51
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
52
|
Dayal A, Schrötter K, Pan Y, Föhr K, Melzer W, Grabner M. The Ca 2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance. Nat Commun 2017; 8:475. [PMID: 28883413 PMCID: PMC5589907 DOI: 10.1038/s41467-017-00629-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle excitation-contraction (EC) coupling is initiated by sarcolemmal depolarization, which is translated into a conformational change of the dihydropyridine receptor (DHPR), which in turn activates sarcoplasmic reticulum (SR) Ca2+ release to trigger muscle contraction. During EC coupling, the mammalian DHPR embraces functional duality, as voltage sensor and L-type Ca2+ channel. Although its unique role as voltage sensor for conformational EC coupling is firmly established, the conventional function as Ca2+ channel is still enigmatic. Here we show that Ca2+ influx via DHPR is not necessary for muscle performance by generating a knock-in mouse where DHPR-mediated Ca2+ influx is eliminated. Homozygous knock-in mice display SR Ca2+ release, locomotor activity, motor coordination, muscle strength and susceptibility to fatigue comparable to wild-type controls, without any compensatory regulation of multiple key proteins of the EC coupling machinery and Ca2+ homeostasis. These findings support the hypothesis that the DHPR-mediated Ca2+ influx in mammalian skeletal muscle is an evolutionary remnant.In mammalian skeletal muscle, the DHPR functions as a voltage sensor to trigger muscle contraction and as a Ca2+ channel. Here the authors show that mice where Ca2+ influx through the DHPR is eliminated display no difference in skeletal muscle function, suggesting that the Ca2+ influx through this channel is vestigial.
Collapse
Affiliation(s)
- Anamika Dayal
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Kai Schrötter
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Yuan Pan
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Karl Föhr
- Department of Anaesthesiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Manfred Grabner
- Division of Biochemical Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
53
|
Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body-Wall Muscles. Genetics 2017; 206:1985-1994. [PMID: 28576866 PMCID: PMC5560802 DOI: 10.1534/genetics.117.202747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/23/2017] [Indexed: 01/22/2023] Open
Abstract
Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. Here, we showed that elevated temperature increases free cytosolic Ca2+ [Ca2+]f from RYR (ryanodine receptor)/UNC-68in vivo in the muscles of an experimental model animal, the nematode Caenorhabditis elegans. This subsequently leads to mitochondrial fragmentation and dysfunction, and breakdown of myofilaments similar to rhabdomyolysis. In addition, treatment with an inhibitor of RYR (dantrolene) or activation of FoxO (Forkhead box O)/DAF-16 is effective against heat-induced muscle damage. Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. To gain insight into heat-induced muscle breakdown, we investigated alterations of Ca2+ homeostasis and mitochondrial morphology in vivo in body-wall muscles of C. elegans exposed to elevated temperature. Heat stress for 3 hr at 35° increased the concentration of [Ca2+]f, and led to mitochondrial fragmentation and subsequent dysfunction in the muscle cells. A similar mitochondrial fragmentation phenotype is induced in the absence of heat stress by treatment with a calcium ionophore, ionomycin. Mutation of the unc-68 gene, which encodes the ryanodine receptor that is linked to Ca2+ release from the sarcoplasmic reticulum, could suppress the mitochondrial dysfunction, muscle degeneration, and reduced mobility and life span induced by heat stress. In addition, in a daf-2 mutant, in which the DAF-16/FoxO transcription factor is activated, resistance to calcium overload, mitochondrial fragmentation, and dysfunction was observed. These findings reveal that heat-induced Ca2+ accumulation causes mitochondrial damage and consequently induces muscle breakdown.
Collapse
|
54
|
Zhang S, Guy RD, Lasheras JC, Del Álamo JC. Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:204004. [PMID: 30906070 PMCID: PMC6430145 DOI: 10.1088/1361-6463/aa68be] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (~100 µm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatiotemporal patterns of calcium concentration that regulate the generation of contractile forces.
Collapse
Affiliation(s)
- Shun Zhang
- Mechanical and Aerospace Engineering Department, University of California San Diego
| | - Robert D Guy
- Department of Mathematics, University of California Davis
| | - Juan C Lasheras
- Mechanical and Aerospace Engineering Department, University of California San Diego
- Department of Bioengineering, University of California San Diego
- Institute for Engineering in Medicine, University of California San Diego
| | - Juan C Del Álamo
- Mechanical and Aerospace Engineering Department, University of California San Diego
- Institute for Engineering in Medicine, University of California San Diego
| |
Collapse
|
55
|
Structural basis for conductance through TRIC cation channels. Nat Commun 2017; 8:15103. [PMID: 28524849 PMCID: PMC5477506 DOI: 10.1038/ncomms15103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Mammalian TRICs function as K+-permeable cation channels that provide counter ions for Ca2+ handling in intracellular stores. Here we describe the structures of two prokaryotic homologues, archaeal SaTRIC and bacterial CpTRIC, showing that TRIC channels are symmetrical trimers with transmembrane pores through each protomer. Each pore holds a string of water molecules centred at kinked helices in two inverted-repeat triple-helix bundles (THBs). The pores are locked in a closed state by a hydrogen bond network at the C terminus of the THBs, which is lost when the pores assume an open conformation. The transition between the open and close states seems to be mediated by cation binding to conserved residues along the three-fold axis. Electrophysiology and mutagenesis studies show that prokaryotic TRICs have similar functional properties to those of mammalian TRICs and implicate the three-fold axis in the allosteric regulation of the channel. Trimeric intracellular cation channels (TRICs) elicit K+ currents to counteract luminal negative potential during Ca2+ release from intracellular stores. Here the authors present structures of prokaryotic TRICs in their open and closed states, obtaining molecular insight into TRICs' function.
Collapse
|
56
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
57
|
Structure-Function Relationship of the Voltage-Gated Calcium Channel Cav1.1 Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:23-39. [DOI: 10.1007/978-3-319-55858-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
58
|
ER-luminal thiol/selenol-mediated regulation of Ca2+ signalling. Biochem Soc Trans 2016; 44:452-9. [PMID: 27068954 DOI: 10.1042/bst20150233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular Ca(2+)storage unit. Among other signalling outputs, the ER can release Ca(2+)ions, which can, for instance, communicate the status of ER protein folding to the cytosol and to other organelles, in particular the mitochondria. As a consequence, ER Ca(2+)flux can alter the apposition of the ER with mitochondria, influence mitochondrial ATP production or trigger apoptosis. All aspects of ER Ca(2+)flux have emerged as processes that are intimately controlled by intracellular redox conditions. In this review, we focus on ER-luminal redox-driven regulation of Ca(2+)flux. This involves the direct reduction of disulfides within ER Ca(2+)handling proteins themselves, but also the regulated interaction of ER chaperones and oxidoreductases such as calnexin or ERp57 with them. Well-characterized examples are the activating interactions of Ero1α with inositol 1,4,5-trisphosphate receptors (IP3Rs) or of selenoprotein N (SEPN1) with sarco/endoplasmic reticulum Ca(2+)transport ATPase 2 (SERCA2). The future discovery of novel ER-luminal modulators of Ca(2+)handling proteins is likely. Based on the currently available information, we describe how the variable ER redox conditions govern Ca(2+)flux from the ER.
Collapse
|
59
|
The maintenance ability and Ca 2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med 2016; 48:e278. [PMID: 27932789 PMCID: PMC5192075 DOI: 10.1038/emm.2016.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
Sildenafil relaxes vascular smooth muscle cells and is used to treat pulmonary artery hypertension as well as erectile dysfunction. However, the effectiveness of sildenafil on skeletal muscle and the benefit of its clinical use have been controversial, and most studies focus primarily on tissues and organs from disease models without cellular examination. Here, the effects of sildenafil on skeletal muscle at the cellular level were examined using mouse primary skeletal myoblasts (the proliferative form of skeletal muscle stem cells) and myotubes, along with single-cell Ca2+ imaging experiments and cellular and biochemical studies. The proliferation of skeletal myoblasts was enhanced by sildenafil in a dose-independent manner. In skeletal myotubes, sildenafil enhanced the activity of ryanodine receptor 1, an internal Ca2+ channel, and Ca2+ movement that promotes skeletal muscle contraction, possibly due to an increase in the resting cytosolic Ca2+ level and a unique microscopic shape in the myotube membranes. Therefore, these results suggest that the maintenance ability of skeletal muscle mass and the contractility of skeletal muscle could be improved by sildenafil by enhancing the proliferation of skeletal myoblasts and increasing the Ca2+ availability of skeletal myotubes, respectively.
Collapse
|
60
|
Mitsugumin 53 regulates extracellular Ca 2+ entry and intracellular Ca 2+ release via Orai1 and RyR1 in skeletal muscle. Sci Rep 2016; 6:36909. [PMID: 27841305 PMCID: PMC5107933 DOI: 10.1038/srep36909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Mitsugumin 53 (MG53) participates in the membrane repair of various cells, and skeletal muscle is the major tissue that expresses MG53. Except for the regulatory effects of MG53 on SERCA1a, the role(s) of MG53 in the unique functions of skeletal muscle such as muscle contraction have not been well examined. Here, a new MG53-interacting protein, Orai1, is identified in skeletal muscle. To examine the functional relevance of the MG53-Orai1 interaction, MG53 was over-expressed in mouse primary or C2C12 skeletal myotubes and the functional properties of the myotubes were examined using cell physiological and biochemical approaches. The PRY-SPRY region of MG53 binds to Orai1, and MG53 and Orai1 are co-localized in the plasma membrane of skeletal myotubes. MG53-Orai1 interaction enhances extracellular Ca2+ entry via a store-operated Ca2+ entry (SOCE) mechanism in skeletal myotubes. Interestingly, skeletal myotubes over-expressing MG53 or PRY-SPRY display a reduced intracellular Ca2+ release in response to K+-membrane depolarization or caffeine stimulation, suggesting a reduction in RyR1 channel activity. Expressions of TRPC3, TRPC4, and calmodulin 1 are increased in the myotubes, and MG53 directly binds to TRPC3, which suggests a possibility that TRPC3 also participates in the enhanced extracellular Ca2+ entry. Thus, MG53 could participate in regulating extracellular Ca2+ entry via Orai1 during SOCE and also intracellular Ca2+ release via RyR1 during skeletal muscle contraction.
Collapse
|
61
|
Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SRW, Yan N. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 2016; 354:science.aah5324. [PMID: 27708056 DOI: 10.1126/science.aah5324] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/14/2016] [Indexed: 01/10/2023]
Abstract
RyR2 is a high-conductance intracellular calcium (Ca2+) channel that controls the release of Ca2+ from the sarco(endo)plasmic reticulum of a variety of cells. Here, we report the structures of RyR2 from porcine heart in both the open and closed states at near-atomic resolutions determined using single-particle electron cryomicroscopy. Structural comparison reveals a breathing motion of the overall cytoplasmic region resulted from the interdomain movements of amino-terminal domains (NTDs), Helical domains, and Handle domains, whereas almost no intradomain shifts are observed in these armadillo repeats-containing domains. Outward rotations of the Central domains, which integrate the conformational changes of the cytoplasmic region, lead to the dilation of the cytoplasmic gate through coupled motions. Our structural and mutational characterizations provide important insights into the gating and disease mechanism of RyRs.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenting Guo
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Ruiwu Wang
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - S R Wayne Chen
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1.
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
62
|
Murayama T, Kurebayashi N, Ogawa H, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel. Hum Mutat 2016; 37:1231-1241. [PMID: 27586648 DOI: 10.1002/humu.23072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, Jikei University School of Medicine, Tokyo, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
63
|
Carlo C, Pura B, Magaly R, Marino D. Differential effects of contractile potentiators on action potential-induced Ca 2+ transients of frog and mouse skeletal muscle fibres. J Muscle Res Cell Motil 2016; 37:169-180. [PMID: 27590123 DOI: 10.1007/s10974-016-9455-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Muscle fibres, isolated from frog tibialis anterior and mouse flexor digitorum brevis (FDB) were loaded with the fast dye MagFluo-4 to study the effects of potentiators caffeine, nitrate, Zn2+ and perchlorate on Ca2+ transients elicited by single action potentials. Overall, the potentiators doubled the transients amplitude and prolonged by about 1.5-fold their decay time. In contrast, as shown here for the first time, nitrate and Zn2+, but not caffeine, activated a late, secondary component of the transient rising phase of frog but not mouse, fibres. The rise time was increased from 1.9 ms in normal solution (NR) to 3.3 ms (nitrate) and 4.4 ms (Zn2+). In NR, a single exponential, fitted the rising phase of calcium transients of frog (τ1 = 0.47 ms) and mouse (τ1 = 0.28 ms). In nitrate and Zn2+ only frog transients showed a secondary exponential component, τ2 = 0.72 ms (nitrate) and 0.94 ms, (Zn2+). We suggest that nitrate and Zn2+ activate a late slower component of the ΔF/F signals of frog but not of mouse fibres, possibly promoting Ca2+ induced Ca2+ release at level of the RyR3, that in frog muscle fibres are localized in the para-junctional region of the triads and are absent in mouse FDB muscle fibres.
Collapse
Affiliation(s)
- Caputo Carlo
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas, 1020, Venezuela.
| | - Bolaños Pura
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas, 1020, Venezuela
| | - Ramos Magaly
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas, 1020, Venezuela
| | - DiFranco Marino
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CF, USA
| |
Collapse
|
64
|
Gaburjakova J, Gaburjakova M. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites. Bioelectrochemistry 2016; 109:49-56. [PMID: 26849106 DOI: 10.1016/j.bioelechem.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 11/18/2022]
Abstract
A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8 mM to 53 mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function.
Collapse
Affiliation(s)
- Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Health Sciences Pavilion, 840 05, Bratislava, Slovak Republic.
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Health Sciences Pavilion, 840 05, Bratislava, Slovak Republic.
| |
Collapse
|
65
|
Cappelletti S, Piacentino D, Daria P, Sani G, Aromatario M. Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 2016; 13:71-88. [PMID: 26074744 PMCID: PMC4462044 DOI: 10.2174/1570159x13666141210215655] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 10/25/2014] [Indexed: 02/06/2023] Open
Abstract
Caffeine use is increasing worldwide. The underlying motivations are mainly concentration
and memory enhancement and physical performance improvement. Coffee and caffeine-containing
products affect the cardiovascular system, with their positive inotropic and chronotropic effects, and
the central nervous system, with their locomotor activity stimulation and anxiogenic-like effects.
Thus, it is of interest to examine whether these effects could be detrimental for health. Furthermore,
caffeine abuse and dependence are becoming more and more common and can lead to caffeine
intoxication, which puts individuals at risk for premature and unnatural death. The present review summarizes the main
findings concerning caffeine’s mechanisms of action (focusing on adenosine antagonism, intracellular calcium
mobilization, and phosphodiesterases inhibition), use, abuse, dependence, intoxication, and lethal effects. It also suggests
that the concepts of toxic and lethal doses are relative, since doses below the toxic and/or lethal range may play a causal
role in intoxication or death. This could be due to caffeine’s interaction with other substances or to the individuals' preexisting
metabolism alterations or diseases.
Collapse
Affiliation(s)
- Simone Cappelletti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, "Sapienza" University of Rome, Rome, Italy
| | | | - Piacentino Daria
- NESMOS (Neuroscience, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Gabriele Sani
- NESMOS (Neuroscience, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Mariarosaria Aromatario
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
66
|
Harvey TJ, Murphy RM, Morrison JL, Posterino GS. Maternal Nutrient Restriction Alters Ca2+ Handling Properties and Contractile Function of Isolated Left Ventricle Bundles in Male But Not Female Juvenile Rats. PLoS One 2015; 10:e0138388. [PMID: 26406887 PMCID: PMC4583465 DOI: 10.1371/journal.pone.0138388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/28/2015] [Indexed: 01/09/2023] Open
Abstract
Intrauterine growth restriction (IUGR), defined as a birth weight below the 10th centile, may be caused by maternal undernutrition, with evidence that IUGR offspring have an increased risk of cardiovascular disease (CVD) in adulthood. Calcium ions (Ca2+) are an integral messenger for several steps associated with excitation-contraction coupling (ECC); the cascade of events from the initiation of an action potential at the surface membrane, to contraction of the cardiomyocyte. Any changes in Ca2+ storage and release from the sarcoplasmic reticulum (SR), or sensitivity of the contractile apparatus to Ca2+ may underlie the mechanism linking IUGR to an increased risk of CVD. This study aimed to explore the effects of maternal nutrient restriction on cardiac function, including Ca2+ handling by the SR and force development by the contractile apparatus. Juvenile Long Evans hooded rats born to Control (C) and nutrient restricted (NR) dams were anaesthetized for collection of the heart at 10–12 weeks of age. Left ventricular bundles from male NR offspring displayed increased maximum Ca2+-activated force, and decreased protein content of troponin I (cTnI) compared to C males. Furthermore, male NR offspring showed a reduction in rate of rise of the caffeine-induced Ca2+ force response and a decrease in the protein content of ryanodine receptor (RYR2). These physiological and biochemical findings observed in males were not evident in female offspring. These findings illustrate a sex-specific effect of maternal NR on cardiac development, and also highlight a possible mechanism for the development of hypertension and hypertrophy in male NR offspring.
Collapse
Affiliation(s)
- Thomas J. Harvey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Vic, Australia
- * E-mail:
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic, Australia
| | - Janna L. Morrison
- School of Pharmacy and Medical Science, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Giuseppe S. Posterino
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Vic, Australia
| |
Collapse
|
67
|
Savio-Galimberti E, Knollmann BC. Channel Activity of Cardiac Ryanodine Receptors (RyR2) Determines Potency and Efficacy of Flecainide and R-Propafenone against Arrhythmogenic Calcium Waves in Ventricular Cardiomyocytes. PLoS One 2015; 10:e0131179. [PMID: 26121139 PMCID: PMC4488248 DOI: 10.1371/journal.pone.0131179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT.
Collapse
Affiliation(s)
- Eleonora Savio-Galimberti
- Division of Clinical Pharmacology and Oates Institute for Experimental Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, United States of America
- Division of Cardiovascular Medicine. Department of Medicine, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Björn C. Knollmann
- Division of Clinical Pharmacology and Oates Institute for Experimental Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, United States of America
- * E-mail:
| |
Collapse
|
68
|
Murayama T, Kurebayashi N, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Divergent Activity Profiles of Type 1 Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region. PLoS One 2015; 10:e0130606. [PMID: 26115329 PMCID: PMC4482644 DOI: 10.1371/journal.pone.0130606] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in several diseases, including malignant hyperthermia (MH) and central core disease (CCD). Most MH and CCD mutations cause accelerated Ca2+ release, resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, how specific mutations affect the channel to produce different phenotypes is not well understood. In this study, we have investigated 11 mutations at 7 different positions in the amino (N)-terminal region of RyR1 (9 MH and 2 MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging at room temperature (~25 °C), cells expressing mutant channels exhibited alterations in Ca2+ homeostasis, i.e., an enhanced sensitivity to caffeine, a depletion of Ca2+ in the ER and an increase in resting cytoplasmic Ca2+. RyR1 channel activity was quantitatively evaluated by [3H]ryanodine binding and three parameters (sensitivity to activating Ca2+, sensitivity to inactivating Ca2+ and attainable maximum activity, i.e., gain) were obtained by fitting analysis. The mutations increased the gain and the sensitivity to activating Ca2+ in a site-specific manner. The gain was consistently higher in both MH and MH/CCD mutations. Sensitivity to activating Ca2+ was markedly enhanced in MH/CCD mutations. The channel activity estimated from the three parameters provides a reasonable explanation to the pathological phenotype assessed by Ca2+ homeostasis. These properties were also observed at higher temperatures (~37 °C). Our data suggest that divergent activity profiles may cause varied disease phenotypes by specific mutations. This approach should be useful for diagnosis and treatment of diseases with mutations in RyR1.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
- * E-mail:
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, Jikei University School of Medicine, Tokyo 105–8461, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142–8555, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142–8555, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113–0033, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113–8421, Japan
| |
Collapse
|
69
|
Pecze L, Schwaller B. Characterization and modeling of Ca2+ oscillations in mouse primary mesothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:632-45. [DOI: 10.1016/j.bbamcr.2014.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
70
|
Noguchi K, Matsuzaki T, Sakanashi M, Hamadate N, Uchida T, Kina-Tanada M, Kubota H, Nakasone J, Sakanashi M, Ueda S, Masuzaki H, Ishiuchi S, Ohya Y, Tsutsui M. Effect of caffeine contained in a cup of coffee on microvascular function in healthy subjects. J Pharmacol Sci 2015; 127:217-22. [PMID: 25727960 DOI: 10.1016/j.jphs.2015.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/26/2014] [Accepted: 01/13/2015] [Indexed: 12/30/2022] Open
Abstract
Recent epidemiological studies have demonstrated that coffee drinking is associated with reduced mortality of cardiovascular disease. However, its precise mechanisms remain to be clarified. In this study, we examined whether single ingestion of caffeine contained in a cup of coffee improves microvascular function in healthy subjects. A double-blind, placebo-controlled, crossover study was performed in 27 healthy volunteers. A cup of either caffeinated or decaffeinated coffee was drunk by the subjects, and reactive hyperemia of finger blood flow was assessed by laser Doppler flowmetry. In an interval of more than 2 days, the same experimental protocol was repeated with another coffee in a crossover manner. Caffeinated coffee intake slightly but significantly elevated blood pressure and decreased finger blood flow as compared with decaffeinated coffee intake. There was no significant difference in heart rate between caffeinated and decaffeinated coffee intake. Importantly, caffeinated coffee intake significantly enhanced post-occlusive reactive hyperemia of finger blood flow, an index of microvascular endothelial function, compared with decaffeinated coffee intake. These results provide the first evidence that caffeine contained in a cup of coffee enhances microvascular function in healthy individuals.
Collapse
Affiliation(s)
- Katsuhiko Noguchi
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Toshihiro Matsuzaki
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mayuko Sakanashi
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Naobumi Hamadate
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Taro Uchida
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mika Kina-Tanada
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Haruaki Kubota
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Junko Nakasone
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Matao Sakanashi
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Masuzaki
- Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shogo Ishiuchi
- Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yusuke Ohya
- Third Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
71
|
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94:909-50. [PMID: 24987008 DOI: 10.1152/physrev.00026.2013] [Citation(s) in RCA: 3717] [Impact Index Per Article: 337.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Magdalena Juhaszova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Steven J Sollott
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
72
|
Choi SJ. Cellular mechanism of eccentric-induced muscle injury and its relationship with sarcomere heterogeneity. J Exerc Rehabil 2014; 10:200-4. [PMID: 25210693 PMCID: PMC4157925 DOI: 10.12965/jer.140139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/09/2014] [Indexed: 11/22/2022] Open
Abstract
Activity-induced muscle injury and dysfunction have been identified as key components of musculoskeletal injuries. These injuries often occur following eccentric contractions, when the muscle is under tension and stretched by a force that is greater than the force generated by the muscle. Many daily activities require muscles to perform eccentric contractions, including walking (or running) downhill or down stairs, lowering heavy objects, and landing from a jump. Injuries often occur when these activities are performed at high intensity or for prolonged periods of time. General features of eccentric-induced muscle injury are well documented and include disruption of intracellular muscle structure, prolonged muscle weakness and dysfunction, a delayed-onset muscle soreness, and inflammation. Several weeks are required for the affected tissue to fully regenerate and recover from eccentric-induced muscle injury. Possible mechanisms responsible for eccentric-induced muscle injury are activation impairment and structural disruption of the sarcomere. These two factors seem to be the main sources of eccentric-induced muscle injury. Rather than being separate mechanisms they may be complimentary and interact with each other. Therefore, in this review we will focus on the two main cellular mechanism of muscle cell injury following accustomed eccentric contraction.
Collapse
Affiliation(s)
- Seung Jun Choi
- Division of Sports and Health Science, Kyungsung University, Busan, Korea
| |
Collapse
|
73
|
Pinali C, Kitmitto A. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol 2014; 76:1-11. [PMID: 25149127 DOI: 10.1016/j.yjmcc.2014.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
Electron microscopy techniques have made a significant contribution towards understanding muscle physiology since the 1950s. Subsequent advances in hardware and software have led to major breakthroughs in terms of image resolution as well as the ability to generate three-dimensional (3D) data essential for linking structure to function and dysfunction. In this methodological review we consider the application of a relatively new technique, serial block face scanning electron microscopy (SBF-SEM), for the study of cardiac muscle morphology. Employing SBF-SEM we have generated 3D data for cardiac myocytes within the myocardium with a voxel size of ~15 nm in the X-Y plane and 50 nm in the Z-direction. We describe how SBF-SEM can be used in conjunction with selective staining techniques to reveal the 3D cellular organisation and the relationship between the t-tubule (t-t) and sarcoplasmic reticulum (SR) networks. These methods describe how SBF-SEM can be used to provide qualitative data to investigate the organisation of the dyad, a specialised calcium microdomain formed between the t-ts and the junctional portion of the SR (jSR). We further describe how image analysis methods may be applied to interrogate the 3D volumes to provide quantitative data such as the volume of the cell occupied by the t-t and SR membranes and the volumes and surface area of jSR patches. We consider the strengths and weaknesses of the SBF-SEM technique, pitfalls in sample preparation together with tips and methods for image analysis. By providing a 'big picture' view at high resolutions, in comparison to conventional confocal microscopy, SBF-SEM represents a paradigm shift for imaging cellular networks in their native environment.
Collapse
Affiliation(s)
- Christian Pinali
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
74
|
Webb SE, Miller AL. Calcium signaling in extraembryonic domains during early teleost development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 304:369-418. [PMID: 23809440 DOI: 10.1016/b978-0-12-407696-9.00007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
It is becoming recognized that the extraembryonic domains of developing vertebrates, that is, those that make no cellular contribution to the embryo proper, act as important signaling centers that induce and pattern the germ layers and help establish the key embryonic axes. In the embryos of teleost fish, in particular, significant progress has been made in understanding how signaling activity in extraembryonic domains, such as the enveloping layer, the yolk syncytial layer, and the yolk cell, might help regulate development via a combination of inductive interactions, cellular dynamics, and localized gene expression. Ca(2+) signaling in a variety of forms that include propagating waves and standing gradients is a feature found in all three teleostean extraembryonic domains. This leads us to propose that in addition to their other well-characterized signaling activities, extraembryonic domains are well suited (due to their relative stability and continuity) to act as Ca(2+) signaling centers and conduits.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | | |
Collapse
|
75
|
Pesta DH, Angadi SS, Burtscher M, Roberts CK. The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance. Nutr Metab (Lond) 2013; 10:71. [PMID: 24330705 PMCID: PMC3878772 DOI: 10.1186/1743-7075-10-71] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023] Open
Abstract
Caffeine, nicotine, ethanol and tetrahydrocannabinol (THC) are among the most prevalent and culturally accepted drugs in western society. For example, in Europe and North America up to 90% of the adult population drinks coffee daily and, although less prevalent, the other drugs are also used extensively by the population. Smoked tobacco, excessive alcohol consumption and marijuana (cannabis) smoking are addictive and exhibit adverse health effects. These drugs are not only common in the general population, but have also made their way into elite sports because of their purported performance-altering potential. Only one of the drugs (i.e., caffeine) has enough scientific evidence indicating an ergogenic effect. There is some preliminary evidence for nicotine as an ergogenic aid, but further study is required; cannabis and alcohol can exhibit ergogenic potential under specific circumstances but are in general believed to be ergolytic for sports performance. These drugs are currently (THC, ethanol) or have been (caffeine) on the prohibited list of the World Anti-Doping Agency or are being monitored (nicotine) due to their potential ergogenic or ergolytic effects. The aim of this brief review is to evaluate the effects of caffeine, nicotine, ethanol and THC by: 1) examining evidence supporting the ergogenic or ergolytic effects; 2) providing an overview of the mechanism(s) of action and physiological effects; and 3) where appropriate, reviewing their impact as performance-altering aids used in recreational and elite sports.
Collapse
Affiliation(s)
- Dominik H Pesta
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Sports Science, Medical Section, University Innsbruck, Innsbruck, Austria
| | - Siddhartha S Angadi
- Healthy Lifestyles Research Center, School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
| | - Martin Burtscher
- Department of Sports Science, Medical Section, University Innsbruck, Innsbruck, Austria
| | - Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California, Los Angeles, CA, USA
| |
Collapse
|
76
|
Fischer TH, Neef S, Maier LS. The Ca-calmodulin dependent kinase II: A promising target for future antiarrhythmic therapies? J Mol Cell Cardiol 2013; 58:182-7. [DOI: 10.1016/j.yjmcc.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 12/19/2022]
|
77
|
Characterization of Ca(2+) signaling in the external yolk syncytial layer during the late blastula and early gastrula periods of zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1641-56. [PMID: 23142640 DOI: 10.1016/j.bbamcr.2012.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022]
Abstract
Preferential loading of the complementary bioluminescent (f-aequorin) and fluorescent (Calcium Green-1 dextran) Ca(2+) reporters into the yolk syncytial layer (YSL) of zebrafish embryos, revealed the generation of stochastic patterns of fast, short-range, and slow, long-range Ca(2+) waves that propagate exclusively through the external YSL (E-YSL). Starting abruptly just after doming (~4.5h post-fertilization: hpf), and ending at the shield stage (~6.0hpf) these distinct classes of waves propagated at mean velocities of ~50 and ~4μm/s, respectively. Although the number and pattern of these waves varied between embryos, their initiation site and arcs of propagation displayed a distinct dorsal bias, suggesting an association with the formation and maintenance of the nascent dorsal-ventral axis. Wave initiation coincided with a characteristic clustering of YSL nuclei (YSN), and their associated perinuclear ER, in the E-YSL. Furthermore, the inter-YSN distance (IND) appeared to be critical such that Ca(2+) wave propagation occurred only when this was <~8μm; an IND >~8μm was coincidental with wave termination at shield stage. Treatment with the IP3R antagonist, 2-APB, the Ca(2+) buffer, 5,5'-dibromo BAPTA, and the SERCA-pump inhibitor, thapsigargin, resulted in a significant disruption of the E-YSL Ca(2+) waves, whereas exposure to the RyR antagonists, ryanodine and dantrolene, had no significant effect. These findings led us to propose that the E-YSL Ca(2+) waves are generated mainly via Ca(2+) release from IP3Rs located in the perinuclear ER, and that the clustering of the YSN is an essential step in providing a CICR pathway required for wave propagation. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
78
|
Hypothermia reduces calcium entry via the N-methyl-D-aspartate and ryanodine receptors in cultured hippocampal neurons. Eur J Pharmacol 2012; 698:186-92. [PMID: 23085028 DOI: 10.1016/j.ejphar.2012.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022]
Abstract
Hypothermia is a powerful neuroprotective method when induced following cardiac arrest, stroke, and traumatic brain injury. The physiological effects of hypothermia are multifaceted and therefore a better knowledge of its therapeutic targets will be central to developing innovative combination therapies to augment the protective benefits of hypothermia. Altered neuronal calcium dynamics have been implicated following stroke, status epilepticus and traumatic brain injury. This study was therefore initiated to evaluate the effect of hypothermia on various modes of calcium entry into a neuron. Here, we utilized various pharmacological agents to stimulate major routes of calcium entry in primary cultured hippocampal neurons. Fluorescent calcium indicator Fura-2AM was used to compare calcium ratio under normothermic (37 °C) and hypothermic (31 °C) conditions. The results of this study indicate that hypothermia preferentially reduces calcium entry through N-methyl-D-aspartate receptors and ryanodine receptors. Hypothermia, on the other hand, did not have a significant effect on calcium entry through the voltage-dependent calcium channels or the inositol tri-phosphate receptors. The ability of hypothermia to selectively affect both N-methyl-D-aspartate receptors and ryanodine receptors-mediated calcium systems makes it an attractive intervention for alleviating calcium elevations that are present following many neurological injuries.
Collapse
|
79
|
The concentrations of free magnesium and free calcium ions both increase in skeletal muscle fibres entering Rigor mortis. Meat Sci 2012; 35:27-45. [PMID: 22060835 DOI: 10.1016/0309-1740(93)90068-s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1992] [Accepted: 08/21/1992] [Indexed: 12/18/2022]
Abstract
Metabolic inhibitors have been used to induce rigor in mammalian muscle fibres previously injected with the Ca(2+)- and Mg(2+)-binding dye arsenazo III. The spectral changes which ensue, after the onset of rigor, indicate that a large increase in intracellular free Ca(2+) occurs (to more than 10(-4)m) but that this is preceded and accompanied by a substantial increase in free Mg(2+) concentration (to 2 mm or more) presumably as a result of the decline in the ATP concentration within the cell. Fibres in rigor have been treated with the divalent cation ionophore A23187 to enable Ca(2+) and Mg(2+) to be extracted selectively from the cell by extracelluar chelating agents. Optical measurements performed during this extraction, confirm that both Ca(2+)- and Mg(2+)-binding to arsenazo III contribute to the absorption change which is recorded, whilst the treatment of relaxed fibres with the ionophore together with EDTA, produces an absorption change which, in combination with other measurements, indicates that in the sarcoplasm of the resting relaxed cell, approximately one third of the dye is complexed with Mg(2+). This indicates that the cytoplasmic free Mg(2+) concentration, prior to rigor onset, is about 0·5 mm.
Collapse
|
80
|
Willis CD, Oashi T, Busby B, Mackerell AD, Bloch RJ. Hydrophobic residues in small ankyrin 1 participate in binding to obscurin. Mol Membr Biol 2012; 29:36-51. [PMID: 22416964 DOI: 10.3109/09687688.2012.660709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract Small ankyrin-1 is a splice variant of the ANK1 gene that binds to obscurin A. Previous studies have identified electrostatic interactions that contribute to this interaction. In addition, molecular dynamics (MD) simulations predict four hydrophobic residues in a 'hot spot' on the surface of the ankyrin-like repeats of sAnk1, near the charged residues involved in binding. We used site-directed mutagenesis, blot overlays and surface plasmon resonance assays to study the contribution of the hydrophobic residues, V70, F71, I102 and I103, to two different 30-mers of obscurin that bind sAnk1, Obsc₆₃₁₆₋₆₃₄₅ and Obsc₆₂₃₁₋₆₂₆₀. Alanine mutations of each of the hydrophobic residues disrupted binding to the high affinity binding site, Obsc₆₃₁₆₋₆₃₄₅. In contrast, V70A and I102A mutations had no effect on binding to the lower affinity site, Obsc₆₂₃₁₋₆₂₆₀. Alanine mutagenesis of the five hydrophobic residues present in Obsc₆₃₁₆₋₆₃₄₅ showed that V6328, I6332, and V6334 were critical to sAnk1 binding. Individual alanine mutants of the six hydrophobic residues of Obsc₆₂₃₁₋₆₂₆₀ had no effect on binding to sAnk1, although a triple alanine mutant of residues V6233/I6234/I6235 decreased binding. We also examined a model of the Obsc₆₃₁₆₋₆₃₄₅-sAnk1 complex in MD simulations and found I102 of sAnk1 to be within 2.2Å of V6334 of Obsc₆₃₁₆₋₆₃₄₅. In contrast to the I102A mutation, mutating I102 of sAnk1 to other hydrophobic amino acids such as phenylalanine or leucine did not disrupt binding to obscurin. Our results suggest that hydrophobic interactions contribute to the higher affinity of Obsc₆₃₁₆₋₆₃₄₅ for sAnk1 and to the dominant role exhibited by this sequence in binding.
Collapse
Affiliation(s)
- Chris D Willis
- Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
81
|
Velásquez-Martinez MC, Vázquez-Torres R, Jiménez-Rivera CA. Activation of alpha1-adrenoceptors enhances glutamate release onto ventral tegmental area dopamine cells. Neuroscience 2012; 216:18-30. [PMID: 22542873 DOI: 10.1016/j.neuroscience.2012.03.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 01/23/2023]
Abstract
The ventral tegmental area (VTA) plays an important role in reward and motivational processes that facilitate the development of drug addiction. Glutamatergic inputs into the VTA contribute to dopamine (DA) neuronal activation related to reward and response-initiating effects in drug abuse. Previous investigations indicate that alpha1-adrenoreceptors (α1-ARs) are primarily localized at presynaptic elements in the ventral midbrain. Studies from several brain regions have shown that presynaptic α1-AR activation enhances glutamate release. Therefore, we hypothesized that glutamate released onto VTA-DA neurons is modulated by pre-synaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28-50 days postnatal) using voltage clamp techniques. Phenylephrine (10 μM) and methoxamine (80μM), both α1-AR agonists, increased AMPA receptor-mediated excitatory postsynaptic currents' (EPSCs) amplitude evoked by electrical stimulation of afferent fibers (p<0.05). This effect was blocked by the α1-AR antagonist prazosin (1 μM). Phenylephrine decreased the paired-pulse ratio (PPR) and increased spontaneous EPSCs' frequencies but not their amplitudes suggesting a presynaptic locus of action. No changes in miniature EPSCs (0.5μM, tetrodotoxin [TTX]) were observed after phenylephrine's application which suggests that α1-AR effect was action potential dependent. Normal extra- and intracellular Ca(2+) concentration seems necessary for the α1-AR effect since phenylephrine in low Ca(2+) artificial cerebrospinal fluid (ACSF) and depletion of intracellular Ca(2+) stores with thapsigargin (10 μM) failed to increase the AMPA EPSCs' amplitude. Chelerythrine (1μM, protein kinase C (PKC) inhibitor) but not Rp-cAMPS (11 μM, PKA inhibitor) blocked the α1-AR activation effect on AMPA EPSCs, indicating that a PKC intracellular pathway is required. These results demonstrated that presynaptic α1-AR activation modulates glutamatergic inputs that affect VTA-DA neuronal excitability. α1-AR action might be heterosynaptically localized at glutamatergic fibers terminating onto VTA-DA neurons. It is suggested that drug-induced changes in α1-AR could be part of the neuroadaptations occurring in the mesocorticolimbic circuitry during the addiction process.
Collapse
Affiliation(s)
- M C Velásquez-Martinez
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | | | | |
Collapse
|
82
|
Thomas NL, Williams AJ. Pharmacology of ryanodine receptors and Ca2+-induced Ca2+ release. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
83
|
Abstract
Calcium plays important role in biological systems where it is involved in diverse mechanisms such as signaling, muscle contraction and neuromodulation. Action potentials are generated by dynamic interaction of ionic channels located on the plasma-membrane and these drive the rhythmic activity of biological systems such as the smooth muscle and the heart. However, ionic channels are not the only pacemakers; an intimate interaction between intracellular Ca(2+) stores and ionic channels underlie rhythmic activity. In this review we will focus on the role of Ca(2+) stores in regulation of rhythmical behavior.
Collapse
Affiliation(s)
- Mohammad S Imtiaz
- Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
84
|
Murayama T, Kurebayashi N, Oba T, Oyamada H, Oguchi K, Sakurai T, Ogawa Y. Role of amino-terminal half of the S4-S5 linker in type 1 ryanodine receptor (RyR1) channel gating. J Biol Chem 2011; 286:35571-35577. [PMID: 21862589 DOI: 10.1074/jbc.m111.255240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Toshiharu Oba
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yasuo Ogawa
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
85
|
Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Collapse
|
86
|
Winkler T, von Roth P, Matziolis G, Schumann MR, Hahn S, Strube P, Stoltenburg-Didinger G, Perka C, Duda GN, Tohtz SV. Time course of skeletal muscle regeneration after severe trauma. Acta Orthop 2011; 82:102-11. [PMID: 21142822 PMCID: PMC3230005 DOI: 10.3109/17453674.2010.539498] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Animal models of skeletal muscle injury should be thoroughly described and should mimic the clinical situation. We established a model of a critical size crush injury of the soleus muscle in rats. The aim was to describe the time course of skeletal muscle regeneration using mechanical, histological, and magnetic resonance (MR) tomographic methods. METHODS Left soleus muscles of 36 Sprague-Dawley rats were crushed in situ in a standardized manner. We scanned the lower legs of 6 animals by 7-tesla MR one week, 4 weeks, and 8 weeks after trauma. Regeneration was evaluated at these times by in vivo measurement of muscle contraction forces after fast-twitch and tetanic stimulation (groups 1W, 4W, 8W; 6 per group). Histological and immunohistological analysis was performed and the amount of fibrosis within the injured muscles was determined histomorphologically. RESULTS MR signals of the traumatized soleus muscles showed a clear time course concerning microstructure and T1 and T2 signal intensity. Newly developed neural endplates and myotendinous junctions could be seen in the injured zones of the soleus. Tetanic force increased continuously, starting at 23% (SD 4) of the control side (p < 0.001) 1 week after trauma and recovering to 55% (SD 23) after 8 weeks. Fibrotic tissue occupied 40% (SD 4) of the traumatized muscles after the first week, decreased to approximately 25% after 4 weeks, and remained at this value until 8 weeks. INTERPRETATION At both the functional level and the morphological level, skeletal muscle regeneration follows a distinct time course. Our trauma model allows investigation of muscle regeneration after a standardized injury to muscle fibers.
Collapse
Affiliation(s)
- Tobias Winkler
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Philipp von Roth
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Georg Matziolis
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Maria R Schumann
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Sebastian Hahn
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Patrick Strube
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | | | - Carsten Perka
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Georg N Duda
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| | - Stephan V Tohtz
- Center for Musculoskeletal Surgery and Julius Wolff Institute Berlin, Brandenburg Center for Regenerative Therapies
| |
Collapse
|
87
|
Ozawa E. Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:486-508. [PMID: 21986313 PMCID: PMC3309122 DOI: 10.2183/pjab.87.486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.
Collapse
Affiliation(s)
- Eijiro Ozawa
- National Center of Neuroscience, NCNP, Tokyo, Japan.
| |
Collapse
|
88
|
|
89
|
|
90
|
Peachey LD, Franzini‐Armstrong C. Structure and Function of Membrane Systems of Skeletal Muscle Cells. Compr Physiol 2011. [DOI: 10.1002/cphy.cp100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
91
|
Abstract
Methylxanthines of either natural or synthetic origin have a number of interesting pharmacological features. Proposed mechanisms of methylxanthine-induced pharmacological effects include competitive antagonism of G-coupled adenosine A(1) and A(2A) receptors and inhibition of phosphodiesterases. A number of studies have indicated that methylxanthines also exert effects through alternative mechanisms, in particular via activation of sarcoplasmic reticulum or endoplasmic reticulum ryanodine receptor (RyR) channels. More specifically, RyR channel activation by methylxanthines was reported (1) to stimulate the process of excitation coupling in muscle cells, (2) to augment the excitability of neurons and thus their capacity to release neurotransmitters, and also (3) to improve their survival. Here, we address the mechanisms by which methylxanthines control RyR activation and we consider the pharmacological consequences of this activation, in muscle and neuronal cells.
Collapse
Affiliation(s)
- Serge Guerreiro
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | |
Collapse
|
92
|
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
93
|
|
94
|
Murayama T, Kurebayashi N. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:134-44. [PMID: 21029746 DOI: 10.1016/j.pbiomolbio.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 01/13/2023]
Abstract
The ryanodine receptor (RyR) is a Ca(2+) release channel in the sarcoplasmic reticulum in vertebrate skeletal muscle and plays an important role in excitation-contraction (E-C) coupling. Whereas mammalian skeletal muscle predominantly expresses a single RyR isoform, RyR1, skeletal muscle of many nonmammalian vertebrates expresses equal amounts of two distinct isoforms, α-RyR and β-RyR, which are homologues of mammalian RyR1 and RyR3, respectively. In this review we describe our current understanding of the functions of these two RyR isoforms in nonmammalian vertebrate skeletal muscle. The Ca(2+) release via the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2+) release (DICR) and Ca(2+)-induced Ca(2+) release (CICR). In frog muscle, α-RyR acts as the DICR channel, whereas β-RyR as the CICR channel. However, several lines of evidence suggest that CICR by β-RyR may make only a minor contribution to Ca(2+) release during E-C coupling. Comparison of frog and mammalian RyR isoforms highlights the marked differences in the patterns of Ca(2+) release mediated by RyR1 and RyR3 homologues. Interestingly, common features in the Ca(2+) release patterns are noticed between β-RyR and RyR1. We will discuss possible roles and significance of the two RyR isoforms in E-C coupling and other processes in nonmammalian vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
95
|
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2:a003996. [PMID: 20961976 DOI: 10.1101/cshperspect.a003996] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.
Collapse
Affiliation(s)
- Johanna T Lanner
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas 77030,USA
| | | | | | | |
Collapse
|
96
|
Abstract
Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial.
Collapse
|
97
|
Kashiyama T, Murayama T, Suzuki E, Allen PD, Ogawa Y. Frog alpha- and beta-ryanodine receptors provide distinct intracellular Ca2+ signals in a myogenic cell line. PLoS One 2010; 5:e11526. [PMID: 20634947 PMCID: PMC2902508 DOI: 10.1371/journal.pone.0011526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background In frog skeletal muscle, two ryanodine receptor (RyR) isoforms, α-RyR and β-RyR, are expressed in nearly equal amounts. However, the roles and significance of the two isoforms in excitation-contraction (E-C) coupling remains to be elucidated. Methodology/Principal Findings In this study, we expressed either or both α-RyR and β-RyR in 1B5 RyR-deficient myotubes using the herpes simplex virus 1 helper-free amplicon system. Immunological characterizations revealed that α-RyR and β-RyR are appropriately expressed and targeted at the junctions in 1B5 myotubes. In Ca2+ imaging studies, each isoform exhibited caffeine-induced Ca2+ transients, an indicative of Ca2+-induced Ca2+ release (CICR). However, the fashion of Ca2+ release events was fundamentally different: α-RyR mediated graded and sustained Ca2+ release observed uniformly throughout the cytoplasm, whereas β-RyR supported all-or-none type regenerative Ca2+ oscillations and waves. α-RyR but not β-RyR exhibited Ca2+ transients triggered by membrane depolarization with high [K+]o that were nifedipine-sensitive, indicating that only α-RyR mediates depolarization-induced Ca2+ release. Myotubes co-expressing α-RyR and β-RyR demonstrated high [K+]o-induced Ca2+ transients which were indistinguishable from those with myotubes expressing α-RyR alone. Furthermore, procaine did not affect the peak height of high [K+]o-induced Ca2+ transients, suggesting minor amplification of Ca2+ release by β-RyR via CICR in 1B5 myotubes. Conclusions/Significance These findings suggest that α-RyR and β-RyR provide distinct intracellular Ca2+ signals in a myogenic cell line. These distinct properties may also occur in frog skeletal muscle and will be important for E-C coupling.
Collapse
Affiliation(s)
- Taku Kashiyama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Erika Suzuki
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Paul D. Allen
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Yasuo Ogawa
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
98
|
Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res 2010; 88:30-9. [DOI: 10.1093/cvr/cvq225] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
99
|
Yamazaki D, Yamamoto S, Takeshima H. [TRIC (trimeric intracellular cation)-channel functions during Ca(2+) release from the sarco/endoplasmic reticulum]. Nihon Yakurigaku Zasshi 2010; 135:99-103. [PMID: 20228573 DOI: 10.1254/fpj.135.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
100
|
Arutyunyan RS, Kuznetsov SV. Effect of neurogenic inactivity on posttetanic responses of rat fast muscle. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|