskeleton. Investigation of the function and role of these ion channels is a fertile area of research and studies aimed at characterizing and understanding the mechanoactive regions of these channels and how they interact with the cytoskeleton are fundamental to discovering the specific role that mechanical cues play in cells. In this review, we will focus on novel techniques, which use magnetic micro- and nanoparticles coupled to external applied magnetic fields for activating and investigating MS ion channels and cytoskeletal mechanics.
Collapse
Affiliation(s)
- Steven Hughes
- Institute of Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| | | | | |
Collapse
|
87
|
Peeters EAG, Oomens CWJ, Bouten CVC, Bader DL, Baaijens FPT. Viscoelastic properties of single attached cells under compression. J Biomech Eng 2005; 127:237-43. [PMID: 15971701 DOI: 10.1115/1.1865198] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The viscoelastic properties of single, attached C2C12 myoblasts were measured using a recently developed cell loading device. The device allows global compression of an attached cell, while simultaneously measuring the associated forces. The viscoelastic properties were examined by performing a series of dynamic experiments over two frequency decades (0.1-10 Hz) and at a range of axial strains (approximately 10-40%). Confocal laser scanning microscopy was used to visualize the cell during these experiments. To analyze the experimentally obtained force-deformation curves, a nonlinear viscoelastic model was developed. The nonlinear viscoelastic model was able to describe the complete series of dynamic experiments using only a single set of parameters, yielding an elastic modulus of 2120 +/- 900 Pa for the elastic spring, an elastic modulus of 1960 +/- 1350 for the nonlinear spring, and a relaxation time constant of 0.3 +/- 0.12 s. To our knowledge, it is the first time that the global viscoelastic properties of attached cells have been quantified over such a wide range of strains. Furthermore, the experiments were performed under optimal environmental conditions and the results are, therefore, believed to reflect the viscoelastic mechanical behavior of cells, such as would be present in vivo.
Collapse
Affiliation(s)
- Emiel A G Peeters
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, Building W-hoog 4.123, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
88
|
Dormer K, Seeney C, Lewelling K, Lian G, Gibson D, Johnson M. Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. Biomaterials 2005; 26:2061-72. [PMID: 15576180 DOI: 10.1016/j.biomaterials.2004.06.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 06/25/2004] [Indexed: 11/26/2022]
Abstract
Superparamagnetic magnetite nanoparticles (MNP) coated with silica were synthesized and chronically implanted into the middle ear epithelial tissues of a guinea pig model (n=16) for the generation of force by an external magnetic field. In vivo limitations of biocompatibility include particle morphology, size distribution, composition and mode of internalization. Synthesis of MNP was performed using a modified precipitation technique and they were characterized by transmission electron microscopy, X-ray diffractometry and energy dispersive spectroscopy, which verified size distribution, composition and silica encapsulation. The mechanism for internalizing 16+/-2.3 nm diameter MNP was likely endocytosis, enhanced by magnetically force. Using sterile technique, middle ear epithelia of tympanic membrane or ossicles was exposed and a suspension of particles with fluoroscein isothiocyanate (FITC) label applied to the surface. A rare earth, NdFeBo magnet (0.35 T) placed under the animal, was used to pull the MNP into the tissue. After 8 days, following euthanasia, tissues were harvested and confocal scanning laser interferometry was used to verify intracellular MNP. Displacements of the osscicular chain in response to an external sinusoidal electromagnetic field were also measured using laser Doppler interferometry. We showed for the first time a physiologically relevant, biomechanical function, produced by MNP responding to a magnetic field.
Collapse
Affiliation(s)
- Kenneth Dormer
- Department of Physiology, Oklahoma University Health Sciences Center, 940 S.L. Young Blvd., Room 634, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Trepat X, Grabulosa M, Buscemi L, Rico F, Farré R, Navajas D. Thrombin and histamine induce stiffening of alveolar epithelial cells. J Appl Physiol (1985) 2005; 98:1567-74. [PMID: 15557012 DOI: 10.1152/japplphysiol.00925.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanical properties of alveolar epithelial cells play a central role in maintaining the physical integrity of the alveolar epithelium. We studied the viscoelastic properties of alveolar epithelial cells (A549) in response to thrombin and histamine with optical magnetic twisting cytometry. Ferrimagnetic beads coated with Arg-Gly-Asp (RGD)-peptide or acetylated low-density lipoprotein were bound to cell surface receptors and subsequently twisted in an oscillatory magnetic field (0.1–100 Hz). The cell storage (G′) and loss (G″) moduli were computed from twisting torque and bead displacement. In measurements with RGD-coated beads, thrombin (0.5 U/ml) induced a rapid and sustained threefold increase in G′ and G″ at ∼100 s after challenge. Histamine (100 μM) induced a rapid but transient twofold increase in G′ and G″ with maximum values 60 s after challenge. Posttreatment with cytochalasin D abolished thrombin-induced cell stiffening. G′ increased with frequency following a power law with exponent 0.214. G″ increased proportionally to G′ up to 10 Hz but showed a steeper rise at higher frequencies. Thrombin caused a fall in the power-law exponent (0.164). In measurements with acetylated low-density lipoprotein-coated beads, minor changes (<20%) were observed in G′ and G″ after the addition of thrombin and histamine. F-actin staining revealed that thrombin and histamine induced a profound reorganization of the actin cytoskeleton at the cell periphery and formation of actin bundles. In the mechanically dynamic environment of the lung, cell stiffening induced by thrombin and histamine increases centripetal tension, which could contribute to alveolar barrier dysfunction.
Collapse
Affiliation(s)
- Xavier Trepat
- Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Casanova 143, 08036-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
90
|
Janmey PA, Weitz DA. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 2004; 29:364-70. [PMID: 15236744 DOI: 10.1016/j.tibs.2004.05.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paul A Janmey
- Departments of Physiology and Physics, University of Pennsylvania, Institute for Medicine and Engineering, 3340 Smith Walk, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
91
|
Trepat X, Grabulosa M, Puig F, Maksym GN, Navajas D, Farré R. Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1025-34. [PMID: 15246973 DOI: 10.1152/ajplung.00077.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cells undergo stretching during breathing and mechanical ventilation. Stretch can modify cell viscoelastic properties, which may compromise the balance of forces in the alveolar epithelium. We studied the viscoelasticity of alveolar epithelial cells (A549) subjected to equibiaxial distention with a novel experimental approach. Cells were cultured on flexible substrates and subjected to stepwise deformations of up to 17% with a device built on an inverted microscope. Simultaneously, cell storage (G') and loss (G'') moduli were measured (0.1-100 Hz) with optical magnetic twisting cytometry. G' and G'' increased with strain up to 64 and 30%, respectively, resulting in a decrease in G''/G' (15%). This stretch-induced response was inhibited by disruption of the actin cytoskeleton with latrunculin A. G' increased with frequency following a power law with exponent alpha = 0.197. G'' increased proportionally to G' but exhibited a more marked frequency dependence at high frequencies. Stretching (14%) caused a fall in alpha (13%). At high stretching amplitudes, actual cell strain (14.4%) was lower than the applied substrate strain (17.3%), which could indicate a partial cell detachment. These data suggest that cytoskeletal prestress modulates the elastic and frictional properties of alveolar epithelial cells in a coupled manner, according to soft glassy rheology. Stretch-induced cell stiffening could compromise the balance of forces at the cell-cell and cell-matrix adhesions.
Collapse
Affiliation(s)
- Xavier Trepat
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
92
|
Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farré R, Navajas D. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 2003; 84:2071-9. [PMID: 12609908 PMCID: PMC1302775 DOI: 10.1016/s0006-3495(03)75014-0] [Citation(s) in RCA: 431] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G(*)(omega)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1-100 Hz) and at different loading forces (0.1-0.9 nN) with atomic force microscopy. G(*)(omega) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G'(omega) increased with frequency following a power law with exponent approximately 0.2. The loss modulus G"(omega) was approximately 2/3 lower and increased similarly to G'(omega) up to approximately 10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G'(omega) and G"(omega). G(*)(omega) conformed to the power-law model with a structural damping coefficient of approximately 0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Spain
| | | | | | | | | | | | | |
Collapse
|