51
|
Shader RI. Forgotten Influences and Reflections on Exercise and on the End of the Year 2017. Clin Ther 2017; 39:2331-2336. [PMID: 29180060 DOI: 10.1016/j.clinthera.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
|
52
|
Gonzales B, Chopard G, Charry B, Berger E, Tripard J, Magnin E, Groslambert A. Effects of a Training Program Involving Body Cooling on Physical and Cognitive Capacities and Quality of Life in Multiple Sclerosis Patients: A Pilot Study. Eur Neurol 2017; 78:71-77. [DOI: 10.1159/000477580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
|
53
|
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:179-197. [PMID: 30356594 PMCID: PMC6188999 DOI: 10.1016/j.jshs.2016.05.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation, redox reactions, and hydration status. METHODS A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, ClinicalTrials.gov, ScienceDirect, Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response", "microbiota", "nutrition", and "probiotics". RESULTS Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels. CONCLUSION The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.
Collapse
Affiliation(s)
- Núria Mach
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, Jouy-en-Josas 78350, France
- Corresponding author.
| | - Dolors Fuster-Botella
- Health Science Department, International Graduate Institute of the Open University of Catalonia (UOC), Barcelona 08035, Spain
| |
Collapse
|
54
|
Heinonen I, Saltin B, Hellsten Y, Kalliokoski KK. The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. Eur J Appl Physiol 2017; 117:1175-1180. [PMID: 28432421 DOI: 10.1007/s00421-017-3604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/22/2017] [Indexed: 10/24/2022]
Abstract
PURPOSE Animal studies suggest that the inhibition of nitric oxide synthase (NOS) affects blood flow differently in different skeletal muscles according to their muscle fibre type composition (oxidative vs glycolytic). Quadriceps femoris (QF) muscle consists of four different muscle parts: vastus intermedius (VI), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) of which VI is located deep within the muscle group and is generally regarded to consist mostly of oxidative muscle fibres. METHODS We studied the effect of NOS inhibition on blood flow in these four different muscles by positron emission tomography in eight young healthy men at rest and during one-leg dynamic exercise, with and without combined blockade with prostaglandins. RESULTS At rest blood flow in the VI (2.6 ± 1.1 ml/100 g/min) was significantly higher than in VL (1.9 ± 0.6 ml/100 g/min, p = 0.015) and RF (1.7 ± 0.6 ml/100 g/min, p = 0.0015), but comparable to VM (2.4 ± 1.1 ml/100 g/min). NOS inhibition alone or with prostaglandins reduced blood flow by almost 50% (p < 0.001), but decrements were similar in all four muscles (drug × muscle interaction, p = 0.43). During exercise blood flow was also the highest in VI (45.4 ± 5.5 ml/100 g/min) and higher compared to VL (35.0 ± 5.5 ml/100 g/min), RF (38.4 ± 7.4 ml/100 g/min), and VM (36.2 ± 6.8 ml/100 g/min). NOS inhibition alone did not reduce exercise hyperemia (p = 0.51), but combined NOS and prostaglandin inhibition reduced blood flow during exercise (p = 0.002), similarly in all muscles (drug × muscle interaction, p = 0.99). CONCLUSION NOS inhibition, with or without prostaglandins inhibition, affects blood flow similarly in different human QF muscles both at rest and during low-to-moderate intensity exercise.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku, PO Box 52, 20521, Turku, Finland. .,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland. .,Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Bengt Saltin
- Copenhagen Muscle Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
55
|
Rae DE, Chin T, Dikgomo K, Hill L, McKune AJ, Kohn TA, Roden LC. One night of partial sleep deprivation impairs recovery from a single exercise training session. Eur J Appl Physiol 2017; 117:699-712. [DOI: 10.1007/s00421-017-3565-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Dale E Rae
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, PO Box 115, Newlands, Cape Town, 7725, South Africa.
| | - Tayla Chin
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, PO Box 115, Newlands, Cape Town, 7725, South Africa
| | - Kagiso Dikgomo
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, PO Box 115, Newlands, Cape Town, 7725, South Africa
| | - Lee Hill
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, PO Box 115, Newlands, Cape Town, 7725, South Africa
| | - Andrew J McKune
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia.,Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health, University of KwaZulu-Natal, Durban, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, PO Box 115, Newlands, Cape Town, 7725, South Africa
| | - Laura C Roden
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
56
|
Impact of Exercise and Aging on Rat Urine and Blood Metabolome. An LC-MS Based Metabolomics Longitudinal Study. Metabolites 2017; 7:metabo7010010. [PMID: 28241477 PMCID: PMC5372213 DOI: 10.3390/metabo7010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is an inevitable condition leading to health deterioration and death. Regular physical exercise can moderate the metabolic phenotype changes of aging. However, only a small number of metabolomics-based studies provide data on the effect of exercise along with aging. Here, urine and whole blood samples from Wistar rats were analyzed in a longitudinal study to explore metabolic alterations due to exercise and aging. The study comprised three different programs of exercises, including a life-long protocol which started at the age of 5 months and ended at the age of 21 months. An acute exercise session was also evaluated. Urine and whole blood samples were collected at different time points and were analyzed by LC-MS/MS (Liquid Chromatography–tandem Mass Spectrometry). Based on their metabolic profiles, samples from trained and sedentary rats were differentiated. The impact on the metabolome was found to depend on the length of exercise period with acute exercise also showing significant changes. Metabolic alterations due to aging were equally pronounced in sedentary and trained rats in both urine and blood analyzed samples.
Collapse
|
57
|
Moritz CEJ, Teixeira BC, Rockenbach L, Reischak-Oliveira A, Casali EA, Battastini AMO. Altered extracellular ATP, ADP, and AMP hydrolysis in blood serum of sedentary individuals after an acute, aerobic, moderate exercise session. Mol Cell Biochem 2016; 426:55-63. [PMID: 27854073 DOI: 10.1007/s11010-016-2880-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022]
Abstract
Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.
Collapse
Affiliation(s)
- Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruno Costa Teixeira
- Programa de Pós-Graduação em Ciência do Movimento Humano, Escola de Educação Física, Universidade Federado do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Educação Física, Universidade Regional Integrada do Alto Uruguai e das Missões, São Luiz Gonzaga, RS, Brazil
| | - Liliana Rockenbach
- Progama de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alvaro Reischak-Oliveira
- Programa de Pós-Graduação em Ciência do Movimento Humano, Escola de Educação Física, Universidade Federado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Departamento de Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Progama de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
58
|
Leon LR. Common mechanisms for the adaptive responses to exercise and heat stress. J Appl Physiol (1985) 2016; 120:662-3. [PMID: 26869706 DOI: 10.1152/japplphysiol.00113.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lisa R Leon
- U.S. Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, Massachusetts
| |
Collapse
|
59
|
Heinonen I, Koga S, Kalliokoski KK, Musch TI, Poole DC. Heterogeneity of Muscle Blood Flow and Metabolism: Influence of Exercise, Aging, and Disease States. Exerc Sport Sci Rev 2015; 43:117-24. [PMID: 25688763 DOI: 10.1249/jes.0000000000000044] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The systematic increase in V˙O2 uptake and O2 extraction with increasing work rates conceals a substantial heterogeneity of O2 delivery (Q˙O2)-to- V˙O2 matching across and within muscles and other organs. We hypothesize that whether increased/decreased Q˙O2/V˙O2 heterogeneity can be judged as "good" or "bad," for example, after exercise training or in aged individuals or with disease (heart failure, diabetes) depends on the resultant effects on O2 transport and contractile performance.
Collapse
Affiliation(s)
- Ilkka Heinonen
- 1Turku PET Centre, University of Turku, Turku, Finland; 2Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; 3School of Sport Science, Exercise and Health, University Of Western Australia, Crawley, Western Australia, Australia; 4Applied Physiology Laboratory, Kobe Design University, Kobe, Japan; and 5Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
60
|
Taubert M, Villringer A, Lehmann N. Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning. Front Hum Neurosci 2015; 9:692. [PMID: 26834602 PMCID: PMC4714627 DOI: 10.3389/fnhum.2015.00692] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, LeipzigGermany; Clinic for Cognitive Neurology, University Hospital Leipzig, LeipzigGermany
| | - Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| |
Collapse
|
61
|
Abstract
Acute and transient changes in gene transcription following a single exercise bout, if reinforced by repeated exercise stimuli, result in the longer lasting effects on protein expression and function that form the basis of skeletal muscle training adaptations. Changes in skeletal muscle gene expression occur in response to multiple stimuli associated with skeletal muscle contraction, various signaling kinases that respond to these stimuli, and numerous downstream pathways and targets of these kinases. In addition, DNA methylation, histone acetylation and phosphorylation, and micro-RNAs can alter gene expression via epigenetic mechanisms. Contemporary studies rely upon "big omics data," in combination with computational and systems biology, to interrogate, and make sense of, the complex interactions underpinning exercise adaptations. The exciting potential is a greater understanding of the integrative biology of exercise.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
62
|
Gowers SAN, Curto VF, Seneci CA, Wang C, Anastasova S, Vadgama P, Yang GZ, Boutelle MG. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate. Anal Chem 2015; 87:7763-70. [PMID: 26070023 PMCID: PMC4526885 DOI: 10.1021/acs.analchem.5b01353] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
This
work presents the design, fabrication, and characterization
of a robust 3D printed microfluidic analysis system that integrates
with FDA-approved clinical microdialysis probes for continuous monitoring
of human tissue metabolite levels. The microfluidic device incorporates
removable needle type integrated biosensors for glucose and lactate,
which are optimized for high tissue concentrations, housed in novel
3D printed electrode holders. A soft compressible 3D printed elastomer
at the base of the holder ensures a good seal with the microfluidic
chip. Optimization of the channel size significantly improves the
response time of the sensor. As a proof-of-concept study, our microfluidic
device was coupled to lab-built wireless potentiostats and used to
monitor real-time subcutaneous glucose and lactate levels in cyclists
undergoing a training regime.
Collapse
Affiliation(s)
| | | | | | | | - Salzitsa Anastasova
- §School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Pankaj Vadgama
- §School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | |
Collapse
|
63
|
Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects. Sci Rep 2015; 5:10944. [PMID: 26091097 PMCID: PMC4473537 DOI: 10.1038/srep10944] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/27/2015] [Indexed: 01/05/2023] Open
Abstract
Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and myokine secretion largely depended on EPS-induced contraction. Taken together, these findings indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells subjected to EPS-CM (Cyp2a3). However, EPS can also generate non-cell-mediated changes in cell culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design to control for non-cell-mediated effects.
Collapse
|
64
|
Heinonen I, Sorop O, de Beer VJ, Duncker DJ, Merkus D. What can we learn about treating heart failure from the heart's response to acute exercise? Focus on the coronary microcirculation. J Appl Physiol (1985) 2015; 119:934-43. [PMID: 26048972 DOI: 10.1152/japplphysiol.00053.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coronary microvascular function and cardiac function are closely related in that proper cardiac function requires adequate oxygen delivery through the coronary microvasculature. Because of the close proximity of cardiomyocytes and coronary microvascular endothelium, cardiomyocytes not only communicate their metabolic needs to the coronary microvasculature, but endothelium-derived factors also directly modulate cardiac function. This review summarizes evidence that the myocardial oxygen balance is disturbed in the failing heart because of increased extravascular compressive forces and coronary microvascular dysfunction. The perturbations in myocardial oxygen balance are exaggerated during exercise and are due to alterations in neurohumoral influences, endothelial function, and oxidative stress. Although there is some evidence from animal studies that the myocardial oxygen balance can partly be restored by exercise training, it is largely unknown to what extent the beneficial effects of exercise training include improvements in endothelial function and/or oxidative stress in the coronary microvasculature and how these improvements are impacted by risk factors such as diabetes, obesity, and hypercholesterolemia.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Oana Sorop
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Vincent J de Beer
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Dirk J Duncker
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| | - Daphne Merkus
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; and
| |
Collapse
|
65
|
Rudroff T, Kindred JH, Kalliokoski KK. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology. J Appl Physiol (1985) 2015; 118:1181-90. [PMID: 25767034 DOI: 10.1152/japplphysiol.01070.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Integrative Neurophysiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; and
| | - John H Kindred
- Integrative Neurophysiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|
66
|
Sieck G. Living under extreme conditions. Physiology (Bethesda) 2014; 29:386-7. [PMID: 25362632 DOI: 10.1152/physiol.00044.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|