51
|
Role of protease-activated receptor 2 in regulation of renin synthesis and secretion in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1401-1410. [DOI: 10.1007/s00210-019-01677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
|
52
|
Zhu X, Xie T, Zhan X, Liu L, Yang X, Xu X, Ye W, Song Y. Association of seminal angiotensinogen with sperm motility and morphology in male infertility. Andrologia 2019; 51:e13421. [PMID: 31637747 DOI: 10.1111/and.13421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Many researchers have shown that renin-angiotensin system (RAS) is involved in various important aspects of male reproduction. In this study, we assessed whether abnormal levels of seminal angiotensinogen (AGT) may be associated with semen parameters in infertile males. A total of 115 male patients were recruited, and semen parameters, seminal AGT and the electrolytes including K+ , Na+ , Cl- , P and Ca were evaluated. According to the World Health Organization (WHO) 2010 criteria, the patients were divided into two groups: G1 group with normal semen parameters (n = 42) and G2 group with subnormal semen parameters (n = 73). The level of seminal AGT was significantly higher in G2 group compared with G1 group. Moreover, the level of AGT was negatively correlated with the percentage of total motility (r = -.322, p = .000), progressive motility (PR) (r = -.339, p = .000) and morphologically normal forms (r = -.263, p = .004). This study suggests that elevated seminal AGT level is associated with increased risk of asthenospermia and teratozoospermia.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Tingting Xie
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaomin Zhan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoping Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiya Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yali Song
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
53
|
Martins JR, Reichhart N, Kociok N, Stindl J, Foeckler R, Lachmann P, Todorov V, Castrop H, Strauß O. Systemic ß adrenergic stimulation/ sympathetic nerve system stimulation influences intraocular RAS through cAMP in the RPE. Exp Eye Res 2019; 189:107828. [PMID: 31589840 DOI: 10.1016/j.exer.2019.107828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
Several lines of evidence support the existence of a renin-angiotensin system (RAS) in the retina that is separated from the blood stream by the retinal pigment epithelium (RPE). Under physiological conditions, increased activity of intraretinal RAS regulates neuronal activity of the retina but patho-physiologically participates in retinal degeneration such as hypertensive or diabetic retinopathy. Interestingly, the RPE appears to be a modulator of intraretinal RAS in response to changes in systemic RAS. As increased systemic RAS activity is associated with increased sympathetic tonus, we investigated whether systemic β-adrenergic stimulation of the RPE also modulates renin expression in the RPE. In vivo, the mouse RPE expresses the β-adrenergic receptor subtypes 1 and 2. Staining of retina sagittal sections showed tyrosine hydroxylase positive nerve endings in the choroid indicating adrenaline/noradrenaline production sites in close proximity to the RPE. Systemic infusion of isoproterenol increased renin expression in the RPE but not in the retina. This increase was sensitive to concomitant systemic application of the angiotensin-2 receptor-type-1 blocker losartan. In vitro analysis of renin gene expression using polarized porcine RPE showed that the activity of the renin promoter can be increased by cAMP stimulation (IBMX/forskolin) but was not influenced by angiotensin-2. Thus, with the identification of the β-adrenergic system we added a new regulator of the retinal RAS with relevance for retinal function and pathology. Furthermore, it appears that the RPE is not only a close interaction partner of the photoreceptors but also a regulator or retinal activity in general.
Collapse
Affiliation(s)
- Joana Raquel Martins
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Nobert Kociok
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany
| | - Julia Stindl
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Renate Foeckler
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Peter Lachmann
- Laboratory for Experimental Nephrology, Dresden University of Technology, Dresden, Germany
| | - Vladimir Todorov
- Laboratory for Experimental Nephrology, Dresden University of Technology, Dresden, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
54
|
Martínez-Meza S, Díaz J, Sandoval-Bórquez A, Valenzuela-Valderrama M, Díaz-Valdivia N, Rojas-Celis V, Contreras P, Huilcaman R, Ocaranza MP, Chiong M, Leyton L, Lavandero S, Quest AFG. AT2 Receptor Mediated Activation of the Tyrosine Phosphatase PTP1B Blocks Caveolin-1 Enhanced Migration, Invasion and Metastasis of Cancer Cells. Cancers (Basel) 2019; 11:cancers11091299. [PMID: 31484460 PMCID: PMC6770525 DOI: 10.3390/cancers11091299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022] Open
Abstract
The renin–angiotensin receptor AT2R controls systemic blood pressure and is also suggested to modulate metastasis of cancer cells. However, in the latter case, the mechanisms involved downstream of AT2R remain to be defined. We recently described a novel Caveolin-1(CAV1)/Ras-related protein 5A (Rab5)/Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling axis that promotes metastasis in melanoma, colon, and breast cancer cells. Here, we evaluated whether the anti-metastatic effect of AT2R is connected to inhibition of this pathway. We found that murine melanoma B16F10 cells expressed AT2R, while MDA-MB-231 human breast cancer cells did not. AT2R activation blocked migration, transendothelial migration, and metastasis of B16F10(cav-1) cells, and this effect was lost when AT2R was silenced. Additionally, AT2R activation reduced transendothelial migration of A375 human melanoma cells expressing CAV1. The relevance of AT2R was further underscored by showing that overexpression of the AT2R in MDA-MB-231 cells decreased migration. Moreover, AT2R activation increased non-receptor protein tyrosine phosphatase 1B (PTP1B) activity, decreased phosphorylation of CAV1 on tyrosine-14 as well as Rab5/Rac1 activity, and reduced lung metastasis of B16F10(cav-1) cells in C57BL/6 mice. Thus, AT2R activation reduces migration, invasion, and metastasis of cancer cells by PTP1B-mediated CAV1 dephosphorylation and inhibition of the CAV1/Rab5/Rac-1 pathway. In doing so, these observations open up interesting, novel therapeutic opportunities to treat metastatic cancer disease.
Collapse
Affiliation(s)
- Samuel Martínez-Meza
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Jorge Díaz
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Manuel Valenzuela-Valderrama
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
| | - Natalia Díaz-Valdivia
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Victoria Rojas-Celis
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Pamela Contreras
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Ricardo Huilcaman
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - María Paz Ocaranza
- Division of Cardiovascular Diseases, Advanced Center for Chronic Diseases (ACCDiS), Facultad de medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile.
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Lisette Leyton
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas TX75390, Texas, USA.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago 7860201, Chile.
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago 7860201, Chile.
| |
Collapse
|
55
|
Steglich A, Kessel F, Hickmann L, Gerlach M, Lachmann P, Gembardt F, Lesche M, Dahl A, Federlein A, Schweda F, Hugo CPM, Todorov VT. Renin cells with defective Gsα/cAMP signaling contribute to renal endothelial damage. Pflugers Arch 2019; 471:1205-1217. [PMID: 31388748 DOI: 10.1007/s00424-019-02298-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Abstract
Synthesis of renin in renal renin-producing cells (RPCs) is controlled via the intracellular messenger cAMP. Interference with cAMP-mediated signaling by inducible knockout of Gs-alpha (Gsα) in RPCs of adult mice resulted in a complex adverse kidney phenotype. Therein, glomerular endothelial damage was most striking. In this study, we investigated whether Gsα knockout leads to a loss of RPCs, which itself may contribute to the endothelial injury. We compared the kidney phenotype of three RPC-specific conditional mouse lines during continuous induction of recombination. Mice expressing red fluorescent reporter protein tdTomato (tdT) in RPCs served as controls. tdT was also expressed in RPCs of the other two strains used, namely with RPC-specific Gsα knockout (Gsα mice) or with RPC-specific diphtheria toxin A expression (DTA mice, in which the RPCs should be diminished). Using immunohistological analysis, we found that RPCs decreased by 82% in the kidneys of Gsα mice as compared with controls. However, the number of tdT-positive cells was similar in the two strains, demonstrating that after Gsα knockout, the RPCs persist as renin-negative descendants. In contrast, both renin-positive and tdT-labeled cells decreased by 80% in DTA mice suggesting effective RPC ablation. Only Gsα mice displayed dysregulated endothelial cell marker expression indicating glomerular endothelial damage. In addition, a robust induction of genes involved in tissue remodelling with microvascular damage was identified in tdT-labeled RPCs isolated from Gsα mice. We concluded that Gsα/renin double-negative RPC progeny essentially contributes for the development of glomerular endothelial damage in our Gsα-deficient mice.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Friederike Kessel
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Michael Gerlach
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Core Facility Cellular Imaging (CFCI), Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Peter Lachmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Florian Gembardt
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Mathias Lesche
- Dresden-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Andreas Dahl
- Dresden-concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Anna Federlein
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christian P M Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
56
|
Wang Y, Fang Q, Jin Y, Liu Z, Zou C, Yu W, Li W, Shan X, Chen R, Khan Z, Liang G. Blockade of myeloid differentiation 2 attenuates diabetic nephropathy by reducing activation of the renin-angiotensin system in mouse kidneys. Br J Pharmacol 2019; 176:2642-2657. [PMID: 30959575 PMCID: PMC6592858 DOI: 10.1111/bph.14687] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Both innate immunity and the renin-angiotensin system (RAS) play important roles in the pathogenesis of diabetic nephropathy (DN). Myeloid differentiation factor 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) in innate immunity. While TLR4 is involved in the development of DN, the role of MD2 in DN has not been characterized. It also remains unclear whether the MD2/TLR4 signalling pathway is associated with RAS activation in diabetes. EXPERIMENTAL APPROACH MD2 was blocked using siRNA or the low MW inhibitor, L6H9, in renal proximal tubular cells (NRK-52E cells) exposed to high concentrations of glucose (HG). In vivo, C57BL/6 and MD2-/- mice were injected with streptozotocin to induce Type 1 diabetes and nephropathy. KEY RESULTS Inhibition of MD2 by genetic knockdown or the inhibitor L6H9 suppressed HG-induced expression of ACE and angiotensin receptors and production of angiotensin II in NRK-52E cells, along with decreased fibrosis markers (TGF-β and collagen IV). Inhibition of the MD2/TLR4-MAPKs pathway did not affect HG-induced renin overproduction. In vivo, using the streptozotocin-induced diabetic mice, MD2 was overexpressed in diabetic kidney. MD2 gene knockout or L6H9 attenuated renal fibrosis and dysfunction by suppressing local RAS activation and inflammation. CONCLUSIONS AND IMPLICATIONS Hyperglycaemia activated the MD2/TLR4-MAPKs signalling cascade to induce renal RAS activation, leading to renal fibrosis and dysfunction. Pharmacological inhibition of MD2 may be considered as a therapeutic approach to mitigate DN and the low MW inhibitor L6H9 could be a candidate for such therapy.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chalcone/pharmacology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetic Nephropathies/chemically induced
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/immunology
- Kidney/drug effects
- Kidney/immunology
- Lymphocyte Antigen 96/antagonists & inhibitors
- Lymphocyte Antigen 96/deficiency
- Lymphocyte Antigen 96/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Small Interfering/pharmacology
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/immunology
- Streptozocin
Collapse
Affiliation(s)
- Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Qilu Fang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhoudi Liu
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chunpeng Zou
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weihui Yu
- Department of Endocrinology, The First Affiliated Yueqing HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xiaoou Shan
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Ruijie Chen
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zia Khan
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
57
|
Renin Activity in Heart Failure with Reduced Systolic Function-New Insights. Int J Mol Sci 2019; 20:ijms20133182. [PMID: 31261774 PMCID: PMC6651297 DOI: 10.3390/ijms20133182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Regardless of the cause, symptomatic heart failure (HF) with reduced ejection fraction (rEF) is characterized by pathological activation of the renin–angiotensin–aldosterone system (RAAS) with sodium retention and extracellular fluid expansion (edema). Here, we review the role of active renin, a crucial, upstream enzymatic regulator of the RAAS, as a prognostic and diagnostic plasma biomarker of heart failure with reduced ejection fraction (HFrEF) progression; we also discuss its potential as a pharmacological bio-target in HF therapy. Clinical and experimental studies indicate that plasma renin activity is elevated with symptomatic HFrEF with edema in patients, as well as in companion animals and experimental models of HF. Plasma renin activity levels are also reported to be elevated in patients and animals with rEF before the development of symptomatic HF. Modulation of renin activity in experimental HF significantly reduces edema formation and the progression of systolic dysfunction and improves survival. Thus, specific assessment and targeting of elevated renin activity may enhance diagnostic and therapeutic precision to improve outcomes in appropriate patients with HFrEF.
Collapse
|
58
|
New automatic quantification method of immunofluorescence and histochemistry in whole histological sections. Cell Signal 2019; 62:109335. [PMID: 31170471 DOI: 10.1016/j.cellsig.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Immunofluorescent staining is a widespread tool in basic science to understand organ morphology and (patho-) physiology. The analysis of imaging data is often performed manually, limiting throughput and introducing human bias. Quantitative analysis is particularly challenging for organs with complex structure such as the kidney. In this study we present an approach for automatic quantification of fluorescent markers and histochemical stainings in whole organ sections using open source software. We validate our novel method in multiple typical challenges of basic kidney research and demonstrate its general relevance and applicability to other complex solid organs for a variety of different markers and stainings. Our newly developed software tool "AQUISTO", applied as a standard in primary data analysis, facilitates efficient large scale evaluation of cellular populations in various types of histological samples. Thereby it contributes to the characterization and understanding of (patho-) physiological processes.
Collapse
|
59
|
Xia MM, Wang M, Jiang H, Liu Y, Ma L, Lu C, Zhang W. Association of Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism with the Risk of Atherosclerosis. J Stroke Cerebrovasc Dis 2019; 28:1732-1743. [PMID: 30878369 DOI: 10.1016/j.jstrokecerebrovasdis.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS The objective of this study was to perform a meta-analysis to evaluate the association between angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism and susceptibility to atherosclerosis (AS). METHODS MEDLINE, EMBASE, and the ISI Web of Science were searched for all eligible published studies concerning the relationship of ACE gene polymorphism with AS without language restrictions. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate this relationship under different genetic models using meta-analytic methods. RESULTS A total of 15 articles (16 studies) were involved in this meta-analysis. The D allele of the ACE gene had a nonsignificant increase in the risk of AS (D versus I: OR = 1.23, 95% CI, .98-1.53, P = .07; I2 = 87.2%, Pheterogeneity < .01). Compared with the II genotype, the DI (relative risk [RR]: 1.35, 95% CI: 1.09, 1.67, P < .01; I2 = 47.8%, Pheterogeneity = .017) and (DD + DI) (RR = 1.38, 95% CI: 1.04, 1.82, P = .02; I2 = 73.3%, Pheterogeneity < .01) genotype of ACE was associated with higher risk of AS, respectively. Subjects with the DD genotype showed a statistically nonsignificant trend toward greater risk of AS (RR = 1.53, 95% CI: .97, 2.43, P = .07; I2 = 88.6%, Pheterogeneity < .01). Further subgroup analyses showed that significant relationships were only found in Europeans under different gene polymorphism or different genotype models rather than Asians. CONCLUSIONS The present meta-analysis indicated that the D allele in the ACE gene was associated with the risk of AS, especially in Europeans. Furthermore, increased copy number of D allele was significantly associated with increased AS risk in a dose-dependent manner.
Collapse
Affiliation(s)
- Man-Man Xia
- The First Affiliated Hospital, Xi'an Jiaotong University College of medicine, Xi'an, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mingxu Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chao Lu
- Xi'an Honghui Hospital, Xi'an, China.
| | - Wei Zhang
- The First Affiliated Hospital, Xi'an Jiaotong University College of medicine, Xi'an, China.
| |
Collapse
|
60
|
Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs. Pharmacol Res 2019; 141:574-585. [PMID: 30695734 DOI: 10.1016/j.phrs.2019.01.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is still one of the leading causes of end-stage renal disease despite the emergence of different therapies to counter the metabolic, hemodynamic and fibrotic pathways, implicating a prominent role of genetic and epigenetic factors in its progression. Epigenetics is the study of changes in the expression of genes which may be inheritable and does not involve a change in the genome sequence. Thrust areas of epigenetic research are DNA methylation and histone modifications. Noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs) control the expression of genes via post-transcriptional mechanisms. However, the regulation by epigenetic mechanisms and miRNAs are not completely distinct. A number of emerging reports have revealed the interplay between epigenetic machinery and miRNA expression, particularly in cancer. Further research has proved that a feedback loop exists between miRNA expression and epigenetic regulation in disorders including DN. Studies showed that different miRNAs (miR-200, miR-29 etc.) were found to be regulated by epigenetic mechanisms viz. DNA methylation and histone modifications. Conversely, miRNAs (miR-301, miR-449 etc.) themselves modulated levels of DNA methyltranferases (DNMTs) and Histone deacetylases (HDACs), enzymes vital to epigenetic modifications. With already few FDA approved epigenetic -modulating drugs (Vorinostat, Decitabine) in the market and miRNA therapeutic drugs under clinical trial it becomes imperative to analyze the possible interaction between the two classes of drugs in the modulation of a disease process. The purpose of this review is to articulate the interplay between miRNA expression and epigenetic modifications with a particular focus on its impact on the development and progression of DN.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
61
|
Ma TK, Xu L, Lu LX, Cao X, Li X, Li LL, Wang X, Fan QL. Ursolic Acid Treatment Alleviates Diabetic Kidney Injury By Regulating The ARAP1/AT1R Signaling Pathway. Diabetes Metab Syndr Obes 2019; 12:2597-2608. [PMID: 31849504 PMCID: PMC6910094 DOI: 10.2147/dmso.s222323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This study aimed to investigate whether ursolic acid (UA) mitigates renal inflammation, oxidative stress and fibrosis by regulating the angiotensin II type 1 receptor-associated protein (ARAP1)/angiotensin II type 1 receptor (AT1R) signaling pathway and subsequently alleviating renal damage. METHODS db/db mice were divided randomly into a diabetic nephropathy (DN) group and a UA treatment group. Light microscopy and electron microscopy were used to observe pathological changes in renal tissues. Immunohistochemistry (IHC) was employed to examine changes in the expression of ARAP1, AT1R, 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase 2 (NOX2), the extracellular matrix protein fibronectin (FN), IL-1β and IL-18 in renal tissues. Western blotting and RT-qPCR were used to detect the respective changes in the protein and mRNA levels of ARAP1, AT1R, NOX4, NOX2, transforming growth factor-β1 (TGF-β1), FN, collagen IV, IL-1β and IL-18 in renal tissues and mesangial cells. In addition, immunofluorescence staining was employed to examine changes in FN and NOX2 expression in mesangial cells. RESULTS UA treatment effectively reduced the body weights and blood glucose levels of db/db mice (p<0.05) as well as the urinary albumin/creatinine ratio (p<0.05). In addition, the renal tissue lesions and glomerulosclerosis index of the db/db mice were significantly improved after treatment (p<0.01). Histochemical analysis results showed significantly lower expression levels of ARAP1, AT1R, FN, NOX2, 8-OHdG, IL-1β and IL-18 in renal tissues in the UA treatment group than in the DN group. Western blotting and RT-qPCR data also revealed UA-induced decreases in the renal levels of the ARAP1, AT1, NOX4, NOX2, TGF-β1, FN, collagen IV, IL-1β and IL-18 proteins in vivo and/or in vitro (p<0.01). ARAP1 knockdown effectively reduced the expression of NOX2 and FN in vitro. CONCLUSION UA alleviated renal damage in type 2 diabetic db/db mice by downregulating proteins in the ARAP1/AT1R signaling pathway to inhibit extracellular matrix accumulation, renal inflammation, fibrosis and oxidative stress.
Collapse
Affiliation(s)
- Tian-Kui Ma
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Li Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Clinical Laboratories, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Ling-Xu Lu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- The First Respiratory Department, General Hospital of Fushun Mining Bureau, Fushun, Liaoning, People’s Republic of China
| | - Xu Cao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xin Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lu-Lu Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xu Wang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Qiu-Ling Fan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- Correspondence: Qiu-Ling Fan Email
| |
Collapse
|
62
|
Peixoto-Neves D, Soni H, Adebiyi A. Oxidant-induced increase in norepinephrine secretion from PC12 cells is dependent on TRPM8 channel-mediated intracellular calcium elevation. Biochem Biophys Res Commun 2018; 506:709-715. [PMID: 30376995 DOI: 10.1016/j.bbrc.2018.10.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Reactive oxygen species (ROS) modulate neuronal function, including plasticity and neurotransmitter biosynthesis and release. The cellular mechanisms that underlie redox modulation of neurotransmission are not fully resolved, but potential pathways include ROS-induced alterations in Ca2+ signaling in nerve terminals. In this study, we show that cold-sensitive receptor TRPM8 is activated by pro-oxidant tert-butyl hydroperoxide (tBHP). Polymerase chain reaction, Western immunoblotting, and immunofluorescence indicated that TRPM8 channels are expressed in rat pheochromocytoma 12 (PC12) cells, a phenotypic model of sympathetic neurosecretion when differentiated with nerve growth factor. WS-12, a selective TRPM8 channel agonist, and tBHP increased intracellular Ca2+ concentration in differentiated PC12 cells; an effect attenuated by AMTB, a selective TRPM8 channel blocker, and siRNA-mediated TRPM8 knockdown. Blockade of TRPM8 channels also reduced WS-12- and tBHP-evoked norepinephrine secretion from the cells. These data suggest that TRPM8 channels contribute to oxidant-induced neurotransmission in PC12 cells.
Collapse
Affiliation(s)
| | - Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
63
|
Békássy ZD, Kristoffersson AC, Rebetz J, Tati R, Olin AI, Karpman D. Aliskiren inhibits renin-mediated complement activation. Kidney Int 2018; 94:689-700. [DOI: 10.1016/j.kint.2018.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022]
|
64
|
Ramkumar N. Return of the (pro)renin receptor: a novel role in macula densa signaling. Am J Physiol Renal Physiol 2018; 315:F913-F914. [PMID: 29897285 DOI: 10.1152/ajprenal.00275.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center , Salt Lake City, Utah
| |
Collapse
|
65
|
Ranjbar R, Shafiee M, Hesari A, Ferns GA, Ghasemi F, Avan A. The potential therapeutic use of renin-angiotensin system inhibitors in the treatment of inflammatory diseases. J Cell Physiol 2018; 234:2277-2295. [PMID: 30191985 DOI: 10.1002/jcp.27205] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023]
Abstract
Inflammation is a normal part of the immune response to injury or infection but its dysregulation promotes the development of inflammatory diseases, which cause considerable human suffering. Nonsteroidal anti-inflammatory agents are the most commonly prescribed agents for the treatment of inflammatory diseases, but they are accompanied by a broad range of side effects, including gastrointestinal and cardiovascular events. The renin-angiotensin system (RAS) is traditionally known for its role in blood pressure regulation. However, there is increasing evidence that RAS signaling is also involved in the inflammatory response associated with several disease states. Angiotensin II increases blood pressure by binding to angiotensin type 1 (AT1 ) receptor, and direct renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors and AT1 receptor blockers (ARBs) are clinically used as antihypertensive agents. Recent data suggest that these drugs also have anti-inflammatory effects. Therefore, this review summarizes these recent findings for the efficacy of two of the most widely used antihypertensive drug classes, ACE inhibitors and ARBs, to reduce or treat inflammatory diseases such as atherosclerosis, arthritis, steatohepatitis, colitis, pancreatitis, and nephritis.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Shafiee
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Sussex, UK
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
66
|
Nijst P, Verbrugge FH, Martens P, Bertrand PB, Dupont M, Francis GS, Tang WW, Mullens W. Plasma renin activity in patients with heart failure and reduced ejection fraction on optimal medical therapy. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317729919. [PMID: 28875746 PMCID: PMC5843922 DOI: 10.1177/1470320317729919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Renin-angiotensin-aldosterone system (RAAS) activation in heart failure with reduced ejection fraction (HFREF) is detrimental through promotion of ventricular remodeling and salt and water retention. Aims: The aims of this article are to describe RAAS activity in distinct HFREF populations and to assess its prognostic impact. Methods: Venous blood samples were prospectively obtained in 76 healthy volunteers, 72 patients hospitalized for acute decompensated HFREF, and 78 ambulatory chronic HFREF patients without clinical signs of congestion. Sequential measurements were performed in patients with acute decompensated HFREF. Results: Plasma renin activity (PRA) was significantly higher in ambulatory chronic HFREF (7.6 ng/ml/h (2.2; 18.1)) compared to patients with acute decompensated HFREF (1.5 ng/ml/h (0.8; 5.7)) or healthy volunteers (1.4 ng/ml/h (0.6; 2.3)) (all p < 0.05). PRA was significantly associated with arterial blood pressure and renin-angiotensin system blocker dose. A progressive rise in PRA (+4 ng/ml/h (0.4; 10.9); p < 0.001) was observed in acute decompensated HFREF patients after three consecutive days of decongestive treatment. Only in acute HFREF were PRA levels associated with increased cardiovascular mortality or HF readmissions (p = 0.035). Conclusion: PRA is significantly elevated in ambulatory chronic HFREF patients but is not associated with worse outcome. In contrast, in acute HFREF patients, PRA is associated with cardiovascular mortality or HF readmissions.
Collapse
Affiliation(s)
- Petra Nijst
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,2 Doctoral School for Medicine and Life Sciences, Hasselt University, Belgium
| | | | - Pieter Martens
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,2 Doctoral School for Medicine and Life Sciences, Hasselt University, Belgium
| | - Philippe B Bertrand
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,2 Doctoral School for Medicine and Life Sciences, Hasselt University, Belgium
| | - Matthias Dupont
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium
| | - Gary S Francis
- 3 Cardiovascular Division, University of Minnesota Health Heart Care, USA
| | - Wh Wilson Tang
- 4 Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, USA
| | - Wilfried Mullens
- 1 Department of Cardiology, Ziekenhuis Oost-Limburg, Belgium.,5 Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Belgium
| |
Collapse
|
67
|
Steppan D, Geis L, Pan L, Gross K, Wagner C, Kurtz A. Lack of connexin 40 decreases the calcium sensitivity of renin-secreting juxtaglomerular cells. Pflugers Arch 2018; 470:969-978. [PMID: 29427253 PMCID: PMC10751884 DOI: 10.1007/s00424-018-2119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
Abstract
The so-called calcium paradoxon of renin describes the phenomenon that exocytosis of renin from juxtaglomerular cells of the kidney is stimulated by lowering of the extracellular calcium concentration. The yet poorly understood effect of extracellular calcium on renin secretion appears to depend on the function of the gap junction protein connexin 40 (Cx40) in renin-producing cells. This study aimed to elucidate the role of Cx40 for the calcium dependency of renin secretion in more detail by investigating if Cx40 function is really essential for the influence of extracellular calcium on renin secretion, if and how Cx40 affects intracellular calcium dynamics in renin-secreting cells and if Cx40-mediated gap junctional coupling of renin-secreting cells with the mesangial cell area is relevant for the influence of extracellular calcium on renin secretion. Renin secretion was studied in isolated perfused mouse kidneys. Calcium measurements were performed in renin-producing cells of microdissected glomeruli. The ultrastructure of renin-secreting cells was examined by electron microscopy. We found that Cx40 was not essential for stimulation of renin secretion by lowering of the extracellular calcium concentration. Instead, Cx40 increased the sensitivity of renin secretion response towards lowering of the extracellular calcium concentration. In line, the sensitivity and dynamics of intracellular calcium in response to lowering of extracellular calcium were dampened when renin-secreting cells lacked Cx40. Disruption of gap junctional coupling of renin-secreting cells by selective deletion of Cx40 from mesangial cells, however, did not change the stimulation of renin secretion by lowering of the extracellular calcium concentration. Deletion of Cx40 from renin cells but not from mesangial cells was associated with a shift of renin expression from perivascular cells of afferent arterioles to extraglomerular mesangial cells. Our findings suggest that Cx40 is not directly involved in the regulation of renin secretion by extracellular calcium. Instead, it appears that in renin-secreting cells of the kidney lacking Cx40, intracellular calcium dynamics and therefore also renin secretion are desensitized towards changes of extracellular calcium. Whether the dampened calcium response of renin-secreting cells lacking Cx40 function results from a direct involvement of Cx40 in intracellular calcium regulation or from the cell type shift of renin expression from perivascular to mesangial cells remains to be clarified. In any case, Cx40-mediated gap junctional coupling between renin and mesangial cells is not relevant for the calcium paradoxon of renin secretion.
Collapse
Affiliation(s)
- Dominik Steppan
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Lisa Geis
- Clinic for Nephrology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Lin Pan
- Department of Pathology, Brigham and Women's Hospital, 652 NRB, 77 Ave Louis Pasteur, Boston, MA, 02115, USA
| | - Kenneth Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263-0001, USA
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
68
|
Ruhnke L, Sradnick J, Al-Mekhlafi M, Gerlach M, Gembardt F, Hohenstein B, Todorov VT, Hugo C. Progenitor Renin Lineage Cells are not involved in the regeneration of glomerular endothelial cells during experimental renal thrombotic microangiopathy. PLoS One 2018; 13:e0196752. [PMID: 29771991 PMCID: PMC5957372 DOI: 10.1371/journal.pone.0196752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
Endothelial cells (EC) frequently undergo primary or secondary injury during kidney disease such as thrombotic microangiopathy or glomerulonephritis. Renin Lineage Cells (RLCs) serve as a progenitor cell niche after glomerular damage in the adult kidney. However, it is not clear whether RLCs also contribute to endothelial replenishment in the glomerulus following endothelial injury. Therefore, we investigated the role of RLCs as a potential progenitor niche for glomerular endothelial regeneration. We used an inducible tet-on triple-transgenic reporter strain mRen-rtTAm2/LC1/LacZ to pulse-label the renin-producing RLCs in adult mice. Unilateral kidney EC damage (EC model) was induced by renal artery perfusion with concanavalin/anti-concanavalin. In this model glomerular EC injury and depletion developed within 1 day while regeneration occurred after 7 days. LacZ-labelled RLCs were restricted to the juxtaglomerular compartment of the afferent arterioles at baseline conditions. In contrast, during the regenerative phase of the EC model (day 7) a subset of LacZ-tagged RLCs migrated to the glomerular tuft. Intraglomerular RLCs did not express renin anymore and did not stain for glomerular endothelial or podocyte cell markers, but for the mesangial cell markers α8-integrin and PDGFRβ. Accordingly, we found pronounced mesangial cell damage parallel to the endothelial injury induced by the EC model. These results demonstrated that in our EC model RLCs are not involved in endothelial regeneration. Rather, recruitment of RLCs seems to be specific for the repair of the concomitantly damaged mesangium.
Collapse
Affiliation(s)
- Leo Ruhnke
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Jan Sradnick
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Moath Al-Mekhlafi
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Michael Gerlach
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Vladimir T. Todorov
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
- * E-mail: (CH); (VTT)
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, Dresden, Germany
- * E-mail: (CH); (VTT)
| |
Collapse
|
69
|
Riquier-Brison ADM, Sipos A, Prókai Á, Vargas SL, Toma L, Meer EJ, Villanueva KG, Chen JCM, Gyarmati G, Yih C, Tang E, Nadim B, Pendekanti S, Garrelds IM, Nguyen G, Danser AHJ, Peti-Peterdi J. The macula densa prorenin receptor is essential in renin release and blood pressure control. Am J Physiol Renal Physiol 2018; 315:F521-F534. [PMID: 29667908 DOI: 10.1152/ajprenal.00029.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The prorenin receptor (PRR) was originally proposed to be a member of the renin-angiotensin system (RAS); however, recent work questioned their association. The present paper describes a functional link between the PRR and RAS in the renal juxtaglomerular apparatus (JGA), a classic anatomical site of the RAS. PRR expression was found in the sensory cells of the JGA, the macula densa (MD), and immunohistochemistry-localized PRR to the MD basolateral cell membrane in mouse, rat, and human kidneys. MD cell PRR activation led to MAP kinase ERK1/2 signaling and stimulation of PGE2 release, the classic pathway of MD-mediated renin release. Exogenous renin or prorenin added to the in vitro microperfused JGA-induced acute renin release, which was inhibited by removing the MD or by the administration of a PRR decoy peptide. To test the function of MD PRR in vivo, we established a new mouse model with inducible conditional knockout (cKO) of the PRR in MD cells based on neural nitric oxide synthase-driven Cre-lox recombination. Deletion of the MD PRR significantly reduced blood pressure and plasma renin. Challenging the RAS by low-salt diet + captopril treatment caused further significant reductions in blood pressure, renal renin, cyclooxygenase-2, and microsomal PGE synthase expression in cKO vs. wild-type mice. These results suggest that the MD PRR is essential in a novel JGA short-loop feedback mechanism, which is integrated within the classic MD mechanism to control renin synthesis and release and to maintain blood pressure.
Collapse
Affiliation(s)
- Anne D M Riquier-Brison
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Arnold Sipos
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Ágnes Prókai
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Sarah L Vargas
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Lldikó Toma
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Elliott J Meer
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Karie G Villanueva
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Jennifer C M Chen
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Christopher Yih
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Elaine Tang
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Bahram Nadim
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Sujith Pendekanti
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - Genevieve Nguyen
- Centre for Interdisciplinary Research in Biology, UMR INSERM U1050, Collège de France, Paris , France
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| |
Collapse
|
70
|
Homeostatic Response of Mouse renin Gene Transcription in a Hypertensive Environment Is Mediated by a Novel 5' Enhancer. Mol Cell Biol 2018; 38:MCB.00566-17. [PMID: 29358217 DOI: 10.1128/mcb.00566-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
The renin-angiotensin system plays an essential role in blood pressure homeostasis. Because renin activity is reflected as a blood pressure phenotype, its gene expression in the kidney is tightly regulated by a feedback mechanism; i.e., renin gene transcription is suppressed in a hypertensive state. To address the molecular mechanisms controlling hypertension-responsive mouse renin (mRen) gene regulation, we deleted either 5' (17-kb) or 3' (78-kb) regions of the endogenous mRen gene and placed the animals in a hypertensive environment. While the mRen gene bearing the 3' deletion was appropriately downregulated, the one bearing the 5' deletion lost this hypertension responsiveness. Because the 17-kb sequence exhibited enhancer activity in vivo and in vitro, we narrowed down the enhancer to a 2.3-kb core using luciferase assays in As4.1 cells. When this 2.3-kb sequence was removed from the endogenous mRen gene in the mouse, its basal expression was dramatically reduced, and the hypertension responsiveness was significantly attenuated. Furthermore, we demonstrated that the angiotensin II signal played an important role in mRen gene suppression. We propose that in a hypertensive environment, the activity of this novel enhancer is attenuated, and, as a consequence, mRen gene transcription is suppressed to maintain blood pressure.
Collapse
|
71
|
Kuczeriszka M, Kompanowska-Jezierska E, Sadowski J, Prieto MC, Navar LG. Modulating Role of Ang1-7 in Control of Blood Pressure and Renal Function in AngII-infused Hypertensive Rats. Am J Hypertens 2018; 31:504-511. [PMID: 29329358 DOI: 10.1093/ajh/hpy006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Indirect evidence suggests that angiotensin 1-7 (Ang1-7) may counterbalance prohypertensive actions of angiotensin II (AngII), via activation of vascular and/or renal tubular receptors to cause vasodilation and natriuresis/diuresis. We examined if Ang1-7 would attenuate the development of hypertension, renal vasoconstriction, and decreased natriuresis in AngII-infused rats and evaluated the mechanisms involved. METHODS AngII, alone or with Ang1-7, was infused to conscious Sprague-Dawley rats for 13 days and systolic blood pressure (SBP) and renal excretion were repeatedly determined. In anesthetized rats, acute actions of Ang1-7 and effects of blockade of angiotensin AT1 or Mas receptors (candesartan or A-779) were studied. RESULTS Chronic AngII infusion increased SBP from 143 ± 4 to 195 ± 6 mm Hg. With Ang1-7 co-infused, SBP increased from 133 ± 5 to 161 ± 5 mm Hg (increase reduced, P < 0.002); concurrent increases in urine flow (V) and sodium excretion (UNaV) were greater. In anesthetized normotensive or AngII-induced hypertensive rats, Ang1-7 infusion transiently increased mean arterial pressure (MABP), transiently decreased renal blood flow (RBF), and caused increases in UNaV and V. In normotensive rats, candesartan prevented the Ang1-7-induced increases in MABP and UNaV and the decrease in RBF. In anesthetized normotensive, rats intravenous A-779 increased MABP (114 ± 5 to 120 ± 5 mm Hg, P < 0.03) and urine flow. Surprisingly, these changes were not observed with A-779 applied during background Ang1-7 infusion. CONCLUSIONS The results suggest that in AngII-dependent hypertension, Ang1-7 deficit contributes to sodium and fluid retention and thereby to BP elevation; a correction by Ang1-7 infusion seems mediated by AT1 and not Mas receptors.
Collapse
Affiliation(s)
- Marta Kuczeriszka
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pol
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pol
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pol
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - L Gabriel Navar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
- Hypertension and Renal Center, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
72
|
COX-2-derived PGE 2 triggers hyperplastic renin expression and hyperreninemia in aldosterone synthase-deficient mice. Pflugers Arch 2018; 470:1127-1137. [PMID: 29455241 PMCID: PMC6013527 DOI: 10.1007/s00424-018-2118-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/25/2022]
Abstract
Pharmacological inhibition or genetic loss of function defects of the renin angiotensin aldosterone system (RAAS) causes compensatory renin cell hyperplasia and hyperreninemia. The triggers for the compensatory stimulation of renin synthesis and secretion in this situation may be multimodal. Since cyclooxygenase-2 (COX-2) expression in the macula densa is frequently increased in states of a defective RAAS, we have investigated a potential role of COX-2 and its derived prostaglandins for renin expression and secretion in aldosterone synthase-deficient mice (AS−/−) as a model for a genetic defect of the RAAS. In comparison with wild-type mice (WT), AS−/− mice had 9-fold and 30-fold increases of renin mRNA and of plasma renin concentrations (PRC), respectively. Renin immunoreactivity in the kidney cortex of AS−/− mice was 10-fold higher than in WT. Macula densa COX-2 expression was 5-fold increased in AS−/− kidneys relative to WT kidneys. Treatment of AS−/− mice with the COX-2 inhibitor SC-236 for 1 week lowered both renal renin mRNA and PRC by 70%. Hyperplastic renin cells in AS−/− kidneys were found to express the prostaglandin E2 receptors EP2 and EP4. Global deletion of EP2 receptors did not alter renin mRNA nor PRC values in AS−/− mice. Renin cell-specific inducible deletion of the EP4 receptor lowered renin mRNA and PRC by 25% in AS−/− mice. Renin cell-specific inducible deletion of the EP4 receptor in combination with global deletion of the EP2 receptor lowered renin mRNA and PRC by 70–75% in AS−/− mice. Lineage tracing of renin-expressing cells revealed that deletion of EP2 and EP4 leads to a preferential downregulation of perivascular renin expression. Our findings suggest that increased macula densa COX-2 activity in AS−/− mice triggers perivascular renin expression and secretion via prostaglandin E2.
Collapse
|
73
|
Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145. [PMID: 29101170 PMCID: PMC5867650 DOI: 10.1152/ajpheart.00373.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023]
Abstract
Since the prorenin receptor (PRR) was first reported, its physiological role in many cellular processes has been under intense scrutiny. The PRR is currently recognized as a multifunctional receptor with major roles as an accessory protein of the vacuolar-type H+-ATPase and as an intermediary in the Wnt signaling pathway. As a member of the renin-angiotensin system (RAS), the PRR has demonstrated to be of relevance in cardiovascular diseases (CVD) because it can activate prorenin and enhance the enzymatic activity of renin, thus promoting angiotensin II formation. Indeed, there is an association between PRR gene polymorphisms and CVD. Independent of angiotensin II, the activation of the PRR further stimulates intracellular signals linked to fibrosis. Studies using tissues and cells from a variety of organs and systems have supported its roles in multiple functions, although some remain controversial. In the brain, the PRR appears to be involved in the central regulation of blood pressure via activation of RAS- and non-RAS-dependent mechanisms. In the heart, the PRR promotes atrial structural and electrical remodeling. Nonetheless, animals overexpressing the PRR do not exhibit cardiac injury. In the kidney, the PRR is involved in the development of ureteric bud branching, urine concentration, and regulation of blood pressure. There is great interest in the PRR contributions to T cell homeostasis and to the development of visceral and brown fat. In this mini-review, we discuss the evidence for the pathophysiological roles of the PRR with emphasis in CVD.
Collapse
Affiliation(s)
- Matthew Hennrikus
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
- Tulane University Renal and Hypertension Center of Excellence , New Orleans, Louisiana
| |
Collapse
|
74
|
Zenner ZP, Gordish KL, Beierwaltes WH. Free radical scavenging reverses fructose-induced salt-sensitive hypertension. Integr Blood Press Control 2017; 11:1-9. [PMID: 29296095 PMCID: PMC5741067 DOI: 10.2147/ibpc.s147674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that a moderate dietary supplementation of 20% fructose but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–hydrogen exchanger activity and increased renal sodium retention. We also found that while high salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive hypertension could be due to fructose-induced formation of reactive oxygen species and inappropriate stimulation of renin secretion, all of which would contribute to an increase in blood pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane excretion. The superoxide dismutase (SOD) mimetic tempol significantly reduced this elevated excretion. Next, we placed rats on a high-salt diet (4%) for 1 week in combination with normal rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-salt diet induced a rapid increase (15 mmHg) in systolic blood pressure and reversed high salt suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is driven by increased renal reactive oxygen species formation associated with salt retention and an enhanced renin–angiotensin system.
Collapse
Affiliation(s)
- Zachary P Zenner
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA
| | - Kevin L Gordish
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA
| | - William H Beierwaltes
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
75
|
Lara LS, Bourgeois CRT, El-Dahr SS, Prieto MC. Bradykinin/B 2 receptor activation regulates renin in M-1 cells via protein kinase C and nitric oxide. Physiol Rep 2017; 5:5/7/e13211. [PMID: 28373410 PMCID: PMC5392507 DOI: 10.14814/phy2.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
In the collecting duct (CD), the interactions of renin angiotensin system (RAS) and kallikrein-kinin system (KKS) modulate Na+ reabsorption, volume homeostasis, and blood pressure. In this study, we used a mouse kidney cortical CD cell line (M-1 cells) to test the hypothesis that in the CD, the activation of bradykinin B2 receptor (B2R) increases renin synthesis and release. Physiological concentrations of bradykinin (BK) treatment of M-1 cells increased renin mRNA and prorenin and renin protein contents in a dose-dependent manner and increased threefold renin content in the cell culture media. These effects were mediated by protein kinase C (PKC) independently of protein kinase A (PKA) because B2R antagonism with Icatibant and PKC inhibition with calphostin C, prevented these responses, but PKA inhibition with H89 did not modify the effects elicited by the B2R activation. BK-dependent stimulation of renin gene expression in CD cells also involved nitric oxide (NO) pathway because increased cGMP levels and inhibition of NO synthase with L-NAME prevented it. Complementary renin immunohistochemical studies performed in kidneys from mice with conventional B2R knockout and conditional B2R knockout in the CD, showed marked decreased renin immunoreactivity in CD, regardless of the renin presence in juxtaglomerular cells in the knockout mice. These results indicate that the activation of B2R increases renin synthesis and release by the CD cells through PKC stimulation and NO release, which support further the interactions between the RAS and KKS.
Collapse
Affiliation(s)
- Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana.,Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | - Camille R T Bourgeois
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S El-Dahr
- Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana.,Department of Pediatrics, Section of Pediatric Nephrology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana .,Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| |
Collapse
|
76
|
Wang J, Shibayama Y, Kobori H, Liu Y, Kobara H, Masaki T, Wang Z, Nishiyama A. High glucose augments angiotensinogen in human renal proximal tubular cells through hepatocyte nuclear factor-5. PLoS One 2017; 12:e0185600. [PMID: 29053707 PMCID: PMC5650141 DOI: 10.1371/journal.pone.0185600] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/17/2017] [Indexed: 01/01/2023] Open
Abstract
High glucose has been demonstrated to induce angiotensinogen (AGT) synthesis in the renal proximal tubular cells (RPTCs) of rats, which may further activate the intrarenal renin-angiotensin system (RAS) and contribute to diabetic nephropathy. This study aimed to investigate the effects of high glucose on AGT in the RPTCs of human origin and identify the glucose-responsive transcriptional factor(s) that bind(s) to the DNA sequences of AGT promoter in human RPTCs. Human kidney (HK)-2 cells were treated with normal glucose (5.5 mM) and high glucose (15.0 mM), respectively. Levels of AGT mRNA and AGT secretion of HK-2 cells were measured by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Consecutive 5’-end deletion mutant constructs and different site-directed mutagenesis products of human AGT promoter sequences were respectively transfected into HK-2 cells, followed by AGT promoter activity measurement through dual luciferase assay. High glucose significantly augmented the levels of AGT mRNA and AGT secretion of HK-2 cells, compared with normal glucose treatment. High glucose also significantly augmented AGT promoter activity in HK-2 cells transfected with the constructs of human AGT promoter sequences, compared with normal glucose treatment. Hepatocyte nuclear factor (HNF)-5 was found to be one of the glucose-responsive transcriptional factors of AGT in human RPTCs, since the mutation of its binding sites within AGT promoter sequences abolished the above effects of high glucose on AGT promoter activity as well as levels of AGT mRNA and its secretion. The present study has demonstrated, for the first time, that high glucose augments AGT in human RPTCs through HNF-5, which provides a potential therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yuki Shibayama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Departments of Pharmacology and of Nephrology, School of Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Ya Liu
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Zhiyu Wang
- Department of Immuno-oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- * E-mail:
| |
Collapse
|
77
|
Udwan K, Abed A, Roth I, Dizin E, Maillard M, Bettoni C, Loffing J, Wagner CA, Edwards A, Feraille E. Dietary sodium induces a redistribution of the tubular metabolic workload. J Physiol 2017; 595:6905-6922. [PMID: 28940314 PMCID: PMC5685825 DOI: 10.1113/jp274927] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 01/11/2023] Open
Abstract
Key points Body Na+ content is tightly controlled by regulated urinary Na+ excretion. The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized. We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell‐surface expression of major Na+ transporters all along the kidney tubule. Low dietary Na+ intake increased Na+ reabsorption in the proximal tubule and decreased it in more distal kidney tubule segments. High dietary Na+ intake decreased Na+ reabsorption in the proximal tubule and increased it in distal segments with lower energetic efficiency. The abundance of apical transporters and Na+ delivery are the main determinants of Na+ reabsorption along the kidney tubule. Tubular O2 consumption and the efficiency of sodium reabsorption are dependent on sodium diet.
Abstract Na+ excretion by the kidney varies according to dietary Na+ intake. We undertook a systematic study of the effects of dietary salt intake on glomerular filtration rate (GFR) and tubular Na+ reabsorption. We examined the renal adaptive response in mice subjected to 7 days of a low sodium diet (LSD) containing 0.01% Na+, a normal sodium diet (NSD) containing 0.18% Na+ and a moderately high sodium diet (HSD) containing 1.25% Na+. As expected, LSD did not alter measured GFR and increased the abundance of total and cell‐surface NHE3, NKCC2, NCC, α‐ENaC and cleaved γ‐ENaC compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption increased in the proximal tubule but decreased in the distal nephron because of diminished Na+ delivery. This prediction was confirmed by the natriuretic response to diuretics targeting the thick ascending limb, the distal convoluted tubule or the collecting system. On the other hand, HSD did not alter measured GFR but decreased the abundance of the aforementioned transporters compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption decreased in the proximal tubule but increased in distal segments with lower transport efficiency with respect to O2 consumption. This prediction was confirmed by the natriuretic response to diuretics. The activity of the metabolic sensor adenosine monophosphate‐activated protein kinase (AMPK) was related to the changes in tubular Na+ reabsorption. Our data show that fractional Na+ reabsorption is distributed differently according to dietary Na+ intake and induces changes in tubular O2 consumption and sodium transport efficiency. Body Na+ content is tightly controlled by regulated urinary Na+ excretion. The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized. We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell‐surface expression of major Na+ transporters all along the kidney tubule. Low dietary Na+ intake increased Na+ reabsorption in the proximal tubule and decreased it in more distal kidney tubule segments. High dietary Na+ intake decreased Na+ reabsorption in the proximal tubule and increased it in distal segments with lower energetic efficiency. The abundance of apical transporters and Na+ delivery are the main determinants of Na+ reabsorption along the kidney tubule. Tubular O2 consumption and the efficiency of sodium reabsorption are dependent on sodium diet.
Collapse
Affiliation(s)
- Khalil Udwan
- Department of Cellular Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211, Geneva 4, Switzerland.,National Centre of Competence in Research, NCCRKidney, CH, Switzerland
| | - Ahmed Abed
- Department of Cellular Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211, Geneva 4, Switzerland.,National Centre of Competence in Research, NCCRKidney, CH, Switzerland
| | - Isabelle Roth
- Department of Cellular Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211, Geneva 4, Switzerland
| | - Eva Dizin
- Department of Cellular Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211, Geneva 4, Switzerland.,National Centre of Competence in Research, NCCRKidney, CH, Switzerland
| | - Marc Maillard
- Centre hospitalier universitaire Vaudois, Service de néphrologie, CH-1011, Lausanne, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.,National Centre of Competence in Research, NCCRKidney, CH, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.,National Centre of Competence in Research, NCCRKidney, CH, Switzerland
| | - Aurélie Edwards
- Centre de Recherche des Cordeliers, INSERM UMRS1138 and CNRS ERL8228, 15 rue de l'Ecole de Médecine, F-75006, Paris, France.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Feraille
- Department of Cellular Physiology and Metabolism, University of Geneva, CMU, 1 Rue Michel-Servet, CH-1211, Geneva 4, Switzerland.,National Centre of Competence in Research, NCCRKidney, CH, Switzerland
| |
Collapse
|
78
|
Lachmann P, Hickmann L, Steglich A, Al-Mekhlafi M, Gerlach M, Jetschin N, Jahn S, Hamann B, Wnuk M, Madsen K, Djonov V, Chen M, Weinstein LS, Hohenstein B, Hugo CPM, Todorov VT. Interference with Gs α-Coupled Receptor Signaling in Renin-Producing Cells Leads to Renal Endothelial Damage. J Am Soc Nephrol 2017; 28:3479-3489. [PMID: 28775003 DOI: 10.1681/asn.2017020173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Intracellular cAMP, the production of which is catalyzed by the α-subunit of the stimulatory G protein (Gsα), controls renin synthesis and release by juxtaglomerular (JG) cells of the kidney, but may also have relevance for the physiologic integrity of the kidney. To investigate this possibility, we generated mice with inducible knockout of Gsα in JG cells and monitored them for 6 months after induction at 6 weeks of age. The knockout mapped exclusively to the JG cells of the Gsα-deficient animals. Progressive albuminuria occurred in Gsα-deficient mice. Compared with controls expressing wild-type Gsα alleles, the Gsα-deficient mice had enlarged glomeruli with mesangial expansion, injury, and FSGS at study end. Ultrastructurally, the glomerular filtration barrier of the Gsα-deficient animals featured endothelial gaps, thickened basement membrane, and fibrin-like intraluminal deposits, which are classic signs of thrombotic microangiopathy. Additionally, we found endothelial damage in peritubular capillaries and vasa recta. Because deficiency of vascular endothelial growth factor (VEGF) results in thrombotic microangiopathy, we addressed the possibility that Gsα knockout may result in impaired VEGF production. We detected VEGF expression in JG cells of control mice, and cAMP agonists regulated VEGF expression in cultured renin-producing cells. Our data demonstrate that Gsα deficiency in JG cells of adult mice results in kidney injury, and suggest that JG cells are critically involved in the maintenance and protection of the renal microvascular endothelium.
Collapse
Affiliation(s)
- Peter Lachmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Linda Hickmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Anne Steglich
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Moath Al-Mekhlafi
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Michael Gerlach
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Niels Jetschin
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Steffen Jahn
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Brigitte Hamann
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Monika Wnuk
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; and
| | - Valentin Djonov
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | - Bernd Hohenstein
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Christian P M Hugo
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Vladimir T Todorov
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| |
Collapse
|
79
|
Hickmann L, Steglich A, Gerlach M, Al-Mekhlafi M, Sradnick J, Lachmann P, Sequeira-Lopez MLS, Gomez RA, Hohenstein B, Hugo C, Todorov VT. Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. Kidney Int 2017; 92:1419-1432. [PMID: 28688581 DOI: 10.1016/j.kint.2017.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/23/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Renin lineage cells (RLCs) serve as a progenitor cell reservoir during nephrogenesis and after renal injury. The maintenance mechanisms of the RLC pool are still poorly understood. Since RLCs were also identified as a progenitor cell population in bone marrow we first considered that these may be their source in the kidney. However, transplantation experiments in adult mice demonstrated that bone marrow-derived cells do not give rise to RLCs in the kidney indicating their non-hematopoietic origin. Therefore we tested whether RLCs develop in the kidney through neogenesis (de novo differentiation) from cells that have never expressed renin before. We used a murine model to track neogenesis of RLCs by flow cytometry, histochemistry, and intravital kidney imaging. During nephrogenesis RLCs first appear at e14, form a distinct population at e16, and expand to reach a steady state level of 8-10% of all kidney cells in adulthood. De novo differentiated RLCs persist as a clearly detectable population through embryogenesis until at least eight months after birth. Pharmacologic stimulation of renin production with enalapril or glomerular injury induced the rate of RLC neogenesis in the adult mouse kidney by 14% or more than three-fold, respectively. Thus, the renal RLC niche is constantly filled by local de novo differentiation. This process could be stimulated consequently representing a new potential target to beneficially influence repair and regeneration after kidney injury.
Collapse
Affiliation(s)
- Linda Hickmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Steglich
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Gerlach
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moath Al-Mekhlafi
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan Sradnick
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter Lachmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bernd Hohenstein
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Vladimir T Todorov
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
80
|
Abstract
This review aims to summarize the knowledge about the sensor and endocrine response functions of resident interstitial cells of the kidney. By the production of renin, erythropoietin and arachidonate metabolites (medullipin) subsets of renal interstitial fibroblasts and pericytes in different kidney zones play a central role in salt, blood pressure and oxygen homeostasis of the body. Common to these endocrine functions is that their regulation mainly occurs by (de)recruitment of active cells.
Collapse
Affiliation(s)
- Armin Kurtz
- Physiologisches Institut der Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
81
|
Prostaglandin E 2 Induces Prorenin-Dependent Activation of (Pro)renin Receptor and Upregulation of Cyclooxygenase-2 in Collecting Duct Cells. Am J Med Sci 2017; 354:310-318. [PMID: 28918839 DOI: 10.1016/j.amjms.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) regulates renin expression in renal juxtaglomerular cells. PGE2 acts through E-prostanoid (EP) receptors in the renal collecting duct (CD) to regulate sodium and water balance. CD cells express EP1 and EP4, which are linked to protein kinase C (PKC) and PKA downstream pathways, respectively. Previous studies showed that the presence of renin in the CD, and that of PKC and PKA pathways, activate its expression. The (pro)renin receptor (PRR) is also expressed in CD cells, and its activation enhances cyclooxygenase-2 (COX-2) through extracellular signal-regulated kinase (ERK). We hypothesized that PGE2 stimulates prorenin and renin synthesis leading to subsequent activation of PRR and upregulation of COX-2. METHODS We used a mouse M-1 CD cell line that expresses EP1, EP3 and EP4 but not EP2. RESULTS PGE2 (10-6M) treatment increased prorenin and renin protein levels at 4 and 8 hours. No differences were found at 12-hour after PGE2 treatment. Phospho-ERK was significantly augmented after 12 hours. COX-2 expression was decreased after 4 hours of PGE2 treatment, but increased after 12 hours. Interestingly, the full-length form of the PRR was upregulated only at 12 hours. PGE2-mediated phospho-ERK and COX-2 upregulation was suppressed by PRR silencing. CONCLUSIONS Our results suggest that PGE2 induces biphasic regulation of COX-2 through renin-dependent PRR activation via EP1 and EP4 receptors. PRR-mediated increases in COX-2 expression may enhance PGE2 synthesis in CD cells serving as a buffer mechanism in conditions of activated renin-angiotensin system.
Collapse
|
82
|
Lachmann P, Selbmann J, Hickmann L, Hohenstein B, Hugo C, Todorov VT. The PPAR-gamma-binding sequence Pal3 is necessary for basal but dispensable for high-fat diet regulated human renin expression in the kidney. Pflugers Arch 2017; 469:1349-1357. [PMID: 28534088 DOI: 10.1007/s00424-017-1994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
We reported earlier that PPAR-gamma regulates renin transcription through a human-specific atypical binding sequence termed hRen-Pal3. Here we developed a mouse model to investigate the functional relevance of the hRen-Pal3 sequence in vivo since it might be responsible for the increased renin production in obesity and thus for the development of accompanying arterial hypertension. We used bacterial artificial chromosome construct and co-placement strategy to generate two transgenic mouse lines expressing the human renin gene from identical genomic locus without affecting the intrinsic mouse renin expression. One line carried a wild-type hRen-Pal3 in the transgene (Pal3wt strain) and the other a mutated non-functional Pal3 (Pal3mut strain). Human renin expression was correctly targeted to the renin-producing juxtaglomerular (JG) cells of kidney in both lines. However, Pal3mut mice had lower basal human renin expression. Since human renin does not recognize mouse angiotensinogen as substrate, the blood pressure was not different between the strains. Stimulation of renin production with the angiotensin-converting enzyme inhibitor enalapril equipotentially stimulated the human renin expression in Pal3wt and Pal3mut mice. High-fat diet for 10 weeks which is known to activate PPAR-gamma failed to increase human renin mRNA in kidneys of either strain. These findings showed that the human renin PPAR-gamma-binding sequence hRen-Pal3 is essential for basal renin expression but dispensable for the cell-specific and high-fat diet regulated renin expression in the kidney.
Collapse
Affiliation(s)
- Peter Lachmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jenny Selbmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Bernd Hohenstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
83
|
Martini AG, Danser AHJ. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev 2017; 24:231-242. [PMID: 28527017 PMCID: PMC5574949 DOI: 10.1007/s40292-017-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
Renin is the first and rate-limiting step of the renin-angiotensin system. The exclusive source of renin in the circulation are the juxtaglomerular cells of the kidney, which line the afferent arterioles at the entrance of the glomeruli. Normally, renin production by these cells suffices to maintain homeostasis. However, under chronic stimulation of renin release, for instance during a low-salt diet or antihypertensive therapy, cells that previously expressed renin during congenital life re-convert to a renin-producing cell phenotype, a phenomenon which is known as “recruitment”. How exactly such differentiation occurs remains to be clarified. This review critically discusses the phenotypic plasticity of renin cells, connecting them not only to the classical concept of blood pressure regulation, but also to more complex contexts such as development and growth processes, cell repair mechanisms and tissue regeneration.
Collapse
Affiliation(s)
- Alexandre Góes Martini
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
84
|
Gordish KL, Kassem KM, Ortiz PA, Beierwaltes WH. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide. Physiol Rep 2017; 5:5/7/e13162. [PMID: 28408634 PMCID: PMC5392503 DOI: 10.14814/phy2.13162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we reported that 20% fructose diet causes salt‐sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt‐sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg (P < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P < 0.001). Nitric oxide excretion was 2935 ± 256 μmol/24 h in high salt‐fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178 μmol /24 hrs P < 0.01). Our results suggest that fructose predisposes rats to salt‐sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability.
Collapse
Affiliation(s)
- Kevin L Gordish
- Department of Physiology, Wayne State School of Medicine, Detroit, Michigan
| | - Kamal M Kassem
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan
| | - Pablo A Ortiz
- Department of Physiology, Wayne State School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan
| | - William H Beierwaltes
- Department of Physiology, Wayne State School of Medicine, Detroit, Michigan .,Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
85
|
Fialla AD, Thiesson HC, Bie P, Schaffalitzky de Muckadell OB, Krag A. Internal dysregulation of the renin system in patients with stable liver cirrhosis. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:298-309. [DOI: 10.1080/00365513.2017.1308546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
87
|
Wang K, Liu X, Xiao H, Wang H, Zhang Y. The correlation between inflammatory injury induced by LPS and RAS in EpH4-Ev cells. Int Immunopharmacol 2017; 46:23-30. [PMID: 28249221 DOI: 10.1016/j.intimp.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Renin-angiotensin system (RAS) plays an important role of regulating inflammatory injury. However, it is not clear about the correlation between renin-angiotensin system (RAS) and inflammation induced by LPS in mammary gland cells. So immunofluorescence was performed to verify the ACE2 expression in mammary gland cells. MTT assay was performed to detect cell viability. ELISA was performed to detect cytokines in cell supernatant. Western Blot was performed to analyze RAS levels and ACE2 level change was observed by immunofluorescence. The TLR4 level and p65 phosphorylation were detected by Western Blot. The ACE2 protein intensively located on the cell membrane. According to the results of MTT assay and TNF-α level, the injury was evidently induced by high concentration LPS after 9h. The TNF-α, IL-6, IL-8, ACE, AT1R and AngII had an increasing expression with the rise of cell injury. In contrast, the MasR, Ang1-7 and ACE2 had a declining expression with the increase of cell injury degree. The TLR4 level and p65 phosphorylation in high concentration LPS group was significantly higher than that of control group. These results suggest that a valid inflammatory injury was induced after the cells were treated by high concentration of LPS for 9h. Meanwhile, the ACE/AngII/AT1R axis was activated and the ACE2/Ang1-7/MasR axis was depressed.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xiaoqian Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Hang Xiao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Huanhuan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Yuanshu Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China.
| |
Collapse
|
88
|
Seghers F, Yerna X, Zanou N, Devuyst O, Vennekens R, Nilius B, Gailly P. TRPV4 participates in pressure-induced inhibition of renin secretion by juxtaglomerular cells. J Physiol 2016; 594:7327-7340. [PMID: 27779758 DOI: 10.1113/jp273595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Increase in blood pressure in the renal afferent arteriole is known to induce an increase in cytosolic calcium concentration ([Ca2+ ]i ) of juxtaglomerular (JG) cells and to result in a decreased secretion of renin. Mechanical stimulation of As4.1 JG cells induces an increase in [Ca2+ ]i that is inhibited by HC067047 and RN1734, two inhibitors of TRPV4, or by siRNA-mediated repression of TRPV4. Inhibition of TRPV4 impairs pressure-induced decrease in renin secretion. Compared to wild-type mice, Trpv4-/- mice present increased resting plasma levels of renin and aldosterone and present a significantly altered pressure-renin relationship. We suggest that TRPV4 channel participates in mechanosensation at the juxtaglomerular apparatus. ABSTRACT The renin-angiotensin system is a crucial blood pressure regulation system. It consists of a hormonal cascade where the rate-limiting enzyme is renin, which is secreted into the blood flow by renal juxtaglomerular (JG) cells in response to low pressure in the renal afferent arteriole. In contrast, an increase in blood pressure results in a decreased renin secretion. This is accompanied by a transitory increase in [Ca2+ ]i of JG cells. The inverse relationship between [Ca2+ ]i and renin secretion has been called the 'calcium paradox' of renin release. How increased pressure induces a [Ca2+ ]i transient in JG cells, is however, unknown. We observed that [Ca2+ ]i transients induced by mechanical stimuli in JG As4.1 cells were completely abolished by HC067047 and RN1734, two inhibitors of TRPV4. They were also reduced by half by siRNA-mediated repression of TRPV4 but not after repression or inhibition of TRPV2 or Piezo1 ion channels. Interestingly, the stimulation of renin secretion by the adenylate cyclase activator forskolin was totally inhibited by cyclic stretching of the cells. This effect was mimicked by stimulation with GSK1016790A and 4αPDD, two activators of TRPV4 and inhibited in the presence of HC067047. Moreover, in isolated perfused kidneys from Trpv4-/- mice, the pressure-renin relationship was significantly altered. In vivo, Trpv4-/- mice presented increased plasma levels of renin and aldosterone compared to wild-type mice. Altogether, our results suggest that TRPV4 is involved in the pressure-induced entry of Ca2+ in JG cells, which inhibits renin release and allows the negative feedback regulation on blood pressure.
Collapse
Affiliation(s)
- François Seghers
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Nadège Zanou
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| | - Olivier Devuyst
- University of Zurich, Institute of Physiology, CH-8057, Zurich, Switzerland
| | - Rudi Vennekens
- Katholieke Universiteit Leuven, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, B-3000, Leuven, Belgium
| | - Bernd Nilius
- Katholieke Universiteit Leuven, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, B-3000, Leuven, Belgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, B-1200, Brussels, Belgium
| |
Collapse
|
89
|
Ushiki A, Matsuzaki H, Ishida J, Fukamizu A, Tanimoto K. Long-Range Control of Renin Gene Expression in Tsukuba Hypertensive Mice. PLoS One 2016; 11:e0166974. [PMID: 27861631 PMCID: PMC5115840 DOI: 10.1371/journal.pone.0166974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
Renin, a rate-limiting enzyme in the renin–angiotensin system, is regulated to maintain blood pressure homeostasis: renin gene expression in the kidney is suppressed in a hypertensive environment. We found that expression of a 15-kb human RENIN (hREN) transgene was aberrantly upregulated (>4.2-fold), while the endogenous mouse renin (mRen) gene was suppressed (>1.7-fold) in Tsukuba hypertensive mice (THM), a model for genetically induced hypertension. We then generated transgenic mice using a 13-kb mRen gene fragment that was homologous to the 15-kb hREN transgene and found that its expression was also upregulated (>3.1-fold) in THM, suggesting that putative silencing elements of the renin genes were distally located in the loci. We next examined the possible role of a previously identified mouse distal enhancer (mdE) located outside of the 13-kb mRen gene fragment. Deletion of the mdE in the context of a 156-kb mRen transgene did not affect its transcriptional repression in THM, implying that although the silencing element of the mRen gene is located within the 156-kb fragment tested, it is distinct from the mdE. Consistent with these results, deletion of the 63-kb region upstream of the mdE from the endogenous mRen gene locus abrogated its transcriptional repression in THM. We finally tested whether dysregulation of the short renin transgenes also occurred in the fetal or neonatal kidneys of THM and found that their expression was not aberrantly upregulated, demonstrating that aberrant regulation of short renin transgenes commences sometime between neonate and adult periods.
Collapse
Affiliation(s)
- Aki Ushiki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
90
|
Grill A, Schießl IM, Gess B, Fremter K, Hammer A, Castrop H. Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene. Acta Physiol (Oxf) 2016; 218:198-211. [PMID: 27421685 DOI: 10.1111/apha.12755] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
AIM The basolateral chloride channel ClC-Kb facilitates Cl reabsorption in the distal nephron of the human kidney. Functional mutations in CLCNKB are associated with Bartter's syndrome type 3, a hereditary salt-losing nephropathy. To address the function of ClC-K2 in vivo, we generated ClC-K2-deficient mice. METHODS ClC-K2-deficient mice were generated using TALEN technology. RESULTS ClC-K2-deficient mice were viable and born in a Mendelian ratio. ClC-K2-/- mice showed no gross anatomical abnormalities, but they were growth retarded. The 24-h urine volume was increased in ClC-K2-/- mice (4.4 ± 0.6 compared with 0.9 ± 0.2 mL per 24 h in wild-type littermates; P = 0.001). Accordingly, ambient urine osmolarity was markedly reduced (590 ± 39 vs. 2216 ± 132 mosmol L-1 in wild types; P < 0.0001). During water restriction (24 h), urinary osmolarity increased to 1633 ± 153 and 3769 ± 129 mosmol L-1 in ClC-K2-/- and wild-type mice (n = 12; P < 0.0001), accompanied by a loss of body weight of 12 ± 0.4 and 8 ± 0.2% respectively (P < 0.0001). ClC-K2-/- mice showed an increased renal sodium excretion and compromised salt conservation during a salt-restricted diet. The salt-losing phenotype of ClC-K2-/- mice was associated with a reduced plasma volume, hypotension, a slightly reduced glomerular filtration rate, an increased renal prostaglandin E2 generation and a massively stimulated renin-angiotensin system. Clckb-/- mice showed a reduced sensitivity to furosemide and were completely resistant to thiazides. CONCLUSION Loss of ClC-K2 compromises TAL function and abolishes salt reabsorption in the distal convoluted tubule. Our data suggest that ClC-K2 is crucial for renal salt reabsorption and concentrating ability. ClC-K2-deficient mice in most aspects mimic patients with Bartter's syndrome type 3.
Collapse
Affiliation(s)
- A. Grill
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - I. M. Schießl
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - B. Gess
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - K. Fremter
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - A. Hammer
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - H. Castrop
- Institute of Physiology; University of Regensburg; Regensburg Germany
| |
Collapse
|
91
|
Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ, Péault B. Human kidney pericytes produce renin. Kidney Int 2016; 90:1251-1261. [PMID: 27678158 PMCID: PMC5126097 DOI: 10.1016/j.kint.2016.07.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Pericytes, perivascular cells embedded in the microvascular wall, are crucial for vascular homeostasis. These cells also play diverse roles in tissue development and regeneration as multi-lineage progenitors, immunomodulatory cells and as sources of trophic factors. Here, we establish that pericytes are renin producing cells in the human kidney. Renin was localized by immunohistochemistry in CD146 and NG2 expressing pericytes, surrounding juxtaglomerular and afferent arterioles. Similar to pericytes from other organs, CD146+CD34–CD45–CD56– renal fetal pericytes, sorted by flow cytometry, exhibited tri-lineage mesodermal differentiation potential in vitro. Additionally, renin expression was triggered in cultured kidney pericytes by cyclic AMP as confirmed by immuno-electron microscopy, and secretion of enzymatically functional renin, capable of generating angiotensin I. Pericytes derived from second trimester human placenta also expressed renin in an inducible fashion although the renin activity was much lower than in renal pericytes. Thus, our results confirm and extend the recently discovered developmental plasticity of microvascular pericytes, and may open new perspectives to the therapeutic regulation of the renin-angiotensin system.
Collapse
Affiliation(s)
- Ania Stefanska
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Christopher Kenyon
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Charlotte Buckley
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Isaac Shaw
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - John J Mullins
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK; Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.
| |
Collapse
|
92
|
Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ, Stegbauer J, Gurley SB, van Oyen D, Antlanger M, Bader M, Motta-Santos D, Santos RA, Elased KM, Säemann MD, Linker RA, Poglitsch M. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney. Sci Rep 2016; 6:33678. [PMID: 27649628 PMCID: PMC5030486 DOI: 10.1038/srep33678] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular and renal pathologies are frequently associated with an activated renin-angiotensin-system (RAS) and increased levels of its main effector and vasoconstrictor hormone angiotensin II (Ang II). Angiotensin-converting-enzyme-2 (ACE2) has been described as a crucial enzymatic player in shifting the RAS towards its so-called alternative vasodilative and reno-protective axis by enzymatically converting Ang II to angiotensin-(1-7) (Ang-(1-7)). Yet, the relative contribution of ACE2 to Ang-(1-7) formation in vivo has not been elucidated. Mass spectrometry based quantification of angiotensin metabolites in the kidney and plasma of ACE2 KO mice surprisingly revealed an increase in Ang-(1-7), suggesting additional pathways to be responsible for alternative RAS activation in vivo. Following assessment of angiotensin metabolism in kidney homogenates, we identified neprilysin (NEP) to be a major source of renal Ang-(1-7) in mice and humans. These findings were supported by MALDI imaging, showing NEP mediated Ang-(1-7) formation in whole kidney cryo-sections in mice. Finally, pharmacologic inhibition of NEP resulted in strongly decreased Ang-(1-7) levels in murine kidneys. This unexpected new role of NEP may have implications for the combination therapy with NEP-inhibitors and angiotensin-receptor-blockade, which has been shown being a promising therapeutic approach for heart failure therapy.
Collapse
Affiliation(s)
- Oliver Domenig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Arndt Manzel
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Nadja Grobe
- Department of Pharmacology and Toxicology, Wright State University, OH, USA
| | - Eva Königshausen
- Department of Nephrology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Christopher C Kaltenecker
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Johannes J Kovarik
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Susan B Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27710, USA
| | | | - Marlies Antlanger
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Daisy Motta-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson A Santos
- Institute of Cardiology, University Cardiology Foundation, Porto Alegre, RS, Brazil
| | - Khalid M Elased
- Department of Pharmacology and Toxicology, Wright State University, OH, USA
| | - Marcus D Säemann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ralf A Linker
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW Transepithelial salt transport in the thick ascending limb of Henle's loop (TAL) crucially depends on the activity of the Na/K/2Cl cotransporter NKCC2. The pharmacologic blockade of NKCC2 leads to pronounced natriuresis and diuresis, which indicate key roles for NKCC2 in renal salt retrieval. The inadequate regulation of NKCC2 and the loss of NKCC2 function are associated with the disruption of salt and water homoeostasis. This review provides a specific overview of our current knowledge with respect to the regulation of NKCC2 by differential splicing and phosphorylation. RECENT FINDINGS Several mechanisms have evolved to adapt NKCC2 transport to reabsorptive needs. These mechanisms include the regulation of NKCC2 gene expression, the differential splicing of the NKCC2 pre-mRNA, the membrane trafficking, and the modulation of the specific transport activity. Substantial progress has been made over the past few years in deciphering the function of kinases in the regulatory network controlling NKCC2 activity and in elucidating the underlying mechanism and the functional consequences of the regulated differential splicing of the NKCC2 pre-mRNA. SUMMARY NKCC2 differential splicing and phosphorylation are critically involved in the modulation of the thick ascending limb of Henle's loop reabsorptive capacity and, consequently, in salt homoeostasis, volume regulation, and blood pressure control.
Collapse
|
94
|
Schmidt K, Windler R, de Wit C. Communication Through Gap Junctions in the Endothelium. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:209-40. [PMID: 27451099 DOI: 10.1016/bs.apha.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A swarm of fish displays a collective behavior (swarm behavior) and moves "en masse" despite the huge number of individual animals. In analogy, organ function is supported by a huge number of cells that act in an orchestrated fashion and this applies also to vascular cells along the vessel length. It is obvious that communication is required to achieve this vital goal. Gap junctions with their modular bricks, connexins (Cxs), provide channels that interlink the cytosol of adjacent cells by a pore sealed against the extracellular space. This allows the transfer of ions and charge and thereby the travel of membrane potential changes along the vascular wall. The endothelium provides a low-resistance pathway that depends crucially on connexin40 which is required for long-distance conduction of dilator signals in the microcirculation. The experimental evidence for membrane potential changes synchronizing vascular behavior is manifold but the functional verification of a physiologic role is still open. Other molecules may also be exchanged that possibly contribute to the synchronization (eg, Ca(2+)). Recent data suggest that vascular Cxs have more functions than just facilitating communication. As pharmacological tools to modulate gap junctions are lacking, Cx-deficient mice provide currently the standard to unravel their vascular functions. These include arteriolar dilation during functional hyperemia, hypoxic pulmonary vasoconstriction, vascular collateralization after ischemia, and feedback inhibition on renin secretion in the kidney.
Collapse
Affiliation(s)
- K Schmidt
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - R Windler
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - C de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
95
|
Mederle K, Gess B, Pluteanu F, Plackic J, Tiefenbach KJ, Grill A, Kockskämper J, Castrop H. The angiotensin receptor-associated protein Atrap is a stimulator of the cardiac Ca2+-ATPase SERCA2a. Cardiovasc Res 2016; 110:359-70. [DOI: 10.1093/cvr/cvw064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/17/2016] [Indexed: 11/14/2022] Open
|
96
|
Polymorphisms at the F12 and KLKB1 loci have significant trait association with activation of the renin-angiotensin system. BMC MEDICAL GENETICS 2016; 17:21. [PMID: 26969407 PMCID: PMC4788869 DOI: 10.1186/s12881-016-0283-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
Background Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. Methods & Results Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. Conclusions The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.
Collapse
|
97
|
Feng W, Cai Q, Yuan W, Liu Y, Bardeesi ASA, Wang J, Chen J, Huang H. Low Response of Renin-Angiotensin System to Sodium Intake Intervention in Chinese Hypertensive Patients. Medicine (Baltimore) 2016; 95:e2602. [PMID: 26871780 PMCID: PMC4753875 DOI: 10.1097/md.0000000000002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The interactions of sodium balance and response of renin-angiotensin-aldosterone system are important for maintaining the hemodynamic stability in physiological conditions. However, the influence of short-term sodium intake intervention in the response of renin-angiotensin system (RAS) on hypertensive patients is still unclear. Thus, we conducted a clinical trial to investigate the effects of short-term sodium intake intervention on the response of RAS in hypertensive patients.One hundred twenty-five primary Chinese hypertensive patients were divided into high, moderate, and low sodium groups by 24-hour urinary sodium excretion (UNa). All the patients received a 10-day dietary sodium intake intervention with standardized sodium (173.91mmol/day) and potassium (61.53mmol/day). Blood pressure, urinary sodium, urinary potassium, plasma sodium, potassium, creatinine, the levels of plasma renin activity, plasma angiotensin II concentrations (AT-II), and plasma aldosterone concentrations were detected before and after the intervention.Before the intervention, no differences were found in blood pressure and RAS among 3 groups. After standardized dietary sodium intake intervention, both UNa excretion and systolic pressure decreased in high-sodium group, while they increased in moderate and low-sodium groups. Intriguingly, there were no changes in the levels of plasma renin activity, AT-II, and plasma aldosterone concentrations among 3 groups during the intervention.The present study demonstrated that the influenced sodium excretion and blood pressure by short-term sodium intake intervention were independent of RAS quick response in Chinese hypertensive patients.
Collapse
Affiliation(s)
- Weijing Feng
- From the Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology (WF, WY, ASAB, JW, JC, HH); Department of Cardiology (WF, WY, JW, HH), Sun Yat-sen Memorial Hospital of Sun Yat-sen University; Department of Medical Oncology (QC), Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou; Department of Cardiology (YL), The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning; and Department of Radiation Oncology (JC), Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Vergaro G, Fatini C, Sticchi E, Vassalle C, Gensini G, Ripoli A, Rossignol P, Passino C, Emdin M, Abbate R. Refractory hyperaldosteronism in heart failure is associated with plasma renin activity and angiotensinogen polymorphism. J Cardiovasc Med (Hagerstown) 2016; 16:416-22. [PMID: 25036270 DOI: 10.2459/jcm.0000000000000156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Refractory hyperaldosteronism is frequently observed in heart failure patients on up-to-date treatment, and holds prognostic value. Our aim was to identify which factors, either genetic or nongenetic, are associated with refractory hyperaldosteronism. METHODS We enrolled 109 consecutive patients with left ventricular systolic dysfunction [left ventricular ejection fraction (LVEF) 32 ± 10%; 86% males; age 65 ± 13 years (mean ± standard deviation)] on optimized adrenergic and renin-angiotensin-aldosterone system (RAAS) antagonism, undergoing clinical and neuroendocrine characterization, and genotyping for six polymorphisms in key RAAS-regulating genes [angiotensinogen (AGT M235T), angiotensin-converting enzyme (ACE-240A>T and I/D), angiotensin II type I receptor (AGTR1 1166A>C), aldosterone synthase (CYP11B2-344C>T) and renin (REN rs7539596)]. RESULTS Patients with refractory hyperaldosteronism (n = 41, 38%, with plasma concentration >180 ng/l, URL, median 283 ng/l, interquartile range 218-433), when compared with those without (106 ng/l, 74-144; P < 0.001), were not different either for treatment or LVEF, while presented with different AGT M235T genotype distribution (P = 0.047). After adjustment for several humoral, instrumental, functional and therapeutical variables, only plasma renin activity (PRA) (P < 0.001) and potassium (P = 0.027) were independently associated with refractory hyperaldosteronism. Among polymorphisms, only AGT M235T (P = 0.038) was associated with refractory hyperaldosteronism, after adjustment for nongenetic variables. CONCLUSIONS In conclusion, refractory hyperaldosteronism in heart failure may be influenced by AGT M235T polymorphism, among RAAS candidate genes, and by PRA, which may represent, respectively, a constitutive (genotype dependent) and a nongenetic (phenotype-dependent) trigger for aldosterone elevation.
Collapse
Affiliation(s)
- Giuseppe Vergaro
- aFondazione Toscana Gabriele Monasterio, Pisa bDepartment of Medical and Surgical Critical Care, University of Florence cFondazione Don Carlo Gnocchi ONLUS, Centro S.Maria degli Ulivi- IRCCS, Florence, Italy dINSERM, Centre d'Investigations Cliniques- 9501, Vandoeuvre lès Nancy, France & Université de Lorraine, France & CHU de Nancy, Nancy, France & INSERM U1116, Vandoeuvre lès Nancy, France eScuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Saigusa T. Reciprocal effect of angiotensin II in collecting duct renin synthesis. Am J Physiol Renal Physiol 2015; 309:F914-5. [PMID: 26377797 DOI: 10.1152/ajprenal.00404.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
100
|
Gonzalez AA, Prieto MC. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 2015; 42:14-21. [PMID: 25371190 DOI: 10.1111/1440-1681.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022]
Abstract
The intrarenal renin-angiotensin system (RAS) plays a critical role in the pathogenesis and progression of hypertension and kidney disease. In angiotensin (Ang) II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by the AngII type I receptor (AT1 R), independent of blood pressure. Although the regulation of JG renin has been extensively studied, the mechanisms by which renin is regulated in the collecting duct remain unclear. The augmentation of renin synthesis and activity in the collecting duct may provide a pathway for additional generation of intrarenal and intratubular AngII formation due to the presence of angiotensinogen substrate and angiotensin-converting enzyme in the nephron. The recently described (pro)renin receptor ((P)RR) binds renin or prorenin, enhancing renin activity and fully activating the biologically inactive prorenin peptide. Stimulation of (P)RR also activates intracellular pathways related to fibrosis. Renin and the (P)RR are augmented in renal tissues of AngII-dependent hypertensive rats. However, the functional contribution of the (P)RR to enhanced renin activity in the collecting duct and its contribution to the development of hypertension and kidney disease have not been well elucidated. This review focuses on recent evidence demonstrating the mechanism of renin regulation in the collecting ducts and its interaction with the (P)RR. The data suggest that renin-(P)RR interactions may induce stimulation of intracellular pathways associated with the development of hypertension and kidney disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|