51
|
Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT, Hickok G. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. ACTA ACUST UNITED AC 2010; 20:2486-95. [PMID: 20100898 DOI: 10.1093/cercor/bhp318] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hierarchical organization of human auditory cortex has been inferred from functional imaging observations that core regions respond to simple stimuli (tones) whereas downstream regions are selectively responsive to more complex stimuli (band-pass noise, speech). It is assumed that core regions code low-level features, which are combined at higher levels in the auditory system to yield more abstract neural codes. However, this hypothesis has not been critically evaluated in the auditory domain. We assessed sensitivity to acoustic variation within intelligible versus unintelligible speech using functional magnetic resonance imaging and a multivariate pattern analysis. Core auditory regions on the dorsal plane of the superior temporal gyrus exhibited high levels of sensitivity to acoustic features, whereas downstream auditory regions in both anterior superior temporal sulcus and posterior superior temporal sulcus (pSTS) bilaterally showed greater sensitivity to whether speech was intelligible or not and less sensitivity to acoustic variation (acoustic invariance). Acoustic invariance was most pronounced in more pSTS regions of both hemispheres, which we argue support phonological level representations. This finding provides direct evidence for a hierarchical organization of human auditory cortex and clarifies the cortical pathways supporting the processing of intelligible speech.
Collapse
Affiliation(s)
- Kayoko Okada
- Center for Cognitive Neuroscience and Department of Cognitive Sciences, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
May PJC, Tiitinen H. Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 2010; 47:66-122. [DOI: 10.1111/j.1469-8986.2009.00856.x] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Hackett TA, Schroeder CE. Neuronal mechanisms, response dynamics and perceptual functions of multisensory interactions in auditory cortex. Hear Res 2009; 258:72-9. [PMID: 19595755 PMCID: PMC2989528 DOI: 10.1016/j.heares.2009.06.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 11/16/2022]
Abstract
Most auditory events in nature are accompanied by non-auditory signals, such as a view of the speaker's face during face-to-face communication or the vibration of a string during a musical performance. While it is known that accompanying visual and somatosensory signals can benefit auditory perception, often by making the sound seem louder, the specific neural bases for sensory amplification are still debated. In this review, we want to deal with what we regard as confusion on two topics that are crucial to our understanding of multisensory integration mechanisms in auditory cortex: (1) Anatomical Underpinnings (e.g., what circuits underlie multisensory convergence), and (2) Temporal Dynamics (e.g., what time windows of integration are physiologically feasible). The combined evidence on multisensory structure and function in auditory cortex advances the emerging view of the relationship between perception and low level multisensory integration. In fact, it seems that the question is no longer whether low level, putatively unisensory cortex is accessible to multisensory influences, but how.
Collapse
Affiliation(s)
- Troy A. Hackett
- Vanderbilt University School of Medicine 301 Wilson Hall, 111 21st Avenue South, Nashville, TN 37203, USA, Tel.: +1 615 322 7491,
| | - Charles E. Schroeder
- Columbia University, Cog. Neurosci. & Schizophrenia Program, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA, Tel.: +1 914 398 6539; fax: +1 914 398 6545.
| |
Collapse
|
54
|
Hackett TA, de la Mothe LA. Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex. J Chem Neuroanat 2009; 38:106-16. [PMID: 19446630 PMCID: PMC2774764 DOI: 10.1016/j.jchemneu.2009.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022]
Abstract
The auditory cortex of primates contains 13 areas distributed among 3 hierarchically connected regions: core, belt, and parabelt. Thalamocortical inputs arise in parallel from four divisions of the medial geniculate complex (MGC), which have regionally distinct projection patterns. These inputs terminate in layers IIIb and/or IV, and are assumed to be glutamatergic, although this has not been verified. In the present study, immunoreactivity (-ir) for the vesicular glutamate transporter, VGluT2, was used to estimate the regional and laminar distribution of the glutamatergic thalamocortical projection in the macaque auditory cortex. Coronal sections containing auditory cortex were processed for VGluT2 and other markers concentrated in the thalamorecipient layers: cytochrome oxidase, acetylcholinesterase, and parvalbumin. Marker expression was studied with wide field and confocal microscopy. The main findings were: (1) VGluT2-ir was highest in the core, intermediate in the belt, and sparse in the parabelt; (2) VGluT2-ir was concentrated in the neuropil of layers IIIb/IV in the core and layer IIIb in the belt; (3) VGluT2-ir matched regional and laminar expression of the other chemoarchitectonic markers. The results indicate that the glutamatergic thalamic projection to auditory cortex, as indexed by VGluT2-ir, varies along the core-belt-parabelt axis in a manner that matches the gradients of other markers. These chemoarchitectonic features are likely to subserve regional differences in neuronal activity between regions of auditory cortex.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.
| | | |
Collapse
|
55
|
Kusmierek P, Rauschecker JP. Functional specialization of medial auditory belt cortex in the alert rhesus monkey. J Neurophysiol 2009; 102:1606-22. [PMID: 19571201 PMCID: PMC2746772 DOI: 10.1152/jn.00167.2009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/25/2009] [Indexed: 11/22/2022] Open
Abstract
Responses of neural units in two areas of the medial auditory belt (middle medial area [MM] and rostral medial area [RM]) were tested with tones, noise bursts, monkey calls (MC), and environmental sounds (ES) in microelectrode recordings from two alert rhesus monkeys. For comparison, recordings were also performed from two core areas (primary auditory area [A1] and rostral area [R]) of the auditory cortex. All four fields showed cochleotopic organization, with best (center) frequency [BF(c)] gradients running in opposite directions in A1 and MM than in R and RM. The medial belt was characterized by a stronger preference for band-pass noise than for pure tones found medially to the core areas. Response latencies were shorter for the two more posterior (middle) areas MM and A1 than for the two rostral areas R and RM, reaching values as low as 6 ms for high BF(c) in MM and A1, and strongly depended on BF(c). The medial belt areas exhibited a higher selectivity to all stimuli, in particular to noise bursts, than the core areas. An increased selectivity to tones and noise bursts was also found in the anterior fields; the opposite was true for highly temporally modulated ES. Analysis of the structure of neural responses revealed that neurons were driven by low-level acoustic features in all fields. Thus medial belt areas RM and MM have to be considered early stages of auditory cortical processing. The anteroposterior difference in temporal processing indices suggests that R and RM may belong to a different hierarchical level or a different computational network than A1 and MM.
Collapse
Affiliation(s)
- Pawel Kusmierek
- Department of Physiology and Biophysics, Georgetown University, NRB WP23, 3970 Reservoir Rd. NW, Washington, DC, USA.
| | | |
Collapse
|
56
|
Dimitrijevic A, Michalewski HJ, Zeng FG, Pratt H, Starr A. Frequency changes in a continuous tone: auditory cortical potentials. Clin Neurophysiol 2008; 119:2111-24. [PMID: 18635394 PMCID: PMC2741402 DOI: 10.1016/j.clinph.2008.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/19/2008] [Accepted: 06/06/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We examined auditory cortical potentials in normal hearing subjects to spectral changes in continuous low and high frequency pure tones. METHODS Cortical potentials were recorded to increments of frequency from continuous 250 or 4000Hz tones. The magnitude of change was random and varied from 0% to 50% above the base frequency. RESULTS Potentials consisted of N100, P200 and a slow negative wave (SN). N100 amplitude, latency and dipole magnitude with frequency increments were significantly greater for low compared to high frequencies. Dipole amplitudes were greater in the right than left hemisphere for both base frequencies. The SN amplitude to frequency changes between 4% and 50% was not significantly related to the magnitude of spectral change. CONCLUSIONS Modulation of N100 amplitude and latency elicited by spectral change is more pronounced with low compared to high frequencies. SIGNIFICANCE These data provide electrophysiological evidence that central processing of spectral changes in the cortex differs for low and high frequencies. Some of these differences may be related to both temporal- and spectral-based coding at the auditory periphery. Central representation of frequency change may be related to the different temporal windows of integration across frequencies.
Collapse
Affiliation(s)
- Andrew Dimitrijevic
- Department of Neurology, University of California, Irvine Tel.: 949-824-7605; Fax: 949-824-2132;
| | - Henry J. Michalewski
- Department of Neurology, University of California, Irvine Tel.: 949-824-7605; Fax: 949-824-2132;
| | - Fan-Gang Zeng
- Department of Otolaryngology — Head and Neck Surgery, University of California, Irvine
| | - Hillel Pratt
- Evoked Potentials Laboratory, Technion — Israel Institute of Technology, Haifa
| | - Arnold Starr
- Department of Neurology, University of California, Irvine Tel.: 949-824-7605; Fax: 949-824-2132;
| |
Collapse
|
57
|
Bendor D, Wang X. Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. J Neurophysiol 2008; 100:888-906. [PMID: 18525020 DOI: 10.1152/jn.00884.2007] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The core region of primate auditory cortex contains a primary and two primary-like fields (AI, primary auditory cortex; R, rostral field; RT, rostrotemporal field). Although it is reasonable to assume that multiple core fields provide an advantage for auditory processing over a single primary field, the differential roles these fields play and whether they form a functional pathway collectively such as for the processing of spectral or temporal information are unknown. In this report we compare the response properties of neurons in the three core fields to pure tones and sinusoidally amplitude modulated tones in awake marmoset monkeys (Callithrix jacchus). The main observations are as follows. (1) All three fields are responsive to spectrally narrowband sounds and are tonotopically organized. (2) Field AI responds more strongly to pure tones than fields R and RT. (3) Field RT neurons have lower best sound levels than those of neurons in fields AI and R. In addition, rate-level functions in field RT are more commonly nonmonotonic than in fields AI and R. (4) Neurons in fields RT and R have longer minimum latencies than those of field AI neurons. (5) Fields RT and R have poorer stimulus synchronization than that of field AI to amplitude-modulated tones. (6) Between the three core fields the more rostral regions (R and RT) have narrower firing-rate-based modulation transfer functions than that of AI. This effect was seen only for the nonsynchronized neurons. Synchronized neurons showed no such trend.
Collapse
Affiliation(s)
- Daniel Bendor
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Avenue, Traylor 410, Baltimore, MD 21205, USA
| | | |
Collapse
|
58
|
A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies. J Neurosci 2008; 28:3747-58. [PMID: 18385333 DOI: 10.1523/jneurosci.5044-07.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Is sound location represented in the auditory cortex of humans and monkeys? Human neuroimaging experiments have had only mixed success at demonstrating sound location sensitivity in primary auditory cortex. This is in apparent conflict with studies in monkeys and other animals, in which single-unit recording studies have found stronger evidence for spatial sensitivity. Does this apparent discrepancy reflect a difference between humans and animals, or does it reflect differences in the sensitivity of the methods used for assessing the representation of sound location? The sensitivity of imaging methods such as functional magnetic resonance imaging depends on the following two key aspects of the underlying neuronal population: (1) what kind of spatial sensitivity individual neurons exhibit and (2) whether neurons with similar response preferences are clustered within the brain. To address this question, we conducted a single-unit recording study in monkeys. We investigated the nature of spatial sensitivity in individual auditory cortical neurons to determine whether they have receptive fields (place code) or monotonic (rate code) sensitivity to sound azimuth. Second, we tested how strongly the population of neurons favors contralateral locations. We report here that the majority of neurons show predominantly monotonic azimuthal sensitivity, forming a rate code for sound azimuth, but that at the population level the degree of contralaterality is modest. This suggests that the weakness of the evidence for spatial sensitivity in human neuroimaging studies of auditory cortex may be attributable to limited lateralization at the population level, despite what may be considerable spatial sensitivity in individual neurons.
Collapse
|
59
|
Kajikawa Y, de la Mothe LA, Blumell S, Sterbing-D'Angelo SJ, D'Angelo W, Camalier CR, Hackett TA. Coding of FM sweep trains and twitter calls in area CM of marmoset auditory cortex. Hear Res 2008; 239:107-25. [PMID: 18342463 PMCID: PMC2581800 DOI: 10.1016/j.heares.2008.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/18/2022]
Abstract
The primate auditory cortex contains three interconnected regions (core, belt, parabelt), which are further subdivided into discrete areas. The caudomedial area (CM) is one of about seven areas in the belt region that has been the subject of recent anatomical and physiological studies conducted to define the functional organization of auditory cortex. The main goal of the present study was to examine temporal coding in area CM of marmoset monkeys using two related classes of acoustic stimuli: (1) marmoset twitter calls; and (2) frequency-modulated (FM) sweep trains modeled after the twitter call. The FM sweep trains were presented at repetition rates between 1 and 24 Hz, overlapping the natural phrase frequency of the twitter call (6-8 Hz). Multiunit recordings in CM revealed robust phase-locked responses to twitter calls and FM sweep trains. For the latter, phase-locking quantified by vector strength (VS) was best at repetition rates between 2 and 8 Hz, with a mean of about 5 Hz. Temporal response patterns were not strictly phase-locked, but exhibited dynamic features that varied with the repetition rate. To examine these properties, classification of the repetition rate from the temporal response pattern evoked by twitter calls and FM sweep trains was examined by Fisher's linear discrimination analysis (LDA). Response classification by LDA revealed that information was encoded not only by phase-locking, but also other components of the temporal response pattern. For FM sweep trains, classification was best for repetition rates from 2 to 8 Hz. Thus, the majority of neurons in CM can accurately encode the envelopes of temporally complex stimuli over the behaviorally-relevant range of the twitter call. This suggests that CM could be engaged in processing that requires relatively precise temporal envelope discrimination, and supports the hypothesis that CM is positioned at an early stage of processing in the auditory cortex of primates.
Collapse
Affiliation(s)
- Yoshinao Kajikawa
- Dept. of Psychology, Vanderbilt University, Nashville, TN 37203
- Nathan Kline Institute, Orangeburg NY
| | | | - Suzanne Blumell
- Dept. of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203
| | | | | | | | - Troy A. Hackett
- Dept. of Psychology, Vanderbilt University, Nashville, TN 37203
- Dept. of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203
| |
Collapse
|
60
|
Burish MJ, Stepniewska I, Kaas JH. Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus). J Comp Neurol 2008; 507:1151-68. [PMID: 18175349 DOI: 10.1002/cne.21596] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the organization of frontoparietal cortex in the common marmoset (Callithrix jacchus) by using intracortical microstimulation and an architectonic analysis. Primary motor cortex (M1) was identified as an area that evoked visible movements at low levels of electric current and had a full body representation of the contralateral musculature. Primary motor cortex represented the contralateral body from hindlimb to face in a mediolateral sequence, with individual movements such as jaw and wrist represented in multiple nearby locations. Primary motor cortex was coextensive with an agranular area of cortex marked by a distinct layer V of large pyramidal cells that gradually decreased in size toward the rostral portion of the area and was more homogenous in appearance than other New World primates. In addition to M1, stimulation also evoked movements from several other areas of frontoparietal cortex. Caudal to primary motor cortex, area 3a was identified as a thin strip of cortex where movements could be evoked at thresholds similar to those in M1. Rostral to primary motor cortex, supplementary motor cortex and premotor areas responded to higher stimulation currents and had smaller layer V pyramidal cells. Other areas evoking movements included primary somatosensory cortex (area 3b), two lateral somatosensory areas (areas PV and S2), and a caudal somatosensory area. Our results suggest that frontoparietal cortex in marmosets is organized in a similar fashion to that of other New World primates.
Collapse
Affiliation(s)
- Mark J Burish
- Neuroscience Graduate Program and Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | |
Collapse
|
61
|
Oshurkova E, Scheich H, Brosch M. Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys. Neuroscience 2008; 153:1289-99. [PMID: 18423884 DOI: 10.1016/j.neuroscience.2008.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 11/15/2022]
Abstract
We studied encoding of temporally modulated sounds in 28 multiunits in the primary auditory cortical field (AI) and in 35 multiunits in the secondary auditory cortical field (caudomedial auditory cortical field, CM) by presenting periodic click trains with click rates between 1 and 300 Hz lasting for 2-4 s. We found that all multiunits increased or decreased their firing rate during the steady state portion of the click train and that all except two multiunits synchronized their firing to individual clicks in the train. Rate increases and synchronized responses were most prevalent and strongest at low click rates, as expressed by best modulation frequency, limiting frequency, percentage of responsive multiunits, and average rate response and vector strength. Synchronized responses occurred up to 100 Hz; rate response occurred up to 300 Hz. Both auditory fields responded similarly to low click rates but differed at click rates above approximately 12 Hz at which more multiunits in AI than in CM exhibited synchronized responses and increased rate responses and more multiunits in CM exhibited decreased rate responses. These findings suggest that the auditory cortex of macaque monkeys encodes temporally modulated sounds similar to the auditory cortex of other mammals. Together with other observations presented in this and other reports, our findings also suggest that AI and CM have largely overlapping sensitivities for acoustic stimulus features but encode these features differently.
Collapse
Affiliation(s)
- E Oshurkova
- Leibniz-Institut für Neurobiologie, Brenneckestrasse 6, Magdeburg, Germany
| | | | | |
Collapse
|
62
|
Brosch M, Scheich H. Tone-sequence analysis in the auditory cortex of awake macaque monkeys. Exp Brain Res 2007; 184:349-61. [PMID: 17851656 DOI: 10.1007/s00221-007-1109-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/13/2007] [Indexed: 11/24/2022]
Abstract
The present study analyzed neuronal responses to two-tone sequences in the auditory cortex of three awake macaque monkeys. The monkeys were passively exposed to 430 different two-tone sequences, in which the frequency of the first tone and the interval between the first and the second tone in the sequence were systematically varied. The frequency of the second tone remained constant and was matched to the single-tone frequency sensitivity of the neurons. Multiunit activity was recorded from 109 sites in the primary auditory cortex and posterior auditory belt. We found that the first tone in the sequence could inhibit or facilitate the response to the second tone. Type and magnitude of poststimulatory effects depended on the sequence parameters and were related to the single-tone frequency sensitivity of neurons, similar to previous observations in the auditory cortex of anesthetized animals. This suggests that some anesthetics produce, at the most, moderate changes of poststimulatory inhibition and facilitation in the auditory cortex. Hence many properties of the sequence-sensitivity of neurons in the auditory cortex measured in anesthetized preparations can be applied to neurons in the auditory cortex of awake subjects.
Collapse
Affiliation(s)
- Michael Brosch
- Leibniz-Institut für Neurobiologie, Brenneckestrasse 6, 3911, Magdeburg, Germany.
| | | |
Collapse
|
63
|
Hackett TA, De La Mothe LA, Ulbert I, Karmos G, Smiley J, Schroeder CE. Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. J Comp Neurol 2007; 502:924-52. [PMID: 17444488 DOI: 10.1002/cne.21326] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies of macaque monkey auditory cortex have revealed convergent auditory and somatosensory activity in the caudomedial area (CM) of the belt region. In the present study and its companion (Smiley et al., J. Comp. Neurol. [this issue]), neuroanatomical tracers were injected into CM and adjacent areas of the superior temporal plane to identify sources of auditory and somatosensory input to this region. Other than CM, target areas included: A1, caudolateral belt (CL), retroinsular (Ri), and temporal parietotemporal (Tpt). Cells labeled by injections of these areas were distributed mainly among the ventral (MGv), posterodorsal (MGpd), anterodorsal (MGad), and magnocellular (MGm) divisions of the medial geniculate complex (MGC) and several nuclei with established multisensory features: posterior (Po), suprageniculate (Sg), limitans (Lim), and medial pulvinar (PM). The principal inputs of CM were MGad, MGv, and MGm, with secondary inputs from multisensory nuclei. The main inputs of CL were Po and MGpd, with secondary inputs from MGad, MGm, and multisensory nuclei. A1 was dominated by inputs from MGv and MGad, with light multisensory inputs. The input profile of Tpt closely resembled that of CL, but with reduced MGC inputs. Injections of Ri also involved CM but strongly favored MGm and multisensory nuclei, with secondary inputs from MGC and the inferior division (VPI) of the ventroposterior complex (VP). The results indicate that the thalamic inputs of areas in the caudal superior temporal plane arise mainly from the same nuclei, but in different proportions. Somatosensory inputs may reach CM and CL through MGm or the multisensory nuclei but not VP.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | | | | | | | |
Collapse
|
64
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 2006; 496:27-71. [PMID: 16528722 DOI: 10.1002/cne.20923] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The auditory cortex of primates contains a core region of three primary areas surrounded by a belt region of secondary areas. Recent neurophysiological studies suggest that the belt areas medial to the core have unique functional roles, including multisensory properties, but little is known about their connections. In this study and its companion, the cortical and subcortical connections of the core and medial belt regions of marmoset monkeys were compared to account for functional differences between areas and refine our working model of the primate auditory cortex. Anatomical tracer injections targeted two core areas (A1 and R) and two medial belt areas (rostromedial [RM] and caudomedial [CM]). RM and CM had topographically weighted connections with all other areas of the auditory cortex ipsilaterally, but these were less widespread contralaterally. CM was densely connected with caudal auditory fields, the retroinsular (Ri) area of the somatosensory cortex, the superior temporal sulcus (STS), and the posterior parietal and entorhinal cortex. The connections of RM favored rostral auditory areas, with no clear somatosensory inputs. RM also projected to the lateral nucleus of the amygdala and tail of the caudate nucleus. A1 and R had topographically weighted connections with medial and lateral belt regions, infragranular inputs from the parabelt, and weak connections with fields outside the auditory cortex. The results indicated that RM and CM are distinct areas of the medial belt region with direct inputs from the core. CM also has somatosensory input and may correspond to an area on the posteromedial transverse gyrus of humans and the anterior auditory field of other mammals.
Collapse
Affiliation(s)
- Lisa A de la Mothe
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | | | | | |
Collapse
|
65
|
de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 2006; 496:72-96. [PMID: 16528728 PMCID: PMC4419740 DOI: 10.1002/cne.20924] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study and its companion, the cortical and subcortical connections of the medial belt region of the marmoset monkey auditory cortex were compared with the core region. The main objective was to document anatomical features that account for functional differences observed between areas. Injections of retrograde and bi-directional anatomical tracers targeted two core areas (A1 and R), and two medial belt areas (rostromedial [RM] and caudomedial [CM]). Topographically distinct patterns of connections were revealed among subdivisions of the medial geniculate complex (MGC) and multisensory thalamic nuclei, including the suprageniculate (Sg), limitans (Lim), medial pulvinar (PM), and posterior nucleus (Po). The dominant thalamic projection to the CM was the anterior dorsal division (MGad) of the MGC, whereas the posterior dorsal division (MGpd) targeted RM. CM also had substantial input from multisensory nuclei, especially the magnocellular division (MGm) of the MGC. RM had weak multisensory connections. Corticotectal projections of both RM and CM targeted the dorsomedial quadrant of the inferior colliculus, whereas the CM projection also included a pericentral extension around the ventromedial and lateral portion of the central nucleus. Areas A1 and R were characterized by focal topographic connections within the ventral division (MGv) of the MGC, reflecting the tonotopic organization of both core areas. The results indicate that parallel subcortical pathways target the core and medial belt regions and that RM and CM represent functionally distinct areas within the medial belt auditory cortex.
Collapse
Affiliation(s)
- Lisa A. de la Mothe
- Dept. of Psychology, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Suzanne Blumell
- Dept. of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Yoshinao Kajikawa
- Dept. of Psychology, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, TN 37203
| | - Troy A. Hackett
- Dept. of Psychology, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, TN 37203
- Dept. of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203
| |
Collapse
|
66
|
Sigalovsky IS, Melcher JR. Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 2006; 215:67-76. [PMID: 16644153 PMCID: PMC1794213 DOI: 10.1016/j.heares.2006.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/27/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The dependence of fMRI activation on sound level was examined throughout the auditory pathway of normal human listeners using continuous broadband noise, a stimulus widely used in neuroscientific investigations of auditory processing, but largely neglected in neuro-imaging. Several specialized techniques were combined here for the first time to enhance detection of brainstem activation, mitigate scanner noise, and recover temporal resolution lost by the mitigation technique. The main finding was increased activation with increasing level in cochlear nucleus, superior olive, inferior colliculus, medial geniculate body and auditory cortical areas. We suggest that these increases reflect monotonically increasing activity in a preponderance of individual auditory neurons responsive to broadband noise. While the time-course of activation changed with level, the change was subtle and only significant in a part of the cortex. To our knowledge, these are the first fMRI data showing the effects of sound level in subcortical centers or for a non-tonal, non-speech stimulus at any stage of the pathway. The present results add to the body of parametric data in normal human listeners and are fundamental to the design of any fMRI experiment employing continuous noise.
Collapse
Affiliation(s)
- Irina S Sigalovsky
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | |
Collapse
|
67
|
Lehmann C, Herdener M, Esposito F, Hubl D, di Salle F, Scheffler K, Bach DR, Federspiel A, Kretz R, Dierks T, Seifritz E. Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 2006; 31:294-300. [PMID: 16473022 DOI: 10.1016/j.neuroimage.2005.12.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 11/23/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022] Open
Abstract
The auditory cortex is anatomically segregated into a central core and a peripheral belt region, which exhibit differences in preference to bandpassed noise and in temporal patterns of response to acoustic stimuli. While it has been shown that visual stimuli can modify response magnitude in auditory cortex, little is known about differential patterns of multisensory interactions in core and belt. Here, we used functional magnetic resonance imaging and examined the influence of a short visual stimulus presented prior to acoustic stimulation on the spatial pattern of blood oxygen level-dependent signal response in auditory cortex. Consistent with crossmodal inhibition, the light produced a suppression of signal response in a cortical region corresponding to the core. In the surrounding areas corresponding to the belt regions, however, we found an inverse modulation with an increasing signal in centrifugal direction. Our data suggest that crossmodal effects are differentially modulated according to the hierarchical core-belt organization of auditory cortex.
Collapse
Affiliation(s)
- Christoph Lehmann
- University Hospital of Clinical Psychiatry, University of Bern, 3000 Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Cappe C, Barone P. Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J Neurosci 2006; 22:2886-902. [PMID: 16324124 DOI: 10.1111/j.1460-9568.2005.04462.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multisensory integration is thought to occur in higher hierarchical cortical areas, recent studies in man and monkey have revealed plurisensory modulations of activity in areas previously thought to be unimodal. To determine the cortical network involved in multisensory interactions, we performed multiple injections of different retrograde tracers in unimodal auditory (core), somatosensory (1/3b) and visual (V2 and MT) cortical areas of the marmoset. We found three types of heteromodal connections linking unimodal sensory areas. Visuo-somatosensory projections were observed originating from visual areas [probably the ventral and dorsal fundus of the superior temporal area (FSTv and FSTd), and middle temporal crescent (MTc)] toward areas 1/3b. Somatosensory projections to the auditory cortex were present from S2 and the anterior bank of the lateral sulcus. Finally, a visuo-auditory projection arises from an area anterior to the superior temporal sulcus (STS) toward the auditory core. Injections in different sensory regions allow us to define the frontal convexity and the temporal opercular caudal cortex as putative polysensory areas. A quantitative analysis of the laminar distribution of projecting neurons showed that heteromodal connections could be either feedback or feedforward. Taken together, our results provide the anatomical pathway for multisensory integration at low levels of information processing in the primate and argue against a strict hierarchical model.
Collapse
Affiliation(s)
- Céline Cappe
- Cerveau & Cognition, CNRS-UMR 5549 Université Paul Sabatier, Toulouse III, Toulouse, France
| | | |
Collapse
|
69
|
Pienkowski M, Harrison RV. Tone responses in core versus belt auditory cortex in the developing chinchilla. J Comp Neurol 2006; 492:101-9. [PMID: 16175561 DOI: 10.1002/cne.20708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Single-unit responses to tone pip stimuli were isolated from numerous microelectrode penetrations of core primary auditory cortex (AI) and a dorsocaudal (DC) belt region in the ketamine-anesthetized chinchilla (laniger). Results are reported at postnatal day 3 (P3), P15, P30, and from adult animals. The AI core could be distinguished from the DC belt on the basis of its strict tonotopic organization, evident in all chinchillas studied (including the youngest). Averaged by age group and compared to their core counterparts, belt neurons generally had similar absolute (spike rate) thresholds and onset latencies (at a given sound pressure level), but lower maximum spike rates, broader tuning bandwidths, and more complex (multipeaked) receptive fields. Most notably, the fraction of complex belt units in the near-newborn (P3) group was high (approximately 50%), and did not systematically increase with age, while that of complex core units was approximately 10% at P3 and increased steadily to about 40% in adulthood. These results provide further evidence to support the hypothesis that, at least to some extent, core and belt auditory cortex may constitute parallel processing streams which represent different aspects of complex acoustic stimuli.
Collapse
Affiliation(s)
- Martin Pienkowski
- Auditory Science Laboratory, Department of Otolaryngology and Brain & Behaviour Division, The Hospital for Sick Children, and Department of Physiology, University of Toronto, Ontario M5G 1X8, Canada.
| | | |
Collapse
|
70
|
Warren JE, Wise RJS, Warren JD. Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci 2005; 28:636-43. [PMID: 16216346 DOI: 10.1016/j.tins.2005.09.010] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/22/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Accumulating evidence in humans and non-human primates implicates the posterior superior temporal plane (STP) in the processing of both auditory spatial information and vocal sounds. Such evidence is difficult to reconcile with existing accounts of the primate auditory brain. We propose that the posteromedial STP generates sequenced auditory representations by matching incoming auditory information with stored templates. These sequenced auditory representations are subsequently used to constrain motor responses. We argue for a re-assessment of the much-debated dorsal auditory pathway in terms of its generic behavioral role as an auditory "do" pathway.
Collapse
Affiliation(s)
- Jane E Warren
- Division of Neuroscience and Mental Health, Imperial College London, London W12 0NN, UK.
| | | | | |
Collapse
|
71
|
Werner-Reiss U, Porter KK, Underhill AM, Groh JM. Long lasting attenuation by prior sounds in auditory cortex of awake primates. Exp Brain Res 2005; 168:272-6. [PMID: 16328295 DOI: 10.1007/s00221-005-0184-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 10/05/2005] [Indexed: 11/28/2022]
Abstract
How the brain responds to sequences of sounds is a question of great relevance to a variety of auditory perceptual phenomena. We investigated how long the responses of neurons in the primary auditory cortex of awake monkeys are influenced by the previous sound. We found that responses to the second sound of a two-sound sequence were generally attenuated compared to the response that sound evoked when it was presented first. The attenuation remained evident at the population level even out to inter-stimulus intervals (ISIs) of 5 s, although it was of modest size for ISIs >2 s. Behavioral context (performance versus non-performance of a visual fixation task during sound presentation) did not influence the results. The long time course of the first sound's influence suggests that, under natural conditions, neural responses in auditory cortex are rarely governed solely by the current sound.
Collapse
Affiliation(s)
- Uri Werner-Reiss
- Department of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
72
|
Bourne JA, Rosa MGP. Hierarchical Development of the Primate Visual Cortex, as Revealed by Neurofilament Immunoreactivity: Early Maturation of the Middle Temporal Area (MT). Cereb Cortex 2005; 16:405-14. [PMID: 15944371 DOI: 10.1093/cercor/bhi119] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that the development of the cerebral cortex reflects its hierarchical organization, with the primary sensory areas being the first to reach structural and functional maturity, and higher-order association areas being the last. In the present study, we labelled the cortex of New World marmoset monkeys of late fetal and early postnatal ages with an antibody to non-phosphorylated neurofilament, a marker of structural maturation of a subset of pyramidal cells. Supporting the concept of hierarchical maturation, we found that at birth labelled cells were found in the primary visual, auditory and somatosensory areas, but not in most other cortical fields. The exception was visual area MT, which revealed an infragranular pattern of labelling comparable to the one observed in the primary areas, as well as some supragranular staining. In MT, an adult-like pattern of labelled cells, including both supragranular and infragranular layer neurons, emerged within the first postnatal month. In comparison, the development of other extrastriate areas was delayed, with the first signs of neurofilament staining not present until the third week. The present results support the concept of MT as another primary visual area, an idea previously advanced on the basis of functional and anatomical evidence.
Collapse
Affiliation(s)
- James A Bourne
- Department of Physiology and Centre for Brain and Behaviour, Monash University, Melbourne, VIC 3800, Australia.
| | | |
Collapse
|
73
|
Lakatos P, Pincze Z, Fu KMG, Javitt DC, Karmos G, Schroeder CE. Timing of pure tone and noise-evoked responses in macaque auditory cortex. Neuroreport 2005; 16:933-7. [PMID: 15931064 DOI: 10.1097/00001756-200506210-00011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We compared onset latencies for characteristic frequency pure tone and broadband noise responses in AI and posterior belt regions of the auditory cortex in awake macaques. We found that (1) in AI, responses to characteristic frequency tones and broadband noise have similar latencies, (2) in belt regions, characteristic frequency tone and broadband noise latencies differ significantly; broadband noise latencies are shorter, while characteristic frequency tone latencies are longer than corresponding values in AI, (3) for both pure tone and broadband noise responses in AI, latency decreases with increasing characteristic frequency and (4) despite a similar inverse relationship of tone latency and local characteristic frequency in belt areas, broadband noise latencies are uniformly short, and appear unrelated to local characteristic frequency. Dissociation of broadband noise and pure tone latencies may reflect the use of parallel anatomical routes into belt regions.
Collapse
Affiliation(s)
- Peter Lakatos
- Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, New York 10962, USA
| | | | | | | | | | | |
Collapse
|
74
|
Inui K, Okamoto H, Miki K, Gunji A, Kakigi R. Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study. ACTA ACUST UNITED AC 2005; 16:18-30. [PMID: 15800024 DOI: 10.1093/cercor/bhi080] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although anatomical, histochemical and electrophysiological findings in both animals and humans have suggested a parallel and serial mode of auditory processing, precise activation timings of each cortical area are not well known, especially in humans. We investigated the timing of arrival of signals to multiple cortical areas using magnetoencephalography in humans. Following click stimuli applied to the left ear, activations were found in six cortical areas in the right hemisphere: the posteromedial part of Heschl's gyrus (HG) corresponding to the primary auditory cortex (PAC), the anterolateral part of the HG region on or posterior to the transverse sulcus, the posterior parietal cortex (PPC), posterior and anterior parts of the superior temporal gyrus (STG), and the planum temporale (PT). The mean onset latencies of each cortical activity were 17.1, 21.2, 25.3, 26.2, 30.9 and 47.6 ms respectively. These results suggested a serial model of auditory processing along the medio-lateral axis of the supratemporal plane and, in addition, implied the existence of several parallel streams running postero-superiorly (from the PAC to the belt region and then to the posterior STG, PPC or PT) and anteriorly (PAC-belt-anterior STG).
Collapse
Affiliation(s)
- Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | | | | | | | |
Collapse
|